
2014-ENST-0036

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « réseaux et sécurité »

présentée et soutenue publiquement par

Thomas MAGER
le 30 juin 2014

Conception et implémentation

d’un système de sauvegarde distribué

Directeur de thèse : Prof. Ernst BIERSACK

Jury
M. Pietro MICHIARDI, EURECOM, Sophia-Antipolis - France Examinateur
M. Guillaume URVOY-KELLER, Université Nice Sophia Antipolis - France Examinateur et Président
M. Georg CARLE, TU Munich, Munich - Allemagne Rapporteur
M. Pascal FELBER, Université de Neuchâtel, Neuchâtel - Suisse Rapporteur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

ii

Abstract

As computer users, we create increasing amounts of data, such as digital docu-
ments, pictures, and videos. Because these data have high value in our daily life
the need for back-ups arises. The creation of local back-ups on external hard
drives or optical disks is a common approach, but is insufficient in the event of
natural disasters or theft.

In this thesis, we provide a proof of concept for a distributed back-up system
that induces only low overhead, and respects user needs to easily recover a state
of a file system in a snapshot-based manner. We store distributed back-ups
on residential gateways and use a central tracker as coordinator. We introduce
index files in order to map the full state of a file system to a single data structure.
These index files allow to reference files that have been previously uploaded so
that over time only modified files need to be transferred. We divide the system
into distinct swarms of flexible size so that accessing data and monitoring is easy.
To increase back-up performance in this setup, we accept a lower storage space
efficiency for small files by storing them close to their metadata. We show that
this is reasonable due to the low amount of storage space they typically account
for. For big files we use an interleaving scheme that allows us to reduce the
memory footprint and make use of partially transferred data. All files and their
metadata are encrypted before beeing uploaded, so that the system ensures data
confidentiality. We further use state-of-the-art technologies in order to design a
tracker that is highly scalable, fault-tolerant, and is even replaceable in case it
entirely leaves the system. In fact, the load of the tracker only depends on the
number of participants, not on the amount of data stored in the network. The
system allows to configure a time span within which a user needs to recover
his data in case of local data loss. We analyze this approach by using real
world connectivity traces of residential gateways and show that it results in low
resource demands. Together with simulations on these traces, we underline the
feasibility of our service.

iii

iv

Résumé

En tant qu’utilisateurs d’ordinateurs, nous générons des données en quantité
de plus en plus abondante. Leur importance dans notre vie quotidienne est
telle qu’une méthode de sauvegarde s’avère nécessaire. La création de sauveg-
ardes locales est une approche commune, mais insuffisante en cas de vol ou de
destruction.

Dans cette thèse, nous concevons un système de sauvegarde distribué qui per-
met de restaurer l’état d’un système de fichiers de manière simple, grâce à la
constitution d’instantanés. Nous stockons ces instantanés sur les passerelles
résidentielles et utilisons un tracker centralisé pour les coordonner. Nous pré-
sentons le concept de fichiers d’indexes qui permet la correspondance entre
l’état complet d’un système de fichiers et une structure de donnée. Nous divi-
sons notre système en swarms de tailles variables, rendant l’accès aux données,
et son suivi, simple. Les fichiers à sauvegarder sont traités différemment suivant
leurs tailles, afin d’améliorer la performance globale du système, et de réduire
les ressources nécessaires. Tous les fichiers, ainsi que leurs méta-données, sont
chiffrés avant d’être téléchargés afin de garantir leur confidentialité. De plus,
nous utilisons les techniques de l’état de l’art afin de rendre le tracker résistant
aux pannes, et de pouvoir le remplacer s’il quitte le système. La charge sur le
tracker ne dépend que du nombre de participants, et donc pas de la quantité
de données stockée. Nous évaluons le système sur base de traces provenant de
passerelles résidentielles réelles, avec lesquelles nous démontrons un faible im-
pact global sur les ressources. En leur adjoignant des simulations, nous prouvons
la faisabilité de notre service.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 The Need for Back-up 1

1.1.2 Why Not Use the Cloud for Back-Up? 2

1.2 Gateway-Based Federated Network 4

1.3 Back-up Plan . 5

1.3.1 Back-up Strategies . 5

1.3.2 Frequency of Back-up 6

1.3.3 Back-up Location . 7

1.3.4 Back-up Plan for the Gateway Architecture 8

1.4 Focus and Contribution of this Thesis 9

1.5 Organization of this Thesis . 10

2 Related Work 11

2.1 Introduction . 11

2.2 Redundancy Strategies . 11

2.2.1 Replication . 12

2.2.2 Erasure Coding . 12

2.3 Repair Strategies . 13

2.4 Storage vs. Back-up . 13

2.5 Existing Systems . 14

v

vi CONTENTS

3 Swarm Architecture 21

3.1 Introduction . 21

3.2 Swarm Architecture Overview 22

3.2.1 Gateway . 23

3.2.2 Swarm . 24

3.2.3 Tracker . 25

3.3 Snapshot Representation . 27

3.3.1 On-Site Snapshot Representation 27

3.3.2 Off-Site Snapshot Representation 28

3.4 Data Management Strategy . 30

3.4.1 Data Placement Policy 30

3.4.2 Swarms as Distributed Key-Value Stores 31

3.4.3 Data Kept on the Tracker 36

3.4.4 Implications . 37

3.5 Maintenance Procedure . 39

3.5.1 Failure Detection . 39

3.5.2 Repair . 41

3.6 Influence of the Number of Original Fragments 45

3.6.1 Storage Overhead . 46

3.6.2 Data Rates . 46

3.6.3 Bandwidth Saturation 47

3.6.4 Effect of Correlated Failures 48

3.6.5 Load on the Tracker . 48

3.7 Encryption . 49

3.7.1 Authentication . 50

3.7.2 Data Encryption . 52

3.7.3 Integrity Checks . 53

3.8 Conclusion . 53

CONTENTS vii

4 Implementation 55

4.1 Introduction . 55

4.2 Communication . 56

4.2.1 RESTful Architecture 56

4.2.2 Aggregates . 59

4.2.3 Partial Transfers . 59

4.3 Swarm Leader . 60

4.3.1 Modules for On-Site Back-Up 61

4.3.2 Modules for Off-Site Back-Up 63

4.3.3 Different Ways of Storing Files in a Swarm 74

4.4 Tracker . 81

4.4.1 Resolution of Gateway Identifiers 81

4.4.2 Internal Tracker Structure 82

4.4.3 Total Tracker Outage 85

4.5 Storage Node . 88

4.5.1 Storing Transmission Blocks 88

4.5.2 Storage Reclamation 89

4.6 Incentives . 90

4.7 Conclusion . 93

5 Impact of Correlated Failures 95

5.1 Introduction . 95

5.2 Suitability of the Markovian Assumption 96

5.2.1 Real World Traces . 96

5.2.2 Traces Matching Our Environment 96

5.2.3 Independence of Permanent Failure Events 98

5.2.4 Exponential Distribution of Permanent Failures 101

5.3 Discussion . 103

5.3.1 Geographically-Related Correlated Failures 104

5.3.2 Geographically-Diverse Correlated Failures 105

5.4 Testing Back-Up Durability . 106

5.4.1 Experimental Setup . 106

5.4.2 Results and Conclusion 108

viii CONTENTS

6 Back-Up Simulation 111

6.1 Introduction . 111

6.2 Time Required for Back-Up Creation 112

6.2.1 Common Back-Up Scenario 112

6.2.2 Cloud-Based Back-Up 113

6.2.3 Swarm-Based Back-Up 114

6.2.4 Conclusion . 117

6.3 Influence of the Timeout Period 118

6.3.1 Costs Separated into Two Components 118

6.3.2 Optimal Value for the Free-Traces 118

6.4 Visualization of Bandwidth Usage 120

6.4.1 Simulation Setup . 120

6.4.2 Results . 120

6.4.3 Conclusion . 124

7 Conclusion and Perspective 125

7.1 Conclusion . 125

7.2 Perspective and Future Work 126

A Synthèse en francais 129

B Additional Implementation Details 151

B.1 Maintenance Module . 152

B.2 Snapshot Creator Module . 154

C Glossary 157

C.1 Acronyms and Abbreviations 157

List of Figures 163

List of Tables 165

Bibliography 167

CONTENTS ix

Frequently Used Variables

N total number of gateways in the federated network

k Number of fragments into which a file is divided

h Number of additional redundant fragments for a file

n Number of fragments for a file on alive storage nodes = k + h

r Redundancy factor = k+h
k

to Timeout value used for permanent failure detection

tr Time span within which a user needs to replace its gateway

td Time span reserved for downloading a back-up

tiso Maximum time the system guarantees a back-up to survive
without further maintenance from the swarm leader

St Total amount of data to be backed up by one swarm leader

Sf Size of a file f

α Availability of a gateway

τ Average lifetime of a gateway

Tf,i Transmission block for file f and erasure coding index i

Chapter 1

Introduction

In this chapter we give a general introduction into the topic of back-up creation
and the motivation to store back-ups in a distributed way. We also outline the
gateway-based scenario that is focused on by our architecture. We further pro-
vide an overview of the contributions of this work and describe its organization.

1.1 Motivation

In the following we explain our motivation for this work. In particular we name
the benefits of a distributed back-up and show why our approach can be a
worthwhile alternative to modern cloud storage solutions.

1.1.1 The Need for Back-up

Today, an increasing amount of digital data are stored on computers. In fact,
a study [Int12] conducted in 2012 shows that the amount of digital data in our
world is vastly growing. As shown in Figure 1.1, the study also predicts that
this trend will continue in the future.

It is generally agreed that computer data play an ever growing part in our daily
lives and thus have become increasingly valuable to us. Losing all family pictures
and important documents is a scenario nobody wants to face.

Unfortunately, electronic devices such as hard disk drives do not have an infi-
nite lifetime. Stored data can become partially or even completely inaccessible
without any prior indication. In many cases, data of these devices can be re-
covered by specialized data rescue companies [The14a, Kro14]. This procedure
is, however, associated with high monetary costs [The14b] and may take a long
time.

1

2 1. INTRODUCTION

Figure 1.1: “Digital Universe”, History and Projection; from [Int12]

This calls for solutions that allow people to recover from failure autonomously.
As a manual approach, people often create back-up volumes by using, e.g., CD-
ROM or external hard disk drives. Despite this approach there are two cases in
which a user still faces data loss. First, the volumes need to be created on a
regular basis, which a user may forget to do. In addition, natural disasters or
theft may still lead to data loss, since the data is stored at one location only.
To make matters worse, people often use many devices within a home network.
This requires a more sophisticated approach since data of all devices needs to
be backed up.

For these reasons, a solution that regularly gathers data and distributes them
to different locations turns out to be useful. It goes without saying that this
approach must take into account the confidentiality of data: placing a user’s
data at different locations must not involve that the original data are accessible
to other parties.

1.1.2 Why Not Use the Cloud for Back-Up?

Nowadays, the cloud as a centralized service is more and more used to store
data. Well-known cloud service providers are, among others, Dropbox [Dro14a]
and Amazon S3 [Ama14a]. These services have in common that the original
data is transferred into their systems and they internally ensure that data is
protected against loss. As the increasing memory storage density [Wal05] leads
to decreasing prices for storage (as illustrated in Figure 1.2), storing a back-up
in the cloud appears to be an attractive solution.

1.1. MOTIVATION 3

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

$100,000

$10,000

$1,000

$100

$10

1/
G
ig
ab

yt
e

Year

$0.1

Figure 1.2: Magnetic Disk Price; from [SK09]

However, for example Amazon has adapted its price structure [Ama14b] to
better represent the occurring costs, which also include the energy costs for
accessing and transferring data. With energy costs generally rising over the past
years [U.S14], this has become a factor of growing importance for providers of
cloud based services. Further, storing the original data in the cloud makes it
accessible to other parties such as employees [Dro14b] or even to the public in
some cases [Dro11], which clearly is not in the users’ interest.

Fortunately, we can profit from the fact that there is a mutual interest of users
to store a back-up in a different location. To leverage the resources of other
users to store a back-up does not result in costs if devices can be used that
are already present in the users’ home networks. As a result, every user can
create a back-up for free and does not encounter the disadvantage of a vendor
lock-in [RKYG13], which hinders a user from switching the back-up service
provider, e.g., when the terms of service change. By performing continuous
encryption of data before the transmission to other locations, we also achieve
data confidentiality. Therefore, it is possible to keep the users’ interest in the
foreground and provide a service that goes beyond what a purely centralized
cloud service offers.

4 1. INTRODUCTION

1.2 Gateway-Based Federated Network

In this work we focus on an architecture in which residential gateways play a key
role. We use them to interconnect different home networks over the Internet
in order to provide our distributed service. In fact, this work was developed in
connection with the European FP7 project FIGARO [FIG14], which also focuses
on such an environment.

Gateway

Federated Network

User Devices

Gateway

User Devices

Gateway

User Devices User Devices

Gateway

Home Network

Home NetworkHome Network

Home Network

Figure 1.3: Federated Network

The global architecture consists of the following entities, as illustrated in Fig-
ure 1.3:

• User Devices
User devices are heterogeneous devices such as desktop computers, laptops,
mobile phones, or cameras. A user stores data on these devices and con-
nects them to the home network.

• Home Network
A home network is a local area network that is typically deployed in a sin-
gle household. It interconnects all user devices that are used within this
network, e.g., via wired (Ethernet) or wireless (Wi-Fi) connections.

• Gateway
A gateway is a low-end computer that is generally turned on and connected
to both, the home network and the Internet. A gateway has access on a
local non-volatile storage system such as a hard disk drive or a Network-
Attached Storage (NAS).

1.3. BACK-UP PLAN 5

• Federated Network
The federated network includes all gateways that join our distributed back-
up service. Every gateway is reachable via the Internet for other gateways.

In this scenario we face two different network speeds, which are a determining
factor for our architecture. Transfers within the home network are generally fast,
while we expect lower transmission rates over the Internet. In the following, we
discuss different ways in which back-ups are generally created and make a choice
that takes into account the bandwidth restrictions resulting from this setup.

1.3 Back-up Plan

When creating back-ups, devising a reasonable and efficient back-up plan should
always be the first step. This plan determines how often to perform a back-up
and which content to transfer during the back-up process. Keeping too much
data might lead to maintenance burdens, while keeping too little data might
result in data loss. This section outlines possible approaches and concludes with
a back-up plan for our scenario introduced in the previous section.

1.3.1 Back-up Strategies

There exist several strategies for performing a back-up [IBM06, Mic06], each of
them meeting different requirements regarding storage space and transmission
bandwidth, as well as as flexibility in accessing stored data. In the following we
present some well known back-up strategies and outline their characteristics.

Back-up Everything

A complete copy of all data is placed on remote-site each time a back-up is
performed. This back-up is easy to manage but consumes a lot of resources.
For each back-up, the full amount of data is transferred and stored, no matter
what is already stored on back-up-site. Due to this, each back-up can also be
deleted without any restrictions.

Incremental Back-up

After storing an immutable full back-up, only differences to the previous back-
ups are transferred. This leads to successive copies containing only data that
changed from the preceding back-up. Although this leads to minimum storage
and bandwidth requirements for back-up creation, this approach entails draw-
backs. A full recovery requires the download of the last full back-up plus all

6 1. INTRODUCTION

the incremental back-ups until the desired point in time. For all changed and
deleted data, this leads to increased data transfer. Additionally, it is not possi-
ble to delete an old back-up without having stored a more recent full back-up
before.

Differential Back-up

All differences to the last full back-up are included in each differential back-
up. As a consequence, the recovery process only accesses a full back-up and the
desired differential back-up. This reduces time to recover from failure. However,
compared to incremental back-up, in average, differential back-up needs more
time for creation. In order to delete an old back-up, again, a more recent full
back-up is required.

Snapshot-based Back-up

In contrast to the previous strategies, snapshot-based back-up does not use an
immutable full back-up. Instead, it uses pointers to blocks respectively files to
define a consistent state of all data at a particular point in time. Similar to
incremental back-up, only added or changed data since the last back-up needs
to be transferred. For recovery, only relevant data needs to be accessed again,
resulting in a fast time to recover. In order to free storage space, least recently
used (LRU) or reference counting can be used in order to identify and delete
data solely used by particular old snapshots.

1.3.2 Frequency of Back-up

How often a back-up needs to be performed may be different from one user to
another. In the following we show major characteristics which lead to different
requirements on back-up frequency:

Importance of Data

Some data may be very valuable to a user, others may not. To provide an
example, a music file can usually be obtained from its source again, while a tax
report involves a lot of individual work. Therefore, important data needs to be
backed up more frequently, while less important data may be backed up less
often or even be ignored. Unfortunately, an automated classification is prone to
mis-classification. In our case of the music file, the back-up system could classify
it to be less important. However, the user could have recorded this particular
file himself or paid a fee to obtain it. In both cases he will be dissatisfied when
the file is lost. To avoid the risk, we could rely on user input to classify the

1.3. BACK-UP PLAN 7

importance of each file. However, this tends to be impractical considering the
high number of files in nowadays’ file systems and low costs for storage space.

Likelihood of Data to Change

If data frequently changes, more back-ups are necessary. The frequency of
changes can be expected to vary a lot from user to user, and even over time for a
single user. However, a study on file system workloads by Leung et al. [LPGM08]
reveals that 90% of file re-opens concern files opened within the last 24 hours
and, thus, seem to concern work in progress. A similar observation was made
in [Vog99]. Therefore, performing back-ups more frequently helps to reduce the
amount of work that is lost due to a failure. Conversely, ‘ a lower frequency for
older back-ups can be acceptable since work in progress is no longer concerned.

1.3.3 Back-up Location

We distinguish two different locations where a back-up is placed. Both locations
come with different characteristics, explained in the following:

On-site Back-up

This refers to a back-up stored at home. Data transfers to the gateway use the
local area network and are very fast. An on-site back-up is useful whenever a
single user device fails because it can be recovered very quickly. However, in
the event of natural disasters or theft, we expect both entities, the user device
and the gateway, to fail at the same time.

Off-site Back-up

For creating an off-site back-up, data is transferred to gateways at locations
that are geographically different to the place of the gateway. Because data
is transmitted over the Internet, transfers are slow and affect the bandwidth
usable by the user. When data cannot be recovered on-site, a user is still able
to recover data using an off-site back-up.

Back-up Retention

When a user loses data due to accidental deletion or some other reason (e.g., a
computer virus), a long period may elapse until the problem is noticed. In such
a case, it is possible that recent back-ups do not include the file anymore or the
data is corrupted. Therefore, a back-up plan also needs to consider that a user

8 1. INTRODUCTION

may need to recover back-ups from various times in the past. However, keeping
more back-ups also requires more storage space on remote-site. So if storage
space is limited, in consequence, the total number of back-ups is limited as well.

1.3.4 Back-up Plan for the Gateway Architecture

In our scenario, different users store data of varying importance on a single
gateway. We cannot make assumptions on what will be stored, nor on how
often it will be changed. Even user input about these characteristics might be
imprecise since users may miss-categorize their data, resulting in possible data
loss. In consequence, and also to provide a seamless service, this work considers
the following case:

• all user data is valuable

• a high back-up frequency is required

• we keep old back-ups as long as possible

Since the storage space provided by other gateways is limited, we need to be
able to free storage of old back-ups. This needs to be done whenever a more
recent back-up cannot be stored anymore. Back-up everything and snapshot-
based back-up both support cheap deletion of previous back-ups. Of these two,
however, only snapshot-based back-up can take advantage of data already used
by previous back-ups. In this case, a high back-up frequency only marginally
increases the amount of required storage space. In consequence, we conclude
with the following recommendation for a back-up plan in our scenario:

• We target a snapshot-based back-up solution

• We store on-site back-ups with high frequency (at least once a day)

• We store off-site back-ups less often (e.g., once a day)

• We decrease the frequency for older back-ups (e.g., after one week, we
only keep weekly back-ups)

• Finally, we keep older back-ups as long as storage space is available

1.4. FOCUS AND CONTRIBUTION OF THIS THESIS 9

1.4 Focus and Contribution of this Thesis

In this work we focus on the feasibility of a distributed back-up system that
supports snapshot-based back-ups. This entails several challenges we need to
meet, such as the system’s scalability, its resistence to failures and malicious
behaviour, together with an adequate data placement strategy. Since we store
data on participating gateways, we need to cope with storage that is unreli-
able in terms of availability and requires additional measures to achieve data
confidentiality.

The contribution of this work is as follows:

1. We provide a proof of concept for a distributed storage system with sup-
port for snapshot-based back-ups. This also includes the management
and enforcement of storage space quotas.

2. We introduce a swarm based architecture that uses file level access and
reduces metadata to a very low level. Further, it is easy to monitor the
data stored in a swarm.

3. We provide solutions for transferring and storing files of different sizes
efficiently in such a distributed system.

4. We illustrate how to use state-of-the-art technologies in order to include
a central instance that coordinates data placement in the network. This
central instance is highly scalable, fault-tolerant, and replaceable in case
it disappears. In addition, it is only exposed to a moderate operational
load.

5. We show how to manage encryption keys so that user data can be stored
confidentially and participants can be authenticated.

6. We analyze the applicability of our system by using real world availability
traces. Further, we study the impact of system parameters and provide a
comparison to the performance of cloud services.

10 1. INTRODUCTION

1.5 Organization of this Thesis

This thesis is structured as follows:

Subsequent to this introduction, we present related work in Chapter 2, which
includes established techniques used in order to achieve fault-tolerance in storage
systems. Further we provide an overview of existing storage systems.

In Chapter 3 we introduce our swarm-based architecture, which includes con-
siderations as to data placement, data encryption, and how we cope with data
loss due to participants leaving the federated network.

Subsequently, in Chapter 4 we supply more details concerning our implementa-
tion. We explain how we communicate between participants and how we create
back-ups. We further outline the functionality of the central instance.

We analyze the underlying failure model in Chapter 5 by using statistical tests
and simulations based on a failure trace. This is accompanied by a general
discussion about correlated failures.

We simulate the creation of back-ups in Chapter 6. In particular, this includes
simulations concerning the time required to create a back-up and the influence
of system parameters.

Finally, we conclude the thesis in Chapter 7 and provide an outlook for future
work.

Chapter 2

Related Work

“Another piece of folk wisdom is
that the more elaborate the
backup system, the less likely
that it actually works.”

Citation from [SK09]

2.1 Introduction

Data storage in distributed systems is a topic that is discussed in literature since
several years. In this chapter we outline some established methods used in such
systems and cover the differences between storage and back-up applications.
Finally, we illustrate the design and features of some existing systems.

2.2 Redundancy Strategies

Data redundancy, in general, is essential for systems in order to provide service
in spite of data loss. Since in practice many systems face data loss, much
research is done in the area of data redundancy. In fact, data redundancy finds
its use in data transmission as well as in data storage.

There is research done on redundancy in data transmission, for example in
radio broadcasting [LS01], fibre optic channels [Mas81], and satellite commu-
nication [LGZ+09, PPT09]. For data storage, there also exist plenty of appli-
cation scenarios where redundancy is introduced. For barcodes, such as QR
codes [TYP13], and optical disks, such as CD-ROM [KG94], redundant data
is added so that the stored information is still accessible when some spots on

11

12 2. RELATED WORK

the media are unreadable. For storage directly connected to computers, such
as ECC memory [YKMI88] and Redundant Array of Independent Disks (RAID)
systems [CLG+94], redundancy is added in order to provide resilience to fail-
ures of single components. Similar to this, in distributed storage systems, data
redundancy allows to tolerate failures of nodes in the network. In distributed
systems, it is further possible to actively observe the current amount of redun-
dancy in the system. Whenever the redundancy level drops below a threshold,
this can be counteracted by placing additional redundancy in the system. By
using such repair or maintenance process, it is possible to provide guarantees
for the availability [BTC+04] or durability [LF04] of the stored data.

There are numerous methods to introduce data redundancy in a system. These
methods can be subdivided into two categories: replication and erasure coding.

2.2.1 Replication

A straightforward approach to introduce redundancy into a system is the use
of replication. For this, all data is simply replicated to nrep different nodes
in the network. In consequence, it is possible to retrieve the data even if
up to nrep − 1 replicas are lost. A lost replica can be repaired by a simple
transfer of one of the remaining replicas. This redundancy scheme is very
popular [DKK+01, DR01, ABC+02, BPS05, GGL03] although it entails high
storage overhead [BTC+04]. To name but two examples, the Google File
System (GFS) [GGL03] and Windows Azure Storage [CWO+11] use replication
in order to enhance performance [HSX+12]. Especially in the area of distributed
computing, replicas can be leveraged in order to increase parallelization, as seen
in MapReduce [DG04].

2.2.2 Erasure Coding

Erasure coding is generally used to transform a message that consists of k
blocks into n blocks such that the original data can be recovered by using a
subset of the n blocks. There are two different types of erasure codes: op-
timal erasure codes and near-optimal erasure codes. Optimal erasure codes
are also referred to as Maximum Distance Separable (MDS) codes since they
only require exactly k out of the n blocks to recover the original data. XOR
parities [CLG+94] and Reed-Solomon coding [WB99] fulfill this property. In
contrast, near-optimal erasure codes require slightly more than k blocks in or-
der to recover lost data. We can further differentiate between two different
kinds of near-optimal erasure codes. There are fountain codes such as Online
codes [May02], LT codes [Lub02], and Raptor codes [Sho06]. Fountain codes
are also referred to as rateless codes because they allow to generate an unlim-
ited number of encoded blocks for a given set of original blocks. Another kind

2.3. REPAIR STRATEGIES 13

of of near-optimal codes are regenerating codes [DGW+07], which are designed
to reduce the necessary bandwidth whenever redundancy in a system needs to
be repaired after blocks are lost. Instead of downloading k blocks in order to
reconstruct a single block, they allow to download functions of existing blocks
so that it is possible to reach any point in the tradeoff between storage and
bandwidth requirements, depending on the configuration used.

2.3 Repair Strategies

For on-line storage, in general, there are different policies for responding to
failures. Repairs can be performed in a way that is called reactive (as e.g., in
[DR01, CDH+06, DKK+01]), which means whenever the redundancy level is
below a threshold, the system triggers a repair. Depending on the threshold
used, reactive repairs are eager or lazy. In contrast to eager repair, lazy repair
keeps more redundancy in the system so that a single failure does not necessarily
require the upload of new redundancy. This is advantageous if the construction
of new redundancy requires a prior download of data stored in the system,
involving bandwidth costs. Work in [DBEN07, PJGL10] uses proactive repair,
which injects redundancy at a constant rate with the aid of estimators. This
approach is of particular interest if due to the repair process, spikes in bandwidth
usage are observed and need to be smoothed.

2.4 Storage vs. Back-up

For peer-to-peer systems, lots of research has been done with focus on dis-
tributed on-line storage [HAY+05], targeting features that are usually provided
by common file systems. These features include, for example, requirements
for the latency or consistency of concurrent reads and writes. Since peers are
prone to churn, these solutions need additional redundancy and maintenance
mechanisms to ensure data availability over time. The redundancy is generated
by using simple replication, or more sophisticated coding techniques such as
Reed-Solomon coding [WB99], fountain codes [Lub02, Sho06], or regenerating
codes [DGW+07]. Unfortunately, there is a trade-off [PJB11]: these codes ei-
ther involve higher initial bandwidth requirements and increased storage costs,
or a higher demand of repair bandwidth later on.

In contrast to on-line storage, for the scenario of on-line back-up, Toka et
al. show that requirements on the system are relaxed [TCDM12]. Writes are
solely performed by the data owner and latency is less crucial. Furthermore, a
local replica can be used to inject redundancy at minimum bandwidth costs.
According to the level of injected redundancy, a certain period without further
maintenance can be bridged, so that no data loss is to be feared.

14 2. RELATED WORK

2.5 Existing Systems

There exist many systems that allow to store back-ups. In the following, we
first describe how Apple Time Machine creates local back-ups. Subsequently,
we depict different distributed storage services.

Apple Time Machine

With Mac OS X 10.5 (Leopard), Apple introduced Time Machine [App14],
which is a software to create snapshot-based back-ups on a local hard drive or
on a network attached storage system.

The functionality of Time Machine required Apple to change the underlying
file system HFS+. The first time a back-up is created, a full copy is stored.
From that point on, a journal provides information concerning FSEvents. These
FSEvents allow to keep track of changes in the file system so that for the next
back-up only changed files need to be inspected. This leads to very fast back-
up creation, compared to the procedure of scanning the whole file system for
changes, which is what most back-up tools need to do. For a new back-up, Time
Machine creates a new folder on the back-up destination. Within this folder,
the whole directory tree for the current state of the file system is represented.
The result is a list of snapshots that is indexed by their date of creation, which
we also focus in our work. As HFS+ supports references to directories, it is
possible to include parts of an existing folder tree. In fact, the feature of Mac
OS X to reference directories is hidden to users since these references potentially
result in loops in the file system.

snapshot 1 snapshot 2

time-
stamp 1

time-
stamp 2

file 2

file 3 file 4

file 1

folder 1

Figure 2.1: File System Tree for Two Different Snapshots in Time Machine; For
Snapshot 2 we delete File 3 and add File 4.

2.5. EXISTING SYSTEMS 15

We show an example for the creation of snapshots in Figure 2.1, where for the
second snapshot file 3 is deleted and file 4 is added. The reference to folder
1 includes the folder and the two underlying files to both snapshots. Time
Machine uses reference counting in order to determine whether a folder is still
referenced by any snapshot, and deletes them only in case this counter equals
zero. Therefore, folder 1 together with file 1 and file 2 will not be removed in
case snapshot 1 is eventually deleted.

Tahoe Least-Authority File System

The decentralized Tahoe Least-Authority File System (LAFS) [WOW08] aims
at providing a reliable file system and preserving data confidentiality of its users’
data. With this open source project, anybody may create a storage grid out of
different storage servers. This makes Tahoe-LAFS interesting for personal use,
as it lends itself to setting up a storage grid with friends. Commercial use may
be interesting, too, for instance by using servers to store back-up fragments. As
all data are encrypted before their upload, nobody except the user himself has
access to them.

To upload files, a Tahoe-LAFS gateway is required. A user can send files from
other devices to this gateway by using HTTP(S) or (S)FTP. After that, the
gateway encrypts the file and performs erasure coding. Subsequently, fragments
are delivered by using an encrypted connection to storage servers, which, as a
matter of fact, might also be Tahoe-LAFS gateways. From time to time, the
gateway performs integrity tests in order to ensure that enough fragments are
available in the storage grid.

The parameters for erasure coding can be individually adapted to the character-
istics of a storage grid concerning, e.g., the availability of storage servers. This
allows to save resources of participating storage servers while requirements on
the storage grid can be met.

Files in Tahoe-LAFS are encrypted before they are broken into segments. These
segments are encoded by using Reed-Solomon codes to generate blocks of which
a subset is sufficient to reconstruct the segment later on. One block from each
segment is sent to a storage server, which makes up one share in total. This
procedure is referred to as interleaving. The destination of a share is chosen
according to the hash of its content so that on average the shares are distributed
evenly in the grid. However, each file is typically stored on a different set of
storage servers, and storage servers may also receive multiple shares for the
same file.

Tahoe-LAFS optionally supports automated deletion of unreferenced content.
When a client has not refreshed the reference on a file by a pre-defined timeout
value, the storage server frees the corresponding storage space.

16 2. RELATED WORK

Wuala

The Wuala back-up and file sharing system first was first launched in 2008 as
a hybrid service, consisting of servers and peers. Wuala allowed users to trade
local storage for increased storage within the distributed system.

Our measurement study [TMEBPM12] revealed that Wuala, like Tahoe-LAFS,
used an interleaving scheme together with Reed-Solomon coding to generate
redundant data. When a file was uploaded into the system, an encrypted copy
was stored on the servers. For files bigger than 1 MiB, additional redundancy
was uploaded to peers, which contributed as a cache by delivering frequently-
accessed data. Where clients uploaded their data was controlled by a central
coordination server. It was solely up to servers to ensure that data was accessible
at any time and never got lost. Wuala implemented a sophisticated UDP-
based transport protocol, which allowed to improve transfer performance when
downloading from over 100 sources in parallel.

However, since the end of 2011, Wuala has not stored any data on peers anymore
so that the architecture of Wuala now is a purely centralized one. Data is broken
into Binary Large Objects (BLOBs) of 4 MiB that are transferred only to a single
server via Hypertext Transfer Protocol (HTTP). Wuala still uses erasure codes
in order to generate redundancy among servers. This procedure, however, is
only internal to the data center and therefore releases clients. Especially mobile
devices with restrictions on computational power and bandwidth benefit from
this modification.

Glacier

The Glacier [HMD05] system is a peer-to-peer archival system that operates in
an intranet environment within a company. It assumes the presence of a primary
storage that uses replication to enhance access performance. The data in the
primary storage is stored in the Glacier system in order to avoid data loss in case
of a high number of correlated failures. To achieve this, Glacier uses erasure
coding in combination with massive redundancy. The system is designed to
run on desktop computers with high durability, fast network connectivity, and
generally high availability.

All objects stored in Glacier are immutable and are repaired by using an ea-
ger repair strategy. Glacier uses aggregates to create collections of small files.
Whenever a small file changes, the corresponding aggregate needs to be recre-
ated and the old aggregate is discarded. Big files are stored directly in the
system.

As in Tahoe-LAFS, Glacier uses so-called leases in order to keep stored objects
alive. These leases need to be renewed periodically, otherwise the objects are
deleted after a timeout period.

2.5. EXISTING SYSTEMS 17

Total Recall

Total Recall [BTC+04] interconnects participating peers over the Internet to
form a storage system. It uses a Distributed Hash Table (DHT) among all
peers for data lookups. For each file, a unique identifier is generated, which
determines the peer in the DHT that is in charge of keeping the file available in
the system. The system assumes no partitioning to occur so that from different
peers the DHT returns the same value for a given key at any point in time.

The system creates replicas for metadata and small files and uses an eager
repair policy to respond to data loss. Big files, in contrast, are stored by using
erasure coding and a lazy repair policy. This combination increases storage
space efficiency in the system while keeping the required repair bandwidth low.
Overall, Total Recall uses a redundancy factor of 4.

Total Recall uses a concept similar to inodes, known from Unix-like file systems:
each file has a data structure in order to represent the location of corresponding
immutable blocks. The consistency of updates on this data structure is ensured
by the peer that is responsible for the particular file, the so-called file master.

The storage system provided by Total Recall supports an interface similar to
Network File System (NFS) in order to access data in a convenient way.

pStore

pStore [BBST02] is a peer-to-peer back-up system based on the Chord [SMLN+03]
DHT. The system allows to perform versioning on single files by using so-called
file block lists. Such lists contain references to blocks that belong to a file at a
certain time. In consequence, whenever the content of a file changes, the sys-
tem only uploads changed blocks of this file. However, this approach increases
metadata overhead and shows only limited use for most used file formats, as
analyzed more closely in [MB09].

In contrast to pStore, in our work we focus on different snapshots of the whole
file system on file-level, which allows us to reduce metadata and management
overhead.

The pStore system uses replication in order to keep data available. Further,
every peer encrypts all data before they are uploaded and performs integrity
checks over time. Files can be shared; then they are stored in a namespace to
which several people have access. The deletion of files is only allowed to the
data owner by overwriting blocks with delete chunks.

18 2. RELATED WORK

OceanStore

OceanStore [Ke00] is an infrastructure designed in order to provide secure access
to persistent objects on a global scale. It relies on untrusted servers so that
all data is encrypted before it is stored in the system. It replicates frequently
accessed objects on multiple servers to achieve availability, and addresses locality
by caching objects close to the location at which they are needed. Further, up
to a certain degree, it is designed to cope with denial of service attacks.

Every persistent object has a globally unique identifier (GUID) used for address-
ing. These keys are used for routing in the peer overlay network. Different
versions of objects are kept instead of dealing with update-in-place consistency
problems and in order to allow clean recovery in case of system failures. Barely
accessed objects are moved into the deep archival storage, where they are stored
by using erasure coding in order to increase storage space efficiency. The amount
of required redundancy is determined by the system itself as it collects statistical
properties of its participants.

Pastiche

The Peer-to-Peer (P2P) system Pastiche [CMN02] is primarily designed for
back-up creation. It divides files into immutable chunks, which are replicated
among participants to assure their availability. It uses convergent encryp-
tion [SGLM08] so that users having files with the same content end up with the
same binary representation for the files’ ciphertext and, thus, need to store the
encrypted data in the system only once. Like pStore, Pastiche holds a list of
chunks for each file and allows to reconstruct different versions of files.

A special feature of Pastiche is that it uses Pastry [RD01] to identify participants
with an overlap in the data to be backed up. The overlap of the data is
determined by Rabin fingerprints [Rab81], as known from LBFS [MCM01]. In
this way, commonly occuring files such as installation files of operating systems
can be skipped in order to increase speed and save storage space for back-up
creation. Pastiche further considers the locality of peers by preferring peers that
are close to each other.

Pastiche requires relationships between peers to be symmetric, so that equal
amounts of data are exchanged between two peers. As this method does not
lead to good results in practice, Samsara [CN03] provides an alternative storage
layer below Pastiche. Samsara communicates directly over IP instead of Pastry.
It uses claims that can be freely moved throughout the system in order to create
dependency chains.

2.5. EXISTING SYSTEMS 19

PeerStore

PeerStore [LZT04] provides another approach to create back-ups in a distributed
system. It uses replication in order to create redundancy in the system. Its main
contribution is to decouple metadata from actual back-up data storage in order
to optimize access on metadata, while beeing flexible in data placement for the
back-up storage. It further uses a symmetric trading scheme: a peer that wants
to store data on another peer must accept data of this particular peer as well.

PeerStore also adapts the concept of a file block list, which allows to store
different versions of files. Convergent encryption is used so that blocks need to
be stored in the system only once. The metadata record of a block holds the
information on which peers a replica was placed before. However, this leads to
a lot of metadata, which also needs to be updated regularly.

iDIBS

Morcos et al. [MCL+06] published an improved version of the P2P-based Dis-
tributed Internet Backup System (DIBS) [Ope14]. The basic version of DIBS
uses Reed-Solomon codes to create redundancy in the system. In contrast,
iDIBS suggests to use LT codes in order to reduce encoding complexity and to
profit from their property of beeing a rateless code.

Similar to our system, for each peer, DIBS retains a list of n peers where
fragments of the back-up are stored. However, whenever a peer is suspected
to have permanently left the system, all fragments previously stored on this
peer are moved to a new peer. If, contrary to expectations, the suspected peer
reappears in the system, all fragments stored on it will be deleted. This results
in an unnecessary workload, a problem we solve in our work by reintegrating
reappearing participants. DIBS uses GPG [The14c] for asymetric key encryption
so that all data stored in the system remains confidential.

Chapter 3

Swarm Architecture

“Divide et impera.”

Maxime attributed to
Julius Caesar

3.1 Introduction

Since our system leverages storage resources of participating gateways, we need
to cope with unreliable storage that does not provide any guarantee for data
remaining secure or durable. A gateway may permanently leave the system
so that stored data of other participants can be inaccessible forever. For this
reason, in addition to the data to be backed up, we need to store additional
redundancy so that we can tolerate failures. Furthermore, we regularly need
to check the presence of such redundancy in the system. If the redundancy
drops below a critical threshold, a gateway needs to react by uploading more
redundancy into the system again, which is referred to as maintenance. It is
essential that the progress of maintenance is not blocked by the unavailability
of particular resources. In general, however, when a distributed system grows,
more participants may need to interact concurrently on shared resources [SK09].
This can lead to bottlenecks that may hinder progress in the system and, in the
worst case, result in data loss.

Moreover, when a back-up is stored in a distributed way, it is important to keep
track of all the locations where pieces of data are stored in the system. This
information is necessary to recover from failure when we need to relocate data
in order to download and reconstruct the back-up. If such information is lost or
invalid, the back-up recovery will fail.

21

22 3. SWARM ARCHITECTURE

Since the aforementioned tasks are crucial for our system, we need an architec-
ture to support the following properties in particular:

• Scalability
The system is able to scale. It does not fail because of bottlenecks, when
the number of users performing a back-up or the amount of data stored
increases. This is important especially for systems designed to operate on
a global scale.

• Concurrency
Participants in the system can act simultaneously. No back-up process is
blocked due to starvation [SK09] when shared resources needs to be ac-
cessed, nor does it have to wait for another process to finish first. This
property ensures liveness of the system and allows progress in the upload
of new data and maintenance.

• Consistency
The system must not encounter states that violate consistency. In partic-
ular, this includes referential integrity, where references in the system are
required to point to existing values only. For systems of bigger scale, this
property is sometimes relaxed to eventual consistency [Vog09]. Eventual
consistency does not require all data to be consistent at any point in time
but guarantees it to be consistent eventually.

Throughout this chapter, we present an overview on our system architecture,
that focuses on providing these properties in conformity with snapshot-based
back-up. We also point at resulting characteristics which have led to the choice
of the introduced architecture.

3.2 Swarm Architecture Overview

In this section, we provide an overview on our general system architecture. We
explain how devices in our scenario of federated networks interact with each
other and define their roles and duties. In addition to user devices and gateways
(cf. Section 1.2), we introduce a centralized instance, referred to as tracker.
We organize the federated network FN into swarms SW ⊂ FN , which are
individual sets of storage nodes for each swarm leader in order to store its back-
up. Figure 3.1 illustrates this architecture from the point of view of a single
swarm leader. We subsequently discuss the shown entities in detail.

3.2. SWARM ARCHITECTURE OVERVIEW 23

Figure 3.1: General Architecture

3.2.1 Gateway

A gateway is the intermediate for both networks, the home network and the
federated network. It stores all data to be backed up within a home network and
is in charge of uploading an external back-up to other gateways which are part
of the federated network. On the other hand, it receives such data fragments
from other gateways and is obliged to hold them. A gateways therefore plays
the role of a swarm leader and the role of a storage node, as explained in the
following.

Swarm Leader

A swarm leader keeps a copy of all the data of devices within a home network to
be backed up. It does so by regularly synchronizing with the devices, so that an
on-site back-up within the home network is available. Whenever a device fails,
this on-site copy can be used to recover at the speed of the home network.

24 3. SWARM ARCHITECTURE

In addition, the swarm leader uses the local on-site copy to create data frag-
ments to be uploaded to other gateways. This way, we relieve user devices
from staying connected to the Internet in order to create an off-site back-up.
This off-site back-up is managed by the swarm leader, which we expect to be
on-line most of the time. Apart from the upload of the initial back-up, the
swarm leader is also in charge of performing maintenance of the off-site back-
up. Since storage on other gateways is unreliable, we need to consider malicious
behaviour, which may corrupt our back-up. Therefore, a swarm leader regularly
checks the integrity of the off-site back-up.

As a result, by synchronizing all valuable data from the user device to the swarm
leader, we achieve a fast on-site back-up and outsource the more extensive task
of creating an off-site back-up to the swarm leader. A gateway only uploads
fragments for its own off-site back-up and therefore has the role of a swarm
leader exactly once.

Storage Node

A storage node sn ∈ SW stores data fragments related to a foreign swarm
leader’s back-up. For this, it offers a key-value store that accepts data until a
given quota is reached. It further provides a method for storage reclamation,
so that old back-ups can be substituted by new ones.

We consider the storage offered by a storage node to be unreliable in terms of
confidentiality and integrity. Hence, before sending data fragments to a storage
node, a swarm leader encrypts the data so that a storage node cannot see the
original data of a back-up. For a swarm leader, in order to recover, several
storage nodes must be contacted. In return, a gateway has the role of a storage
node several times for different swarm leaders.

3.2.2 Swarm

A swarm is a set of randomly chosen storage nodes SW = {sn1, sn2, . . . , sni}.
Each swarm leader backs up all its data on such an individual swarm. The size
of the swarm set is flexible over time, hence, storage nodes can be added and
eventually removed by the swarm leader.

Since the swarm leader is the only source for data stored in a swarm, its presence
has a direct impact on the amount of available redundancy. Therefore, a swarm
can be in one of the following states:

• Intact Swarm:
A swarm leader generally performs maintenance. As storage nodes in the
swarm leave the system, the swarm leader adds new storage nodes and

3.2. SWARM ARCHITECTURE OVERVIEW 25

uploads additional data fragments to them. We explain the maintenance
process in detail in Section 3.5. A swarm is considered intact even though
a swarm leader may be off-line for a short period (e.g., several days).

• Isolated Swarm:
The swarm leader is off-line for a long period (e.g., several weeks). It does
not perform maintenance, and thus, the redundancy present in the swarm
decreases over time. We design the redundancy level in a swarm to be high
enough so that a swarm can be in the isolated state for a predefined period
of up to several years. Within this period, the back-up can be restored
using the data available in the swarm.

After this period, the redundancy available in the swarm drops below a threshold
so that data loss may occur. It is only in this case that the user can not download
its back-up from the swarm anymore. Therefore, before we reach this point, a
third party, e.g., a service within a data center, can download and reconstruct
all encrypted files and hold them ready for download for the back-up owner.

However, access patterns in file systems [LPGM08, LPGM08] show that the
probability that a user reopens files decreases over time. When data loss occurs,
a back-up is the only source to reopen last accessed files again. In consequence,
we also expect the probability that a user accesses a back-up after local data
loss to decrease over time. In our system, the time a swarm can remain in the
isolated state without data loss is a parameter; thus, we are able to provide a
user sufficient time to notice the failure of its gateway, setup a new gateway, and
download its back-up. Given the user is aware of this period and its duration is
sufficiently long, we assume that in general no (costly) third party is required
to recover a back-up. This is why, in this work, we do not consider such a third
party to guarantee back-up durability forever.

3.2.3 Tracker

The tracker is a trusted intermediary, running as a central instance within a
data center.

In order to join the federated network, a gateway first contacts the tracker. The
tracker provides information about the states of other gateways. In particular,
the tracker fulfills the following functionalities:

• Back-Up of Swarm Set
When a gateway fails, it loses not only the on-site copy, but also the in-
formation about where previous snapshots are stored within the federated
network. For this reason the tracker keeps a copy of each swarm set, which,
in case of failure, must be requested to be able to start recovery.

26 3. SWARM ARCHITECTURE

• Track Gateways
The tracker keeps track of the gateways in the federated network. There-
fore, the gateways occasionally send heartbeat messages to the tracker.
The tracker updates a timestamp tl for the particular gateway to the cur-
rent time whenever such a heartbeat is received. The tracking also includes
the task to map a static gateway identifier Idgw to the currently assigned
IP address of a gateway. Other gateways need to query this information in
order to open connections to particular gateways.

• Observe Fairness in the System
The tracker receives reports from gateways about possible misbehaviour of
other gateways. It regularly aggregates this information and eventually
excludes misbehaving gateways from the federated network. Such misbe-
haviour, e.g., the illegitimate deletion of fragments as a storage node or
the creation of too much redundancy as a swarm leader, can be detected
by the tracker due to its global knowledge over the federated network.

• Certificate Authority
For each gateway in the federated network the tracker keeps a certificate,
binding a gateway’s identity to a corresponding public key. This way, par-
ticipants can validate each others identity and, in case of misbehaviour, we
are able to revoke a gateways authorization to participate in the federated
network.

Clearly, a central instance increases the risk to create a bottleneck, possibly
preventing a system to scale [HAY+05]. In fact, the functionality offered by
the tracker can also be realized by using a DHT among gateways. In pure P2P
systems, however, it is difficult to create consensus on the state of the system.
The Byzantine Generals’ Problem by Lamport et al. [LSP82] is often used to
illustrate this problem. It states that in order to decide about the current state
in a system of untrusted parties, at least 3c+1 total participants are required in
order to tolerate c faulty or misbehaving participants. In consequence, to achieve
consensus, a lot of messaging overhead is required, and yet, the system can
be compromised, e.g., by creating a large number of pseudonymous identities,
known as a Sybil attack [Dou02].

In contrast, by using the tracker as a single instance with global knowledge, such
decisions are made by the tracker and participants simply adapt to it. This may
lead to higher load on the tracker so that its scalability is very important and
excessive usage should be avoided by design. In fact, the tracker may consist
of several machines so that a single hardware failure does not lead to data loss
or service interruption.

Our architecture requires a user to trust the central instance to provide support
in creating, maintaining, and potentially recovering his back-ups. We explicitly

3.3. SNAPSHOT REPRESENTATION 27

do not, however, rely on the tracker in terms of data confidentiality. Data
fragments in our system exclusively contain encrypted data that only the data
owner is able to decrypt (as we show in Section 3.7).

3.3 Snapshot Representation

The term snapshot vt refers to a consistent state of a file system’s folder
structure with all its underlying files at a particular point in time t when a
snapshot is created. In our system, therefore, each snapshot consists of the
following:

• The file set FSt, which is the set of all file contents f1, f2, . . . , fq that
are included in snapshot vt. Here we distinguish file contents from files.
In case two files have the same content, in most file systems, each of
these files still occupies the storage space corresponding to its file size. In
constrast, a file content in our system can be referenced multiple times,
e.g., by different snapshots, so that the storage space needs to be allocated
only once.

• All metadata Mt required to reconstruct the folder structure and proper-
ties of files for a snapshot vt. This includes information about file names,
used folders, and also file metadata such as file ownership information,
access permissions, and file access times. Furthermore, this metadata in-
volves references to the file contents mentioned above and, in case of an
off-site back-up, keys to decrypt file contents.

As a consequence, we represent each snapshot as a tuple (Mt, FSt) which
contains all data required to entirely reconstruct a snapshot: vt → (Mt, FSt).
In general, changes in file systems only concern a small portion of the total
data stored [LPGM08]. As a consequence, we expect that most file contents
from one snapshot to another remains unchanged. By referencing identical file
contents we therefore avoid the necessity to store duplicate file contents that is
already used by previous snapshots.

Below we give an outline of how we consistently retain file contents and meta-
data for the on-site copy as well as for our off-site back-up.

3.3.1 On-Site Snapshot Representation

In order to represent snapshots on the gateway, we leverage its file system.
For each snapshot, we have a dedicated folder on the gateway. Within such a
folder we replicate all corresponding metadata Mt. Instead of replicating the file

28 3. SWARM ARCHITECTURE

contents for each snapshot, however, we deduplicate file contents of the file
set FSt of the new snapshot and the file set FSt−1 of the preceding snapshot.

We therefore only require the file contents FSt \FSt−1 to be transferred from
a user device to the gateway. In conjunction with the typically high transmission
rate within the home network, this results in fast on-site backup creation and
low resource usage. Figure 3.2 shows an example for two snapshots. For each

folder 1folder 1

file 2 file 3 file 4file 1

folder 3folder 2 folder 3

snapshot 1 snapshot 2

file set 1 file set 2

time-
stamp 1

time-
stamp 2

Figure 3.2: Snapshot Information in the File System for On-Site Back-up

snapshot there is a folder named by the current timestamp. From snapshot 1 to
snapshot 2, a folder (folder 2) including two files is removed and a new file (file
4) is added. Both snapshots have file 3 in common so that we use a reference
to the existing file content on the gateway.

From this representation follows that, after a snapshot is created on the gateway,
all data relevant to a snapshot is immutable. Even though a snapshot may share
file contents with future snapshots, all referenced file contents and metadata
information for this snapshot will remain unchanged. This property is relevant
for the maintenance of the off-site back-up in the federated network, where we
rely on original file contents to be preserved over time.

3.3.2 Off-Site Snapshot Representation

To create off-site back-ups, we need only the data on the gateway and, hence,
require no access to data stored on user devices anymore. The goal is to map

3.3. SNAPSHOT REPRESENTATION 29

the snapshot representation of the on-site back-up onto the distributed off-site
back-up.

In consequence, we need to find a way to deduplicate files stored within a
swarm. We achieve this by adding a level of indirection [SK09], which allows us
to reference files based on their content. For this we introduce a file content
identifier Idf , which is deterministically computed as Idf = H(H(f)), which
means by calculating the hash of a file content’s hash1.

This procedure ensures that the identifier for the same file content will remain
unchanged for later snapshots, even in case of data loss on the gateway. Fur-
thermore, if a file content identifier already exists in the swarm, the file content
does also exist and its transfer to storage nodes can be skipped.

For each snapshot, we create an index file that holds all metadata Mt necessary
to reconstruct the original state in the file system. As we will see in Section 4.3.3,
we can also profit from embedding small files into the index file. After creation,
we store the index file like an ordinary file within the swarm. Since the index file
is the starting point when it comes to snapshot recovery, we need to be able to
locate it after failure. Therefore, each storage node in a swarm keeps a list of
file content identifiers of index files together with their corresponding creation
time. Figure 3.3 illustrates the result using the same example as for the on-

E6A13 37FA4 B3AE5B9A32

folder 1

folder 3folder 2

folder 1

folder 3

index file 1 index file 2

file1 file2 file3 file3 file4

Idf: 37FA4
length: 4213
creation: 01.02.03
last mod.: 02.03.04
owner: user1
[...]

file set 1 file set 2

Figure 3.3: Snapshot Information Embedded into Index Files for Off-Site Back-up

1We use the result of a single hash operation to derive the encryption key, as we explain in
Section 3.7.2.

30 3. SWARM ARCHITECTURE

site back-up in Figure 3.2. Since we address file contents by using identifiers,
we keep these references embedded into the index file, which holds all other
metadata concerning a snapshot as well.

3.4 Data Management Strategy

In this section, we explain how we distribute data among gateways of the feder-
ated network and the central tracker. This includes the policy for storage node
selection as well as the way we address data in the network. We explain how
we split files into fragments and where these fragments are placed subsequently.
Further, we show how we take into account that there is only a limited amount
of storage space on gateways in our system.

The way we manage data placement does not only have an impact on the
amount of metadata necessary to relocate data, but also influences how main-
tenance in the system is performed (as we explain in Section 3.5).

3.4.1 Data Placement Policy

In our system, the tracker assigns new storage nodes to a swarm uniformly
at random. This corresponds to a global data placement policy, in which
potentially any of the N total storage nodes in the federated network can be
selected to store data fragments of a swarm leader.

As analyzed in [GMP09] and [VI12], a global data placement policy leads to
higher system reliability compared to local placement policies, which store data
on neighboring nodes. This is reasoned by faster repairs of lost redundancy in
an environment where bandwidth on storage nodes is limited. While the average
bandwidth for all placement policies is equal, since the number of repairs remains
equal as well, the distribution of the workload for repairs is different.

We show this by comparing the repair process for both, the buddy placement
policy and our global placement policy. In the buddy placement policy, the
network is organized into groups where gateways store data in a reciprocative
way: when a gateway A stores some of its data on another gateway B, gateway
B in turn also stores some of its data on gateway A. This results in symmetric
relationship. In our global placement policy, on the other hand, we are not
restricted to groups. The relation that gateway A stores its data on gateway
B does not imply that B also stores its data on gateway A. The relationships
in the global placement policy therefore can be unidirectional, which is why in
our system we differentiate between the two roles of a gateway as swarm leader
respectively storage node. We visualize the mentioned data placement policies
in Figure 3.4.

3.4. DATA MANAGEMENT STRATEGY 31

Buddy Placement Global Placement

Figure 3.4: Data Placement Policies

In both scenarios, a gateway holds data of n other gateways. When the gateway
leaves the system, these n gateways eventually select a new gateway to replace
the previous member.

Here the differences between both placement policies become apparent. Ac-
cording to the buddy placement policy, the n gateways in the group need to
choose the same newcomer for their group. As soon as the newcomer joins
this group, it receives data from these n gateways at the same time. This high
number of concurrent transfers to a single gateway can result in a bottleneck,
extend the time required to finish the repair process, and, therefore, lead to a
less reliable system.

In contrast, regarding the global placement policy, the n gateways that need to
select a newcomer choose a gateway at random. This leads to the choice of n

newcomers that are distinct with a probability of
(N

n)·n!

Nn , which is high in the
case of N � n. In case the federated network is big, we therefore only expect
a single transfer to different storage nodes. One gateway leaving the system in
the global placement policy therefore leads to a load that is evenly distributed
over n gateways in the federated network.

3.4.2 Swarms as Distributed Key-Value Stores

Within a swarm, a swarm leader addresses a file content using a file content
identifier Idf . Whenever a swarm leader delivers a fragment of a file content to
a storage node, the fragment is accompanied by its corresponding file identifier.
A storage node stores all incoming fragments indexed by their file content iden-
tifiers. As a result, fragments can be requested by using their corresponding file
content identifier. The storage structure on storage nodes therefore corresponds

32 3. SWARM ARCHITECTURE

to the concept of key-value stores, where a key (in our case the file content
identifier) is in relation to a value (a particular fragment of the file content).

Storage Node 1

Storage Node 2
Storage Node 3

Storage Node 4

Storage Node 5

Idf ?

Swarm

Storage Node 1

Storage Node 2
Storage Node 3

Storage Node 4

Storage Node 5

different fragments to reconstruct file content Idf

Swarm

Figure 3.5: Addressing Fragments Corresponding to a Single File Content Using their
Common File Content Identifier

Each storage node stores a different fragment of a file content so that, using
their common file content identifier, we are able to address different fragments
in a swarm (as illustrated in Figure 3.5). All these fragments correspond to a
single file content and contribute to its recovery.

In the following, we provide more details about how we organize data in our
system.

Back-Ups as Evolving Streams

We design our system so that it is able to reflect the time component of back-
ups: Over time, we need to store new snapshots, which typically include new
files. These new files occupy additional storage space and, in consequence,
storage space requirements in the system increase over time. As storage space
on gateways is, however, a limited resource, we need to consider that we can
only store a limited number of snapshots. The fact that we need to comply
with a quota equally applies to both, on-site snapshots and off-site snapshots.

We illustrate the development of snapshots by an example, as shown in Fig-
ure 3.6. In step 1 we store a snapshot v1, which references five different file
contents. At a later point in time, we add snapshot v2, as can be seen in step
2. Snapshot v2 has three files in common with snapshot v1, but also adds two
files and releases two files. Subsequently, in step 3, we store snapshot v3, which
includes another new file. From this point onwards there is not enough storage
space available to store a new snapshot v4. For this reason, we delete the oldest
snapshot v1 as shown in step 4, which enables us to free the storage space for
files solely used by snapshot v1. As shown from step 5 to 6, we now have enough
space to store a new snapshot v4.

3.4. DATA MANAGEMENT STRATEGY 33

v1 v1 v2 v1 v2 v3

v2 v3v2 v3 v2 v3 v4

1 2 3

4 5 6

Figure 3.6: Example of the Evolution of Storage Space Usage Over Time

We see that the storage space usage is allowed to change over time due to both,
added files and obsolete files. In order to emphasize this behaviour, we denote
the data stored for all snapshots as a back-up stream. In fact, such a back-up
stream involves the file set of all unique file contents UF of snapshot vx to
snapshot vy:

UF =
y⋃
t=x

FSt

We are going to address quota compliance in more detail after having explained
how we spread a back-up stream over all storage nodes in a swarm.

Creation of Substreams

Figure 3.7 illustrates our policy to store all file contents f ∈ UF in a swarm.
In the first two steps, we split each file f into k (10 ≤ k ≤ 200) equally sized
transmission blocks Tf,i with the index i ∈ {1, . . . , k}. As a result, each
transmission block of a file with size Sf has a size of dSf/ke. Using erasure
codes (such as Reed-Solomon [WB99], we generate h additional transmission
blocks Tf,i, i ∈ {k + 1, . . . , k + h} (as shown in step 3). As a property of
erasure codes, any k out of the n = k + h different transmission blocks will be
sufficient to reconstruct the original file content later on.

For data placement on one storage node, we group the transmission blocks of
all files by their index i to a substream SSi:

SSi = T1,i, T2,i, . . . , Tf,i

34 3. SWARM ARCHITECTURE

.

File 1 File 2
1...
k

1

k
...

Divide into k fragments Generate h erasure coded fragments

1...
k

1

k
...

k+1...
k+h

k+1

k+h
...

321

4

1
1

k
k

k+1
k+1

k+h
k+h

Swarm

Storage Node k+h

Storage Node k+1Storage Node k

Storage Node 1

Original files

Placement according to index

Figure 3.7: Placing Substreams on Storage Nodes

As a consequence, the extent of such a substream evolves whenever the set of
unique files UF changes. The overall size of such substream depends on the
total amount of data St used for unique files across all snapshots and is defined
by St/k.

Assuming a swarm to store a snapshot with file set FS1, for a new snapshot
with a file set FS2 we can skip all files FS1 ∩ FS2 since FS1 ∩ FS2 ⊆ FS1

and FS1 ∩ FS2 ⊆ FS2, and therefore

FS1 ∪ FS2 = FS1 ∪ ((FS1 ∩ FS2) ∪ (FS2 \ FS1))
= FS1 ∪ (FS2 \ FS1).

We place a distinct substream on each storage node within a swarm (shown
in Figure 3.7 step 4). Further, we assign each storage node the index used
for erasure coding when the substream was created so that we are able to
reconstruct the data later on.

Depending on whether a storage node holds the latest transmission blocks of a
substream or not, we speak of the storage node being in a synchronized or an
unsynchronized state, respectively.

Quota Management

A gateway in our system cannot offer more than its local hard disk space to the
system. Because of this, we also face limited amount of storage space in our
distributed system.

3.4. DATA MANAGEMENT STRATEGY 35

To cope with this restriction, we introduce storage space quotas on a gateway.
Given the total size of hard disk space Qh on a gateway, we divide this space
into two quotas, as shown in Figure 3.8.

on-site
snapshot
quota

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
ta

su
bs

tr
ea

m
 q

uo
tao�-site

snapshot
quota

Figure 3.8: Quota Restrictions on a Gateway

The on-site snapshot quota Qon restricts the storage space used for on-site
snapshots. This quota requires us to eventually remove old snapshots and
reclaim storage space in order to store more recent snapshots, on-site as well as
off-site ones. The off-site snapshot quota Qoff is the storage space offered to
other participants in the federated network. It allows foreign swarm leaders to
store data and therefore accounts for the gateway’s role as a storage node. In
general, we want that a gateway is able to store all its current on-site snapshots
in its swarm. In this context, since we use redundancy in our system, we need
to consider the resulting storage overhead. The size of the off-site snapshot
quota thus depends on Qon and the storage overhead r = k+h

k and can be
approximated by r ·Qon2.

The quota Qh therefore is defined as Qon +Qoff = Qon + r ·Qon and allows
us to infer Qon in dependence of Qh:

Qon =
Qh
r + 1

We further introduce substream quotas within the off-site snapshot quota. Such
a substream quota Qss ensures that participants do not use more storage space
on storage nodes than intended. A storage node keeps up to n substreams from
different swarm leaders. Hence, we have n substream quotas on a storage node,
each with a size of

Qoff

n = Qon

k . Whenever such quota exceeds its upper limit, a
storage node does not accept further transmission blocks from the corresponding
swarm leader, forcing it to free storage space first.

Quota Pools

Users in our system may have different needs for the amount of back-up storage.
This can be the case because either more data needs to be stored or a high

2In practice, this can be slightly more, due to the inaccuracy of the failure detector, as we
explain later.

36 3. SWARM ARCHITECTURE

number of snapshots is desired. We also expect that gateways are equipped
with hard disk drives of different size. Further, the storage requirement of a
user can also change over time because larger amounts of data need to be
stored.

For this reason, we consider the concept of quota pools in our system. We
divide the federated network into these pools by grouping gateways according
to the storage quota Qoff they offer to the network.

The tracker only assigns gateways within the same quota pool to each other,
so that a swarm leader only has storage nodes in his swarm that share the same
amount of storage space with the network.

To allow a gateway to switch to another quota pool, a swarm leader successively
moves its substreams from one storage node in the old quota pool to another
storage node in the new quota pool. This way the swarm size remains equal
over time and deters swarm leaders from abusing the temporary membership in
two quota pools in order to store more data than permitted.

3.4.3 Data Kept on the Tracker

In this section we overview the data we need to store on the central tracker.
This includes in particular all information related to the tracking of gateways
and the back-up of a swarm leader’s swarm set. We summarize the data in
Figure 3.9 and subsequently explain the records in detail.

gateways

id_gw INT

ip_address BINARY

port INT

quota_pool INT

free_storage INT

availability BINARY

time_last_seen DATETIME

Indexes

swarms

swarm_leader_id_gw INT

index INT

storage_node_id_gw1 INT

Indexes

Figure 3.9: Data Stored on the Tracker

3.4. DATA MANAGEMENT STRATEGY 37

Tracking of Gateways

We keep the following gateway specific information on the tracker:

• The gateway identifier Idgw which uniquely identifies a gateway in the
federated network.

• The current IP address of a gateway.

• The port the application listens on.

• The quota pool, in which the gateway is a member.

• The amount of free storage a gateway can offer to others.

• A bitmap which allows us to approximate the availability of a gateway.
We shift the bitmap each time a ping is sent to the gateway and set the
new bit in accordance to its on-line state.

• The last time tl a gateway was seen in the federated network.

The storage space complexity for this data is given by O(N), so that the storage
space requirement grows linearly with the number of gateways in the federated
network.

Back-Up of the Swarm Set

We need to allow a swarm leader to recover its swarm set in case of local
data loss. For this reason we keep a copy of a swarm leader’s swarm set on
the tracker, which involves the relation (swarm leader, index, storage node).
Storing the erasure coding index i of a substream (introduced in Section 3.4.2)
for the relationship between swarm leader and storage node further prevents
deniability in the system; a storage node cannot claim to have different data
from those that have been uploaded before. Since every swarm leader stores
its data on a limited number of storage nodes, the storage space complexity for
this data also grows linearly by O(N).

3.4.4 Implications

The introduced data placement policy has several implications on the architec-
ture:

1. The architecture uses file level access. In consequence, when we need
to reclaim storage space occupied by unreferenced files, we are able to

38 3. SWARM ARCHITECTURE

free their storage space directly. We do not, in contrast to work done in
[HMD05, Ke00, TDM10], keep3 data in so-called aggregates, which bun-
dle multiple files into a single object. These aggregates require additional
metadata for bookkeeping and hinder direct file deletion in the system.
Without overhead due to block alignment, a file cannot be deleted directly
within such an aggregate because of the erasure coding and encryption
used. This overhead increases especially when data is split and distributed
to a higher number of storage nodes. To perform maintenance (we in-
troduce our maintenance procedure in Section 3.5) for these aggregates
using the on-site copy on the gateway, we would also need to keep files
that in fact have already been deleted, but would still be required to re-
generate the binary representation of the original aggregate. The only way
to instantly free storage space of files within an aggregate is to upload a
new aggregate without the corresponding file before deletion of the former
aggregate.

2. Any k out of k + h storage nodes are sufficient to recover all files stored
in a swarm and, thus, all snapshots stored. This eases failure detection
since we do not need to check the availability of individual transmission
blocks but only the availability of the storage nodes in the swarm set. A
swarm set is only a rather small subset of all storage nodes in the federated
network so that we significantly reduce messaging overhead for heartbeat
messages. As this allows fast and cheap reintegration of reappearing
redundancy, our maintenance procedure benefits from this property as
well.

3. We save storage space required for metadata on the storage node. In-
stead of storing the full relation (Idf , i, Tf,i) for each transmission block,
which we require for recovery, we only need the relation (Idgw, i) once
per storage node and the relation (Idf , Tf,i) for each transmission block.
According to the source of a downloaded transmission block, we can re-
cover the index i used for erasure coding. For smaller files the amount
of metadata required to store them is generally more decisive in terms of
storage space efficiency than for files of big size. This approach there-
fore increases storage space efficiency especially for smaller files in our
distributed system.

4. Since all storage nodes in the swarm hold a transmission block of each file,
we spare additional look-ups to relocate transmission blocks correspond-
ing to particular files. The knowledge of a single file content identifier is
sufficient to download all transmission blocks necessary to recover a corre-
sponding file content. We further require no interaction with the tracker

3However, we use aggregates for the transmission of smaller transmission blocks (explained
in Section 4.2.2).

3.5. MAINTENANCE PROCEDURE 39

to store or retrieve files from the system. The amount of data stored on
the tracker is independent of the amount of back-up data, which has a
positive impact on scalability.

5. The loss of a single storage node leads to the loss of a whole substream
and therefore affects the redundancy level of all files stored by a swarm
leader. In consequence, a swarm leader needs to upload a new substream
of size St/k, which may result in a longer lasting transfer. This renders
the system vulnerable to successive failures within a short time period.
We examine this issue more closely in Chapter 5.

In the following section we focus on the procedure of refreshing the amount of
redundancy stored in a swarm.

3.5 Maintenance Procedure

In our system, we place data related to our off-site back-up on foreign storage
nodes. We rely on these storage nodes to serve enough transmission blocks
needed to recover the back-up in case of swarm leader failure. However, we
also need to consider failures of storage nodes. To address these failures, we
regularly perform the process referred to as maintenance, which is the process
of responding to data loss in a swarm by uploading additional substreams.

In this section we first explain how we detect failures in our system and how
we react to such failures. We then provide some implications and look at the
potential bandwidth costs of the approach used.

3.5.1 Failure Detection

In general, failures can be divided into two categories. If a storage node is
only temporarily unavailable for other participants, such a failure is denoted as
a transient failure. The storage node will eventually return to the system so
that the data stored on it can contribute to recovery again. For a permanent
failure, however, the storage node has left the system forever. In the latter
case, the data stored on the storage node is lost permanently.

We illustrate this behaviour in Figure 3.10. As long as a gateway is alive, it is
either in the on-line or off-line state. From the on-line state, it changes into the
off-line state (equivalent to a transient failure) with probability 1

ton
, where ton

is the average duration a gateway is in the on-line state. By analogy, toff refers
to the average duration a gateway is in the off-line state, so that it changes
back to the on-line state with a probability of 1

toff
.

40 3. SWARM ARCHITECTURE

on-line off-line

dead

alive

ton

1

toff

1

λ

Figure 3.10: Model of the Gateway Behavior

The outer process is absorbing, which means as soon as a gateway is once in
the dead state (equivalent to a permanent failure), it cannot return to the alive
state anymore. Gateways with a mean lifetime τ turn into the dead state with
probability λ = 1

τ .

Unfortunately, it is impossible to distinguish these states from outside: using
remote network measurements, transient and permanent failures both have the
same characteristics, while it is unknown how long a transient failure of a stor-
age node lasts. However, in contrast to transient failures, permanent failures
entail data loss in a swarm and, consequently, require the upload of additional
redundancy.

In practice, distributed systems use failure detectors [CT96] to cope with this
problem. Failure detectors are modules that regularly send heartbeat messages
and suspect a participant to be failed when there is no reply within a timeout
period to. Since we are interested in permanent failures in particular, to will
typically be a large period (e.g., several weeks).

In our system, we record a timestamp tl which indicates the last point in time
a gateway was seen in the federated network. Due to its high availability, we
choose the tracker to collect this data. At the current point in time tc we are
therefore able to declare a gateway to be in the alive state in case tl ≥ tc − to,
while it is in the dead state for tl < tc − to.

In practice, failure detectors are complete, which means they are able to eventu-
ally detect all permanent failures. On the other hand, they are not accurate, so
that a suspected storage node might return at a later point in time and, thus,
proves to be still alive.

3.5. MAINTENANCE PROCEDURE 41

3.5.2 Repair

For general on-line storage, the purpose of repair is to ensure durability, which
is the property of data to survive permanently, and availability, which ensures
that data can be accessed at any point in time. As data availability implies
data durability [DBEN07], achieving high data availability results in high costs
for maintenance in the system [TCDM12, PJGL10]. In the case of back-up
systems, back-up recovery is a longer lasting process. We do not need to be
able to access the whole back-up at any point in time, we simply need the
download process to finish eventually. For this reason, maintenance costs can
be lowered by focusing on data durability instead of data availability. Toka et
al. [TCDM12] even go further and weaken the definition for durability, which
we also adopt in this work:

Definition: Data durability d is the probability to be able to access data after
a time window tiso, during which no maintenance operations can be executed.

In our system, we rely on the on-site copy to generate new substreams. This
restricts us to perform maintenance only when the swarm leader is on-line. The
redundancy level in the swarm therefore decreases whenever the swarm leader
suffers a transient or permanent failure. In case of a transient failure, the swarm
leader is still alive and, therefore, able to increase the redundancy level as soon as
it reconnects to the system again. When the swarm leader suffers a permanent
failure, it is not only unable to perform further maintenance, it has also lost the
local copy.

Since, in turn, data loss causally leads to a restore operation by the user, we
expect the download of the back-up to start within a period we denote as time
to replace tr. Within this typically longer period, we expect a user to notice
the local data loss, install a new device, and set it back to an operational state.

Further, the time to download td is the period required to download the back-
up from the swarm. In case of asynchronous links, the upload speed of a storage
node is typically lower than the download speed of the back-up owner. However,
since we can perform multiple concurrent transfers from different storage nodes
at the same time, we expect the download speed of the back-up owner to
determine the time required for this operation. For this, the data availability
within the period td needs to be high enough to finish the download, as also
discussed in more detail in [TCDM12].

Up to now we have taken tr and td into account, which both focus on providing
a user enough time to recover his back-up. In addition, however, we need
to consider the timeout period to used by the failure detector. We tolerate
storage nodes to be off-line within this period without considering them dead.
As a consequence, in case a storage node permanently fails, it is not considered

42 3. SWARM ARCHITECTURE

dead before the period to has passed. This also implies that the lost data due
to the undetected permanent failure is missing in the swarm. For this reason,
our maintenance procedure can only take into account the redundancy level
detected at time tc − to, and needs to expect data loss during the period to.

time

tiso
tc

to tr td

Figure 3.11: Periods Relevant for the Maintenance Procedure

Figure 3.11 provides an overview over the time periods to, tr, and td, which
in sum result in tiso, which is the total time we want a back-up to survive in
isolation from the swarm leader.

By assuming node lifetime values to follow a Poisson process, we can com-
pute the durability resulting from a certain redundancy level and time tiso as
follows [TCDM12]:

d =
k+h∑
i=k

(
k + h

i

)
(e−tiso/τ)i(1− e−tiso/τ)(k+h)−i (3.1)

Figure 3.12 and Figure 3.13 show the redundancy level r = k+h
k required for a

target durability of d = 0.999999 and different values for the mean lifetime τ of
storage nodes and the number of fragments k in which we divide our back-up.

While in Figure 3.12 we target a period tiso of half a year, we see that the
necessary redundancy increases for a tiso of one year, as we show in Figure 3.13.
We further see that the redundancy factor in both cases is low especially when
τ � tiso. High values for parameter k also reduce the redundancy needed in
the system, although this effect is negligible for values higher than 100. We
discuss the impact of this particular parameter separately in Section 3.6.

3.5. MAINTENANCE PROCEDURE 43

0.51
2

3

20 60 100 140 180 220 260 300

1

2

3

4

5

6

τ [years]
k [#]

r

Figure 3.12: Necessary Redundancy r Depending on τ and k for tiso = 1/2 year

0.51
2

3

20 60 100 140 180 220 260 300

0

2

4

6

8

10

τ [years]
k [#]

r

Figure 3.13: Necessary Redundancy r Depending on τ and k for tiso = 1 year

44 3. SWARM ARCHITECTURE

In our system, we further use the following approaches to keep the effort for
repairs low:

• Cheap eager and reactive repairs:
We use eager and reactive repairs so that we react immediately whenever
we observe too little redundancy in the swarm. By holding an on-site copy
on the swarm leader, we are able to generate additional redundancy with-
out any prior download from the swarm. This reduces bandwidth costs
for repairs to the amount of lost data in the swarm, which is the absolute
minimum possible.

• Benefit from reintegration:
When storage nodes transiently leave the system, they still hold their data
unless they permanently fail. Weatherspoon et al. [CDH+06] show that the
reintegration of reappearing nodes significantly reduces the maintenance
costs of the system. To benefit from reintegration in our system, we create
substreams with indexes that are new to the system and upload them to
new storage nodes instead of re-uploading substreams already known to the
system. This also allows us to reintegrate storage nodes that are wrongly
suspected to be dead by the failure detector. Thus, in the long term, only
permanent failures trigger an upload of additional redundancy.

Finally, we need an algorithm that responds to data loss in the system by the
upload of new redundancy. Our algorithm regularly (e.g., once every few hours)
monitors the status of storage nodes in a swarm and adds new storage nodes
whenever we observe fewer than n storage nodes that are alive and
synchronized. We explain in the following why we only consider storage nodes
in these states.

According to our data placement policy, when a storage node is dead, we are
able to exactly determine the lost data by design: when a swarm leader suspects
a storage node to be dead, which holds a substream with erasure coding index i,
we know that all transmission blocks Tf,i | f ∈ UF are missing, which concerns
all files stored by the swarm leader. Therefore, instead of monitoring single
blocks or files, in our system, it is sufficient to monitor storage nodes and only
consider storage nodes that are alive.

In addition, there is the constraint that our repair process needs to consider only
storage nodes that are in the synchronized state, meaning they hold a trans-
mission block for each file f ∈ UF stored in the swarm (cf. Section 3.4). We
cannot take unsynchronized storage nodes into account because transmission
blocks for some files might be missing.

To keep the option for later reintegration of this data, we add a new storage
node and use it to store a new substream SSi with an erasure coding index i
that is not yet present in the swarm.

3.6. INFLUENCE OF THE NUMBER OF ORIGINAL FRAGMENTS 45

Further, it may happen that a storage node goes off-line while we upload a
substream, leading to an interrupted transfer. To facilitate the overall progress
in the upload of substreams, we therefore keep a minimum of three parallel
uploads active at the same time.

Bandwidth Costs for Repair

The amount of data we need to upload to a new storage node is given by the
size of one substream St

k . Since our maintenance algorithm keeps n alive storage
nodes in a swarm, we lose storage nodes with a rate of n

τ = nλ. Hence, we can
estimate the average repair bandwidth BWr required by a swarm leader:

BWr =
St
k
nλ =

St
k
rkλ = Strλ (3.2)

Further, given a swarm leader with availability α1, a storage node with availabil-
ity α2, and their common transmission rate BWc, the expected time required
for a single repair tsr is:

tsr =
St
k

BWc · α1 · α2
(3.3)

Bandwidth Costs for Heartbeat Messages

We want the tracker to gather information about the availability of participating
gateways (cf. Section 3.2). For this, a gateway sends heartbeat messages of
size Sb to the tracker at rate ht (e.g., once per hour). For N total gateways in
the federated network this results in an incoming bandwidth of BWt = NSbht
at the tracker. The corresponding outgoing bandwidth for a swarm leader is
BWh = Sbht.

In addition, the swarm leader queries the tracker for information about the state
of the storage nodes in its swarm. For these queries of size Sq at rate hq (e.g.,
once per day) we need an incoming bandwidth of BWq = NSqhq at the tracker.
The outgoing bandwidth for responses of size Sr is BWo = NSrhq.

3.6 Influence of the Number of Original Fragments

The parameter k determines into how many fragments we divide a file. In this
section we discuss the impact of this parameter on our system and give hints
for a possible choice.

46 3. SWARM ARCHITECTURE

3.6.1 Storage Overhead

As we see in Figure 3.12 and Figure 3.13, a higher value for k decreases the re-
dundancy factor r. In consequence, we need to store less redundancy on storage
nodes for a single back-up, while we meet the same requirements concerning
durability. Considering the back-ups of all swarm leaders in the federated net-
work, this leads to an reduction of the overall storage space occupied in the
system.

However, high values for k increase the level of data fragmentation. In our
scenario, this means we have to distribute a single file among more storage
nodes. Each storage node needs to store a file content identifier of fixed size,
while the size of the corresponding transmission block decreases. Consequently,
higher k increases metadata overhead in the system.

Depending on the particular erasure code used, a higher value for k can also
increase the memory consumption for generating erasure coded data. Today,
due to decreasing costs for memory, this is less of a problem but can still be an
issue in constrained hardware environments.

3.6.2 Data Rates

The parameter k influences several data rates in our system. In the first place,
it affects the required bandwidth for repair (see Equation 3.2), which depends
on the redundancy factor. Since higher values for k allow us to reduce the
redundancy in our system, the necessary repair bandwidth decreases as well.

Further, with increasing k, the size St
k of a substream is smaller (cf. Section 3.4).

This reduces the amount of data we need to transfer to a single storage node
that is added to our swarm. Hence, the duration to transfer a substream at
constant bandwidth b is St

kb and decreases with higher k.

However, since we have more storage nodes in a swarm for higher k, we also have
more storage nodes potentially leaving the system. Therefore, the average rate
nλ = (k+h)λ at which storage nodes leave the swarm increases with increasing
k. As in the long term only storage nodes leaving the swarm trigger a repair
in our system (cf. Section 3.5), this also causes more frequent maintenance
operations.

Another rate influenced by the number of original fragments can be the trans-
mission rate for substreams. Since we address each transmission block by using
a file content identifier, each single request for receiving or storing a certain
transmission block would require a full round-trip time. However, we show in
Section 4.2.2 how we cope with this problem by using aggregates.

Before we upload substreams, in order to ensure consistency (as we explain in
Section 4.3.2), we first write them on the swarm leader’s hard disk drive. For

3.6. INFLUENCE OF THE NUMBER OF ORIGINAL FRAGMENTS 47

higher k, we face increasing delays due to a higher number of local disk seeks
for the generation of substreams. Especially for small files this can significantly
slow down the process of substream generation. We analyze this problem in
Section 4.3 and show how we can prevent low rates via embedding small files.

3.6.3 Bandwidth Saturation

With higher k we increase the number n = k + h of storage nodes a swarm
leader maintains in a swarm. Considering a mean availability α of storage
nodes, there are n · α different storage nodes on-line on average. A higher
number of storage nodes therefore improves flexibility in storage node selection:
If certain transfers from or to storage nodes are interrupted, e.g., because they
are temporarily unavailable, we can replace these transfers with new ones.

We also illustrate this by means of an example in which we need to download
from four different storage nodes in order to recover a back-up. We see in
Figure 3.14 that due to the presence of storage node 5 and 6 we can finish the
overall transfer within the first two time slots, while we would need four time
slots without them.

Storage Node 1:
Storage Node 2:
Storage Node 3:
Storage Node 4:
Storage Node 5:
Storage Node 6:

time
Transfer On-line Off-line

1 2 3 4 5

Figure 3.14: Scenario Representing a Back-Up Download

We see that a higher number of storage nodes improves bandwidth saturation
and therefore contributes to achieve an overall increase of transfer speed. This
is crucial especially when links are asynchronous so that we benefit from per-
forming transfers in parallel [Li13]. Given an average download bandwidth bd
and an average upload bandwidth bu of gateways in our system, approximately
bd
bu
· 1
α storage nodes saturate the download bandwidth in the case of a back-up

download. Assuming we achieve the download link of a gateway to be constantly
saturated, the time required to download a back-up is St

bd
, which is the possi-

ble minimum. To the end of a back-up download, however, there are typically
fewer sources involved in the transfer. Since we need data from distinct storage

48 3. SWARM ARCHITECTURE

nodes in order to recover, the number of eligible sources decreases during the
download progress. Therefore, in practice, full bandwidth saturation is difficult
to achieve over time, but improves with an increasing number of storage nodes
in a swarm. In consequence, we recommend to consider the available bandwidth
on gateways for the choice of parameter k.

3.6.4 Effect of Correlated Failures

Our failure model generally assumes permanent failures to occur independently
and that inter failure times are exponentially distributed (see Section 3.5.2). In
a real world environment, however, this assumption does not necessarily hold.

We divide the possible effect of the parameter k under correlated failures into
two cases:

• Swarm leader is alive
In the case the swarm leader is still alive, a higher value for k decreases
the effort for repairs under correlated failures. This is due to the fine gran-
ularity of the back-up, since it is split into more substreams. When we
lose a percentage pc of storage nodes in the swarm, we eventually upload
d(k+h) ·pce new substreams, each of size St

k . Since the number of missing
substreams rounds up to integers, on average, we save upload bandwidth
to compensate for correlated failures when k is higher. In the worst case, a
high number of correlated failures results in the situation where the swarm
leader cannot complete the maintenance procedure for a long period be-
cause the upload bandwidth capacity is fully occupied.

• Swarm leader is dead
As soon as the swarm leader is dead, by design, our system cannot guaran-
tee durability of data under correlated failures. However, a higher redun-
dancy factor r generally increases the share pc of storage nodes we are able
to lose due to a correlated failure, and yet, still have more than k storage
nodes left to recover the back-up. Therefore, although our system allows to
use a lower redundancy factor r when k is higher, it can be advantageous
to use a higher redundancy level in order to tolerate a certain degree of
correlated failures.

In Chapter 5 we further analyze the presence of correlated failures in an envi-
ronment that is close to the one we focus on.

3.6.5 Load on the Tracker

The tracker receives heartbeat messages at a constant rate per on-line gateway.
The effort for processing these increases linearly with the number of gateways.

3.7. ENCRYPTION 49

Further, for each swarm leader we store a copy of its swarm set on the tracker.
Since the size of the swarm set depends on k, this parameter also influences the
storage space required on the tracker.

Each update of the swarm set requires an update on the tracker. The frequency
for such updates is given by N(k + h)λ. For each update the tracker needs to
select a new storage node, return it to the swarm leader, and update the existing
swarm set. This workload involves several disk seeks and messaging effort.

Numerous disk seeks can lead to lower throughput and higher queuing delay
and, hence, restrict the scalability of a system [MDWS10]. Since this is crucial
for our tracker, we separately address its scalability in Section 4.4.2.

3.7 Encryption

When users perform an off-site back-up, data security is a strong requirement.
Participants in the network are required not to have access to the data of others.
The following cryptographic concepts [FSK10] help achieve this requirement:

• Authentication
It is required to ensure that participants in the network do not imperson-
ate others. We need to make sure that only data owners are allowed to
modify their data. In general, a public-key infrastructure can meet this
requirement.

• Data Confidentiality
Data stored on a gateway is private to the user and is required to remain
private. Therefore, encryption can be used to achieve data confidentiality.

• Data Integrity
This denotes the property of stored data to be consistent over time. Unau-
thorized modification of stored data must be detected. However, stored
data can alter due to malicious attacks or hardware failures. Typically,
hashes are used to perform integrity checks.

In order to create and reconstruct off-site back-ups in our system, a user needs
to keep two pieces of information:

• The public gateway identifier Idgw, provided by the tracker when joining
the federated network.

• A secure [DMR10b] and confidential password, chosen by the user.

50 3. SWARM ARCHITECTURE

In addition, we store a randomly generated bit sequence, referred to as a salt,
on the tracker. The gateway uses this salt for hash computation so that no
other participant produces an equal result for hashing the same input. This
hardens computed hashes against attacks, e.g., using so-called rainbow tables,
which hold precalculated hashes for certain input data [TP11].

Below we explain how our system leverages the aforementioned cryptographic
concepts to achieve our requirements on the system.

3.7.1 Authentication

For authentication, we use a Public-Key Infrastructure (PKI) [FSK10] with a
Certification Authority (CA). To increase modularity and lighten its load, we
allow this CA to be physically separated from the tracker. We show an overview
of the resulting setup in Figure 3.15, which we further explain in the following.

Figure 3.15: Handling of a Swarm Leader’s Asymmetric Keys

The swarm leader creates an asymmetric key pair, which consists of a private
key KSL

s and a public key KSL
p . As typical for asymmetric encryption, the

private key is required to remain secret, known only to the owner, while the
public key is publicly known. Because of this, we upload the public key to the
CA, which for its part also has an asymmetric key pair consisting of the private
key KCA

s and the public key KCA
p .

3.7. ENCRYPTION 51

The CA approves that the gateway identifier Idgw of the swarm leader is bound
to the given public key by creating a public key certificate. This certificate
contains the public key KSL

p , the gateway identifier Idgw, and a signature

Sig(KSL
p , Idgw). The CA determines this signature by encrypting the hash of

the gateway identifier and the public key using its private key:

Sig(KSL
p , Idgw) = {H(Idgw,KSL

p)}KCA
s

(3.4)

Since only the CA can generate this signature, this proves that the CA is aware
that the particular gateway operates in the federated network using a particular
gateway identifier. This empowers the CA with global knowledge of participants
in the federated network and allows it to revoke certificates so that participants
can be excluded from the system. In contrast to an authentication protocol
such as Kerberos [SNS88], which relies on continuous availability of an authen-
tication server, we are able to tolerate the CA to be unavailable. In such case
already known gateways can still operate in the federated network, while new
gateways cannot join anymore. Key revocation in our system requires the CA to
actively distribute signed notifications to storage nodes in the swarm concerned
by the revocation. This, in contrast to the protocol used in Kerberos, introduces
the possibility for a man-in-the-middle attack, where an attacker could simply
drop such notifications. Due to the numerous storage nodes in a swarm and
their geographical distribution, however, we consider such scenario to be rather
unattractive for an attacker.

After creation of the public key certificate, the CA sends it to the swarm leader,
which hereupon distributes it to storage nodes on its own. The fact that we
do not require the CA to distribute public key certificates reduces messaging
complexity at the CA from O(Nn) to O(N).

In consequence, a storage node can check the certificate of a swarm leader
before accepting any requests. By encrypting all further communication (see
Section 4.2.1 for details), we ensure confidentiality, integrity and authenticity for
communication within the federated network [All10]. This prevents man-in-the-
middle attacks, where an attacker relays and potentially modifies communication
between two participants who believe to communicate directly with each other
over a private connection.

However, when a swarm leader permanently fails and suffers data loss, the
private key on the swarm leader will be lost as well. In consequence, we need to
make sure a user can recover the private key from a different place. Hence, we
use a Password-Based Key Derivation Function (PBKDF) [RSA13] to derive a
symmetric key KSL

symm from the password a user needs to memorize. To avoid
password collisions for different users we add a random salt which we associate
with Idgw. We use KSL

symm as input for a symmetric encryption algorithm in

order to encrypt the private key KSL
s .

52 3. SWARM ARCHITECTURE

Thus the encrypted private key KSL
e is derived as follows:

KSL
symm = PBKDF (password, salt)

KSL
e = {KSL

s }KSL
symm

(3.5)

Finally, we store KSL
e on each storage node in relation to the public gateway

identifier together with the random salt.

Henceforth, the download of KSL
e is possible to everybody without any restric-

tion. Only via knowledge of the user password, however, is it possible to decrypt
the private key, and thus, recover a previous identity in the federated network
again. The choice of a secure user password therefore is crucial in our system.

3.7.2 Data Encryption

We use a symmetric-key algorithm for file content encryption so that keys for
encryption and decryption are the same. In order to decrease the overall number
of keys, we encrypt files before splitting them into fragments. This also improves
performance since the encryption algorithm, which needs to initialize first, runs
on a larger portion of data. We further differentiate two different cases regarding
encryption:

• Encryption of files in the file set
For file contents referenced by a snapshot we use the file contents hash to
derive a file encryption key Kf = H(f). This procedure is known as
convergent encryption [SGLM08] and allows us to obtain the same binary
representation of the cipher text when two files that have identical content
are encrypted. This allows us to deduplicate file contents within single
snapshots as well as over different snapshots. We keep all encryption keys
to decrypt referenced files in the index file. As already mentioned before,
the encryption key also allows us to derive the file content identifier by
calculating its hash Idf = H(Kf).

• Encryption of the index file
We use a key derivation function to derive a symmetric key from a gate-
way’s private key. We use this symmetric key to encrypt the index files. In
consequence, the index file can only be recovered with knowledge of the
private key KSL

s .

Using this approach, we achieve data confidentiality for index files and all files
in the file sets. We require the knowledge of the password to decrypt an index
file, which further includes all keys to decrypt referenced files.

Further, a single storage node only receives a share of the encrypted data so that
it never possesses the whole encrypted back-up. Even if an encryption standard

3.8. CONCLUSION 53

should become insecure in the future, the data stored on a single storage node
will not be sufficient to recover parts of the original data.

3.7.3 Integrity Checks

Data on storage nodes may change at any time, either due to malicious be-
haviour or hardware errors4. Further, it is not easy to locate these changes
because they can be distributed over the whole data set.

However, since the swarm leader holds an on-site copy of all files, we can use
a standard challenge-response protocol as described in [DQ04]. As challenge,
the swarm leader sends a random string to the storage node. The storage node
computes the response as the hash over the challenge concatenated with a
transmission block’s content. If a storage node does not have the correct binary
representation of a transmission block available, it is not able to answer the
challenge by the swarm leader correctly.

Using the hashes we store in an index file as encryption keys, we are also able
to check for corrupted files on the gateway. For this, we compute the hash over
the file and compare it to the hash stored in the index file. If they differ, either
the index file or the local file is corrupted. We can easily identify the corruption
by downloading the affected files from the swarm again.

The hashes in the index file are also important to confirm the integrity of a file
downloaded when it comes to back-up recovery. A storage node could modify
the binary representation of transmission blocks, but it cannot update the hashes
stored within the encrypted index file. Therefore we can use a trial and error
approach that excludes a particular storage node from the recovery process until
the integrity of the restored data can be confirmed. Such an approach was also
used in the distributed version of Wuala [TMEBPM12].

3.8 Conclusion

In this chapter we introduced our distributed back-up architecture. In our sce-
nario, we benefit from an on-site copy that allows us to add additional redun-
dancy at low cost. Further, we reintegrate reappearing storage nodes so that in
the long term the system only suffers from permanent failures. We introduce
swarms, which are easy to monitor: swarms allow swarm leaders to act in isola-
tion of others so that we support concurrent access on the storage provided by

4In 2008, for example, the Amazon S3 storage service was down due to a single bit
error propagating in the system, cf. the report under http://status.aws.amazon.com/

s3-20080720.html.

http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html

54 3. SWARM ARCHITECTURE

participants. In combination with our data placement policy, we reduce meta-
data necessary for data localization to a very low level. In fact, once an index
file is recovered, no additional lookups are needed to locate all referenced files.

We use a tracker to keep condensed information about the state of the system.
However, we only impose little management effort on this central instance. Es-
pecially information about specific files is completely hidden to the tracker in
order to reduce its load. We show that the usage of such central node entails
several advantages over a decentralized approach using a DHT among partici-
pants. It supports us to enforce incentives in the system, provides an efficient
way for authentication, and improves performance since we spare expensive pro-
tocols for consensus among participants. However, we do not rely on the tracker
to store data which could undermine data confidentiality of data stored by a
user.

We further introduce index files, which are, to the best of our knowledge, the
first approach for an encapsulated data structure that supports the creation of
distributed back-ups with support for snapshots. These index files allow us to
consistently represent snapshots from local to distributed environment. With
respect to data confidentiality index files also allow us to embed the keys used
for encryption.

With this architecture in mind, we provide more details about our implementa-
tion in the following chapter.

Chapter 4

Implementation

“If it is good for everything, it is
good for nothing.”

Michael Hammer,
Computer Industry Consultant

4.1 Introduction

In this chapter we provide more details on our implementation. This comprises
the communication between participants as well as key features of the entities
in our system. Our implementation is publicly available [Tho14], including its
Java source code.

In the following we first show how participants communicate and how we transfer
transmission blocks between gateways. Then we explain why the modulariza-
tion of the swarm leader is key to a reliable back-up processing in case of an
interrupted execution. Since files in our system require different handling, we
also introduce different classes of files and explain their characteristics. We also
illustrate how the tracker can still be operational despite single failures and how
to replace it in case of total failure. Regarding storage nodes we show how
storage space is freed without additional communication overhead. Finally, we
look at some incentives for participants in order to support correct behaviour in
the federated network.

55

56 4. IMPLEMENTATION

4.2 Communication

In this section we focus on the protocols we use for communication between
participants in the federated network. This includes taking a close look at
the communication from storage nodes to the tracker and the communication
between storage nodes.

4.2.1 RESTful Architecture

We deploy our system by using a RESTful architecture. This means partici-
pants communicate in the federated network by performing CRUD1 operations
on resources that are either located on storage nodes or on the tracker. RESTful
services use the HTTP to send PUT, POST, GET, and DELETE requests on re-
sources which are identified by a Uniform Resource Identifier (URI). Like HTTP,
RESTful services are stateless, so that no state maintenance across request-
response pairs is required [KR01]. This improves scalability and is the reason
why we choose RESTful services instead of stateful web services2 based on Re-
mote Procedure Call (RPC), such as Simple Object Access Protocol (SOAP).

The HTTP methods PUT, GET, and DELETE are designed to be idempotent,
so that they can be applied more than once and yet always lead to the same result
for a given input [All10]. Idempotence further requires the implementation of a
function to be reentrant [SR05], which allows the function to be interrupted and
a new instance to be executed without being affected by a previous execution.
Reentrancy can be achieved by meeting the following requirements [Cor13]:

1. A reentrant function does not hold static data over successive calls, nor
does it return a pointer to static data.

2. All data is provided by the caller of the function.

3. A reentrant function must not call non-reentrant functions.

When idempotence is combined with retry, a workflow based on a fault tol-
erant composition of atomic actions can be built. Such workflow does not
require [RV13] distributed coordination so that we can avoid overhead for dis-
tributed algorithms such as two-phase commit[SK09]. As a result, whenever,
e.g., a swarm leader temporarily fails, it can resume its execution by restarting
open tasks again.

Because HTTP relies on the Transmission Control Protocol (TCP) for data
transmission, our application does not need to provide a reliable, error-checked,

1CRUD refers to the basic functions of persistent storage: create, retrieve, update, and
delete.

2A more detailed comparison can be found in [FSF09].

4.2. COMMUNICATION 57

OSI Layer Protocol

6 - Presentation TLS
7 - Application HTTP

5 - Session TCP
4 - Transport TCP

Figure 4.1: Communication Layers According to the OSI Model

and ordered delivery for data transfers on its own (in contrast to the hybrid
version of Wuala, as shown in the following box). In addition, we layer HTTP
requests over the Transport Layer Security (TLS) protocol [IET13] to encrypt
communication in the federated network (cf. Section 3.7.1). In Figure 4.1
we show the host layers of our environment according to the Open Systems
Interconnection (OSI) model [Sta97]. In our back-up system, we store all back-
up data on storage nodes within the swarm leader’s swarm set, which is indepen-
dent of the number of files and only involves a limited subset of the federated
network. This property enables us to reuse established TCP connections for the
transfer of transmission blocks belonging to different files3. Connection re-usage
also allows to reuse temporary encryption keys for successive requests. Key ne-
gotiation using, e.g., Diffie-Hellman [FSK10] leads to additional overhead for
opening new connections and can be reduced this way.

3By using persistent connections via the keep-alive keyword of HTTP 1.1 [KR01].

58 4. IMPLEMENTATION

Side Glance: Why the Hybrid Version of Wuala Used UDP

The hybrid version of Wuala [TMEBPM12] leveraged storage pro-
vided by participating peers, as we do in our system. However,
in contrast to our system, Wuala was never designed just to be a
distributed back-up system. It also supports file sharing and live
streaming of video data. As another difference to our system, data
of each file in the Wuala system was stored on a different set of
storage nodes.
In an environment in which storage nodes may disappear at any
time, these features benefit from a quick alternation of sources
for transfers and, thus, from low latency in particular. Low la-
tency is important to achieve continuous video streams and fast
consecutive transfers of multiple files from different sources.
For this reason, Wuala used an own pull-based protocol for data
transfer, which is based on User Datagram Protocol (UDP). UDP
per se does neither require handshakes, nor acknowledgements, nor
does it use retransmissions like TCP and, therefore, is generally
better suited for features like video streaming.
When downloading bigger files, the Wuala client initiates more
than 100 transfers from different sources in parallel. This requires
congestion and flow control, which is supported by Wuala’s pro-
tocol implementation. Wuala used the size of 1024 bytes for one
transmission object, called a coding fragment. Such a coding frag-
ment is delivered in a single datagram with the “don’t fragment”
Internet Protocol (IP) flag [IET14b] enabled. In consequence, the
delivery of coding fragments is atomic. A receiver indicates miss-
ing coding fragments of a file to the sender by using a bitmap in
combination with an offset. This allows to request specific coding
fragments, regardless of whether the sender has already sent them.
In contrast to Wuala, for our back-up system as such, it is not
important that a file can be reconstructed on the fly while it is
being transferred. We therefore do not target transfers from a
high number of storage nodes in parallel. Further, we store data
for all files on the same storage nodes so that, in general, transfers
between participants in our system are longer lasting than transfers
in Wuala. It is because of these differences that the use of UDP
is less attractive in our system.

4.2. COMMUNICATION 59

4.2.2 Aggregates

As described in Section 3.4, we divide a file of size Sf in our system into k
transmission blocks of size dSf/ke. Subsequently, we transfer these transmis-
sion blocks to storage nodes. However, for files of small size, transmission
blocks may only have the size of few bytes. Sending an HTTP request for
each transmission block of such limited size is inefficient because of, e.g., the
HTTP header information which is sent each time. Thus, apart from a different
treatment for small files (which we will introduce in Section 4.3.3), we want to
decrease the protocol overhead for small transmission blocks.

For this reason, we group several transmission blocks into aggregates, as sug-
gested in [All10]. We assemble an aggregate on the sender side and transfer it
via a single HTTP request to the receiver. For each transmission block within
an aggregate, we store, in binary form, its corresponding file content identifier,
the length of the transmission block in bytes, and its content. We put transmis-
sion blocks with a size smaller than 256 KiB into an aggregate. Below this size,
data can typically be stored more storage space efficient in a BLOB (such as our
aggregates) than compared to the file system [SVIG06]. Since a storage node
buffers aggregates on its local hard drive before transmission, this approach
saves disk space. As soon as the size of an aggregate exceeds 1 MiB, we start a
new aggregate. This way we limit the number of files that are affected in case
an aggregate cannot be reconstructed (e.g., due to corrupted data on a storage
node). We illustrate the resulting structure of aggregates in Figure 4.2.

file id
(32 bytes)

length
(8 bytes)

transmission block
(variable length)

file id
(32 bytes)

length
(8 bytes)

transmission block
(variable length)

Figure 4.2: Aggregate Structure

At reception, the receiver disassembles the aggregate again. Since the content
is a field of variable length, the receiver uses the length information to delimit
a transmission block’s content within the aggregate. As a result, the receiver
can separate each transmission block and store it in relation to its file content
identifier.

4.2.3 Partial Transfers

We provide a resumable data transfer after a communication failure has in-
terrupted the data flow. Especially for the longer lasting transfers of bigger
transmission blocks, this feature is useful since the likelihood increases that one

60 4. IMPLEMENTATION

of the participants goes off-line. By resuming transfers, we profit from already
transferred data and save time and bandwidth for retransmission.

The possibility of partial transfers also allows us to selectively request missing
data when it comes to file reconstruction. In Section A we will introduce the
interleaving scheme we use to create transmission blocks for bigger files. The
interleaving scheme allows us to already reconstruct parts of a file before we
have received k complete transmission blocks. In consequence, when a storage
node turns off-line while it is sending a bigger transmission block, the data
already transferred can still be used for file reconstruction. Another storage
node which replaces the former source only has to send the missing part of its
transmission block to recover the file.

We implement the partial transfer using the Content-Range header field4 sup-
ported by HTTP 1.1. The field allows us to specify a start and end position in
bytes in order to indicate that only data within this range is transferred.

4.3 Swarm Leader

In general, when organizing computer systems, modularity is an important prop-
erty to reduce system complexity. It leads to less time spent debugging an imple-
mentation and facilitates system improvement and evolution over time [SK09].
Therefore, in this section, we describe how we modularize the swarm leader,
which is responsible for both, on-site and off-site back-up creation. Conse-
quently, we divide its functionality into two main modules, one for the on-site
back-up and another for the off-site back-up. We isolate the functionality of
these modules from each other and limit their interaction on snapshots which
we store on the local file system of the gateway. Figure 4.3 illustrates the data
flow between the two modules.

Off-Site
Back-Up
Module

On-Site
Back-Up
Module

File
System

Figure 4.3: Data Flow Between Modules for On-Site and Off-Site Back-Up

Both these modules store files on the gateway and use the following folders for
dedicated purposes:

• On-Site Copy folder (on-site copy)
Here we keep a single folder for each snapshot, named by its time of cre-

4See RFC 2616 (http://www.ietf.org/rfc/rfc2616.txt) for more details.

http://www.ietf.org/rfc/rfc2616.txt

4.3. SWARM LEADER 61

ation. Within such a folder, we store the whole folder structure and file
contents of the snapshot so that we obtain the structure for on-site back-
ups, as introduced in Section 3.3.1. Data within this folder is immutable.

• Index Files folder (index files)
In this folder we keep one immutable index file per snapshot.

• Temporary folder (temporary)
This folder contains work in progress. This includes index files or transmis-
sion blocks that are currently in creation.

• Upload folder (upload)
The upload folder holds immutable transmission blocks which are scheduled
for upload to storage nodes.

Within the off-site and on-site back-up modules we have further sub-modules
which we illustrate in the following sections.

4.3.1 Modules for On-Site Back-Up

In this section we describe how the on-site back-up is modularized and imple-
mented. The goal of this module is to create an on-site back-up on the gateway
within the home network. To achieve this, we have to access files stored on
user devices so that we can finally synchronize them to the gateway. We divide
the functionality of the on-site back-up module into two sub-modules which we
further explain in more detail.

On-Site Back-Up Module

Synchro-
nizer

User
Device

Mounter

Figure 4.4: Sub-Modules for On-Site Back-Up

User Device Mounter Module

The data we want to back-up is stored on heterogeneous user devices within the
home network. We need to expect that these devices offer different interfaces

62 4. IMPLEMENTATION

for file access by using protocols such as NFS, Server Message Block (SMB),
File Transmission Protocol (FTP), HTTP, or others.

However, we want to avoid that users need additional software on each device
in order to create back-ups. This is why we put all functionality concerning
data access on the gateway, as proposed by Defrance et al. [DGLR+11]. They
propose to use a Virtual File System (VFS) [Bar01] as an abstraction layer on
the gateway. The VFS provides a unified interface for file access on devices
within the home network, while device dependent protocols are hidden to the
application. The resulting setup is shown in Figure 4.5.

Figure 4.5: Virtual File System for Unified File Access [DGLR+11]

The user device mounter is also in charge of detecting user devices to join
or leave the home network. Depending on this, it performs a mounting or
unmounting operation, respectively.

Synchronizer Module

After the gateway mounts a user device, we are able to access and transfer files
from it. We use the file-copying tool Rsync [Tri96] to create our on-site copy
on the gateway. Rsync is famous for its delta-transfer algorithm, which allows
to reduce the amount of transferred data to the difference between source files
and existing files at the destination5.

Before Rsync copies a file, it checks whether it is already present in the previous

5The man page of Rsync is available at http://www.samba.org/ftp/rsync/rsync.html

http://www.samba.org/ftp/rsync/rsync.html

4.3. SWARM LEADER 63

snapshot. Given this is the case, it creates a hard link6 to the file already stored
on the gateway and skips the file transfer7.

Therefore, instead of transferring and repeatedly storing all file contents, we
use hard links to deduplicate data between the new snapshot and the last
snapshot already present on the gateway.

We call the following command to transfer changed data to the gateway:

rsync -rpEgotc --link-dest=$PREV $SRC $DEST

where $PREV is the directory of the last snapshot previously taken, $SRC is the
directory on the user device, and $DEST is the destination for the new snapshot.

As destination we use the temporary folder on the gateway. It may happen
that the synchronization is interrupted, e.g., because a user device disconnects
from the home network before the process completes. In this case we can
restart the synchronization at a later time without side effects. Only after
the synchronization has finished successfully, do we move the snapshot to an
individual folder on the gateway, named after the current timestamp.

Hereupon, the snapshot is completely synchronized with the gateway and avail-
able for on-site recovery in case a user device fails.

If in addition we want to schedule the current snapshot for off-site back-up, we
move it in an atomic operation to the on-site copy folder using the UNIX
mv command8. As a result, we never see partial snapshots in the on-site
copy folder, which thus contains only immutable data. We therefore use the
on-site copy folder as an interface to push snapshots from the on-site back-up
module to the off-site back-up module and, thus, decouple their functionality.

The output of Rsync provides a log concerning files which have changed for the
new snapshot. From this log we can infer files which are used by the previous
snapshot but not by the new snapshot anymore, as well as files which are added
by the new snapshot. We keep this log for later usage when it comes to off-site
back-up creation.

4.3.2 Modules for Off-Site Back-Up

In the previous section we have shown how snapshots are passed in an atomic
operation to the off-site back-up module. Starting from the moment a new
snapshot is visible to the off-site back-up module, its initial upload to storage
nodes as well as its future maintenance need to be ensured.

6Hard links are supported by POSIX compliant (or partly compliant) operating systems and
can be used to create new directory entries for already existing files. See man page, available
at http://www.unix.com/man-page/POSIX/3/link/.

7Some file systems, such as Btrfs, offer additional deduplication on block granularity, cf.
https://github.com/g2p/bedup.

8For this operation we require both directories to be located on the same file system.

http://www.unix.com/man-page/POSIX/3/link/
https://github.com/g2p/bedup

64 4. IMPLEMENTATION

In fact we have two situations in which the off-site back-up module needs to
create new redundancy. Given we have a swarm which already stores a set of
transmission blocks for its back-up, this set extends in the following cases:

• New Substreams
We create transmission blocks for each file already present in the system.

• New Snapshots
We create transmission blocks for all new files referenced by new snapshots.

Therefore, in the off-site back-up module we have two triggers which lead to
the creation of new transmission blocks. The first trigger is the maintenance
module, which creates a complete substream for a new storage node in the
swarm. The snapshot creator module, on the other hand, triggers the creation
of new transmission blocks when a swarm leader adds a new snapshot.

Off-Site Back-Up Module

Maintenance

Snapshot
Creator

File
Encryption

Erasure
Coding

Transmission
Block

Uploader

Transmission Block
Creator

Figure 4.6: Sub-Modules for Off-Site Back-Up

Since both these modules launch the creation of transmission blocks, we use
a uniform transmission block generator module. This module internally
performs encryption and erasure coding and passes created transmission blocks
to the transmission block uploader module. We outline this processing chain
in Figure 4.6.

The fact that we have two triggers operating on a common data set leads to a
situation in which we need to address concurrency. As we illustrate in Figure 4.7,
a concurrent execution of both modules may lead to transmission blocks missing
in the intersection set of their output.

To cope with this problem, we can either use interprocess communication or
make sure that both modules never run at the same time. In our implementation
we choose the latter since both modules work on the same hard disk drive but
on different files, so that concurrent access leads to more disk seeks, and thus,

4.3. SWARM LEADER 65

transmission blocks
currently stored

in the swarm

transmission blocks
for new files

transmission blocks
for new storage nodes

transmission blocks
for new files and

new storage nodes

m
ai

nt
en

an
ce

snapshot creator

Figure 4.7: Overlap in Creation of Transmission Blocks

to an overall slowdown of the creation process of transmission blocks. As we see
later in Section 4.3.2, disk I/O is an important performance factor concerning
the creation of transmission blocks. Besides, avoiding concurrent execution of
both modules reduces software complexity and, in practice, can improve software
reliability due to fewer bugs caused by concurrent execution [FLSR10].

Referential Integrity for Snapshots

We need to expect a gateway to transiently fail at any point in time due to
hardware failures, power cuts, or comparable events which lead to an interruption
of the swarm leader. However, it is important that failures of pending processes
do not lead to inconsistency in the long term. Otherwise, interruptions could
lead to the following problems:

• Incomplete snapshots
The process creating new snapshots is interrupted, so that transmission
blocks for added files are missing without notice. When it comes to snap-
shot recovery, certain files referenced by such snapshots can be impossible
to recover. Further, the tracker needs to hold a reference to uploaded
snapshots so that the recovery process can find a corresponding index file.

• Incomplete maintenance
The maintenance process is interrupted and does not successfully termi-
nate. This could lead to storage nodes lacking transmission blocks of al-
ready uploaded snapshots. In consequence, files of several snapshots could
be impossible to recover. Additionally, the tracker needs to know about
new storage nodes used, so that the swarm list is up to date when it comes
to recovery.

66 4. IMPLEMENTATION

In the area of database system design, the property that references only point
to existing data is referred to as referential integrity [EN03] and guaranteed
by the consistency property of databases9. For this purpose, database systems
allow to define integrity constraints for data sets. Whenever a transaction,
which consists of several operations, succeeds, these integrity constraints are
guaranteed to be fulfilled by the system. However, such constraints typically
entail high costs for cross checking and, hence, do not scale [Ora13].

Considering our system, the answer to the problem is to divide our workflows
for snapshot upload and maintenance into a fault tolerant composition of single
atomic actions. Each such atomic action is applied at-least-once [SK09] so that
we have to make sure the repetition of a request does not result in side effects.
When combined with retry, such workflow also allows to avoid [RV13] distributed
coordination protocols such as for example two-phase commit [SK09]. Further,
since our architecture operates on immutable files, we do not face problems
related to read/write coherence. Read/write coherence means that the result
of a read of a particular data object is always the same as the most recent
write [SK09]. As in our system we derive all file content identifiers from the
files’ content, we never access different content under a particular file content
identifier.

Finally, to support resuming the workflow at any point in time, we use a com-
position of atomic actions, each of which needs to comply with the following
scheme:

• Precondition
A certain precondition needs to be met. Only in this case the action is trig-
gered.

• Action
The particular action to be performed. We require the action to allow being
applied at-least-once without any occuring side effects.

• Postcondition
After the action has been performed at-least-once, eventually, the postcon-
dition is met. This includes that the precondition is not fulfilled anymore.

Subsequently, we provide more details on the individual sub-modules for the off-
site back-up. We explain the resulting composition of atomic actions, realized
by using RESTful web services. Since we process the upload of a new snapshot
and the maintenance procedure as such a composition, referential integrity can
be transiently violated. However, due to the retries we use, references eventually
point to existing data only.

9As part of the ACID properties: Atomicity, Consistency, Isolation, Durability; cf. [EN03]

4.3. SWARM LEADER 67

Maintenance Module

When the redundancy level in the swarm drops below a threshold, the main-
tenance module is in charge of repair. As mentioned before, the maintenance
module runs only once at the same time and never concurrent to the snapshot
creator module.

To support resuming an interrupted execution of the maintenance module, we
divide its task into three phases in accordance to the scheme introduced in
Section 4.3.2. Each phase supports reentrancy and ends with an atomic oper-
ation10 to prove its termination. The detailed algorithms for these phases are
illustrated in the Appendix, Section B.1. In the following we outline their basic
functionality.

Phase 1: Generate Unassigned Substreams

In this phase we generate a new substream in a temporary folder on the swarm
leader. For this, we create a transmission block for each unique file content by
passing through all the snapshots already stored in the swarm. The maintenance
algorithm (introduced in Section 3.5) may require to add multiple substreams
at once. Hence, we initialize the erasure coding with at least one index in order
to create a corresponding transmission block per file content. The process of
substream creation can be time-consuming. Therefore, in case this phase turns
out to be a bottleneck, we can trade local storage space and run the procedure
in the background before the swarm leader is in need for a new substream.

Phase 2: Assign Substreams to Storage Nodes

We need to assign the previously generated substreams to new storage nodes.
On request, the tracker provides an identifier of a new storage node within the
federated network. The swarm leader persists this information by atomically
renaming the folder of the corresponding substream. Hence, this phase only
succeeds once in assigning a substream. This is important, since the tracker
returns a random result each time we request a new storage node.

Phase 3: Include Storage Nodes in Swarm List

After a substream is locally assigned to a storage node, we update the swarm
set stored on the tracker. Only after successful synchronization do we move
the substream into the upload folder so that the upload to the storage node
begins. In consequence, no data is stored on storage nodes before the tracker
keeps a copy of the swarm set, which can be recovered in case of data loss on
the gateway.

After the last phase terminates with success, the transmission blocks in the
upload folder eventually are uploaded to the targeted storage nodes.

10Using the ATOMIC MOVE argument for the move command provided by JDK 7, see
http://docs.oracle.com/javase/tutorial/essential/io/move.html for more details.

http://docs.oracle.com/javase/tutorial/essential/io/move.html

68 4. IMPLEMENTATION

Snapshot Creator Module

The snapshot creator module is in charge of creating a new snapshot to be
stored in the swarm. This includes two main tasks:

1. The creation of an index file which holds references to all the file contents
referenced by the snapshot.

2. The generation of transmission blocks for file contents referenced by the
new snapshot but no previous snapshot stored in the swarm. This also
includes the transmission blocks for the index file.

We keep all relevant information of an index file (cf. Section 3.3.2) in a tar-file.
This increases interoperability since an index file can also be read outside our
application in case of a software error. Originally used for tape back-ups, the
tar file format11 allows to pack any number of files into a continuous stream
of bytes.

According to the POSIX compliant format from 1988, each file content is pre-
ceded by a header record of 512 bytes, which allows to keep file metadata like
the following stored in a file system12:

• file name (including path to reconstruct folder structure)

• access permissions

• file owner id

• file group id

• last modification date

• link information (for hard links or soft links)

The tar file format is designed to hold file contents as well. As we show in
Section 4.3.3, we use this possibility to store files of small size close to their
metadata. In accordance with our general data placement policy (Section 3.4),
however, we generally want to store file contents in a distributed way. For this
reason, instead of storing the file content in the tar file, we store the data listed
in the following:

11The tar archive format is described under http://www.freebsd.org/cgi/man.cgi?

query=tar&sektion=5.
12More recent but not POSIX compliant versions such as the GNU tar format also allow to

keep the time when a file was last accessed (atime) and the file creation time (ctime).

http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5
http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5

4.3. SWARM LEADER 69

• file encryption key (32 bytes)
In order to decrypt a particular file, we need to know the key Kf used for
encryption. Further, by hashing the file encryption key we can derive the
file content identifier Idf = H(H(f)) = H(Kf), which is needed to query
the fragments of the particular file.

• file length (8 bytes)
For erasure coding and encryption we need to pad a file until we reach a
multiple of the block size used. In order to crop the file again, we need to
know its original size.

To keep this metadata apart from real file content, we check entries within the
tar archive for having the size of 32 + 8 = 40 bytes, and whether the resulting
file content identifier can be used to download transmission blocks from the
swarm. If neither is the case, we interpret the content within the tar archive
as file content.

As a result, an index file contains all data necessary to recover the original state
of a file tree, covering file metadata and file contents.

After creation of an index file, we compress it using gzip13 to reduce its size.
Because the tar format pads empty fields with null values, the compression
significantly reduces the size of our index files (typically to a size smaller than
10% of its original size).

In the following we describe the phases we use to create an index file. Each
of these phases ends with an atomic action to indicate its termination. Thus,
we can restart each of these phases individually. For further details on these
algorithms we refer to the Appendix, Section B.2.

Phase 1: Parse New Snapshot

This phase starts as soon as a snapshot is passed from the on-site back-up
module to the off-site back-up module. We generate the index file by traversing
the file tree of the snapshot. For each file we check whether it is already
present in a previous snapshot and, if this is not the case, create corresponding
transmission blocks for it. We compress an index file after creation to reduce
its size.

Phase 2: Generate Transmission Blocks for Index File

The index file created in the previous phase needs to be stored in the swarm as
well. Therefore, in this phase, we create transmission blocks for the index file.
In case the index file is too small to be uploaded into the swarm (we will explain
this case in Section 4.3.3), we pad it to the minimum size.

13See the gzip man page under http://www.freebsd.org/cgi/man.cgi?query=gzip.

http://www.freebsd.org/cgi/man.cgi?query=gzip

70 4. IMPLEMENTATION

Phase 3: Update Snapshot Metadata on Storage Nodes In this phase we
send metadata about the snapshot to every storage node in the swarm. This
metadata includes the following:

• a unique snapshot identifier vt, indicating its creation time.

• the file content identifier Idf of the index file.

• all unused file content identifiers to file contents OF = FSt−1 \FSt =
{f ∈ FSt−1 | f 6∈ FSt} used by the previous snapshot vt−1, but not by
the current snapshot vt anymore.

• all new file content identifiers to file contents NF = FSt \FSt−1 =
{f ∈ FSt | f 6∈ FSt−1} used by the new snapshot vt, but not by the
previous snapshot vt−1 before.

The first two items are required in case of recovery, while the latter are used for
storage reclamation on the storage node.

In case a storage node is not available, we retry the submission at a later point
in time, until success.

Transmission Block Creator Module

The transmission block creator module is either triggered by the maintenance
module or the snapshot creator module to generate transmission blocks for a
particular file. Within this module we first encrypt the file content of the on-
site copy and, thereafter, perform erasure coding. Finally, we atomically move
finished transmission blocks into the folder structure used by the transmission
block uploader module (which we show in Figure 4.9). We illustrate the pa-
rameters and the data flow for transmission block generation in Figure 4.8 and
describe its composition in the following.

File Encryption In our implementation for file content encryption, we use
state of the art cryptographic algorithms [FSK10]. This is Advanced Encryption
Standard (AES) with 256 bit keys for file content encryption and the Secure
Hash Algorithm (SHA) with 256 bits as cryptographic hash function14. As
described in Section 3.7.2, we derive the keys used for symmetric encryption
either from the file content (in case of a file within a snapshot) or from the
gateway’s private key (in case of an index file). Since AES operates on blocks,
it requires input data to be aligned to a multiple of 16 bytes. Further, we
operate AES in Cipher-Block Chaining (CBC) mode, which connects a previous

14In fact, we always compute SHA-256(SHA-256(x)) instead of SHA-256(x) to prevent
length extension attacks as described in [PO95].

4.3. SWARM LEADER 71

original
file f

Encryption

key IV

Erasure
Coding

index[1..n]

T
f,1

T
f,2

T
f,3

T
f,n

...

Figure 4.8: Data Flow for the Creation of Transmission Blocks

cipher block via XOR with the following clear text block so that equal blocks
within one file do not result in equal cipher text. CBC requires an initialization
vector (IV) to start with the first block. As initialization vector we use the first
16 bytes of the file content identifier, which in turn is derived from the whole
file content. This procedure assures that different files with the same first block
still result in different cipher text for the first block.

After encrypting a block, we pass the buffer holding the cipher text to the
erasure coding algorithm.

Erasure Coding Our implementation uses Reed-Solomon coding in order to
generate redundancy. We favor Reed-Solomon coding over fountain codes be-
cause of its properties as a MDS code: in our scenario it requires exactly
k transmission blocks for decoding, while fountain codes require some ad-
ditional data, which typically results in an overhead of 5-10% [Mac05]. In
literature [Lub02, Sho06, Mac05] it is mentioned that fountain codes offer
better performance for encoding and decoding operations. However, perfor-
mance evaluations [PLS+09] and projects like Wuala [TMEBPM12] and Tahoe-
LAFS [WOW08] show that in practice the performance for Reed-Solomon cod-
ing turns out to be sufficiently fast. The costly multiplication operations in
the Galois field can be reduced to a set of table lookups and an addition15, so
that encoding results in less computational costs than encryption, as observed
in [WOW08].

We use the Onionnetworks FEC16 Java library, which is based on the imple-

15Described in more detail at http://www.randombit.net/bitbashing/2009/01/19/

forward_error_correction_using_simd.html.
16The Onionnetworks FEC library is also used by Wuala [TMEBPM12] and

Freenet[CMH+02]. It is available at https://bitbucket.org/onionnetworks/fec. While

http://www.randombit.net/bitbashing/2009/01/19/forward_error_correction_using_simd.html
http://www.randombit.net/bitbashing/2009/01/19/forward_error_correction_using_simd.html
https://bitbucket.org/onionnetworks/fec

72 4. IMPLEMENTATION

mentation of Luigi Rizzo17 and offers a Java Native Interface (JNI) wrapper to
an implementation in C. The memory space required by the lookup table grows
according to O(kn). Its preparation takes up to several seconds but has to be
done only once when the application launches. We parametrize the encoder by
“overshooting” the coding rate as suggested in [DMTC14]. This means instead
of initializing the code with (k, n), we use (k, n′) with n′ > n. When n′ is
sufficiently high, we can increase the redundancy level in our system over time,
as required whenever a new storage node needs to be added to a swarm.

Besides a buffer holding the encrypted file content, the erasure coding procedure
needs an index field as input (cf. Figure 4.8). This index field specifies for
which indexes of the erasure code a transmission block needs to be created.
Depending on whether the snapshot creator module or the maintenance module
calls the transmission block creator module, we face two different scenarios:

• Generate transmission blocks for added files
When we create a new snapshot, we need to generate transmission blocks
for each new file content and for each storage node within the swarm. The
number of new file contents for a new snapshot is limited in relation to
the overall number of files, since over time only a smaller portion of files
change [LPGM08]. Therefore, this workload typically affects only a smaller
subset of files. Since we create a transmission block for each storage node
in the swarm, we initialize the index field with all the indexes already used
in the swarm. In consequence, once a file is read from disk and its content
is encrypted, we generate multiple transmission blocks for different indexes.
The ratio of data output against data read from disk for one file therefore

is
Sf
k
n

Sf
= 1 + h

k = r > 1.

• Generate transmission blocks for a new storage node
Whenever needed, our maintenance module adds a new storage node to
our swarm. For this new storage node, we need to generate one substream,
which involves one transmission block for each unique file content over all
snapshots of a swarm leader. In contrast to the previous workload, this
workload requires to touch a high number of files on disk. Furthermore,
we generate only one transmission block per file content, but still have to
read the whole file from disk and perform encryption. Therefore, the ratio

of data output against data read from disk is only
Sf
k
Sf

= 1
k , with 1

k < 1.

Since 1
k < 1 < r, we infer that the latter case is more likely to result in a bottle-

neck for transmission block generation. If this is the case, it is advisable to create
multiple substreams at once. The creation of multiple substreams increases the

this work was written, another comprehensive library [PMG+13] has been released.
17Available at http://info.iet.unipi.it/~luigi/fec.html.

http://info.iet.unipi.it/~luigi/fec.html

4.3. SWARM LEADER 73

share of output data per input data so that the overall data throughput of the
transmission block creator module increases. The first approach to achieve this
is to precalculate transmission blocks for substreams before they are needed in
the system. For keeping substreams on stock we also profit from a higher value
for k since they occupy less storage space on the gateway. Alternatively, we
can expand the interval in which we perform maintenance. In consequence, it
is more likely that multiple substreams are required at once.

Transmission Block Uploader Module

We run the transmission block uploader module completely decoupled from
any other module within a separate thread. This allows uploads to happen
concurrent to the generation of transmission blocks.

We organize the upload folder structure so that each storage node sn ∈ SW
has its own folder, named after its identifier. Within such a folder, we place
all immutable transmission blocks scheduled for upload to the particular storage
node. As file name for a transmission block we use its corresponding file content
identifier. We illustrate this structure in Figure 4.9.

B9A32E6A13 37FA4

T1,2 T2,2 T3,2

upload

storage
node 2

storage
node 1

B9A32E6A13 37FA4

T1,1 T2,1 T3,1

Figure 4.9: Transmission Blocks for Three Files Scheduled for Upload to Two Storage
Nodes

We periodically check the upload folder for available transmission blocks. When
transmission blocks are available, we start up to three concurrent uploads to
ensure that the line is saturated. Only after the success of the upload to the
storage node do we delete a transmission block from the upload folder. This
ensures retries of failed uploads until they succeed. Further, it allows the swarm
leader to detect whether a storage node is in the synchronized state (see our
data placement strategy in Section 3.4.1 and our algorithm for maintenance in
Section 3.5): only if the folder corresponding to a storage node is empty, the
storage node is classified as synchronized.

74 4. IMPLEMENTATION

4.3.3 Different Ways of Storing Files in a Swarm

We store files in our system in different ways, depending on their size. Our
measurement study on Wuala [TMEBPM12] has shown that this strategy can
be used to improve efficiency when fragments of files are distributed over a high
number of storage nodes. However, the way files of a certain size should be
stored primarily depends on the architecture of the system and on requirements
concerning latency and storage space efficiency. In Wuala we have seen that
the parameter k increases with file size in three steps. To achieve lower latency,
smaller files are stored on servers only, starting with k = 1 (which is replication)
up to k = 10, while bigger files are split into k = 100 fragments to save storage
space.

In our system, however, we do not store files on servers. Instead, we could
introduce different types of swarms, each of them using a parameter k which
best matches the file size of files stored in it. However, this strategy unfortu-
nately involves higher monitoring costs since each swarm needs to be observed
separately. Further, it requires the tracker to hold and update several swarm
sets for each participant and, thus, increases its load.

As already mentioned in Section 4.2, latency is less important in our scenario
since we focus on a pure back-up service. For this reason, we choose a sin-
gle value k = 100 which favors storage space efficiency. In the following we
introduce three different ways of storing files that we use in this environment.
Figure 4.10 also depicts an overview of this scheme.

Small Files

embed whole into
index

Medium Files

perform erasure coding
on

Big Files

perform erasure coding
on segments

File k
k+1

1...

...
k+h

File

index

File

File

1...
k

k+1...
k+h

1...
k

k+1...
k+h

1...
k

k+1...
k+h

1...
k

k+1...
k+h

1...
k

k+1...
k+h

Figure 4.10: Three Ways to Store Files

4.3. SWARM LEADER 75

Small Files (smaller than 16 KiB)

We store small files with a size smaller than 16 KiB in the index file. This means
we only read them once to embed them into the tar file where they are stored
close to their metadata. Since we encrypt the whole index file before we upload
it, we can skip the encryption procedure for small files. Using this procedure,
we avoid low data rates caused by disk seeks for small files during the creation
of new substreams.

However, as a drawback, this approach prevents us from deduplicating small files
over different snapshots. Same file contents therefore can be included in several
index files. Due to the small amount of storage they occupy, we perceive this
as justifiable (we discuss this more closely in Section 4.3.3 and Section 4.3.3,
which follow hereafter).

As small files are hidden to a storage node, we thus also reduce the managing
costs for storage reclamation on a storage node (we introduce storage reclama-
tion in Section 4.5.2). As a further consequence we cannot store an index file as
a small file. Therefore, we need to pad an index file to a size of at least 16 KiB
so that it can be uploaded as a medium file.

Medium Files (16 KiB - 1 MiB)

We denote files with a size between 16 KiB and 1 MiB as medium files. After
encryption we encode medium files in one pass by loading the whole file content
into the data buffer of the erasure coding module. This results in transmission
blocks of size dSf/ke, which entails a maximum overhead of k − 1 bytes per
file.

While this procedure entails only negligible storage overhead, it requires more
memory with increasing file size. Since we perform encryption and erasure
coding in memory, we need buffers with a total size of 2 · Sf + n · Sf/k.
Further, in order to recover a medium file, a receiver can only use fully delivered
transmission blocks. This can lead to situations in which lots of data received
from a storage node cannot be used for file reconstruction only because few
bytes are missing.

In order to limit the memory footprint and to keep the effect of lost connections
low, we use a different method to store files bigger than 1 MiB, which we explain
in the following.

Big Files (bigger than 1 MiB)

Since erasure coding is performed in memory, we cannot perform it on files
with arbitrary size. This is why for files bigger than 1 MiB we switch to an

76 4. IMPLEMENTATION

interleaving scheme [PS07], which allows us to keep the memory consumption
independent of the size of a file, as also seen in Wuala [TMEBPM12] and
explained in the following.

We partition a file of size Sf into j = dSf/be segments of b = 100 KiB size.
We choose 100 KiB because it offers good performance and requires only a
small memory footprint. Each of these segments is then encoded independently
using erasure coding. For this purpose, a segment is broken into k = 100
original fragments of 1 KiB that are encoded to obtain n = k + h coding
fragments of 1 KiB each. In this way, segment s, s ∈ {1, . . . , j} results in n
coding fragments Cs,1, ..., Cs,n. For file f and substream SSi we then group all
coding fragments C1,i, ..., Cs,i into one transmission block Tf,i, which can be
sent over the network. In Figure 4.11 we illustrate this procedure in detail.

Transmission
Blocks

...

1.1 1.2 1.k

1.1

1.2

1.k

1.k+1

1.n

...

...

2.1 2.2 2.k

2.1

2.2

2.k

2.k+1

2.n

...

...

j.1 j.2 j.k

j.1

j.2

j.k

j.k+1

j.n

...

. . . .

1. Segment of File f 2. Segment of File f j. Segment of File f

C
od

in
g

Fr
ag

m
en

ts

Tf,1

Tf,2

Tf,k

Tf,k+1

Tf,n

Figure 4.11: Interleaving Scheme Operating on Segments

We obtain transmission blocks with a size of dSf/be · b/k, which entails a
maximum overhead of size b per file. For b = 100 KiB this entails up to 10%
overhead for files slightly bigger than 1 MiB. In fact, if memory consumption on
the gateway is no issue, we can consider to raise the upper bound of medium
files in order to lower the overhead on smaller files handled by the interleaving
scheme. However, the amount of overhead becomes negligible for larger files,
which typically account for most of the total storage space in storage systems
(as we show in Section 4.3.3).

When it comes to recovery, in contrast to the scheme used for medium files, the
interleaving scheme allows us to benefit from data of transmission blocks that
are not fully downloaded. In case a storage node goes off-line during the recovery
process, we are able to choose another storage node and still use the data that
was already transferred. In order to recover a segment s1, we require coding
fragments for this segment from k different transmission blocks. However, to
recover another segment s2 of the same file, a different set of transmission blocks

4.3. SWARM LEADER 77

can be used instead. Since our system supports partial transfers (introduced in
Section 4.2.3), we can request particular coding fragments from storage nodes
and are not dependent on the full transfer of a transmission block corresponding
to a big file.

On Embedding Small Files

In Section 4.3.3 we have decided to embed small files in the index file and,
therefore, we only store medium and big files individually in the swarm.

This implies that we cannot perform deduplication of small files with same file
content over different snapshots. Every time the same small file is included by
a snapshot, it will be embedded into the index file again. However, as shown in
[ABDL07] and [TMEBPM12], it can be advantageous for system performance
to store files of small size close to their metadata, which in our case is the index
file.

In the following we discuss the effect of embedding small files more closely.

Storage Space Efficiency In order to determine a file size at which a file
should be embedded in the index file, as a first step, we only consider storage
space efficiency. For this purpose, we define functions for the storage costs on
a single storage node for placing a single file of size Sf . Analyzing the storage
space on a single storage node allows us to disregard the redundancy factor r
in the system.

For an embedded file, these costs depend on the number of snapshots v in
which the same file content is used and, therefore, is replicated over different
index files. In addition we have a constant overhead Sto within the index file.
This constant overhead is used for storing an additional file entry with all file
attributes. The storage costs Semb for an embedded file on one storage node
are defined as follows:

Semb = v ·
Sf + Sto

k
(4.1)

When we store a file individually in the swarm, the costs are divided into two
parts.

The first part are the costs for storing a transmission block of the file on the
storage node. These costs include a constant share for metadata Sm, which
involves the file content identifier and storage reclamation. Additionally, there
is some constant overhead Sso, depending on the storage engine used on storage
node side18.

18In case the transmission block is stored in the file system, this includes overhead due to
block alignment and inodes. For databases this is typically overhead for index structures.

78 4. IMPLEMENTATION

The second part are the costs attributed to the index file. This includes the
metadata for file attributes represented by Sto and the costs for metadata Sr
necessary to request and reconstruct the file (as introduced in Section 4.3.2).

So the final costs for an individually stored file are:

Sind =
Sf
k

+ Sm + Sso

+ v · Sr + Sto
k

(4.2)

To find the break even point for the costs of embedded respectively individual
files, we identify the costs for storing an embedded file with the costs for storing
an individual file and solve for Sf :

Semb = Sind

v ·
Sf + Sto

k
=
Sf
k

+ Sm + Sso + v · Sr + Sto
k

(4.3)

Sf =
k · (Sm + Sso) + Sr · v

v − 1
(4.4)

We see that the parameter k influences the break even point so that for higher
k we should embed more files. This is because of the metadata required to
manage additional transmission blocks on a storage node. We also see that
the break even point depends on the number of snapshots that reference a file
content. Because this depends on the amount of data a user changes over time,
we face a feature that is individual for each user.

As most data in file systems is not touched again [LPGM08], we further look
at the extreme case of an unlimited number of references to files:

lim
v→∞

k · (Sm + Sso) + Sr · v
v − 1

= Sr (4.5)

In this case, we see that k has no influence anymore, so that a file size of Sf = Sr
is a lower bound regarding storage space efficiency. However, since storage space
in our scenario is limited by a quota, we definitely reach a limited number of
snapshots. Splitting files of small size leads to very poor I/O performance due to
an increase in disk head movements. At worst, this can lead to bottlenecks in the
creation of new redundancy, leading to data loss [VI12, GMP09]. Consequently,
especially for small files, a system design may need to disregard strict storage
space efficiency and, instead, embed more files.

4.3. SWARM LEADER 79

Impact of File Size Distributions Up to now we have focused on how to
store a single file in a storage efficient way. However, we need to consider that
the total storage overhead in the system depends on how much storage space
is occupied by smaller files in general.

Related to this, Agrawal et al. [ABDL07] published a five-year study about
file system metadata. Over the years 2000 to 2004 they collected file system
metadata from over 60,000 Windows PC file systems. This involved both, files
stored by a user and files for the operating system19. Their study shows that
typically, file systems contain a lot of small files, but the majority of stored bytes
are found in increasingly larger files [ABDL07]. In Figure 4.12 we see the CDF
of used storage space by file size, as observed in the five year study. We see that

 0

 0.2

 0.4

 0.6

 0.8

 1

128 GiB16 GiB2 GiB256 MiB32 MiB4 MiB512 KiB64 KiB8 KiB1 KiB

C
D

F
of

 U
se

d
S

pa
ce

 b
y

Fi
le

 S
iz

e

File Size (log scale, power-of-2-bins)

2000
2001
2002
2003
2004

Figure 4.12: CDF of Used Space by File Size; Five Year Study of File-System Meta-
data [ABDL07]

smaller files do not account for a lot of used storage space. Files smaller than
16 KiB make up for only about 1% of the storage space used. During the course
of the study there is also a trend towards a higher percentage of bytes stored in
bigger files. In fact, the study determines that the mean file size in file systems
grows by roughly 15% each year. A similar observation about increasing file
sizes over time was made in a study from 1999 [Vog99]. Unfortunately, there is
no comprehensive study that is more recent.

For this reason we asked the authors of Wuala [LaC13] for statistics on the file

19We analyzed the file size distribution of files only used by the operating systems Fedora 11
and Windows 2000 and found more bytes in small files compared to the results of the five-year
study. By trend, bytes related to operating systems therefore seem to be contained in smaller
files.

80 4. IMPLEMENTATION

size distribution in their widely used cloud storage system. We received statistics
on all incoming files for the month of October, 2012. Fig. 4.13 shows the
corresponding CDF of used storage space by file size. Similar to the observations

64 KiB 1 MiB 16 MiB 256 MiB 4 GiB 64 GiB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File Size (log scale, power−of−2−bins)

C
D

F
of

 U
se

d
S

pa
ce

 b
y

Fi
le

 S
iz

e 2012

Figure 4.13: CDF of Used Space by File Size; Wuala Cloud Storage System

in the five-year study, we see that the amount of storage space used for smaller
files is fairly low. In fact, all files smaller than 128 KiB account for less than 1%
of the total storage space used, while files up to 16 KiB occupy less than 0.1%.

We see two reasons why we observe a larger portion of data in big files for
the Wuala file size distribution. First, the data is more recent. According to
the five-year study, the mean file size in 2012 should be more than twice the
mean file size observed in 2005. In addition, we assume users of Wuala to
store mainly personal files in the Wuala system, rather than files related to an
operating system, which tend to have more bytes stored in smaller files.

Conclusion We saw that by strictly focusing on storage space efficiency, em-
bedding small files can be disadvantageous. On the other hand, dealing with
files of very small size can lead to bad system performance.

Considering the fact that file systems tend to contain most bytes in bigger
files, however, embedding small files comes with a storage overhead which is
barely reflected in the overall storage consumption. According to the recent file

4.4. TRACKER 81

size distribution we saw for Wuala, this storage overhead is less than 0.1% for
embedding files smaller than 16 KiB, which is the size we use in our system.

Certainly, this procedure may lead to poor storage space efficiency in case of
extreme workloads, i.e., when a high portion of files are smaller than 16 KiB.
Such inefficiencies for small files, however, are also known20 for other storage
systems such as Hadoop Distributed File System (HDFS) [SKRC10]. In practice,
however, they show only little impact. Further, in view of rising mean file sizes
of about 15% per year, we expect this issue to have even less importance in
future.

4.4 Tracker

This section outlines how we implement the centralized tracker. The implemen-
tation focuses on reliability so that single hardware failures withing the data
center do not lead to an interruption of the service. We consider the scalability
of the service so that outages due to the growth of the network can be pre-
vented. We also show how participating gateways can switch to another tracker
in case the currently used one leaves the system.

4.4.1 Resolution of Gateway Identifiers

In our system we identify gateways by using their constant gateway identifier
Idgw. However, in order to open a connection, we need to know the IP address
related to a gateway identifier. This is why we use the Domain Name System
(DNS) to map gateway identifiers to corresponding IP addresses. The tracker
therefore runs an authoritative name server [IET14a] under a domain name we
refer to as primary domain.

Every gateway in the federated network has its own dedicated subdomain within
the primary domain, which results in hostnames of the form “gatewayidenti-
fier.primarydomain”. When a gateway opens a connection to another gateway,
it uses its corresponding hostname. Consequently, the authoritative name server
returns a DNS address record [IET14a], which contains the IP address under
which a gateway can be reached.

Gateways in our system generally get their IP addresses assigned either statically
or dynamically by their Internet Service Provider (ISP). In case a gateway has
a dynamic IP address, its IP address changes regularly. Whenever a gateway
detects such change, it needs to update its IP address on the authoritative name
server.

20Storing small files in HDFS also results in inefficiency, as explained in http://blog.

cloudera.com/blog/2009/02/the-small-files-problem/

http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

82 4. IMPLEMENTATION

Using DNS for the mapping of gateway identifiers to IP addresses allows us
to profit from the wide deployment of DNS and its caching mechanism. DNS
allows to set a Time To Live (TTL) for records, which allows other DNS servers
to cache records for the time specified. For gateways using a static IP ad-
dress we therefore set a long TTL in contrast to gateways using a dynamic IP
address, which need a shorter update period. As a result, DNS helps us to de-
centralize requests for name resolution from the tracker and distribute the load
over the Internet. Further, DNS provides mechanisms to enhance reliability for
name resolution. By specifying secondary DNS servers [IET14c], we can publish
alternative servers which take over the service in case of primary server failure.

4.4.2 Internal Tracker Structure

Since all gateways in the network rely on the service provided by the tracker,
it is important that it remains in an operational state. In this section we focus
on the following two scenarios, which potentially undermine the service of the
tracker. Subsequently we describe a possible implementation which addresses
these issues.

Reliability Despite Hardware Failures

Although the lifetime of single hardware components typically spans several
years, computer systems that consist of many of such components need to
consider hardware failures rather to be the norm than an exception [VN10].
Hardware failures can lead to unavailability of the system and in the worst case
to data loss. In general, redundancy and failover mechanisms are used to cope
with hardware failures in data centers. Any possible single point of failure should
be avoided.

Scaling the Tracker in Case of Increased Resource Needs

When the number of users demanding a service increases, the increase in load
first leads to a slow down of the service and eventually results in an overall
unavailability of the service due to overload. The property of a system to
be scalable therefore ensures that an increasing demand of resources can be
countered by increasing the system’s resources. This can be done in two different
ways:

• Horizontal Scaling
Scaling a system horizontally means to add more nodes whenever more
resources are necessary. This typically means that a new computer is inte-
grated into the system.

4.4. TRACKER 83

• Vertical Scaling
Vertical scaling denotes the procedure of adding more resources to already
existent nodes in the system. This, for example, comprises increasing the
amount of memory of a single computer.

Nowadays, data centers are often scaled horizontally to save costs [Ama14a,
GGL03]. Instead of using expensive high-performance hardware, horizontal scal-
ing allows to use cheap commodity computers.

Separation of Application Logic from Data Representation

We separate the functionality of the tracker into two layers, which can be inde-
pendently scaled according to the demands of the service. We show an overview
of this architecture in Figure 4.14 and further describe how each of these layers
can provide reliability and scalability.

Figure 4.14: Internal Architecture of the Tracker

84 4. IMPLEMENTATION

Application Logic Layer The application logic layer consists of application
servers, which receive requests from gateways in the federated network. We
distribute incoming requests among the application servers by using round-robin
DNS. When a gateway contacts the tracker by using its hostname, the DNS
resolves this hostname to a list of IP addresses, each of them belonging to a
different application server. Since this list is rotated via round-robin, gateways
send their requests to different application servers, which avoids a bottleneck in
the communication between gateways and application servers.

The application servers are in charge of executing the application logic, including
e.g., validation of constraints concerning input data from gateways.

Whenever an application server fails to process a request, a gateway resubmits
the same request to another application server on a different IP address. Each
application server can process every possible request so that the functionality of
application servers is redundant. There is, thus, no single point of failure within
the application logic layer.

As mentioned in Section 4.2, we generally use a stateless RESTful architecture
to improve scalability. We keep no data in the application logic layer. Instead,
application servers perform read and write operations on the underlying data
access layer, which we describe in the following.

Data Access Layer The data access layer is responsible for storing data on
persistent storage. Typically, the data we store on the tracker (summarized in
Figure 3.9) are only partially accessed. All queries by gateways only affect data
related to their role as a swarm leader or a storage node, which strongly limits
the scope of requests in relation to the data stored for the whole federated
network. In fact, we perform all look-ups and writes using a gateway identifier
as a key. Hence, we encourage the use of a state-of-the-art distributed key-value
store such as Apache Cassandra [LM10, DHJ+07].

Apache Cassandra internally uses a DHT among nodes so that they are organized
in a decentralized way, avoiding a single point of failure. Every node in the data
access layer can likewise process a read or write request. Writes are performed
to a configurable number of different nodes in order to achieve fault-tolerance.
Further, each node in Cassandra is only responsible for a certain portion of the
data set so that load is distributed among all nodes.

Consistency of Data Stored on the Tracker

The CAP theorem by Lynch et al. [GL02] states that for distributed storage it
is only possible to provide two out of the following properties:

4.4. TRACKER 85

• Consistency
All participants see the same state of data at every point in time. This is
also referred to as strict or strong consistency.

• Availability
Every request receives a response about whether it was successful or not.

• Partition-tolerance
The system still continues to operate in spite of lost messages and is fault
tolerant for parts of the system.

At this point, the definition of consistency slightly differs from the definition used
in database system design. While database consistency refers to the property
that transactions transform a database from one valid state to another, Lynch
et al. refer to a single atomic operation of a single request/response [GL02].
Further, Fekete et al. [FGL+98] suggest relaxing the property of consistency to
eventual consistency, which allows transient inconsistencies to occur as long as
they are resolved eventually. According to Lynch et al., this relaxation allows to
fulfill the properties availability and partition-tolerance at the same time.

In our system, we require the tracker to be partition-tolerant because in practice
partitions are unavoidable due to component failures. Hence, according to the
CAP theorem, we can choose between strict consistency or availability.

Writes on the tracker concern updates for the swarm set. If such information is
not available on the tracker, there is the risk that a recently added storage node
could be missing for recovery. We see that writes on the tracker should always
be accepted and, hence, that the tracker’s availability is crucial. In contrast,
when a gateway fails, it is less important that data on the tracker is consistent
at this particular point in time. We assume that before a user replaces the
gateway and starts the recovery process, the tracker has enough time to resolve
inconsistencies in the data related to the concerned back-up.

The fact that the classic Relational Database Management System (RDBMS)
focuses on strict consistency, supports us in our decision to use Cassandra, which
is designed to support partition-tolerance and availability [Apa14].

4.4.3 Total Tracker Outage

Up to now we have ensured that single hardware failures do not have an impact
on the service provided by the tracker. There is, however, still the risk of
losing the tracker, e.g., when the operator stops all services. In the following
we analyze this scenario more closely and show how the federated network can
return into an operational state.

86 4. IMPLEMENTATION

Impact on the Federated Network

A complete tracker outage has a strong impact on the functionality of our
back-up system, which is, henceforth, reduced to the remaining gateways in the
system.

These remaining gateways face the following consequences and restrictions:

• Swarm leaders cannot request new storage nodes from the tracker. Per-
forming maintenance is not supported so that the redundancy provided
by a swarm decreases over time.

• The CA does not issue new public key certificates so that new gateways
cannot join the system anymore.

• Fairness in the system is not globally observed by the tracker.

• The copy of the swarm set on the tracker is inaccessible. In case of data
loss on a gateway we need an alternative way to recover the swarm set.

• Gateways cannot update their DNS address records on the authorative
name servers anymore. Gateway identifiers therefore cannot be resolved to
IP addresses so that especially the connectivity to gateways with dynamic
IP addresses is limited.

• In case of local data loss a user has no entry point to the federated network
anymore. It is therefore impossible to catch up with other participants
and access a previously stored back-up.

We see that especially the last point is crucial for our system. A back-up system
lacking the possibility to recover from data loss is of little value. However, not
even decentralized approaches help in this scenario. In order to join a DHT, a
node also requires [MM02, SMLN+03, RFH+01, RD01] an entry point, which
is typically an IP address of a node that is already participating in the DHT. In
the following we show a best effort approach how the system can still operate
to some extent without the tracker.

Fallback Mode and Regathering

In case a gateway cannot reach the tracker for a predefined period (e.g., a
couple of days), it switches into a fallback mode. In this mode the behaviour
of gateways changes as follows:

• Domain Name Alternation
Over time the gateway alters the domain name under which it tries to con-
tact the tracker. For this we build a candidate set of possible alternative

4.4. TRACKER 87

domain names, using a deterministic function. We seed this function by
the current date on the gateway so that each day all gateways try to reach
the same domain names in the DNS.

Such procedure is known as Domain Generation Algorithm (DGA) and be-
came popular due to their usage in recent botnets such as Conficker [PSY09].
Similar to our scenario using a tracker, botnet operators try to be resilient
against outages of their central command and control server. DGA there-
fore allows us to create a high number of rendezvous points we can use in
future to gather previous gateways again.

It is sufficient to register one of the domain names in the candidate set
of a given date and run an authoritative name server. This authoritative
name server only needs to provide the service for the resolution of gateway
identifiers as previously described in Section 4.4.1. Henceforth, gateways
are able to connect to each other again. In case an attacker registers
one of the potential domain names without providing the intended service,
the gateways still try to reach other authorative name servers on different
domain names.

• Heartbeats to Back-Up Owners
Since we consider the swarm set on the tracker as lost, in case of local data
loss on a gateway, we need to recover the swarm set using a best effort
approach. To achieve this, we change the origin for establishing contact:
instead of the back-up owner contacting its storage nodes in order to re-
cover, the storage nodes try to contact the back-up owner. This is possible
since storage nodes know the back-up owner corresponding to each sub-
stream stored on it. A storage node therefore regularly sends heartbeat
messages to a back-up owner.

As soon as after data loss the back-up owner reconnects using its previous
gateway identifier, it receives these heartbeat messages and, thus, can
determine potential sources to start back-up recovery.

In case a back-up owner uses a static IP address, this procedure does not
even need to rely on the resolution of gateway identifiers: the back-up
owner is likely to return with the same IP address and therefore can be
contacted directly.

Whenever gateways detect that the tracker reappears (possibly on one of the
rendezvous points), they check its authenticity via its public key. If the authen-
ticity is confirmed, gateways return to the normal operation mode and, thus,
continue to perform maintenance again.

88 4. IMPLEMENTATION

4.5 Storage Node

In this section we focus on the functionality implemented on a storage node.

4.5.1 Storing Transmission Blocks

A storage node in our system is responsible for holding (key, value) pairs, where
key is the file content identifier of fixed size and value represents the transmis-
sion block related to the file content identifier. When a storage node receives
an aggregate, we extract all contained transmission blocks and store them in-
dividually.

As a result from the way we store files, our storage nodes receive transmission
blocks of variable length. This includes transmission blocks worth a small se-
quence of bytes, up to a size which is only limited by the underlying file system
on the storage node.

Storing small sequences of bytes in file systems tends to waste storage space.
This is caused by internal fragmentation due to the block alignment in file
systems. When a file system uses a fixed block size of, e.g., 4 KiB, and one
stores a file worth 1 KiB, this leads to a storage overhead of 3 KiB since the
whole 4 KiB are allocated and cannot be used anymore.

Databases typically store sequences of variable length in a storage efficient way
so that no storage space is wasted due to block alignment [SZT+08]. Fur-
ther, they achieve higher throughput for smaller objects, e.g., because database
queries are faster than file opens [SVIG06]. Hence, we place transmission blocks
up to a size of 256 KiB [SVIG06] in a local lightweight database21, using the
file content identifier as key.

For sequential access on bigger transmission blocks, file systems typically provide
better performance [SVIG06]. This is why we store transmission blocks larger
than 256 KiB in the file system. We use the file identifier as file name to locate
the corresponding transmission block.

In turn, on deleting transmission blocks we face external fragmentation, in
which allocated data is separated by freed regions. Making use of these regions
requires ad hoc handling, e.g., by checking for the availability of such regions
before a new file is stored. While modern file systems address this issue22, we
occasionally need to execute a compaction23 procedure on the database.

21We use Apache Derby because of its small footprint. Derby is available at https://db.

apache.org/derby/.
22Modern file systems, like ext3, do not require defragmentation, as explained in http:

//www.tldp.org/LDP/sag/html/filesystems.html.
23As explained in http://db.apache.org/derby/docs/10.1/ref/

rrefaltertablecompress.html.

https://db.apache.org/derby/
https://db.apache.org/derby/
http://www.tldp.org/LDP/sag/html/filesystems.html
http://www.tldp.org/LDP/sag/html/filesystems.html
http://db.apache.org/derby/docs/10.1/ref/rrefaltertablecompress.html
http://db.apache.org/derby/docs/10.1/ref/rrefaltertablecompress.html

4.5. STORAGE NODE 89

4.5.2 Storage Reclamation

Storage reclamation generally refers to the process of reclaiming allocated stor-
age space for data that is not used anymore by a system. Storage allocation and
reclamation techniques are well-studied areas in computer science [WJNB95,
Wil92] and, e.g., find their use in modern garbage collectors for automatic
memory management [JHM11].

As storage space provided by a swarm is limited in our system, we also consider
a method for storage reclamation. This way we can delete previous snapshots
and store more recent ones. Our off-site snapshot representation (introduced
in Section 4.3.2) uses a flat hierarchy with only one level of references to file
contents. We neither need to follow these references, nor do we encounter cycles
in the graph. This allows us to use straightforward methods such as reference
counting or Least Recently Used (LRU). For reference counting, an object is
deleted when there exists no more reference to the object. LRU, on the other
hand, is typically used as a replacement policy in caching [SK09], where a cheap
implementation is crucial. It tags all objects with a single value indicating their
last usage, which in our case is the last time a file is referenced by a snapshot.
When it comes to storage reclamation, it deletes all objects assigned with the
oldest value. In our implementation we choose LRU because of its simplicity
and performance.

The storage reclamation procedure can be executed either on the swarm leader
or on the storage nodes. Since the responsibility for off-site snapshot quota
management is generally incumbent upon the storage node, we perform storage
reclamation on the storage node side as well24.

In the following we explain how a storage node maintains LRU information in a
tagging phase by using the supplied metadata conjoined with a snapshot. We
further use this information to delete unused data in the sweeping phase.

Tagging Phase

To support LRU in our system, a storage node keeps track of file content usage
in order to determine which file contents are not referenced by recent snapshots
anymore. For this, we tag each file content identifier with a LRU value, by
indicating the last snapshot that references this particular file content.

Since in our system the creation time of a snapshot is used as its identifier vt,
the sequence v1 . . . vt is strictly increasing. Hence, for each file content f we
keep a tuple (f, v) in our local database25.

24By shifting the task to the swarm leader, however, it is possible to integrate common web
services e.g., Amazon S3 to function as a storage node.

25In fact, our system supports intermediate deletion of snapshots, e.g., after one week. Due

90 4. IMPLEMENTATION

As we mentioned before in Section 4.3.2, a swarm leader submits a new snap-
shot vt accompanied by metadata, which includes, in particular, the unused
file content identifiers OF = FSt−1 \FSt and the new file content identifiers
NF = FSt \FSt−1. We use these sets to update the tuples (f, v) according
to a new snapshot. In order to update all identifiers f , which are used by both,
vt and vt−1, we update all tuples {(f, v) | f ∈ FSt−1 ∧ f 6∈ OF} to the new
value vt by using a single transaction in the database. This procedure allows
us to update the set FSt−1 ∩ FSt without having to transfer all the affected
identifiers for each new snapshot. As files in the set NF are possibly referenced
by previous file sets FS1 . . . FSt−2, we use a single transaction to either update
existing tuples or otherwise insert new ones.

Sweeping Phase

In case the substream quota of a swarm leader is exhausted, a storage node
starts the sweeping phase.

In this phase we successively delete old snapshots in order to free storage for a
new snapshot. In order to delete a snapshot vd this means we delete all transmis-
sion blocks related to file content identifiers exclusively referenced by this partic-
ular snapshot. This includes transmission blocks of both, referenced file contents
and the index file. We use the tuples maintained by the tagging phase to nar-
row down these file identifiers. All files with identifiers {fi | (fi, vj) = (fi, vd)}
are not referenced by any more recent snapshot; we therefore can delete cor-
responding transmission blocks without impact on remaining snapshots. After
this is done, a storage node deletes the metadata concerning the snapshot in
order to finalize the deletion of the snapshot.

We terminate the sweeping phase after a snapshot is fully removed and enough
storage space for a new snapshot is available. Alternatively, e.g., when a mini-
mum number of snapshots in the swarm is reached, we cannot remove further
snapshots and need to move the back-up into another quota pool, as discussed
in Section 3.4.2.

4.6 Incentives

In our system gateways do not store their data in a reciprocative way; it is
a unidirectional relation where a swarm leader stores its data (as we justified
in Section 3.4.1). Therefore, we do not use algorithms such as tit-for-tat to
reward fair behaviour26. For back-ups, such fairness can also be difficult to

to this we keep a list of the snapshots referencing a file content within this period and reduce
it to a single LRU value afterwards.

26Like e.g., in BitTorrent [Coh03], where nodes assist each other to download a file.

4.6. INCENTIVES 91

measure, e.g., some participants may have more frequent changes in their data
and, thus, need to transfer more data than others. However, since we encounter
an asymmetry of interest, we need to make sure a malicious participant can only
harm the system to a limited extent.

As suggested in [BLV05], we use a reputation system to record misbehaviour of
participants. We assign this reputation system to the CA. Whenever a swarm
leader or a storage node observes misbehaviour, it will send a report to the CA.
Such reports should be the exception rather than the rule, so that we do not
expect heavy load on our central instance caused by report messages.

We tolerate false reports by waiting for several independent reports before a
participant is declared as malicious by the CA. Such declaration results in the
revocation of the public key certificate and a notification sent to all storage
nodes of the concerned swarm leader. As a result, the stored back-up is erased
and the swarm leader is excluded from the system.

In this context, we also need to consider collusions, where several federated par-
ticipants send malicious reports to harm a particular participant. It is, however,
expensive to form collusions in our system. Reports can only affect participants
which stand in a relationship via a swarm. Since our tracker assigns new storage
nodes by random, attackers cannot chose their target at their own will. When
colluding nodes want to control a portion p of the possible reports for a par-
ticular node, they need to control c = p · n nodes within a swarm. However,
in order to infiltrate c nodes into a particular swarm, in average, c·N

n nodes are
required within the federated network. From this follows that with increasing
network size also a higher number of colluding nodes are required.

Which factors we take into account concerning the malicious behaviour in our
system is explained in more detail below, where we intend to show how to detect
such behaviour and point to possible countermeasures.

• Incentive to Keep Data of Others
Keeping data from other swarm leaders increases storage costs on a stor-
age node. Therefore a storage node may be tempted to drop received data
instead of allocating resources for them. A swarm leader, however, detects
such behaviour at low bandwidth costs by using the hash-based integrity
checks. True hardware errors are unlikely to affect a huge portion of the
data set. Hence, given a swarm leader receives false responses for several
challenges concerning different transmission blocks, it sends a report to the
CA.

• Limiting the Amount of Redundancy
The amount of redundancy injected into a swarm basically depends on the
average life time τ of gateways and the time tiso we want a back-up to
survive without further maintenance (cf. Figure 3.12 and Figure 3.13).

92 4. IMPLEMENTATION

Further, in our system with globally fixed parameter k, more redundancy
results in a higher number of storage nodes in a swarm, which need to store
a full substream. A swarm leader could calculate the required amount of
redundancy using different parameters so that its back-up survives a longer
period of time than the back-up of others; this would undermine fairness
in the system. Unfortunately, a storage node with its limited view can-
not detect such misbehaviour so that we need the tracker to perform this
observation. Therefore, the tracker occasionally checks for swarms having
outlying swarm sizes.

• Motivation to Stay Connected
Since a swarm leader is responsible for maintaining its own back-up by up-
loading new substreams into the system, it is already in the interest of the
user that the gateway is connected to the federated network most of the
time. A possible extension to this approach is, however, that the tracker
introduces a bias for picking new storage nodes with a similar availability
as the swarm leader exhibits to have.

• Quota Compliance
A swarm leader needs to adhere to the storage quota provided by the stor-
age nodes in the swarm. In our architecture, a storage node can attribute
the occupied storage space to the corresponding swarm leader. In conse-
quence, it refuses to store new transmission blocks as long as the quota is
exceeded.

• Incentive to Serve Data
The fact that a storage node keeps the data for a swarm leader does not
necessarily mean the data is served on request as well. Serving the actual
data leads to higher bandwidth costs than answering challenge-response
requests, so that such requests may be dropped by a storage node. Given
a swarm leader does not receive requested data during the recovery phase,
although the storage node is on-line, the swarm leader sends a report to
the tracker.

Overall, we see that a combination of measures implemented on the tracker and
participants can lead to higher fairness in the system. Especially the tracker as
a central instance can contribute to establish a fair usage of the system due to
its global knowledge. Its usage, however, needs to be weighted carefully against
the resulting costs.

4.7. CONCLUSION 93

4.7 Conclusion

This chapter outlined the key features of the implementation of our back-up
system.

The implementation relies on compositions of single atomic actions without
requiring any locks. Hence, the result is a high level of concurrency, which
allows the system to scale well and yet ensure referential integrity.

Although in literature fountain codes are often preferred due to their higher
performance, we saw that classical MDS erasure codes perform well enough and
help us to avoid storage overhead. In fact, file encryption and disk I/O turn out
to be limiting factors when it comes to substream creation. Holding additional
substreams on a swarm leader therefore shows to be a good idea in case the
creation of substreams is slow. We further saw that files of different size should
be handled differently. For small files we save metadata and performance by
embedding them into index files. According to the Wuala file size distribution,
this results in a storage overhead of 0.1% per snapshot, which we consider as
reasonable. For the future we can expect this portion to decrease even further.
For big files, on the other hand, we profit from an interleaving scheme, which
reduces the memory footprint for erasure coding and allows us to profit from
partial transfers when storage nodes turn off-line during the recovery process.

We further illustrated how we use state-of-the-art technologies in order to in-
clude a central instance that is highly scalable, fault-tolerant, and is even re-
placeable in the worst case. On the storage node side we illustrated how to
free storage space without additional communication overhead. Combined with
occasional checks by a trusted CA, we see that our service can enforce correct
behaviour in the federated network.

Chapter 5

Impact of Correlated Failures

“Failure is a part of success.”

Hank Aaron

5.1 Introduction

In our system, in accordance with the work by Toka et al. [TCDM12], we assume
that node lifetime values follow a poisson process. In fact this assumption means
we expect permanent failures to occur both independently and exponential dis-
tributed. This is important for our repair policy for lost data as introduced
in Section 3.5.2. It concerns Equation 3.1 in particular, which ensures data
durability in our system over a predefined period with a certain probability.

In this chapter, we first analyze whether our assumption of lifetime values that
are exponentially distributed is correct in a real world scenario. We use statistical
methods to examine a trace collected in an environment that is similar to the
one our system focuses on.

Subsequently, we discuss the geographical scope of failures, the resulting im-
plications on our system and provide an outlook for a deployment on global
scale.

We finally perform tests to check whether the durability of back-ups stored in
our system can be assured as intended.

95

96 5. IMPACT OF CORRELATED FAILURES

5.2 Suitability of the Markovian Assumption

We discuss the poission assumption in the following by analyzing real world
traces of residential gateways.

5.2.1 Real World Traces

There exist numerous studies [DMR10a, RP06, DBEN07, NYGS06] that analyze
metrics about the on-line behaviour of participants in P2P systems and the
resulting impact on properties like the availability of stored data. These studies
often rely on publicly available traces collected by observing particular networks
over a longer period. The Failure Trace Archive [KJIE10, EIG+14] provides a
collection of traces, captured in different environments. The traces published in
the Failure Trace Archive, however, only focus on either servers or user devices,
which, e.g., act as peers in P2P systems.

Servers, in contrast to our gateways, are typically hosted in air-conditioned data
centers. Such an environment improves the operational conditions and reduces
the risk of hardware damage to occur [BSSP10]. In addition, data centers are
usually equipped with a redundant power supply and redundany Internet access.
These factors enhance the reliability of the service provided.

Although we expect the gateways in our scenario to be on-line most of the time,
they lack redundant connectivity and, thus, are more likely affected by power
cutoffs or loss of connectivity to the Internet. User devices, on the other hand,
fit our domestic environment but are typically turned off when they are not in
use.

5.2.2 Traces Matching Our Environment

The only study we found that matches our targeted environment is a study by
Defrance et al., published in [DKM+11]. They observe the availability of resi-
dential gateways of the French ISP Free [Fre13]. The gateways are operated at
home and are connected to the Internet via ADSL links so that the environment
fits to the scenario in our system.

In their experiment, they periodically ping-ed a set of 24,781 IP addresses within
the address range of Free. Free assigns static IP addresses. Hence, a gateway
does not reappear in the data set under a different IP address due to dynamic
assignment. The experiment covers a period of 7.5 months in total. The result
is a file providing a list for each gateway with timestamps when a gateway turns
on-line or off-line. We further refer to these traces as Free-traces.

Figure 5.1 shows the availability of the observed gateways over the whole period.
With an average availability of 86%, the gateways show a rather high availability

5.2. SUITABILITY OF THE MARKOVIAN ASSUMPTION 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

Gateway Availability α

C
D

F

Figure 5.1: Gateway Availabilities in the Free-traces

but, as expected, cannot compete with the availability provided by servers,
which ISPs typically state to be about 99%. In Figure 5.2 we see the CDF of
the downtime duration of gateways.

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Absence Duration [Hours]

C
D

F

Figure 5.2: CDF of Downtime Duration in the Free-traces

A gateway could leave the system for a longer duration due to several reasons,
such as permanent device failure, change of the ISP, or a user turning off the

98 5. IMPACT OF CORRELATED FAILURES

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Absence Duration [Days]

R
et

ur
n

P
ro

ba
bi

lit
y

Figure 5.3: Return Probability Depending on Absence Duration

gateway to save energy. Since we cannot differentiate between these events, we
assume that gateways with an off-line period of more than 10 weeks to the end
of the data set to have left the system and consider them as permanent failures.
In fact, this procedure involves inaccuracy since some gateways still reappear
in the system at a later point in time, as we see in Figure 5.3. The limited
observation period of the Free-traces, however, does not allow us to detect
permanent failures in a more reliable way. In our experiments we therefore
overestimate the number of permanent failures in the system.

On this basis, we calculate the annual failure rate, which results in λ = 0.1345.
This is equivalent to an average life time of τ = 1

λ = 7.43 years.

5.2.3 Independence of Permanent Failure Events

We assume permanent failures to occur independently. This is crucial, since a
high number of correlated permanent failures within a short time period could
lead to loss of back-ups, even before the time expires that is provided by our sys-
tem to the user in order to recover. In order to analyze permanent failures more
closely, we first plot a histogram of permanent failures per day (cf. Figure 5.4).
We see peaks for some days with up to 25 gateways leaving the system. Since
we still have 23,634 active gateways after the end of the observation, this equals
less than 0.11% of total gateways. The storage system Glacier [HMD05] focuses
on tolerating a fixed number of nodes leaving the system within a short period
of time. However, in [NYGS06] the authors show that this approach does not
lead to satisfying results.

5.2. SUITABILITY OF THE MARKOVIAN ASSUMPTION 99

20 40 60 80 100 120 140
0

5

10

15

20

25

Days [#]

G
at

ew
ay

s
Le

ft
th

e
S

ys
te

m
 [#

]

running average

Figure 5.4: Number of Gateways Leaving the System per Day

In order to test the Free-traces for independent permanent failures, we perform
a Chi-Square-Test [GN96]. We examine permanent failures per day as well as
permanent failures per week. For both tests we cannot reject the hypothesis
that the distribution of permanent failures is independent at a significance level
of 0.05. As we observe insufficient permanent failures on an hourly basis, we
cannot perform the Chi-Square-Test for lower time intervals.

For this reason we create autocorrelation plots as suggested in [LB10]. An
autocorrelation plot shows the correlation between a random variable with itself
at different time lags. Given time-ordered measurements Y1, Y2, . . . , YN with
mean Y , the autocorrelation coefficient for time lag l is defined as [BJR94]:

cl =
1
N

N−l∑
t=1

(Yt − Y)(Yt+l − Y) (5.1)

In a first step, we sort all the different failure timings increasing over time.
Subsequently, we calculate the difference in seconds between consecutive per-
manent failures. Figure 5.5(a) shows the autocorrelation coefficients of the
resulting data together with the 95% confidence interval which is approximated
by ±2/

√
N . We indicate the confidence interval in the figures by using two

horizontal lines.

We see that not all coefficients fall into the confidence interval, yet, some are
slightly positively correlated. In order to determine the failures per minute we
count the total number of failures in bins of one minute over the whole data

100 5. IMPACT OF CORRELATED FAILURES

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

0.15

Lag [seconds]

A
ut

oc
or

re
la

tio
n

(a) Permanent Failures per Second

0 50 100 150 200 250 300
−0.005

0

0.005

0.01

0.015

Lag [minutes]

A
ut

oc
or

re
la

tio
n

(b) Permanent Failures per Minute

Figure 5.5: Autocorrelation Plots Showing Correlation Coefficients for Permanent Fail-
ures per Second and Minute for Different Lags

5.2. SUITABILITY OF THE MARKOVIAN ASSUMPTION 101

set. As can be seen in Figure 5.5(b) the autocorrelation plot for the failures per
minute shows a similar pattern as the failures per second. While for failures on
a weekly basis the plot shows no significant correlation at all, we see slightly
higher correlation coefficients for failures per hour and failures per day. We
show the latter autocorrelation plots in Figure 5.6(a) and Figure 5.6(b).

In summary, we see that permanent failures in the analyzed data set show no
strong correlation.

5.2.4 Exponential Distribution of Permanent Failures

An exponential distribution of the time between failures is often used in reliability
theory to model the overall lifetime of a system. It assumes failures to occur at
a constant rate and to be memory-less, so that previous failures do not affect
the likelihood of future failures. However, in reality, this assumption does not
hold in most cases. Failures of entities such as electrical devices usually follow
the bathtub curve [YS99], which divides the failure rates into three parts: an
early failure rate, a random failure rate, and a wear out failure rate. While the
early failure rate decreases over time, the wear out failure rate increases. Only
the random failure rate stays constant over time and, thus, corresponds to an
exponential distribution.

We see in Figure 5.4 that the failure rate is not constant over time in the analyzed
data set. We use a Kolmogorov-Smirnov test (K-S test) to determine whether
the empirical distribution of permanent failures in the Free-traces corresponds to
a theoretical exponential distribution. The null hypothesis of the K-S test is that
both samples are from the same continuous distribution, while the alternative
hypothesis states that they are from different continuous distributions.

The Kolmogorov-Smirnov statistics is defined as [LB10]:

T = sup
x
|F1(x)− F2(x)| (5.2)

where F1 and F2 are the empirical distribution functions of both samples. For
a large number of observations n1 and n2 the null hypothesis is rejected if

T > c(α)
√

n1+n2
n1n2

where c(α) is a constant according to the significance level

α. This constant is provided by most statistical software packages. According
to this test, with a significance level of 0.05, we have to reject that permanent
failures in the Free-traces follow an exponential distribution.

102 5. IMPACT OF CORRELATED FAILURES

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lag [hours]

A
ut

oc
or

re
la

tio
n

(a) Permanent Failures per Hour

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lag [days]

A
ut

oc
or

re
la

tio
n

(b) Permanent Failures per Day

Figure 5.6: Autocorrelation Plots Showing Correlation Coefficients for Permanent Fail-
ures per Hours and Days for Different Lags

5.3. DISCUSSION 103

5.3 Discussion

From the tests we performed above, we summarize that permanent failures in
the Free-traces do not occur independently and the time between failures is
not exponentially distributed at a significance level of 0.05. In consequence, the
exponential distribution can only be an approximation for the analyzed data and
has to be used with caution.

In fact, understanding the reasons why correlated failures occur is a crucial step
in order to infer their potential dimensions and the resulting impact on the
system. Further, depending on the causes of correlated failures, the possibility
to employ countermeasures might be limited as well.

We therefore identify the following triggers for correlated failures in our dis-
tributed system:

• Destructive Events
Destructive events that lead to correlated failures can either be naturally
caused or human made. Naturally caused are events such as fires, light-
ning strikes, floods, storms, and earthquakes [KV10, IBe99]. Human made
events include for example accidents, warfare, and theft.

• Change in Operational Environment
Extreme conditions due to the operational environment can lead to an in-
crease of correlated failures. This is valid especially for periods of extreme
temperatures [SSVG13], but also for increased dust contamination [Zha07].

• Permanent Infrastructure Issues
It is possible that multiple participants in the system are permanently dis-
connected from the system, e.g., due to an ISP closedown or nationwide
connectivity restrictions. However, such issues do not lead to device failures
so that there is still the chance for reintegration.

• Attacks on Gateways
When gateways are victims of a computer virus attack, they potentially lose
all data. This can affect any gateway at any location.

We find that the first three points show a geographically-related property:
destructive events, the operational environment and the infrastructure of ISPs
or countries have a limited geographical scope. We therefore first focus on the
impact of geographical proximity of correlated failures. Afterwards, we discuss
characteristics of geographically-diverse correlated failures.

104 5. IMPACT OF CORRELATED FAILURES

5.3.1 Geographically-Related Correlated Failures

Since in our system we select storage nodes at random, we generally store
data in a geographically distributed way, potentially across the whole world. In
contrast to the Free-traces, we are neither restricted to a single ISP, nor to
the geographical area of a single country. From such a global scale deployment
we therefore expect less impact [KV10] from geographically-related correlated
failures.

Assuming a maximum of C storage nodes to fail simultaneously in the federated
network of N gateways due to a geographically related event, we can calculate
the probability for having at most x failures within a swarm of n gateways by
using the hypergeometric distribution:

P (X ≤ x) =
x∑
y=0

(
C
y

)(
N−C
n−y

)(
N
n

) (5.3)

ISPs typically record information about causes for problems in their infrastruc-
ture plus the number of affected customers by such events. Unfortunately, since
it is not in their interest to share such information with the public1, we can-
not further analyze the underlying reasons and extents of geographically-related
correlated failures.

In Figure 5.7(a) we therefore show an example in which we assume to suffer x
correlated failures out of C = 25 for a varying number of storage nodes in the
swarm. We see that for higher n, by trend, more storage nodes within a swarm
are affected by correlated failures.

Following from the mean of the hypergeometric distribution, the mean of af-
fected storage nodes within a swarm is defined by E(X) = nC

N . Hence, when
the size of the federated network increases while C remains constant due to the
geographical scope, we observe less impact for single swarms per geographical
event. This is illustrated by the example shown in Figure 5.7(b).

We therefore expect that on a global scale geographically-related correlated
failures tend to show less impact on swarms and that failures occur closer to an
independent and exponential distribution than we observed in the Free-traces.

However, in order to analyze this, a more comprehensive trace is necessary,
involving gateways distributed over several continents and preferably collected
over a longer time period.

1We asked for anonymized data from a big German ISP about correlated failures in their
infrastructure.

5.3. DISCUSSION 105

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x [#]

P
(X

=
x)

n= 50, N=1,000
n=150, N=1,000
n=500, N=1,000

(a) Increasing n, Constant N, C=25

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x [#]

P
(X

=
x)

n=150, N=1,000
n=150, N=10,000
n=150, N=100,000

(b) Constant n, Increasing N, C=25

Figure 5.7: Probability For Observing x Correlated Failures Within a Swarm

5.3.2 Geographically-Diverse Correlated Failures

Above we have identified that malicious attacks like the use of computer viruses
result in failures that are unrelated to a geographical origin. Additionally, at-
tacks via viruses show a very crucial characteristic: Not only can viruses delete
substreams stored on other storages nodes, they can also delete or corrupt the
on-site copy on a swarm leader. While hashes can be used to detect modi-
fications by viruses on storage nodes (as explained in Section 3.7.3), there is
no countermeasure against modifications when a virus infects a swarm leader.
Further, correlated failures due to attacks can potentially affect the whole fed-
erated network. The potential scope of such attacks basically only depends on
the implementation of the virus.

As pointed out in [TSH+05], the only way to securely prevent changes to a

106 5. IMPACT OF CORRELATED FAILURES

back-up in presence of viruses is to use immutable storage. This especially
includes Write-Once-Read-Many (WORM) drives [Sto90], which allow data to
be written only once on the physical layer. Most popular for this purpose are
optical disks such as CD-R, DVD-R, or BD-R. Once data are stored using a
WORM drive, they cannot be modified or erased any more, neither by attacks
nor by accident.

This underlines that storing a back-up in a distributed system does not fulfill all
criteria to achieve a fully reliable back-up.

5.4 Testing Back-Up Durability

We have seen in the previous sections that the assumption of failures to occur
independently and the time between failures to be exponentially distributed
does not really hold. For our system it is crucial to support a target durability
d for the period tiso, in which no maintenance is performed (as explained in
Section 3.5.2). Since we assume failures to occur according to the Poisson
distribution, we might encounter problems in our system. For this reason we
analyze whether the correlation of failures in the Free-traces is decisive for the
target durability provided by our system.

In the following we first explain the experimental setup used to test the durability
of back-ups stored on gateways. Thereupon, we present the results and discuss
their implications.

5.4.1 Experimental Setup

In our system we split our back-up over n = k + h storage nodes. We choose
h such that after the time period tiso, with probability d, we still have k alive
storage nodes left. Having k alive storage nodes after tiso means we have at
least k alive storage nodes within tiso in order to recover the back-up.

In order to achieve a target durability of d = 0.999999, we need to find a value
h which satisfies the following formula:

k+h∑
i=k

(
k + h

i

)
(e−tiso/τ)i(1− e−tiso/τ)(k+h)−i > 0.999999 (5.4)

We take the average life time of gateways in the Free-traces of τ = 7.43 years,
which we have calculated in the previous section. Since the Free-traces span an
observation period of 7.5 months, we limit our experiment to tiso = 182 days,

5.4. TESTING BACK-UP DURABILITY 107

which is about half a year. With these parameters we use a binary search to
probe formula 5.4 for the lowest value h which still supports our target durability.

In the following table we show the necessary value of h depending on different
values k. We further provide the redundancy factor r = k+h

k and the resulting
theoretical durability d.

k h r d

10 8 1.80 0.99999942
20 11 1.55 0.99999976
50 16 1.32 0.99999926

100 24 1.24 0.99999963
200 36 1.18 0.99999900
500 68 1.13 0.99999900

Table 5.1: Different Values for k and Their Corresponding Values for h, r, and d.

We simulate a single back-up by drawing at random k + h different gateways
of the Free-traces. These gateways represent the storage nodes that make up
a single swarm in our architecture. We do not add additional gateways to a
swarm during an experiment because we want to test its survivability without
maintenance. We further assume that all k + h gateways already hold a sub-
stream at the beginning of the experiment t = 0 so that we do not simulate
transfers to gateways.

We use the timestamps in the Free-traces in order to determine whether a
gateway is alive or not. Only if a chosen gateway is on-line at an arbitrary point
in time after tiso do we consider it to be alive after the time period tiso, as
shown in Figure 5.8.

Storage Node 1:
Storage Node 2:
Storage Node 3:
Storage Node 4:
Storage Node 5:
Storage Node 6:

time

On-line

Off-line
tiso

Figure 5.8: Determining Alive Storage Nodes

Given at least k gateways are alive after tiso, the back-up can be reconstructed

108 5. IMPACT OF CORRELATED FAILURES

within tiso and therefore the back-up has survived. For a single experiment we
formalize this as follows:

X =
{

1 if |alive gateways| ≥ k
0 if |alive gateways| < k

(5.5)

According to the law of large numbers [Bil95] the arithmetic mean Xq =
Pq

i=1Xi

q
of the results obtained by a large number q of experiments converges to the
expected value, which in our case is the durability d. Hence, for any positive
number ε applies:

lim
q→∞

P(|Xq − d| > ε) = 0 (5.6)

In total, we simulate q = 108 experiments for each value of k shown in Table 5.1.
We keep track of the outcomes of the experiments in order to determine the
arithmetic mean Xq.

5.4.2 Results and Conclusion

In Table 5.2 we show the result of our experiments. The number of lost back-
ups is the number of experiments in which we observe less than k alive gateways
after tiso.

k d # back-ups lost Xq

10 0.99999942 24 0.99999976
20 0.99999976 12 0.99999988
50 0.99999926 28 0.99999972

100 0.99999963 40 0.99999960
200 0.99999900 20 0.99999980
500 0.99999900 12 0.99999988

Table 5.2: Number of Back-ups Lost and the Resulting Artithmetic Mean Xq for
q = 108 experiments

We see that the number of experiments for which we have less than k alive
storage nodes after the period tiso is very close to the expected values according
to d shown in Table 5.1. In fact, the expected values for d are slightly lower than
the mean values observed in our experiments. As explained in Section 5.2.2,
we tend to count more permanent failures to determine τ than actually occur.
With higher precision for determining permanent failures, it is possible that a

5.4. TESTING BACK-UP DURABILITY 109

lower redundancy rate can be used for back-ups in the Free-traces. In this case
we also expect to see some impact on the durability due to correlated failures.
Traces collected over a longer observation period therefore lead to more accurate
results than the Free-traces. To the best of our knowledge there is currently no
trace in a similar environment over a longer duration. Hence, we leave a more
accurate analysis by using the same methodology as future work.

From the experiment performed we can, however, conclude that by using the
given redundancy levels, the simulated back-ups effectively show the desired
number of alive storage nodes after the time span tiso with high probability.
This is the case even despite the slight correlation of failures, which we have
determined in the beginning of this chapter. We therefore conclude that the
environment observed in the Free-traces allows us to rely on our proposed main-
tenance mechanism, which focuses on durability over a given time span.

We also see that the required redundancy level is lower than 1.5 for higher values
of k. In contrast, storage systems that focus on data availability typically require
higher redundancy levels [HMD05, Ke00, BR03] and additional bandwidth for
downloads from the system before new redundancy can be uploaded.

Chapter 6

Back-Up Simulation

“A mind is a simulation that
simulates itself..”

Erol Ozan,
Professor at ECU

6.1 Introduction

Our distributed architecture involves several participants in the network, which
interact with each other. In this chapter we perform simulations to better
understand the characteristics resulting from this architecture.

First, we want to compare our swarm-based architecture with a cloud-based
back-up solution, such as services provided by Dropbox [Dro14a] or Amazon
S3 [Ama14a]. We use cloud-based services as a basis for comparison since they
represent the optimal but costly solution with the minimum possible require-
ments concerning the resources of gateways. We further analyze the swarm-
based back-up for some characteristics such as the time required for back-up
creation and the resulting swarm sizes, which in our architecture also imply the
amount of uploaded data. We also look closer at the timeout period used by
our failure detector and its impact on the total data uploaded into the system.
At last we observe the bandwidth usage over time for different values for the
number of original fragments k.

Throughout this chapter, we use the Free-traces to determine the on-line states
of gateways and simulate the evolution of back-ups over time.

111

112 6. BACK-UP SIMULATION

6.2 Time Required for Back-Up Creation

In this section we compare the performance for back-up creation of our swarm-
based architecture to a cloud-based architecture. Cloud storage manages redun-
dancy internally within the data center so that the client only needs to upload
the amount of data to store. In contrast, in our swarm architecture we in-
ject additional redundancy by the swarm leader and, thus, need to upload more
data. Thus, it is clear from the outset that the time until the back-up completes
cannot compete with the cloud-based solution.

In the following, we denote both, the client in the cloud scenario and the swarm
leader in the swarm-based scenario, as back-up source.

In order to show the difference between the two approaches, we simulate multiple
back-up uploads in the following.

6.2.1 Common Back-Up Scenario

For both, the cloud-based and the swarm-based back-up scenario, we simulate a
back-up that is worth St = 100 GiB of data. We only consider a single snapshot
so that no additional data is added over time. We assume an upload data rate
at the back-up source of 512 kbit/s, which is a common up-link capacity for
ADSL connections offered by ISPs in 2014.

The metric for comparing the performance of both scenarios is the proportion
of incomplete back-up simulation passes to the total number of complete sim-
ulation passes at a particular point in time.

For the cloud-based back-up, this is the fraction of simulation passes that have
not already completed the upload of the full 100 GiB. For the swarm-based
back-up, this is the fraction of simulations with currently less than k + h alive
gateways, each of them holding a complete substream.

For the simulations of transfers we simulate progress only when both participants
are on-line at the same time. We continuously keep track of the amount of data
that is scheduled for transfer to a dedicated sink.

In order to determine the impact of the back-up source’s availability on the
upload progress, we choose the back-up source according to its availability value
αs. We measure this availability over the whole simulation period. As gateways
with very low availability do not overcome the initial upload phase of the back-
up, we start with αs ≥ 0.2.

For both, the cloud-based and the swarm-based back-up, we simulate 10,000
back-up creation processes. This high number allows us to identify general
trends in the simulation.

6.2. TIME REQUIRED FOR BACK-UP CREATION 113

6.2.2 Cloud-Based Back-Up

In the following we explain the setup and the results for the cloud-based back-up
scenario.

Simulation Setup

For the cloud-based simulator we choose a single gateway from the real world
traces in order to simulate the client uploading its back-up. For each of the
simulated back-up creation processes we randomly choose a different gateway
from the Free-traces.

We take a single endpoint as the recipient of the back-up. This endpoint is never
off-line, thus it represents the cloud with its high availability. An interrupted
data transfer to the cloud can be resumed after the client is on-line again, so
that no transferred data is lost.

Simulation Results

Figure 6.1 shows the ratio of incomplete back-ups over time. Due to the loga-
rithmic scale, the end of a line indicates that all back-ups are completed.

20 40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

Days [#]

P
or

tio
n

of
 In

co
m

pl
et

e
B

ac
k−

U
ps

α
s
 ≥ 0.2

α
s
 ≥ 0.4

α
s
 ≥ 0.6

α
s
 ≥ 0.8

Figure 6.1: Back-Up to the Cloud with Different Availability αs of the Back-Up Source;
St = 100 GiB at 512 kbit/s

We see that the first back-ups complete after 100 GiB
512 kbit/s ≈ 19 days, which is a

lower bound when data are transferred without interruption. After 20 days we

114 6. BACK-UP SIMULATION

already observe 90% of the back-ups to be completed if the client has at least
an availability of αs = 0.8. Only four days later, all simulated back-ups for this
group are completed.

All clients with an availability of 20% or more finish their back-ups after 94
days.

6.2.3 Swarm-Based Back-Up

We now have a closer look at how the back-up upload performs in the scenario
for our swarm-based back-up.

Simulation Setup

For the swarm-based back-up, we need to consider the maintenance procedure
described in Section 3.5. The swarm leader needs to initiate new uploads to
storage nodes as long as fewer than k + h alive storage nodes holding a redun-
dancy stream are observed. We choose storage nodes from the Free-traces by
random without restriction with respect to their availability. We do, however,
verify that they are on-line at the point in time they are requested. This way we
enable swarm leaders to start transfers right away since both participants are
on-line at the same time. Data transfers are simulated over time, taking off-line
periods of both participants into account. While a swarm leader is uploading, it
keeps three uploads open at the same time to cope with temporary unavailabil-
ity of receivers. Similarly to the cloud-based back-up, we resume interrupted
uploads.

In this simulation, we use the parameter k = 100, as recommended in Sec-
tion 4.3.3. Consequently, a single transfer to a storage node is worth the size of
one substream, which is St

k = 100 GiB
100 = 1 GiB in our case. We use to = 1 day

for the failure detection and target tiso = 182 days. Throughout this chapter
we further use the average gateway lifetime τ we have determined for the Free-
traces in Section 5.2.2. As a result, the maintenance procedure targets n = 124
substreams in the swarm, which results in a redundancy factor of r = 1.24.

Simulation Results

For the swarm-based back-up simulation we see the resulting portion of incom-
plete back-ups over time in Figure 6.2.

Compared to the cloud-based back-up, the minimum duration for back-up cre-
ation increases linearly with the redundancy factor and equals 1.24 · 100 · 1 GiB

512 kbit/s ≈
24 days. For a minimum swarm leader availability of 80%, already 90% of the
swarms complete their back-ups after 25 days, while after 30 days the back-ups

6.2. TIME REQUIRED FOR BACK-UP CREATION 115

20 40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

Days [#]

P
or

tio
n

of
 In

co
m

pl
et

e
B

ac
k−

U
ps

α
s
 ≥ 0.2

α
s
 ≥ 0.4

α
s
 ≥ 0.6

α
s
 ≥ 0.8

Figure 6.2: Back-Up Using Swarms with Different Availability αs of the Swarm Leader;
St = 100 GiB at 512 kbit/s, k = 100, h = 24

complete for all of them. For the swarm leaders with lower availability, it takes
up to 128 days to reach the point until all back-ups are successfully completed.

In contrast to the cloud-based back-up, we observe that the portion of incom-
plete back-ups is not monotonically decreasing over time. This is because in the
swarm-based back-up scenario gateways also leave the system. Therefore, unless
the maintenance algorithm finishes the upload of additional data, the targeted
redundancy level is not present in the swarm. We further see that the result-
ing local peaks only have a low amplitude. Correlated failures (as analyzed
in Chapter 5) therefore only show little impact on the portion of incomplete
back-ups.

In Figure 6.3 we show how the average swarm size of all simulations evolves
over time. We see that as soon as the initial upload completes, the maintenance
process reaches a steady state and, henceforth, barely adds new storage nodes.
As mentioned in Section 3.5, this is only necessary for permanent failures in the
long term due to the reintegration of reappearing storage nodes. We see that in
the long term the availability of the swarm leader does not influence the swarm
size: independent of the swarm leaders’ availability, the swarms converge to the
same swarm sizes in the long term.

In Figure 6.4 we see that swarm leaders with higher availability already achieve
a higher portion of complete back-ups with fewer storage nodes in a swarm.
This can be explained by the fact that for progress in transfers we need both
participants to be on-line, the storage node as well as the swarm leader. Since

116 6. BACK-UP SIMULATION

40 60 80 100 120 140
125

130

135

140

145

Days [#]

A
ve

ra
ge

 S
w

ar
m

 S
iz

e

α
s
 ≥ 0.8

α
s
 ≥ 0.6

α
s
 ≥ 0.4

α
s
 ≥ 0.2

Figure 6.3: Average Swarm Size over Time with Different Availability αs of the Swarm
Leader; St = 100 GiB at 512 kbit/s, k = 100, h = 24

122 124 126 128 130 132 134 136 138 140
10

−4

10
−3

10
−2

10
−1

10
0

Average Swarm Size

P
or

tio
n

of
 In

co
m

pl
et

e
B

ac
k−

U
ps

α
s
 ≥ 0.2

α
s
 ≥ 0.4

α
s
 ≥ 0.6

α
s
 ≥ 0.8

Figure 6.4: Failed Swarms Depending on Swarm Size with Different Availability αs of
the Swarm Leader; St = 100 GiB at 512 kbit/s, k = 100, h = 24

6.2. TIME REQUIRED FOR BACK-UP CREATION 117

a swarm leader with low availability is more likely to be off-line, this results
in more interrupted transfers. In order to facilitate progress, our maintenance
procedure (explained in Section 3.5) adds new storage nodes in case of inter-
rupted transfers. A swarm leader with low availability therefore tends to add
more storage nodes in its swarm while the maintenance process is running.

Over time, however, as mentioned before in the context of Figure 6.3, the
average swarm size converges to the same level.

6.2.4 Conclusion

From the simulations above we draw several conclusions. In both, the cloud-
based and the swarm-based back-up, a higher availability of the back-up source
is important to achieve a fast back-up. Obviously, whenever the back-up source
is off-line, there cannot be progress in the back-up upload. On the other hand,
we see that the availability of the storage nodes in the swarm-based back-up
shows only little relevance. Although in our simulation we have no restrictions
on the availability of storage nodes, we constantly see progress in the back-up
creation. This is due to the flexibility of our parallel uploads: whenever a storage
node is temporarily off-line, we can proceed with the upload to another storage
node.

Finally, the major reason why the required time for back-up creation is higher
for the swarm-based back-up is that we need to upload additional redundancy.
In fact, the minimum time required to complete the swarm-based back-up is
close to the minimum time required for the cloud-based back-up multiplied by
the redundancy factor.

118 6. BACK-UP SIMULATION

6.3 Influence of the Timeout Period

In this section we take a closer look at the effect of the timeout period to, which
we have introduced in Section 3.5 for our maintenance procedure.

6.3.1 Costs Separated into Two Components

The timeout to decides how efficiently our maintenance procedure operates. The
choice over its duration entails the costs, which can be separated into different
components, as also described in [Wea06]. In our system, we face the following
costs:

• Costs due to transient failures
When to is low, we declare storage nodes to be in the dead state and con-
sider their data to be lost at an earlier point in time. We generally react
to lost data by triggering the upload of additional redundancy in order to
achieve the targeted redundancy level again. However, although a stor-
age node may have left the system for several days, there might still be
the chance that it reconnects to the system so that its data can be rein-
tegrated. In consequence, the earlier we declare storage nodes dead, the
more do we face increasing costs for maintenance due to transient failures.

• Costs due to permanent failures
As to is a component of tiso in our system, by increasing to we also in-
crease tiso. For higher tiso, according to Equation 3.1, we further need a
higher redundancy level in order to provide the user with a certain degree
of durability for a targeted period. A higher redundancy level in turn means
we include more storage nodes into a swarm. Since these storage nodes
eventually fail permanently, for high to, we face increasing costs due to
permanent failures. As in our case we can only add a discrete number of
storage nodes in order to achieve an increased redundancy level, the costs
due to permanent failures increase stepwise with respect to increasing to.

In order to minimize the overall maintenance costs, we need to find a timeout
to which minimizes the sum of both above-mentioned costs.

The optimal value for to therefore depends on session durations and the average
life time of participants in the system.

6.3.2 Optimal Value for the Free-Traces

We further analyze the above-mentioned costs on the Free-traces by using a
simulation.

6.3. INFLUENCE OF THE TIMEOUT PERIOD 119

Again we break the back-up into k = 100 substreams and use the same param-
eters as mentioned above. This time, however, we use a varying value for to so
that tiso increases. Since we still target a durability of 0.999999 over tiso, we
need to increase the number of additional substreams k accordingly.

In order to determine the optimal period to, we measure the final swarm size
after 180 days. Since the swarm size indicates how much data has been uploaded
to storage nodes, it allows us to infer the overall costs for maintenance. In order
to smooth the result over the data set, we calculate the average swarm size over
10,000 simulations.

Figure 6.5 shows the resulting average swarm sizes. We see that in the beginning

0 10 20 30 40 50 60 70 80 90
135

140

145

t
o
 [# Days]

A
ve

ra
ge

 S
w

ar
m

 S
iz

e

Figure 6.5: Influence of Observation Period on the Average Swarm Size After 180 days

the overall costs decrease quite rapidly with increasing to. This is because with
higher to we can reintegrate more storage nodes that transiently left the system.

Additionally, the graph shows characteristics resulting from the stepwise increase
of the redundancy level according to to. In our case, we need to increase
the redundancy level the first time by using a timeout period of more than
to = 10 days.

The graph therefore shows both of the aforementioned costs: the costs due
to transient failures, which decrease with increasing to, and the costs due to
permanent failures, which increase stepwise with to.

For our scenario with gateways from the Free-traces, we find the global optimum
for a timeout period of to = 35 days. This means that for running our back-up
system in the same environment as for the Free-traces, the maintenance costs

120 6. BACK-UP SIMULATION

are optimal once a storage node is declared dead after it has been continuously
off-line for 35 days.

6.4 Visualization of Bandwidth Usage

In the following we present exemplary simulations of single back-up creation
processes. We keep track of the bandwidth usage over time and discuss the
activity over time. Since we use different values for k we require different
redundancy factors for the back-ups and have different substream sizes, which
are defined by St

k . The size of a substream decides how much time is required
to finish the maintenance process.

First we explain the experimental setup used and subsequently present our ob-
servations.

6.4.1 Simulation Setup

In this simulation we record the upload bandwidth usage on a swarm leader for
uploading and maintaining a back-up worth St = 100 GiB. We use a period
of 35 days for to. In order to guarantee a period tr + td of half a year for
downloading the back-up, we use tiso = 217 days.

For this experiment we use an artificial swarm leader that is always on-line. In
consequence, off-line periods of the swarm leader do not hinder progress in back-
up creation and maintenance. This way, we further increase the comparability
of the different simulations.

According to our maintenance procedure (see Section 3.5) we add storage nodes
to the swarm as long as the maintenance procedure is running and we observe
fewer than three active uploads to storage nodes. As all storage nodes in the
swarm are eventually synchronized, we expect to observe transfers worth a total
of at least k + h+ 2 substreams for the initial upload.

We perform four different simulations, for which we gradually increase the pa-
rameter k to the values 10, 50, 100, and 200.

6.4.2 Results

Below we present the results for using the four different values for k, which
imply a different substream size for each simulation.

6.4. VISUALIZATION OF BANDWIDTH USAGE 121

Simulation 1

For the first simulation we set k = 10 so that our maintenance procedure targets
k+ h = 18 substreams on different storage nodes in order to provide durability
over the period tiso. For k = 10 one substream is worth St

k = 10 GiB of data.

In Figure 6.6 we see the upload data rate per hour over a period of 180 days.
In this pass we observe that 21 substreams are uploaded within 40 days for the
initial back-up. After 150 days a maintenance process is triggered, resulting in
the upload of 4 substreams to new storage nodes. It takes about 8 days to finish
these transfers.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

Time [days]

U
pl

oa
d

D
at

a
R

at
e

[M
iB

/h
]

Figure 6.6: Simulation 1: Upload Data Rate Over Time for k = 10, h = 8

Simulation 2

With k = 50 we can operate with a lower redundancy factor than before. We
target 68 substreams in the system, each with a size of 2 GiB.

As shown in Figure 6.7, the initial upload now only takes 27 days due to the lower
redundancy level. The upload process ends up with a total of 71 substreams in
the system. After the initial upload, we observe 3 transfers of durations shorter
than a couple of hours. These transfers fully synchronize storage nodes that
are already members of the swarm but left the system temporarily. After about
130 days two maintenance processes are triggered. Each of these maintenance
processes takes about 27 hours for the upload of three substreams.

122 6. BACK-UP SIMULATION

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

Time [days]

U
pl

oa
d

D
at

a
R

at
e

[M
iB

/h
]

Figure 6.7: Simulation 2: Upload Data Rate Over Time for k = 50, h = 18

Simulation 3

For k = 100 the maintenance procedure focuses on 126 substreams in the
system, which again results in a lower redundancy factor than for lower k. One
substream has a size of 1 GiB so that it takes about 4.5 hours for the transfer
to a storage node. We show the results of this simulation in Figure 6.8. The

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

Time [days]

U
pl

oa
d

D
at

a
R

at
e

[M
iB

/h
]

Figure 6.8: Simulation 3: Upload Data Rate Over Time for k = 100, h = 26

initial upload finishes after about 24 days and is followed by six consecutive
transfers in order to fully synchronize storage nodes that turned off-line during

6.4. VISUALIZATION OF BANDWIDTH USAGE 123

the transfer before. Due to these consecutive transfers, there is more redundancy
in the network than necessary. In consequence, only after about 160 days do we
need to upload additional substreams, which takes less than 14 hours for three
substreams in this case.

Simulation 4

In the last scenario we choose k = 200 so that the maintenance procedure
focuses on 240 substreams in the system. In consequence, one substream has
a size of 0.5 GiB.

We are able to complete the initial upload after 23 days, which is one day
less than for the previous simulation. After the initial upload, as illustrated in
Figure 6.9, we observe eight subsequent transfers to finish the synchronization
to storage nodes. Apart from these short transfers with a duration of about two
hours, we observe two maintenance processes, one at day 88 and one at day
142. Both involve the upload to three new storage nodes and finish within 7
hours.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

Time [days]

U
pl

oa
d

D
at

a
R

at
e

[M
iB

/h
]

Figure 6.9: Simulation 4: Upload Data Rate Over Time for k = 200, h = 40

Generally we see that with higher k the initial upload finishes earlier due to the
lower redundancy factor. This effect, however, becomes less decisive with k
higher than 100 because of the high number of involved storage nodes. This
increases the number of storage nodes that are unsynchronized after the initial
upload finishes. Over time we try to synchronize these storage nodes so that
the initial upload results in more data transferred than required.

124 6. BACK-UP SIMULATION

6.4.3 Conclusion

As mentioned in Section 3.6, for higher k we should also face more frequent
maintenance over time. Our simulations do not show this trend due to the
additional storage nodes included for the initial upload. However, we see that as
far as the duration of the maintenance procedure is concerned, it is advantageous
to have smaller substreams. While the maintenance using high k can be finished
relatively fast, the maintenance for low k requires a period of about one week.
This can be of interest to schedule maintenance to periods in which bandwidth
on the gateway is typically available, so that maintenance is, e.g., performed
over night. However, a very high k also leads to the situation in which we face
a higher number of unsynchronized storage nodes after the initial upload. Due
to this, we upload more substreams than actually are required. This effect is
influenced by the availability of storage nodes in a swarm so that its impact is
dependent on the individual characteristics of the network.

Chapter 7

Conclusion and Perspective

In this chapter we first synthesize and conclude our work by focusing on its
contributions. Finally we propose potential future research directions.

7.1 Conclusion

This work introduces a back-up service that allows a user to store a snapshot-
based back-up in a distributed way. We profit from the common interest of
participants in storing back-ups by mainly leveraging the resources provided by
the users themselves. However, a trusted central instance such as our tracker still
turns out to be a good way to reduce communication overhead and vulnerability,
e.g., to Sybil attacks. With current failure-tolerant architectures from the area
of cloud computing, we can even design a scalable tracker without introducing
a single point-of-failure into the system.

The main contribution of this work is a proof of concept that confirms the
feasibility of such a service. Another contribution is the concept of index files,
which are a new way of distributed data organization with respect to the alter-
nation of file systems over time. Further, the division of the federated network
into swarms eases the monitoring of gateways and reduces the metadata on the
tracker required for data localization to a very low grade. In fact, the load on
the tracker is independent of the amount of data stored in the system, which is
a desirable property, especially in the context of increasing amounts of data in
the future.

The architecture comes along with a key management that allows full data
encryption on the user side in order to ensure data confidentiality, even against
the people who provide the service of the tracker. We further show that it is
beneficial to handle files of different sizes in a different way. Embedding small
files into index files increases the overall efficiency in our system with only minor

125

126 7. CONCLUSION AND PERSPECTIVE

additional storage space requirements. According to the trend we see in recent
file size distributions, which tend to store more and more bytes in big files, this
approach shows good prospects for the future. For big files we consider an
interleaving scheme, which allows us to benefit from partial transfers and limits
the required memory footprint.

With our system we also question the established approach to require data in
the system to last forever. Instead, we focus on enabling a user to recover all
data in case of local data loss. We underpin this strategy by an analysis based
on traces collected in a similar environment. Although the underlying failure
model is an approximation for the occurrence of failures in the system, we see
that recovery is still possible at low redundancy levels. Consequently, we can
reduce the bandwidth requirements in the system to a very low level, which in
the long term is equivalent to the rate at which we lose data in the system.

The result is an architecture that supports automated and snapshot-based back-
up creation; first from user devices to the gateway and finally to the federated
network. Data loss due to events such as fire and flooding can therefore be
avoided. We are strongly confident that our system can be deployed in the real
world and contribute to achieve an affordable and confidentiality-conserving
back-up for everyone.

However, for an advanced back-up practice, we still recommend to create oc-
casional back-ups on immutable storage such as optical devices. As long as
storage systems are connected to the Internet, they always remain vulnerable
to computer viruses. Relying on multiple methods for back-up creation always
improves chances that data can be recovered safely.

7.2 Perspective and Future Work

Our work can be extended in various ways, which we depict in the following.

First, in case the tracker leaves the system, our best-effort approach to in-
terconnect gateways could be extended by a flooding mechanism as used in
Gnutella [PSAS01]. That way, dynamic IP addresses can be replicated in the
federated network without relying on any instance in the DNS system. Such
an approach is known to be effective against network partitioning, yet it also
entails a high messaging complexity that can potentially overload the system.

Second, as we have seen in Chapter 6, a high number of original fragments
for a file increases the number of unsynchronized storage nodes after the initial
upload of a snapshot. When we upload subsequent snapshots, this potentially
leads to the inclusion of further storage nodes. Therefore, it may be interesting
to analyze how the average gateway availability α and the timeout to influence
the size of a swarm in the long term.

7.2. PERSPECTIVE AND FUTURE WORK 127

Third, we designed our system to support convergent encryption. This is a
promising technique to reduce the overall storage space required by the system,
since equal file content of different users can be reduced to a single instance
of the file content. Our presented system design uses this way of encryption
but does not match equal contents of different users since they are stored in
different swarms. In this scenario the matching procedure requires knowledge
over different swarms, which is an expensive task in practice [ZLL13]. However,
regarding the trend that most bytes are stored in big files, it seems a good
approach to perform deduplication on at least those. The tracker therefore
could determine the observed frequency of big files and announce that certain
files are not required to be uploaded into swarms. In this case, the number of
replicas in the federated network is high enough so that file recovery can be
assured by simply using one of the many already existing replicas.

Appendix A

Synthèse en francais

Introduction

Dans ce chapitre, nous introduisons, de manière générale, la création de sauve-
gardes, ainsi que les raisons pour lequelles il est désirable de stocker ces sauveg-
ardes de manière distribuée. Nous présentons aussi le scénario qui est à la base
de notre architecture, à savoir les passerelles résidentielles. Finalement, nous
donnons une vue d’ensemble des contributions de cette thèse.

Un besoin de sauvegardes

Il est généralement convenu que les données informatiques représentent une
partie de plus en plus importante dans notre vie quotidienne. Pour cette raison,
ces données deviennent de plus en plus importante à nos yeux: perdre toutes
les photos de familles et autres documents importants est un scénario auquel
personne ne souhaite être confronté.

Malheureusement, les équipements électroniques, comme les disques durs, n’ont
pas une durée de vie infinie. Des données stockées peuvent devenir partielle-
ment, ou même complètement, inaccessibles sans signes précurseurs. Dans
de nombreux cas, les données enregistrées sur ces périphériques peuvent être
récupérées par des sociétés spécialisées dans la récupération de données [The14a,
Kro14]. La procédure est, cependant, très couteuse [The14b] et peut prendre
un temps important.

Il est donc nécessaire de trouver des techniques qui permettent aux utilisateurs
de récupérer leurs données de manière autonome. Une approche manuelle est
de créer des volumes de sauvegarde en utilisant, par exemple, des CD-ROM ou
des disques durs externes. Cependant, cette approche est fastidieuse et peut
résulter en perte de données. En effet, les sauvegardes doivent être créées de

129

130 A. SYNTHÈSE EN FRANCAIS

manière régulière et non automatisée. L’utilisateur peut donc oublier de créer
une nouvelle sauvegarde. Un autre facteur de risque est le vol, ou les catastro-
phes naturelles impliquent une perte de données, car celles-ci ne sont stockées
qu’à un seul endroit. De plus, les utilisateurs possèdent souvent plusieurs ordina-
teurs sur un même réseau résidentiel, et il est essentiel d’établire une technique
plus complexe afin de préserver les données de toutes ces machines.

Pour ces raisons, une technique qui récupère localement les données et les
distribue à différents endroits est utile. Biensûr, cette méthode doit prendre en
compte la confidentialité des données: stocker les données d’un utilisateur à un
emplacement distant ne doit pas impliquer que ces données soient accessible à
des personnes tierce.

Pourquoi ne pas utiliser le cloud?

Actuellement, le cloud est de plus en plus utilisé comme service centralisé de
stockage de données. Par exemple, les services Dropbox [Dro14a] et Amazon
S3 [Ama14a] sont très populaires. Les données à sauvegarder sont transférées
vers ces services, et le système interne au service garanti que les données ne
seront pas perdues. Etant donné que la croissance de la densité des données [Wal05]
résulte en une diminution du prix des unités de stockage (voir Figure A.1),
stocker une sauvegarde dans le cloud parrâıt être souhaitable.

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

$100,000

$10,000

$1,000

$100

$10

1/
G
ig
ab

yt
e

Year

$0.1

Figure A.1: Evolution du prix d’un disque magnétique; source [SK09]

131

Cependant, Amazon, par exemple, a modifié sa structure de prix [Ama14b]
afin de mieux prendre en compte les coûts générés, qui incluent le prix de
l’énergie nécesaire à l’accès et au transfert des données. Ces couts énergétiques
ont globallement augmentés ces dernières années [U.S14], et sont devenus un
facteur de coût très important pour les sociétés de cloud. En plus, sauvegarder
des données dans le cloud rend ces données accessibles aux personnes tierces,
par exemple à des employés de la socitété, voire même au public global dans
certains cas [Dro14b], ce qui est, bien évidemment, contraire aux intérêt des
utilisateurs.

En revanche, nous pouvons tirer parti de l’intérêt mutuel des utilisateurs de
stocker leur sauvegarde dans un endroit géographique différent. Utiliser les
ressources d’autres utilisateurs pour stocker des sauvegardes ne génère aucun
coût supplémentaire si ces ressources sont déjà disponible chez les utilisateurs.
Ainsi, chaque utilisateur peut créer une sauvegarde, et ce gratuitement, sans se
confronter à un éventuel enfermement propriétaire [RKYG13] (qui, par exemple,
ralenti un utilisateur souhaitant changer de service suivant un changement de
conditions d’utilisation). En chiffrant continuellement les données avant de les
transmettre vers un autre endroit, nous pouvons garantir la confidentialité de
ces données. Il est, dès lors, possible de conserver les intérêts des utilisateurs
au premier plan, et d’offrir un service qui va plus loin que ce que les services
cloud permettent.

Réseau fédéré de passerelles réseau

Dans ce travail, nous nous concentrons sur une architecture dans laquelle les
paserelles résidentielles jouent un rôle majeur. Nous les utilisons pour intercon-
necter différents réseaux résidentiels via Internet, afin d’assurer notre service
distribué. En effet, ce travail a été réalisé dans le cadre du projet Européen
FP7, FIGARO [FIG14], qui s’appliquait à un tel environement.

La Figure A.2 illustre l’architecture globale. Elle est composée des éléments
suivants:

• Machines des utilisateurs
Les machines des utilisateurs sont des équipements hétérogènes, comme
ordinateurs de bureaux, ordinateurs portables, téléphones, tablettes. Un
utilisateur y stocke des données et les connecte au réseau résidentiel.

• Réseau résidentiel
Un réseau résidentiel est un réseau local (LAN), tel qu’il est généralement
déployé chez monsieur tout-le-monde. Il est connecté à toutes les machines
utilisateurs, soit de manière cablée (Ethernet), soit sans fils (Wi-Fi).

• Réseau fédéré
Le réseau fédéré comprend toutes les passerelles qui font partie du service

132 A. SYNTHÈSE EN FRANCAIS

Gateway

Federated Network

User Devices

Gateway

User Devices

Gateway

User Devices User Devices

Gateway

Home Network

Home NetworkHome Network

Home Network

Figure A.2: Réseau fédéré

de sauvegarde distribué. Chaque paserelle est atteignable via Internet par
les autres passerelles.

Dans ce scénario, nous avons deux vitesses réseaux différentes. Ceci est un fac-
teur déterminant dans notre architecture. Les transferts de données à l’intérieur
des réseaux résidentiels sont généralement rapides. Cependant, la vitesse de
transmission de données vers Internet est généralement moindre. Notre archi-
tecture prendra donc en compte ces restrictions.

Axe de développement et contributions de cette thèse

Dans cette thèse, nous nous concentrons sur la faisabilité d’un système de
sauvegarde distribué. Cela implique plusieurs challenges, comme l’extensibilité
du système, sa résistance aux pannes et aux attaques, ainsi qu’une stratégie
adéquate de localisation des données. Etant donné que nous stockons des
données sur les paserelles participantes, nous devons faire face avec un stockage
peu disponible, et avons besoin de techniques supplémentaires afin de garantir
la confidentialité des données.

Les contributions de cette thèse sont les suivantes:

1. Nous donnons la preuve-de-concept d’un système de sauvegarde distribué,
étant capable d’instantanés, et qui permet à un utilisateur de restaurer
l’entièreté de son système de fichiers à un instant donné. Ce système
comprend aussi l’administration et le respect des quotat de stockage.

133

2. Nous illustrons une façon d’utiliser les techniques de pointe afin d’include
une instance centrale qui coordonne le placement de données dans le
réseau. Cette instance est facilement extensible, résistante aux pannnes,
et remplaçable, si elle quitte le système. De plus, elle n’est exposée qu’à
une charge de travaille moyenne.

3. Nous créons une architecture en swarms, qui opère directement sur les
fichiers, et qui limite la création de méta-données additionnelles autant
que possible. De plus, elle nous permet de monitorer les données stockées
dans une swarm de manière simple et efficace.

4. Nous proposons des moyens de transférer et stocker des fichiers de tailles
distinctes dans un tel système.

5. Nous analysons le comportement de notre système en utilisant des traces
provenant du monde réel. De plus, nous étudions l’impact des paramètres
du système et comparons sa performance par rapport aux services cloud.

Présentation de l’architecture à base de swarms

Dans cette section, nous présentons un aperçu sur notre architecture générale
du système. Nous expliquons comment les appareils dans notre scénario de
réseaux fédérés interagir avec les autres et de définir leurs rôles et leurs fonc-
tions. En plus de dispositifs d’utilisateur et les passerelles, nous introduisons une
instance centralisée, dénommé le tracker. Nous organisons le réseau fédéré FN
en swarms SW ⊂ FN , qui sont des ensembles individuels de nœuds de stock-
age pour chaque contrôleur du swarm pour stocker son back-up. Figure A.3
illustrates this architecture from the point of view of a single swarm leader. We
subsequently discuss the shown entities in detail.

La Figure A.3 illustre cette architecture du point de vue d’un contrôleur du
swarm unique. Nous discutons ensuite les entités représentés en détail.

La passerelle

Une passerelle est l’intermédiaire pour les deux réseaux, le réseau résidentiel et
le réseau fédéré. Chaque passerelle a un nom d’hôte unique qui peut être résolu
en une adresse IP en utilisant le DNS. Il stocke toutes les données à sauvegarder
dans un réseau résidentiel et est en charge de mettre en ligne un back-up externe
à d’autres passerelles qui font partie du réseau fédéré. D’autre part, il reçoit de
tels fragments de données d’autres passerelles et est obligé de les tenir. Chaque
passerelles joue donc le rôle d’un contrôleur du swarm et le rôle d’un nœud de
stockage, comme expliqué ci-après.

134 A. SYNTHÈSE EN FRANCAIS

Figure A.3: General Architecture

Le contrôleur du swarm

Le contrôleur du swarm conserve une copie de toutes les données d’appareils au
réseau résidentiel. Il le fait en synchronisant régulièrement avec les machines
des utilisateurs, de telle sorte qu’une sauvegarde dans le réseau résidentiel est
disponible. Chaque fois qu’un dispositif tombe en panne, ce copie sur place
peut être utilisée pour récupérer une sauvegarde à la vitesse du réseau à domicile.

En outre, le contrôleur du swarm utilise la copie locale sur place pour créer
des fragments de données à être transféré à d’autres passerelles. De cette
façon, nous soulager les machines des utilisateurs de rester connecté à Inter-
net afin de créer un back-up hors-site. Ce back-up hors-site est géré par le
contrôleur du swarm, dont nous attendons pour être en ligne la plupart du
temps. Outre le téléchargement de la sauvegarde initiale, le contrôleur du swarm
est également en charge de la maintenance du back-up hors-site. Comme le
stockage sur d’autres passerelles n’est pas fiable, nous devons considérer les com-
portements malveillants, qui peuvent corrompre notre back-up. Par conséquent,

135

un contrôleur du swarm régulièrement vérifie l’intégrité de du back-up hors-
site. En conséquence, en synchronisant toutes les données précieuses des ma-
chines des utilisateurs au contrôleur du swarm, nous obtenons un back-up sur
place rapide et confier la tâche plus vaste de la création d’un back-up hors-site
pour le contrôleur du swarm. Une passerelle seuls ajouts fragments de sa propre
back-up hors-site et prend donc le rôle d’un contrôleur du swarm exactement
une fois.

Nœud de stockage

Un nœud de stockage sn ∈ SW stocke des fragments de données liée à
back-up d’un contrôleur du swarm étrangère. Pour cela, il propose un stockage
clé-valeur qui accepte les données jusqu’à un certain quota est atteint. En
outre, il fournit une méthode pour la remise en état de stockage, ainsi que les
anciennes back-ups peuvent être remplacés par de nouveaux.

Nous considérons que le stockage offert par un nœud de stockage à ne pas
être fiable en termes de confidentialité et d’intégrité. Par conséquent, avant
d’envoyer des fragments de données à un nœud de stockage, un contrôleur du
swarm crypte les données de sorte qu’un nœud de stockage ne peut pas voir les
données d’origine d’un back-up. Pour un contrôleur du swarm, afin de récupérer
un back-up, plusieurs nœuds de stockage doivent être contactés. En retour, une
passerelle a le rôle d’un nœud de stockage à plusieurs reprises pour différents
contrôleurs des swarms.

Swarm

Un swarm SW = {sn1, sn2, . . . , sni} est un ensemble de nœuds de stockage
choisis au hasard. Chaque contrôleur du swarm sauvegarde toutes ses données
sur un tel swarm individu. La taille de l’ensemble des swarms est flexible dans le
temps, par conséquent, les nœuds de stockage peuvent être ajoutés et supprimés
par le contrôleur du swarm. Depuis le contrôleur du swarm est la seule source de
données stockées dans un swarm, sa présence a un impact direct sur la quantité
de redondance disponible. Par conséquent, un swarm peut être dans l’un des
états suivants:

• Swarm intact:
Un contrôleur du swarm effectue généralement la maintenance. Comme
les nœuds de stockage dans le swarm quittent le système, le contrôleur
du swarm ajoute de nouveaux nœuds de stockage et ajouts des fragments
de données supplémentaires pour eux. Un swarm est considérée comme
intacte, même si un contrôleur du swarm peut être hors ligne pendant une
courte période (par exemple plusieurs jours).

136 A. SYNTHÈSE EN FRANCAIS

• Swarm isolé:
Le contrôleur du swarm est hors ligne pendant une longue période (plusieurs
semaines par exemple). Il n’effectue pas de maintenance, et donc, la re-
dondance présente dans le swarm diminue au fil du temps. Nous concevons
le niveau de redondance dans un swarm à être suffisamment élevée pour
qu’un swarm peut être à l’état isolé pour une période prédéfinie jusqu’à
plusieurs années. Durant cette période, le back-up peut être restauré à
l’aide des données disponibles dans le swarm.

Après cette période, la redondance disponible dans le swarm descend en dessous
d’un seuil de sorte que la perte de données peut se produire. C’est seulement
dans ce cas que l’utilisateur ne peut plus télécharger son back-up de le swarm.
Par conséquent, avant d’arriver à ce point, un tiers, par exemple un service au
sein d’un centre de données, peut télécharger et reconstruire tous les fichiers
chiffrés et les tenir prêt pour le téléchargement pour le propriétaire de back-up.

Tracker

Le tracker est un intermédiaire confidentiel et une instance centrale au sein d’un
centre de données.

Pour rejoindre le réseau fédéré, une passerelle contacts le tracker. Le tracker
fournit des informations sur les états des autres passerelles. En particulier, le
tracker remplit les fonctions suivantes:

• Back-Up de la liste du swarm
Quand une passerelle échoue, il perd non seulement la copie sur place, mais
également les informations sur l’endroit où les instantanés précédents sont
stockés dans le réseau fédéré. Pour cette raison, le tracker conserve une
copie de la liste du swarm, qui, en cas d’échec, doit être demandé pour
commencer la récupération.

• Suivre les passerelles
Le tracker conserve la trace des passerelles dans le réseau fédéré. Par
conséquent, les passerelles envoient de temps en temps des messages de
pulsation au tracker. Le tracker met à jour un horodatage tl de la passerelle
particulier à l’heure actuelle chaque fois qu’un tel message de pulsation est
reçu.

• Observer l’équité dans le système
Le tracker reçoit les rapports des passerelles sur une éventuelle mauvaise
conduite des autres passerelles. Il regroupe régulièrement ces informations
et exclut certaines passerelles du réseau fédéré par la suite. Cette mau-
vaise conduite, par exemple la suppression illégitime de fragments comme

137

un nœud de stockage ou la création de trop de redondance comme un
contrôleur du swarm, peut être détecté par le tracker en raison de sa con-
naissance globale sur le réseau fédéré.

• Autorité de certification
Pour chaque passerelle dans le réseau fédéré le tracker conserve un certifi-
cat, contraignant l’identité d’une passerelle à une clé publique correspon-
dante. De cette façon, les participants peuvent valider chaque identité et
d’autres, en cas de mauvaise conduite, nous sommes en mesure de révoquer
une autorisation de passerelles pour participer au réseau fédéré.

De toute évidence, une instance centrale augmente le risque de créer un goulot
d’étranglement, empêchant éventuellement un système à l’échelle mondiale
[HAY+05]. En fait, les fonctionnalités offertes par le tracker peut également
être réalisé en utilisant une DHT entre les passerelles. Dans les systèmes P2P
pur, cependant, il est difficile de créer un consensus sur l’état du système. Le
problème des généraux byzantins par Lamport et al. [LSP82] est souvent utilisé
pour illustrer ce problème. Il indique que, pour décider de l’état actuel d’un
système de partis non fiables, au moins 3c + 1 nombre total de participants
sont nécessaires pour tolérer c participants défectueux ou de mauvaise con-
duite. En conséquence, pour parvenir à un consensus, beaucoup des messages
sont nécessaire, et pourtant, le système peut être compromise, par exemple, en
créant un grand nombre de pseudonymes identités connues, comme une attaque
Sybil [Dou02].

En revanche, en utilisant le tracker comme une instance unique avec un savoir
global, ces décisions sont prises par le tracker et les participants tout simplement
s’y adapter. Cela peut conduire à charge plus élevée sur le tracker de sorte que
son évolutivité est très important et l’utilisation excessive doit être évitée par
la conception. En fait, le tracker peut être constituée de plusieurs machines de
telle sorte qu’une panne matérielle unique n’entrâıne pas de perte de données
ou une interruption de service.

Notre architecture nécessite un utilisateur de faire confiance à l’instance cen-
trale de fournir un soutien à la création et le maintien de ses sauvegardes.
Pour la procédure de récupération du back-up la présence du tracker n’est pas
nécessaire. Nous aussi explicitement ne comptons pas sur le tracker en ter-
mes de confidentialité des données. Fragments de données dans notre système
exclusivement contiennent des données chiffrées que seules le propriétaire des
données est en mesure de déchiffrer.

Représentation pour les back-ups hors site

Pour créer des back-ups hors site, nous utilisons des réplicas hébergés par le
gateway qui, par conséquent, ne nécessitent pas l’accès aux appareils des util-

138 A. SYNTHÈSE EN FRANCAIS

isateurs.

Nous introduision un niveau de contournement qui nous permet de référencer
le contenu des fichiers à partir de leur contenu. Pour ce faire nous introduison
un identifiant de fichier, Idf qui est calculé de manière determininste selon la
formule suivante: Idf = H(H(f)), où H est une fonction de hashage appliqué
sur le hash du contenu du fichier1.

Cette procédure nous assure que l’identifiant du contenu d’un fichier ne sera pas
modifié lors de futures sauvegardes, ceci même lorsque certaines pertes peuvent
avoir lieu au niveau de la passerelle. D’autre part, si l’identifiant d’un contenu
de fichier existe déjà dans le swarm, cela siginifie que le contenu lui même existe
déjà et son transfert peut donc être ignoré.

Lors de chaque sauvegarde un fichier d’indexe est créé qui contient toutes les
meta données nécessaires pour reconstruire le système de fichier dans son état
initial. Ces méta données incluent des informations sur les noms de fichier, les
dossiers utilisés, les propriétés et droits d’accès ainsi que les dates où l’on a
accédé à ce fichier. Enfin cette métadonnée garde des référence sur le contenu
des fichiers mentionés précédemment ainsi que les clés nécessaire à la description
de ces contenus.

Après sa création le fichier d’indexe est stocké de la même manière qu’on le
ferait avec un fichier ordinaire, au sein du swarm. Etant donné que le fichier
d’indexe est le point de départ de toute remise en état à partir d’un fichier de
sauvegarde, il est nécessaire de pouvoir le localiser suite à la survenue d’une
erreur. Par conséquent, chaque nœud de stockage au sein du swarm garde une
liste des identifiants de contenus de fichiers ainsi de leur dates de création.

La Figure A.4 présente la solution proposée à travers un exemple utilisant deux
sauvegardes. Étant que nous utilisons des identifiant de fichiers, nous gardons
ces références au sein du fichier d’indexes. Ce fichier contient également toutes
les autres métadonnées de la sauvegarde.

Stratégie de placement de données

Dans cette section, nous expliquons comment nous distribuons données entre
les passerelles du réseau fédéré et le tracker central.

Dans notre système, le tracker affecte de nouveaux nœuds de stockage à un
swarm uniformément au hasard.

Cela correspond à une politique globale de placement de données, dans lequel
pratiquement n’importe quel des N nœuds de stockage totale du réseau fédéré

1Le résultat d’une seule fonction de hashage est utilisé pour construire la clée d’encryption
d’un fichier.

139

E6A13 37FA4 B3AE5B9A32

folder 1

folder 3folder 2

folder 1

folder 3

index file 1 index file 2

file1 file2 file3 file3 file4

Idf: 37FA4
length: 4213
creation: 01.02.03
last mod.: 02.03.04
owner: user1
[...]

file set 1 file set 2

Figure A.4: Informations dans les fichiers d’indexe pour les back-ups hors site

peut être sélectionné pour les fragments de données d’un contrôleur du swarm.
Cette politique de placement conduit à une répartition égale de la charge dans
le réseau fédéré.

La Figure A.5 illustre notre politique de stocker tous les contenus de fichiers
dans un swarm.

Dans les deux premières étapes, nous séparons chaque fichier f en k (10 ≤ k ≤
200) blocs de transmission Tf,i de taille égale avec l’index i ∈ {1, . . . , k}.

En conséquence, chaque bloc de transmission d’un fichier de taille Sf a une
taille de dSf/ke.

Utilisant des codes d’effacement (comme Reed-Solomon [WB99], nous générons
h des blocs de transmission supplémentaires Tf,i, i ∈ {k + 1, . . . , k + h} (comme
indiqué à l’étape 3). Comme une propriété de codes d’effacement, des k sur les
n = k + h différents blocs de transmission seront suffisantes pour reconstruire
le contenu du fichier d’origine par la suite.

Pour le placement des données sur un nœud de stockage, nous regroupons les
blocs de transmission de tous les fichiers par leur indice i à un substream SSi:

SSi = T1,i, T2,i, . . . , Tf,i

La taille globale de ces sous-flux dépend de la quantité totale de données St

140 A. SYNTHÈSE EN FRANCAIS

.

File 1 File 2
1...
k

1

k
...

Divide into k fragments Generate h erasure coded fragments

1...
k

1

k
...

k+1...
k+h

k+1

k+h
...

321

4

1
1

k
k

k+1
k+1

k+h
k+h

Swarm

Storage Node k+h

Storage Node k+1Storage Node k

Storage Node 1

Original files

Placement according to index

Figure A.5: Placer les substreams sur les nœuds de stockage

utilisé pour les fichiers uniques à travers tous les snapshots et est définie par
St/k.

Nous mettons un substream distinct sur chaque nœud de stockage au sein d’un
swarm (voir Figure A.5 étape 4). En outre, nous attribuons à chaque nœud de
stockage l’indice utilisé pour le codage d’effacement de sorte que nous sommes
en mesure de reconstruire les données plus tard et les données sont stockées de
manière déterministe.

En conséquence de cette stratégie de placement nous transférons la propriété
de codes d’effacement sur les nœuds de stockage: tout k nœuds de stockage
d’un swarm sont suffisantes pour reconstruire un snapshot.

Réparation

Avec le temps, les nœuds de sauvegarde au sein d’un même swarm peuvent dis-
paraitre en raison d’une panne. On peut classer ces pannes en deux catégories.
Si un nœud de sauvegarde est indisponible pour les autres participants d’une
manière temporaire uniquement, alors cette panne peut être désignée comme
une panne transitoire : le nœud de sauvegarde pourra retourner éventuellement
dans le système de manière à ce que les données sauvegardées sur ce dernier
puissent permettre à nouveau une récupération du système. En cas de panne
permanente cependant, le nœud de sauvegarde reste indisponible au système
de manière permanente. Dans ce dernier cas, les donnéees sauvegardées sur le

141

nœud sont perdues définitivement et ont besoin d’être remplacées par le charge-
ment d’une nouvelle redondance. Cependant, puisqu’il nous est impossible de
différencier une panne transitoire d’une panne permanente vu de l’extérieur du
système, un maintien du nombre de nœuds de sauvegarde au sein du swarm
est réalisé quel que soit le type de panne encourue. Pour permettre cela, nous
incluons de nouveaux nœuds de sauvegarde au sein du swarm et plaçons un
nouveau flux de données auquel on attribue un indice incrémenté.

Au cas où un nœud de sauvegarde est de nouveau accessible par la suite, il
peut alors être réintégré au swarm sans coût additionnel. A long terme cela
revient à effectuer des réparations déclenchées uniquement lors de pannes per-
manentes [CDH+06].

Niveau de redondance requis

Dans notre système, nous comptons sur la possible copie sur place des données
afin de générer de nouveau flux de données. Cela nous restreint à n’effectuer
des maintenances que lorsque le contrôleur du swarm est en ligne. De plus
nous adoptons la définition de durabilité des données introduite par Toka et
al. [TCDM12]:

Definition: La durabilité des données d est la probabilité d’être capable
d’accéder des données après une fenêtre temporelle tiso, durant laquelle au-
cune opération de maintenance ne peut être effectuée.

Dans le cas d’une panne transitoire, le contrôleur du swarm détient toujours
une copie des données et peut ainsi augmenter le niveau de redondance aussitôt
qu’il peut se reconnecter à nouveau au système. En revanche, lors d’une panne
permanente, aucune réparation n’est alors possible. Dans ce cas, puisque les
données locales sont perdues, cela mène à une récupération du système par
l’utilisateur, nous nous attendons à démarrer le téléchargement du back-up au
bout d’une période que nous nommons temps de remplacement tr. Au cours
de cette période généralement longue, nous nous attendons à ce que l’utilisateur
remarque la perte des données locales, installe un nouveau device et le ramène
à un état opérationnel.

Ainsi le temps de téléchargement td est la période requise pour télécharger
le back-up du swarm. Dans le cas de liens asynchrones, la vitesse de charge-
ment des nœuds de sauvegarde est en général plus basse que la vitesse de
téléchargement du propriétaire du back-up. Puisqu’il nous est possible d’effectuer
de multiples transferts concurrents de plusieurs nœuds de sauvegarde en même
temps, nous nous attendons à ce que la vitesse de téléchargement du pro-
priétaire de la back-up détermine le temps requis pour l’opération. Pour cela, la

142 A. SYNTHÈSE EN FRANCAIS

période de disponibilité des données td a besoin d’être suffisamment longue afin
de premettre de finir le téléchargement des données comme discuté en détails
dans [TCDM12].

Mais encore, nous avons besoin de considérer la période de timeout to utilisée
pour différencier les pannes temporaires des pannes permanentes. Cette période
implique que les données perdues du à une potentielle panne permanente non
détectée sont manquantes dans le swarm. Pour ces raisons, la procédure de
maintenance ne peut tenir compte que du niveau de redondance détecté à
tc − to, où tc est le temps en cours.

time

tiso
tc

to tr td

Figure A.6: Périodes Pertinentes pour la Procédure de Maintenance

La Figure A.6 offre un aperçu selon les périodes to, tr, et td, dont la somme
est égale à tiso, qui correspond au temps total de survie de la back-up, une fois
isolée du contrôleur de swarm.

En faisant l’hypothèse que la durée de vie des nœuds est régie par un proces-
sus de Poisson, on peut calciler la durabilité résultante d’un certain niveau de
redondance et le temps tiso comme décrit dans [TCDM12]:

d =
k+h∑
i=k

(
k + h

i

)
(e−tiso/τ)i(1− e−tiso/τ)(k+h)−i (A.1)

La Figure A.7 et la Figure A.8 montrent le niveau de redondance r = k+h
k

requis pour une durabilité de d = 0.999999 et différentes valeurs de temps
moyen de durée de vie τ des nœuds de sauvegarde et du nombre de fragments
k en combien notre back-up est divisée.

Alors que dans la Figure A.7 nous ciblons une période tiso d’une demi-années,
nous voyons que la redondance nécessaire augmente pour un tiso d’une année,
comme nous l’avons montré dans la Figure A.8. Nous voyons de plus que la
facteur de redondance dans les deux cas est bas, principalement quand τ � tiso.
Des valeurs élevées pour le paramètre k réduisent également la redondance
nécessaire au système, même si cet effet devient négligeable pour des valeurs
au-delà de 100.

143

0.51
2

3

20 60 100 140 180 220 260 300

1

2

3

4

5

6

τ [years]
k [#]

r

Figure A.7: Redondance nécessaire r en fonction de τ et k pour tiso = 1/2 années

0.51
2

3

20 60 100 140 180 220 260 300

0

2

4

6

8

10

τ [years]
k [#]

r

Figure A.8: Redondance nécessaire r en fonction de τ et k pour tiso = 1 années

144 A. SYNTHÈSE EN FRANCAIS

Différents moyens de sauvegarder des fichiers dans un
swarm

Dans cette section nous introduisons trois techniques de sauvegarde de fichiers
dans le but d’améliorer les capacités de nos systèmes en termes d’espace de
stockage et de latence.

Petits fichiers (plus petits que 16 KiB)

Nous sauvegardons les petits fichiers dont la taille est plus petite que 16 KiB
dans le fichier d’indexes. Cela revient à ne les lire qu’une seule fois afin de les
sauver dans un fichier tar où ils sont sauvegardés proches de leurs métadonnées.
Puisque nous cryptons le fichier d’indexes avant de le charger, nous pouvons
nous affranchir de la procédure de cryptage pour les petits fichiers.

En utilisant cette procédure, nous empêchons un faible taux d’accès aux données
causé par les recherches disques pour les petits fichiers lors de la création des
nouveaux flux de données.

Cependant, un des désavantage de cette approche c’est qu’elle ne permet pas
d’empêcher le duplicata de petits fichiers au cours de différents snapshots. Dans
le système de sauvegarde Wuala [LaC13] tous les fichiers plus petits que 16 KiB
occupent moins de 0.1% de la sauvegarde totale utilisée (voir également la
Figure A.9). Il nous semble ainsi totalement justifié d’inclure les contenus des
petits fichiers au sein de multiple fichiers d’indexes.

Comme les petits fichiers sont cachés via un nœud de sauvegarde, nous réduisons
ainsi le coût de gestion lors de la récupération des sauvegardes au sein d’un nœud
de sauvegarde. En conséquence on ne peut pas sauvegarder un fichier d’indexe
comme un petit fichier. Aussi nous avons besoin de remplir un fichier d’indexe
pour atteindre une taille d’au moins 16 KiB afin qu’il soit chargé comme un
fichier de taille moyenne.

Fichiers de taille moyenne (16 KiB - 1 MiB)

On dénote par fichiers de taille moyenne les fichiers dont la taille est comprise
entre 16 KiB et 1 MiB. Après le cryptage les fichiers de taille moyenne sont
encodés en une seule passe en chargeant le contenu complet du fichier dans
un buffer de données du module de codage effaçage. Les résultats des blocs
de transmission de taille dSf/ke, lesquels impliquent un maximum plafonné de
k − 1 d’octets par fichier.

Alors que cette procédure implique uniquement des sauvegardes plafonnées
négligeables, elle requiert davantage de mémoire avec des fichiers de tailles plus

145

64 KiB 1 MiB 16 MiB 256 MiB 4 GiB 64 GiB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File Size (log scale, power−of−2−bins)

C
D

F
of

 U
se

d
S

pa
ce

 b
y

Fi
le

 S
iz

e 2012

Figure A.9: CDF de l’espace de stockage utilisé par taille de fichier; Système cloud
storage Wuala

importantes. Puisque nous effectuons les cryptage et le codage d’effacement en
mémoire, nous avons besoin de buffers avec un espace total de 2 ·Sf +n ·Sf/k.

De plus, afin de récupérer un fichier moyen, un receveur ne peut utiliser que des
blocs entièrement transmis. Ceci peut mener à des situations dans lesquelles
de grande quantité de données reçues d’un nœud de sauvegarde ne peuvent
être utilisées pour la reconstruction de fichiers car seuls quelques octets sont
manquants.

Dans le but de limiter l’impact en termes de mémoire et minimiser les effets liés
aux pertes de connectivité, nous utilisons une méthode différente pour sauveg-
arder les fichiers plus gros que 1 MiB, lesquelle est introduite dans le paragraphe
suivant.

Gros Fichiers (Plus gros que 1 MiB)

Puisque le codage d’effacement est effectué en mémoire, nous ne pouvons pas
l’effectuer sur des fichiers de tailles arbitraires. Aussi pour les fichiers dont la
taille excède 1 MiB nous utilisons un schéma d’entrelacement [PS07], lequel
nous permet de conserver une consommation mémoire indépendante de la taille

146 A. SYNTHÈSE EN FRANCAIS

du fichier comme montré dans Wuala [TMEBPM12] et expliqué dans ce qui
suit.

On partitionne un fichier de taille Sf en j = dSf/be segments de taille b =
100 KiB. Nous choisissonns 100 KiB parce que cette valeur nous a donné de
bonne performances et n’entraine qu’un faible impacte mémoire.

Chacun de ces segments sont alors encodés indépendamment en utilisant un
code d’effacage. Dans ce but, un segment est divisé en k = 100 fragments
originaux de 1 KiB lesquels sont encodés afin d’obtenir n = k + h fragments
de codage de 1 KiB chacun. Ainsi, le segment s, s ∈ {1, . . . , j} donne n
fragments codés Cs,1, ..., Cs,n. Pour les fichiers f et les flux SSi on groupe tous
les fragments codés C1,i, ..., Cs,i en un bloc de transmission Tf,i, lequel peut
être envoyé sur le réseau. Sur la Figure A.10 nous illustrons cette procédure en
détails.

Transmission
Blocks

...

1.1 1.2 1.k

1.1

1.2

1.k

1.k+1

1.n

...

...

2.1 2.2 2.k

2.1

2.2

2.k

2.k+1

2.n

...

...

j.1 j.2 j.k

j.1

j.2

j.k

j.k+1

j.n

...

. . . .

1. Segment of File f 2. Segment of File f j. Segment of File f

C
od

in
g

Fr
ag

m
en

ts

Tf,1

Tf,2

Tf,k

Tf,k+1

Tf,n

Figure A.10: Schéma d’entrelacement opérant sur des segments

Nous obtenons des blocs de transmission avec une taille de dSf/be·b/k, lesquels
impliquent une taille maximum de b par fichier. En effet, si la consommation
mémoire sur la gateway n’est par un problème, on peut envisager d’augmenter
le seuil maximum des fichiers de taille moyenne afin de minimiser l’impact sur
les petits fichiers manipulés selon le schéma d’entrelacement.

Lorsqu’une récupération est nécessaire, contrairement au schéma utilisé pour
les fichiers de taille moyenne, le schéma d’entrelacement nous permet de tirer
le bénéfice des données des blocs de transmission qui ne sont pas téléchargés
entièrement. Dans ce cas un nœud de sauvegarde est mis hors ligne durant la
récupération des fichiers, nous sommes alors capables de choisir un autre nœud
et de toujours continuer à utiliser les fragments codés du fichier en cours.

147

Panne totale du tracker

Dans notre système, nous avons le risque de perdre le tracker, par exemple,
lorsque l’ opérateur du tracker arrête tous les services. Dans ce qui suit, nous
analysons le scénario sans le service du tracker de plus près et nous montrons
comment le réseau fédéré peut retourner dans un état opérationnel.

Impact sur le réseau fédéré

Une panne totale du tracker a un fort impact sur la fonctionnalité de notre
service de sauvegarde distribué qui est désormais réduite à des passerelles qui
subsistent dans le système.

Ces passerelles restent confrontés aux conséquences et restrictions suivantes:

• Le contrôleur du swarm ne peuvent pas demander des nouveaux nœuds
du tracker. De réaliser la réparation n’est pas supportée de sorte que la
redondance fournie par un swarm diminue au fil du temps.

• La CA ne délivre pas de nouveaux certificats de clés publiques afin que de
nouvelles passerelles ne peuvent plus adhérer au système.

• L’équité dans le système n’est pas observée globalement par le tracker.

• La copie de la liste du swarm situé sur le tracker est inaccessible. En
cas de perte de données sur une passerelle nous avons besoin d’une autre
façon de récupérer la liste du swarm.

• En cas de perte de données locales un utilisateur n’a pas encore un
point d’entrée au réseau fédéré. Les nœuds de stockage restant dans
le réseau fédéré sont donc la seule instance détenant des informations sur
l’emplacement des sauvegardes stockées.

Dans ce qui suit, nous montrons une approche comment le système peut con-
tinuer à fonctionner sans le tracker.

Mode de repli et réunion

Si une passerelle ne peut pas atteindre le tracker pour une période prédéfinie
(par exemple un couple de jours), il passe en mode de repli. Dans ce mode, le
comportement de passerelles change comme suit:

• Alternance du nom de domaine
Au fil du temps la passerelle modifie le nom de domaine sous lequel il tente

148 A. SYNTHÈSE EN FRANCAIS

de communiquer avec le tracker. Pour cela, nous construisons une can-
didat un ensemble de noms de domaine possibles de substitution, à l’aide
d’une fonction déterministe. Nous semons cette fonction par la date du
jour sur la passerelle de sorte que chaque jour toutes les passerelles tentent
d’atteindre les mêmes noms de domaine dans le DNS.

Cette procédure est connue sous le nom de Domain Generation Algorithm
(DGA) et est devenu populaire en raison de leur utilisation dans les réseaux
de machines zombies récents tels que Conficker [PSY09].

Semblable à notre scénario en utilisant un tracker, les opérateurs de réseaux
de zombies tentent de résister contre les pannes de leur serveur central com-
mandement et contrôle. DGA nous permet donc de créer un grand nombre
de points de rendez-vous que nous pouvons utiliser à l’avenir pour établir
un nouveau tracker et de recueillir à nouveau les passerelles précédentes.

• Des messages de pulsation aux contrôleurs du swarms
Puisque nous considérons la liste du swarm situé sur le tracker comme
perdu, en cas de perte de données locale sur une passerelle, nous avons be-
soin de récupérer la liste du swarm. Pour ce faire, nous changeons l’origine
pour établir le contact: Dans cette situation, le propriétaire de back-up
ne peut pas communiquer avec les nœuds de stockage. C’est pourquoi les
nœuds de stockage essaient de contacter le propriétaire de back-up. Ceci
est possible car le stockage nœuds connaissent le propriétaire de back-up
correspondant à chaque substream. Conséquent, un nœud de stockage
envoie régulièrement des messages de pulsation à un propriétaire de back-
up. Dès après la perte de données le propriétaire de back-up se reconnecte
en utilisant son nom d’hôte précédent, il reçoit ces messages de pulsation
et, par conséquent, peut déterminer les sources potentielles de commencer
back-up récupération.

Quand les passerelles détectent que le tracker réapparâıt (éventuellement sur
l’un des points de rendez-vous), ils vérifient son authenticité au moyen de sa clé
publique.

Si l’authenticité est confirmée, les passerelles revenir au mode de fonctionnement
normal et, ainsi, continuer à exécuter la réparation. Dans le cas où aucun tracker
réapparâıt la période t′iso est le temps qu’un utilisateur dispose afin de passer à
un autre système de back-up.

149

Conclusion

Ce travail présente un système de sauvegarde distribué qui permet à un util-
isateur de stocker un back-up en manière de snapshots. Nous profitons de
l’intérêt commun des participants dans le stockage des sauvegardes en misant
principalement sur les ressources fournies par les utilisateurs eux-mêmes.

La principale contribution de ce travail est une preuve de concept qui confirme
la faisabilité d’un tel service. Une autre contribution est le concept de fichiers
d’index, qui sont une nouvelle façon pour un système distribué pour représenter
l’alternance des systèmes de fichiers au fil du temps. La division du réseau fédéré
en swarms facilite le suivi des passerelles et réduit les métadonnées sur le tracker
nécessaire pour la localisation des données à un très faible niveau. En fait, la
charge sur le tracker est indépendante de la quantité de données stockées dans
le système, ce qui est une propriété souhaitable, en particulier dans le contexte
de l’augmentation des quantités de données dans le futur.

Nous nous occupons de fichiers de différentes tailles d’une manière différente
afin d’accrôıtre l’efficacité globale de notre système. Avec notre système, nous
remettons aussi en question l’approche établie d’exiger des données dans le
système pour durer éternellement. Au lieu de cela, nous nous concentrons sur
permettant à un utilisateur de récupérer toutes les données en cas de perte de
données locale dans un délai prédéfini. Durant cette période, nous pouvons
également tolérer le tracker de quitter le système.

Le résultat est une architecture qui supporte la creation de back-up automa-
tiquement et en manière de snapshots: d’abord de dispositifs d’utilisateur à la
passerelle et enfin au réseau fédéré. La perte de données due à des événements
tels que les incendies et les inondations peuvent donc être évitée. Nous sommes
fermement convaincus que notre système peut être déployé dans le monde réel
et contribuer à atteindre un back-up à prix abordable qui conserve la confiden-
tialité des données.

Appendix B

Additional Implementation
Details

151

152 B. ADDITIONAL IMPLEMENTATION DETAILS

B.1 Maintenance Module

Phase 1: Generate Unassigned Substreams

Precondition: The maintenance algorithm requires a > 0 new substreams in
the swarm.

Operation:

Procedure Generate Unassigned Substreams

1 referenced := {};
2 for current snapshot := oldest snapshot to newest snapshot do
3 foreach file ∈ current snapshot do
4 if file /∈ referenced then
5 referenced := referenced ∪ {file};
6 for index := last index to (last index + a) do
7 generate transmission block Tfile,index;
8 store Tfile,index in /temporary/inprocess/$index/;

9 end

10 end

11 end

12 end
13 for index := last index to (last index + a)) do
14 atomically move /temporary/inprocess/$index/ to

/temporary/unassigned/$index/;

15 end

Postcondition: There are a unassigned substreams available in the folder
/temporary/unassigned/. The creation procedure assures that unassigned
substreams are complete, meaning that they contain a transmission block for
each unique file content and that transmission blocks are fully written to disk.

B.1. MAINTENANCE MODULE 153

Phase 2: Assign Substreams to Storage Nodes

Precondition: Substream(s) present in /temporary/unassigned/.

Operation:

Procedure Assign Substreams

1 foreach unassigned substream do
2 send RESTful GET request for a new storage node to tracker;
3 atomically rename /temporary/unassigned/$index/ to

/temporary/assigned/$node id/$index/;

4 end

Postcondition: Substream(s) assigned to storage node(s). Therefore, folder
/temporary/unassigned/ is empty.

Phase 3: Include Storage Nodes in Swarm List

Precondition: Substream(s) assigned to storage node(s) in folder
/temporary/assigned/.

Operation:

Procedure Include Storage Nodes in Swarm List

1 foreach assigned substream do
2 store swarm set on tracker via RESTful PUT request with node id;
3 if response is HTTP Status 200-OK then
4 include storage node in local swarm list;
5 atomically move /temporary/assigned/$node id/$index/ to

/upload/$node id/;

6 end
7 else if response is HTTP Status 409-Conflict then
8 undo possible insertion of storage node into local swarm list;
9 atomically rename /temporary/assigned/$node id/$index/

to /temporary/unassigned/$index/;

10 end

11 end

Postcondition: No substream in /temporary/assigned/.

154 B. ADDITIONAL IMPLEMENTATION DETAILS

B.2 Snapshot Creator Module

Phase 1: Parse New Snapshot

Precondition: New snapshot in folder /on-site copy/ but no corresponding
index file in /temporary/new snapshot/generate transmission blocks/,
/temporary/new snapshot/upload index file, or /index files/.

Operation:

Procedure Parse New Snapshot

1 references := load previous reference set;
2 create index file
/temporary/new snapshot/generate index file/$snapshot id;

3 foreach folder in new snapshot do
4 create folder in index file;
5 foreach file in folder do
6 calculate file hash to generate $file id;
7 insert file metadata into index file;
8 if ∃(a, b) ∈ references | a = $file id then
9 references := references ∪ ($file id, $snapshot id);

10 end
11 else
12 foreach $node id ∈ swarm do
13 generate transmission block in

/temporary/inprocess/$node id/;
14 atomically move completed transmission block to

/upload/$node id/;
15 references := references ∪ ($file id, $snapshot id);

16 end

17 end

18 end

19 end
20 compress index file;
21 atomically move completed index file to

/temporary/new snapshot/generate transmission blocks/;

Postcondition: Complete index file in
/temporary/new snapshot/generate transmission blocks/.

B.2. SNAPSHOT CREATOR MODULE 155

Phase 2: Generate Transmission Blocks for Index File

Precondition: Existing index file in
/temporary/new snapshot/upload index file/.

Operation:

Procedure Generate Transmission Blocks for Index File

1 foreach $node id ∈ swarm do
2 generate transmission block for index file in

/temporary/new snapshot/upload index file/$node id/;
3 atomically move completed transmission block to

/upload/$node id/;

4 end
5 atomically move index file to
/temporary/new snapshot/update metadata/;

Postcondition: Index file in /temporary/new snapshot/update metadata/.

Phase 3: Update Metadata on Storage Nodes

Precondition: Existing index file in
/temporary/new snapshot/update metadata/.

Operation:

Procedure Update Storage Nodes

1 foreach $node id ∈ swarm do
2 store metadata for index file in

/temporary/new snapshot/upload metadata/$node id/;
3 atomically move metadata to /upload/$node id/;

4 end

Postcondition: No index file in
/temporary/new snapshot/update metadata/.

Appendix C

Glossary

C.1 Acronyms and Abbreviations

P2P Peer-to-Peer, decentralized network in which participants not
only consume but also offer resources to the network

DHT Distributed Hash Table, decentralized and fault tolerant hash
table storing key value pairs.

LRU Least Recently Used, replacement policy to discard the least
recently used items at first in order to free storage space

CA Certification Authority, architecture used to distribute asymmetric
keys.

PKI Public-Key Infrastructure, an infrastructure used for key and
certificate management.

VFS Virtual File System, abstraction layer to uniformly access data
from different underlaying file systems.

NAS Network-Attached Storage, a service used to store and share files
in a network.

NFS Network File System, a protocoll used to access a file system over
a network.

SMB Server Message Block, a network protocol used for file, printer
sharing, and serial ports.

FTP File Transmission Protocol, a protocol used for file transmission
over a network.

157

158 C. GLOSSARY

BLOB Binary Large Object, a large binary block of data stored in a
database.

HTTP Hypertext Transfer Protocol, a protocol used in the World Wide
Web for content transmission.

URI Uniform Resource Identifier, an identifier for web resources.

TCP Transmission Control Protocol, a protocol for ordered and reliable
transmission.

UDP User Datagram Protocol, a leightweight protocol used for
transmission of single datagrams without guaranteed delivery.

TLS Transport Layer Security, a protocol used for encrypted data
transmission.

OSI Open Systems Interconnection, standardized reference model for
interoperability in network communication.

RPC Remote Procedure Call, an technique for inter-process
communication over a network.

SOAP Simple Object Access Protocol, a protocol for the exchange of
structured data over a network.

IP Internet Protocol, a protocol used for data transmission over a
network.

CBC Cipher-Block Chaining, an encryption technique that uses the
previous ciphertext block as input for the encryption of the
succeeding one.

AES Advanced Encryption Standard, a symmetric-key algorithm for
data encryption.

SHA Secure Hash Algorithm, a set of cryptographic hash functions.

JNI Java Native Interface, an interface allowing java applications to
invoke code in libraries that are written in other programming
languages.

MDS Maximum Distance Separable, a linear code that allows maximum
error detection and correction for a given amount of redundancy.

HDFS Hadoop Distributed File System, a distributed file system
designed for high data throughput and fault tolerance.

GFS Google File System, a distributed file system designed by Google
Inc. for high data throughput and fault tolerance.

C.1. ACRONYMS AND ABBREVIATIONS 159

RDBMS Relational Database Management System, a database operating
on tables and records.

PBKDF Password-Based Key Derivation Function, a function that allows
to derive a key from a password.

DNS Domain Name System, a network system used to resolve names
into IP addresses.

ISP Internet Service Provider, an organization that provides Internet
services.

TTL Time To Live, a technique to limit the lifetime of data in a
network.

DGA Domain Generation Algorithm, an algorithm originally used in
botnets to generate alternative domain names in order to increase
resistance to attacks.

WORM Write-Once-Read-Many, a device that does not support
modifications on written data.

ADSL Asymmetric Digital Subscriber Line, a technology for data
transmission over copper lines.

RAID Redundant Array of Independent Disks, a composition of multiple
hard drives in order to improve reliability or performance.

List of Figures

1.1 “Digital Universe”, History and Projection; from [Int12] 2

1.2 Magnetic Disk Price; from [SK09] 3

1.3 Federated Network . 4

2.1 File System Tree for Two Different Snapshots in Time Machine;
For Snapshot 2 we delete File 3 and add File 4. 14

3.1 General Architecture . 23

3.2 Snapshot Information in the File System for On-Site Back-up . . 28

3.3 Snapshot Information Embedded into Index Files for Off-Site
Back-up . 29

3.4 Data Placement Policies . 31

3.5 Addressing Fragments Corresponding to a Single File Content
Using their Common File Content Identifier 32

3.6 Example of the Evolution of Storage Space Usage Over Time . . 33

3.7 Placing Substreams on Storage Nodes 34

3.8 Quota Restrictions on a Gateway 35

3.9 Data Stored on the Tracker . 36

3.10 Model of the Gateway Behavior 40

3.11 Periods Relevant for the Maintenance Procedure 42

3.12 Necessary Redundancy r Depending on τ and k for tiso = 1/2 year 43

3.13 Necessary Redundancy r Depending on τ and k for tiso = 1 year 43

3.14 Scenario Representing a Back-Up Download 47

3.15 Handling of a Swarm Leader’s Asymmetric Keys 50

4.1 Communication Layers According to the OSI Model 57

161

162 LIST OF FIGURES

4.2 Aggregate Structure . 59

4.3 Data Flow Between Modules for On-Site and Off-Site Back-Up . 60

4.4 Sub-Modules for On-Site Back-Up 61

4.5 Virtual File System for Unified File Access [DGLR+11] 62

4.6 Sub-Modules for Off-Site Back-Up 64

4.7 Overlap in Creation of Transmission Blocks 65

4.8 Data Flow for the Creation of Transmission Blocks 71

4.9 Transmission Blocks for Three Files Scheduled for Upload to
Two Storage Nodes . 73

4.10 Three Ways to Store Files . 74

4.11 Interleaving Scheme Operating on Segments 76

4.12 CDF of Used Space by File Size; Five Year Study of File-System
Metadata [ABDL07] . 79

4.13 CDF of Used Space by File Size; Wuala Cloud Storage System . 80

4.14 Internal Architecture of the Tracker 83

5.1 Gateway Availabilities in the Free-traces 97

5.2 CDF of Downtime Duration in the Free-traces 97

5.3 Return Probability Depending on Absence Duration 98

5.4 Number of Gateways Leaving the System per Day 99

5.5 Autocorrelation Plots Showing Correlation Coefficients for Per-
manent Failures per Second and Minute for Different Lags . . . 100

5.6 Autocorrelation Plots Showing Correlation Coefficients for Per-
manent Failures per Hours and Days for Different Lags 102

5.7 Probability For Observing x Correlated Failures Within a Swarm 105

5.8 Determining Alive Storage Nodes 107

6.1 Back-Up to the Cloud with Different Availability αs of the Back-
Up Source; St = 100 GiB at 512 kbit/s 113

6.2 Back-Up Using Swarms with Different Availability αs of the
Swarm Leader; St = 100 GiB at 512 kbit/s, k = 100, h = 24 . . 115

6.3 Average Swarm Size over Time with Different Availability αs of
the Swarm Leader; St = 100 GiB at 512 kbit/s, k = 100, h = 24 116

LIST OF FIGURES 163

6.4 Failed Swarms Depending on Swarm Size with Different Avail-
ability αs of the Swarm Leader; St = 100 GiB at 512 kbit/s,
k = 100, h = 24 . 116

6.5 Influence of Observation Period on the Average Swarm Size After
180 days . 119

6.6 Simulation 1: Upload Data Rate Over Time for k = 10, h = 8 . 121

6.7 Simulation 2: Upload Data Rate Over Time for k = 50, h = 18 122

6.8 Simulation 3: Upload Data Rate Over Time for k = 100, h = 26 122

6.9 Simulation 4: Upload Data Rate Over Time for k = 200, h = 40 123

A.1 Evolution du prix d’un disque magnétique; source [SK09] 130

A.2 Réseau fédéré . 132

A.3 General Architecture . 134

A.4 Informations dans les fichiers d’indexe pour les back-ups hors site 139

A.5 Placer les substreams sur les nœuds de stockage 140

A.6 Périodes Pertinentes pour la Procédure de Maintenance 142

A.7 Redondance nécessaire r en fonction de τ et k pour tiso = 1/2
années . 143

A.8 Redondance nécessaire r en fonction de τ et k pour tiso = 1
années . 143

A.9 CDF de l’espace de stockage utilisé par taille de fichier; Système
cloud storage Wuala . 145

A.10 Schéma d’entrelacement opérant sur des segments 146

List of Tables

5.1 Different Values for k and Their Corresponding Values for h, r,
and d. 107

5.2 Number of Back-ups Lost and the Resulting Artithmetic Mean
Xq for q = 108 experiments . 108

165

Bibliography

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak,
Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch,
Marvin Theimer, and Roger P. Wattenhofer, Farsite: Federated,
available, and reliable storage for an incompletely trusted en-
vironment , Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, OSDI ’02, ACM, 2002,
pp. 1–14. (Cited on page 12.)

[ABDL07] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Ja-
cob R. Lorch, A five-year study of file-system metadata, Trans.
Storage 3 (2007), no. 3. (Cited on pages 77, 79, and 162.)

[All10] Subbu Allamaraju, Restful web services cookbook , O’Reilly Me-
dia, 2010. (Cited on pages 51, 56, and 59.)

[Ama14a] Amazon Web Services, Amazon s3 , online, http://aws.
amazon.com/s3/, 2014. (Cited on pages 2, 83, 111, and 130.)

[Ama14b] , Amazon s3 pricing , online, https://aws.amazon.
com/s3/pricing/, 2014. (Cited on pages 3 and 131.)

[Apa14] Apache Software Foundation, Cassandra architec-
ture, online, https://wiki.apache.org/cassandra/
ArchitectureOverview, 2014. (Cited on page 85.)

[App14] Apple Inc., Time machine, online, http://www.apple.com/
support/timemachine/, 2014. (Cited on page 14.)

[Bar01] Moshe Bar, Linux File Systems, McGraw-Hill, 2001. (Cited on
page 62.)

[BBST02] Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley
Trepetin, pStore: A secure peer-to-peer backup system, Tech.
report, Massachusetts Institute of Technology Laboratory for
Computer Science, October 2002. (Cited on page 17.)

167

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://wiki.apache.org/cassandra/ArchitectureOverview
https://wiki.apache.org/cassandra/ArchitectureOverview
http://www.apple.com/support/timemachine/
http://www.apple.com/support/timemachine/

168 BIBLIOGRAPHY

[Bil95] Patrick Billingsley, Probability and measure, 3 ed., Wiley-
Interscience, 1995. (Cited on page 108.)

[BJR94] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Rein-
sel, Time series analysis: forecasting and control (third ed),
Prentice-Hall, 1994. (Cited on page 99.)

[BLV05] Alberto Blanc, Yi-Kai Liu, and Amin Vahdat, Designing incen-
tives for peer-to-peer routing , Proceedings of the 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2005), vol. 1, 2005, pp. 374–385 vol. 1.
(Cited on page 91.)

[BPS05] Jean-Michel Busca, Fabio Picconi, and Pierre Sens, Pastis: A
highly-scalable multi-user peer-to-peer file system, in Euro-Par
2005, 2005. (Cited on page 12.)

[BR03] Charles Blake and Rodrigo Rodrigues, High availability, scalable
storage, dynamic peer networks: Pick two, Proceedings of the
9th Conference on Hot Topics in Operating Systems - Volume 9
(Berkeley, CA, USA), HOTOS’03, USENIX Association, 2003,
pp. 1–1. (Cited on page 109.)

[BSSP10] Cullen Bash, Rocky Shih, Amip. Shah, and Chandrakant Patel,
Data center damage boundaries, IEEE Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electronic
Systems (ITherm), June 2010, pp. 1–9. (Cited on page 96.)

[BTC+04] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage,
and Geoffrey M. Voelker, Total recall: system support for au-
tomated availability management , USENIX NSDI 2004, 2004.
(Cited on pages 12 and 17.)

[CDH+06] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit,
Hakim Weatherspoon, Frans Kaashoek, John Kubiatowicz, and
Robert Morris, Efficient replica maintenance for distributed
storage systems, NSDI 2006, 2006. (Cited on pages 13, 44,
and 141.)

[CLG+94] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H.
Katz, and David A. Patterson, Raid: High-performance, reli-
able secondary storage, ACM Comput. Surv. 26 (1994), no. 2,
145–185. (Cited on page 12.)

[CMH+02] Ian Clarke, Scott Miller, Theodore Hong, Oskar Sandberg, and
Brandon Wiley, Protecting free expression online with freenet ,
Internet Computing, IEEE 6 (2002), no. 1, 40–49. (Cited on
page 71.)

BIBLIOGRAPHY 169

[CMN02] Landon P. Cox, Christopher D. Murray, and Brian D. Noble, Pas-
tiche: Making backup cheap and easy , Proceedings of OSDI,
ACM, 2002. (Cited on page 18.)

[CN03] Landon P. Cox and Brian D. Noble, Samsara: Honor among
thieves in peer-to-peer storage, Proceedings of the Sympo-
sium on Operating Systems Principles, ACM, 2003. (Cited on
page 18.)

[Coh03] Bram Cohen, Incentives build robustness in bittorrent , 2003.
(Cited on page 90.)

[Cor13] IBM Corp., Writing reentrant and threadsafe code, on-
line, http://publib.boulder.ibm.com/infocenter/aix/
v6r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/
genprogc/writing_reentrant_thread_safe_code.htm,
2013. (Cited on page 56.)

[CT96] Tushar Deepak Chandra and Sam Toueg, Unreliable failure de-
tectors for reliable distributed systems, J. ACM (1996), 225–
267. (Cited on page 40.)

[CWO+11] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, and
et al., Windows azure storage: A highly available cloud storage
service with strong consistency , Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP
’11, ACM, 2011, pp. 143–157. (Cited on page 12.)

[DBEN07] Alessandro Duminuco, Ernst Biersack, and Taoufik En-Najjary,
Proactive replication in distributed storage systems using ma-
chine availability estimation, Proceedings of the 2007 ACM
CoNEXT Conference, CoNEXT ’07, ACM, 2007, pp. 27:1–
27:12. (Cited on pages 13, 41, and 96.)

[DG04] Jeffrey Dean and Sanjay Ghemawat, Mapreduce: Simplified
data processing on large clusters, Proceedings of the 6th Con-
ference on Symposium on Operating Systems Design & Imple-
mentation, OSDI’04, USENIX Association, 2004, pp. 10–10.
(Cited on page 12.)

[DGLR+11] Serge Defrance, Rémy Gendrot, Jean Le Roux, Gilles Straub,
and Thierry Tapie, Home networking as a distributed file sys-
tem view , Proceedings of the SIGCOMM Workshop on Home
Networks (HomeNets’11), ACM, 2011, pp. 67–72. (Cited on
pages 62 and 162.)

http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/writing_reentrant_thread_safe_code.htm
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/writing_reentrant_thread_safe_code.htm
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/writing_reentrant_thread_safe_code.htm

170 BIBLIOGRAPHY

[DGW+07] Alexandros Dimakis, Brighten Godfrey, Yunnan Wu, Martin
Wainwright, and Kannan Ramchandran, Network coding for
distributed storage systems, IEEE INFOCOM 2007, 2007.
(Cited on page 13.)

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels,
Dynamo: Amazon’s highly available key-value store, Proceed-
ings of Twenty-first ACM SIGOPS, ACM, 2007, pp. 205–220.
(Cited on page 84.)

[DKK+01] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica, Wide-area cooperative storage with cfs, In
SOSP, 2001. (Cited on pages 12 and 13.)

[DKM+11] Serge Defrance, Anne-Marie Kermarrec, Erwan Le Merrer, Nico-
las Le Scouarnec, Gilles Straub, and Alexandre van Kempen,
Efficient peer-to-peer backup services through buffering at the
edge., Peer-to-Peer Computing, IEEE, 2011. (Cited on page 96.)

[DMR10a] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier, Back to
the future: On predicting user uptime, CoRR abs/1010.0626
(2010). (Cited on page 96.)

[DMR10b] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier, Pass-
word strength: an empirical analysis, IEEE INFOCOM 2010,
2010. (Cited on page 49.)

[DMTC14] Matteo Dell’Amico, Pietro Michiardi, Laszlo Toka, and Pasquale
Cataldi, Adaptive redundancy management for durable p2p
backup, online, http://arxiv.org/abs/1201.2360v2, 2014. (Cited
on page 72.)

[Dou02] John R. Douceur, The sybil attack , Revised Papers from the
First International Workshop on Peer-to-Peer Systems, IPTPS
’01, Springer-Verlag, 2002, pp. 251–260. (Cited on pages 26
and 137.)

[DQ04] Yves Deswarte and Jean-Jacques Quisquater, Remote Integrity
Checking , Sixth Working Conference on Integrity and Internal
Control in Information Systems (IICIS), Kluwer Academic Pub-
lishers, 2004. (Cited on page 53.)

[DR01] Peter Druschel and Antony Rowstron, Past: A large-scale,
persistent peer-to-peer storage utility , In HotOS VIII, 2001,
pp. 75–80. (Cited on pages 12 and 13.)

BIBLIOGRAPHY 171

[Dro11] Dropbox Inc., Authentication bug in dropbox , online, http:
//blog.dropbox.com/?p=821, 2011. (Cited on page 3.)

[Dro14a] , Dropbox , online, http://www.dropbox.com/, 2014.
(Cited on pages 2, 111, and 130.)

[Dro14b] , How secure is dropbox? , online, https://www.
dropbox.com/help/27/, 2014. (Cited on pages 3 and 131.)

[EIG+14] Dick Epema, Alexandru Iosup, Matthieu Gallet, Emmanuel Jean-
not, Derrick Kondo, Bahman Javadi, and Artur Andrzejak, Fail-
ure trace archive, online, http://fta.scem.uws.edu.au/,
2014. (Cited on page 96.)

[EN03] Ramez Elmasri and Shamkant Navathe, Fundamentals of
Database Systems, Addison Wesley, 2003. (Cited on page 66.)

[FGL+98] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and
Alex Shvartsman, Eventually-serializable data services, 1998.
(Cited on page 85.)

[FIG14] FIGARO Consortium, Figaro project website, online, http://
www.ict-figaro.eu/, 2014. (Cited on pages 4 and 131.)

[FLSR10] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Ro-
drigues, A study of the internal and external effects of concur-
rency bugs, IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2010, pp. 221–230. (Cited on
page 65.)

[Fre13] Free SAS, Freebox revolution, online, http://www.free.fr/
adsl/freebox-revolution.html, 2013. (Cited on page 96.)

[FSF09] Xinyang Feng, Jianjing Shen, and Ying Fan, Rest: An alterna-
tive to rpc for web services architecture, Future Information
Networks, 2009. ICFIN 2009. First International Conference on,
2009, pp. 7–10. (Cited on page 56.)

[FSK10] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryp-
tography engineering - design principles and practical appli-
cations, Wiley, 2010. (Cited on pages 49, 50, 57, and 70.)

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The
google file system, Proceedings of the Nineteenth ACM Sym-
posium on Operating Systems Principles (New York, NY, USA),
SOSP ’03, ACM, 2003, pp. 29–43. (Cited on pages 12 and 83.)

http://blog.dropbox.com/?p=821
http://blog.dropbox.com/?p=821
http://www.dropbox.com/
https://www.dropbox.com/help/27/
https://www.dropbox.com/help/27/
http://fta.scem.uws.edu.au/
http://www.ict-figaro.eu/
http://www.ict-figaro.eu/
http://www.free.fr/adsl/freebox-revolution.html
http://www.free.fr/adsl/freebox-revolution.html

172 BIBLIOGRAPHY

[GL02] Seth Gilbert and Nancy Lynch, Brewer’s conjecture and the fea-
sibility of consistent available partition-tolerant web services,
In ACM SIGACT News, 2002. (Cited on pages 84 and 85.)

[GMP09] Frederic Giroire, Julian Monteiro, and Stephane Perennes, P2P
storage systems: How much locality can they tolerate? , IEEE
LCN 2009, October 2009. (Cited on pages 30 and 78.)

[GN96] Priscilla E. Greenwood and Michael S. Nikulin, A Guide to Chi-
Squared Testing , 1 ed., Wiley, 1996. (Cited on page 99.)

[HAY+05] Ragib Hasan, Zahid Anwar, William Yurcik, Larry Brumbaugh,
and Roy Campbell, A survey of peer-to-peer storage techniques
for distributed file systems, ITCC 2005., 2005. (Cited on
pages 13, 26, and 137.)

[HMD05] Andreas Haeberlen, Alan Mislove, and Peter Druschel, Glacier:
Highly Durable, Decentralized Storage Despite Massive Corre-
lated Failures, Networked Systems Design and Implementation,
2005, pp. 143–158. (Cited on pages 16, 38, 98, and 109.)

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad
Calder, Parikshit Gopalan, Jin Li, and Sergey Yekhanin, Era-
sure coding in windows azure storage, Proceedings of the Con-
ference on Annual Technical Conference, USENIX Association,
2012, pp. 2–2. (Cited on page 12.)

[IBe99] Alaoui Ismaili, Pierre Bernard, and et al., Estimating the prob-
ability of failure of equipment as a result of direct lightning
strikes on transmission lines, Power Delivery, IEEE Transac-
tions on 14 (1999), no. 4, 1394–1400. (Cited on page 103.)

[IBM06] IBM Corp., Understanding and exploiting snap-
shot technology for data protection., online, http:
//www.ibm.com/developerworks/tivoli/library/
t-snaptsm1/index.html, 2006. (Cited on page 5.)

[IET13] IETF, Rfc 5246 , online, http://tools.ietf.org/html/rfc5246,
2013. (Cited on page 57.)

[IET14a] , Rfc 1035 , online, https://tools.ietf.org/html/
rfc1035, 2014. (Cited on page 81.)

[IET14b] , Rfc 1191 , online, http://www.ietf.org/rfc/
rfc1191.txt, 2014. (Cited on page 58.)

[IET14c] , Rfc 2182 , online, https://tools.ietf.org/html/
rfc2182, 2014. (Cited on page 82.)

http://www.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
http://www.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
http://www.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
http://www.ietf.org/rfc/rfc1191.txt
http://www.ietf.org/rfc/rfc1191.txt
https://tools.ietf.org/html/rfc2182
https://tools.ietf.org/html/rfc2182

BIBLIOGRAPHY 173

[Int12] International Data Corporation (IDC), Digital universe study ,
online, http://idcdocserv.com/1414, 2012. (Cited on
pages 1, 2, and 161.)

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss, The garbage
collection handbook: The art of automatic memory manage-
ment , 1st ed., Chapman & Hall/CRC, 2011. (Cited on page 89.)

[Ke00] John Kubiatowicz and et al., Oceanstore: an architecture for
global-scale persistent storage, SIGPLAN Not. (2000), 190–
201. (Cited on pages 18, 38, and 109.)

[KG94] Rom-Shen Kao and Vickie Gibbs, A fast reed-solomon and
cyclic redundancy check encoding algorithm for optical disk
error control , ASIC Conference and Exhibit, 1994. Proceed-
ings., Seventh Annual IEEE International, Sep 1994, pp. 250–
253. (Cited on page 11.)

[KJIE10] Derrick Kondo, Bahman Javadi, Alexander Iosup, and Dick
Epema, The failure trace archive: Enabling comparative anal-
ysis of failures in diverse distributed systems, IEEE/ACM In-
ternational Conference on Cluster, Cloud and Grid Computing
(CCGrid), May 2010, pp. 398–407. (Cited on page 96.)

[KR01] Balachander Krishnamurthy and Jennifer Rexford, Web proto-
cols and practice, Addison Wesley, 2001. (Cited on pages 56
and 57.)

[Kro14] Kroll Ontrack, Kroll ontrack data recovery service, online,
http://www.ontrack.fr, 2014. (Cited on pages 1 and 129.)

[KV10] Kyungbaek Kim and Nalini Venkatasubramanian, Assessing
the impact of geographically correlated failures on overlay-
based data dissemination, Global Telecommunications Confer-
ence (IEEE GLOBECOM 2010), Dec 2010, pp. 1–5. (Cited on
pages 103 and 104.)

[LaC13] LaCie AG, Wuala cloud storage service, online, http://www.
wuala.com, 2013. (Cited on pages 79 and 144.)

[LB10] Jean-Yves Le Boudec, Performance evaluation of computer
and communication systems, EPFL Press, Lausanne, Switzer-
land, 2010. (Cited on pages 99 and 101.)

[LF04] Geoffrey Lefebvre and Michael J. Feeley, Separating durabil-
ity and availability in self-managed storage, Proceedings of
the 11th Workshop on ACM SIGOPS European Workshop (New
York, NY, USA), EW 11, ACM, 2004. (Cited on page 12.)

http://idcdocserv.com/1414
http://www.ontrack.fr
http://www.wuala.com
http://www.wuala.com

174 BIBLIOGRAPHY

[LGZ+09] Yongmei Liu, Yong Guan, Jie Zhang, Guohui Wang, and
Yan Zhang, Reed-solomon codes for satellite communications,
Control, Automation and Systems Engineering, 2009. CASE
2009. IITA International Conference on, July 2009, pp. 246–249.
(Cited on page 11.)

[Li13] Keqin Li, Parallel file download in peer-to-peer networks with
random service capacities, Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, 2013, pp. 677–686. (Cited on page 47.)

[LM10] Avinash Lakshman and Prashant Malik, Cassandra: A decen-
tralized structured storage system, SIGOPS Oper. Syst. Rev.
44 (2010), no. 2, 35–40. (Cited on page 84.)

[LPGM08] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and
Ethan L. Miller, Measurement and analysis of large-scale net-
work file system workloads, USENIX ATC (Berkeley, CA, USA),
USENIX Association, 2008. (Cited on pages 7, 25, 27, 72,
and 78.)

[LS01] Nicholas Laneman and Carl-Erik Sundberg, Reed-solomon de-
coding algorithms for digital audio broadcasting in the am
band , Broadcasting, IEEE Transactions on 47 (2001), no. 2,
115–122. (Cited on page 11.)

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease, The
byzantine generals problem, ACM Transactions on Program-
ming Languages and Systems 4 (1982), 382–401. (Cited on
pages 26 and 137.)

[Lub02] Michael Luby, Lt codes, Foundations of Computer Science,
2002. Proceedings. The 43rd Annual IEEE Symposium on, 2002.
(Cited on pages 12, 13, and 71.)

[LZT04] Martin Landers, Han Zhang, and Kian-Lee Tan, Peerstore: Bet-
ter performance by relaxing in peer-to-peer backup, Proceed-
ings on Peer-to-Peer Computing, 2004. (Cited on page 19.)

[Mac05] David JC MacKay, Fountain codes, IEEE Communications 152
(2005), 1062–1068. (Cited on page 71.)

[Mas81] James Massey, Capacity, cutoff rate, and coding for a direct-
detection optical channel , Communications, IEEE Transactions
on 29 (1981), no. 11, 1615–1621. (Cited on page 11.)

[May02] Petar Maymounkov, Online codes, Tech. report, New York Uni-
versity, 2002. (Cited on page 12.)

BIBLIOGRAPHY 175

[MB09] Dirk Meister and André Brinkmann, Multi-level comparison of
data deduplication in a backup scenario, Proceedings of SYS-
TOR 2009: The Israeli Experimental Systems Conference, ACM,
2009, pp. 8:1–8:12. (Cited on page 17.)

[MCL+06] Faruck Morcos, Thidapat Chantem, Philip Little, Tiago Gasiba,
and Douglas Thain, idibs: an improved distributed backup sys-
tem, International Conference on Parallel and Distributed Sys-
tems, 2006. (Cited on page 19.)

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazières, A
low-bandwidth network file system, Proceedings of Sympo-
sium on Operating Systems Principles, ACM, 2001. (Cited on
page 18.)

[MDWS10] John C. McCullough, John Dunagan, Alec Wolman, and Alex C.
Snoeren, Stout: An adaptive interface to scalable cloud stor-
age, Proceedings of the 2010 USENIX Annual Technical Confer-
ence, USENIX Association, 2010, pp. 4–4. (Cited on page 49.)

[Mic06] Microsoft Corp., Description of full, incremental, and differen-
tial backups., online, http://support.microsoft.com/kb/
136621, 2006. (Cited on page 5.)

[MM02] Petar Maymounkov and David Mazières, Kademlia: A peer-to-
peer information system based on the xor metric, IPTPS ’01,
Springer-Verlag, 2002, pp. 53–65. (Cited on page 86.)

[NYGS06] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Se-
shan, Subtleties in tolerating correlated failures in wide-area
storage systems, Proceedings of NSDI’06 (Berkeley, CA, USA),
USENIX Association, 2006, pp. 17–17. (Cited on pages 96
and 98.)

[Ope14] Open Source Project, Dibs: Distributed internet backup
system, online, http://sourceforge.net/projects/dibs/,
2014. (Cited on page 19.)

[Ora13] Oracle Corp., Maintaining data integrity through constraints,
online, http://docs.oracle.com/cd/B12037_01/appdev.
101/b10795/adfns_co.htm, 2013. (Cited on page 66.)

[PJB11] Lluis Pamies-Juarez and Ernst Biersack, Cost analysis of redun-
dancy schemes for distributed storage systems, CoRR (2011).
(Cited on page 13.)

http://support.microsoft.com/kb/136621
http://support.microsoft.com/kb/136621
http://sourceforge.net/projects/dibs/
http://docs.oracle.com/cd/B12037_01/appdev.101/b10795/adfns_co.htm
http://docs.oracle.com/cd/B12037_01/appdev.101/b10795/adfns_co.htm

176 BIBLIOGRAPHY

[PJGL10] Lluis Pamies-Juarez and Pedro Garcia-Lopez, Maintaining data
reliability without availability in p2p storage systems, Pro-
ceedings of the 2010 ACM Symposium on Applied Computing
(New York, NY, USA), ACM, 2010. (Cited on pages 13 and 41.)

[PLS+09] James S. Plank, Jianqiang Luo, Catherine D. Schuman, Li-
hao Xu, and Zooko Wilcox-O’Hearn, A performance evaluation
and examination of open-source erasure coding libraries for
storage, Proccedings of FAST’09, USENIX Association, 2009,
pp. 253–265. (Cited on page 71.)

[PMG+13] J. S. Plank, E. L. Miller, K. M. Greenan, B. A. Arnold, J. A. Bur-
num, A. W. Disney, and A. C. McBride, GF-Complete: A com-
prehensive open source library for Galois Field arithmetic.
version 1.0 , Tech. Report UT-CS-13-716, University of Ten-
nessee, September 2013. (Cited on page 72.)

[PO95] Bart Prenel and Paul C. van Oorschot, Mdx-mac and building
fast macs from hash functions, Proceedings of the 15th Annual
International Cryptology Conference on Advances in Cryptology
(London, UK, UK), CRYPTO ’95, Springer-Verlag, 1995. (Cited
on page 70.)

[PPT09] Giorgos Papastergiou, Ioannis Psaras, and Vassilis Tsaoussidis,
Deep-space transport protocol: A novel transport scheme for
space dtns, Comput. Commun. 32 (2009), no. 16, 1757–1767.
(Cited on page 11.)

[PS07] John Proakis and Masoud Salehi, Fundamentals of communi-
cation systems, Pearson Education, 2007. (Cited on pages 76
and 145.)

[PSAS01] Marius Portmann, Pipat Sookavatana, Sëbastien Ardon, and
Aruna Seneviratne, The cost of peer discovery and searching
in the gnutella peer-to-peer file sharing protocol , Proceedings
of the 9th IEEE International Conference on Networks, 2001,
pp. 263–268. (Cited on page 126.)

[PSY09] Phillip Porras, Hassen Säıdi, and Vinod Yegneswaran, A foray
into conficker’s logic and rendezvous points, Proceedings of
the 2Nd USENIX Conference on Large-scale Exploits and Emer-
gent Threats: Botnets, Spyware, Worms, and More (Berke-
ley, CA, USA), LEET’09, USENIX Association, 2009, pp. 7–7.
(Cited on pages 87 and 148.)

[Rab81] Michael Rabin, Fingerprinting by random polynomials, Tech.
report, Harvard University, 1981. (Cited on page 18.)

BIBLIOGRAPHY 177

[RD01] Antony I. T. Rowstron and Peter Druschel, Pastry: Scalable,
decentralized object location, and routing for large-scale peer-
to-peer systems, Middleware ’01: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Hei-
delberg, Springer-Verlag, 2001, pp. 329–350. (Cited on pages 18
and 86.)

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker, A scalable content-addressable network ,
Proceedings of SIGCOMM ’01, ACM, 2001, pp. 161–172. (Cited
on page 86.)

[RKYG13] Seyed Majid Razavian, Hadi Khani, Nasser Yazdani, and Fate-
meh Ghassemi, An analysis of vendor lock-in problem in cloud
storage, International eConference on Computer and Knowledge
Engineering (ICCKE), 2013, pp. 331–335. (Cited on pages 3
and 131.)

[RP06] Sriram Ramabhadran and Joseph Pasquale, Analysis of long-
running replicated systems, Proceedings of INFOCOM 2006,
April 2006, pp. 1–9. (Cited on page 96.)

[RSA13] RSA Laboratories, Pkcs #5: Password-based cryptography
standard., online, http://www.rsa.com/rsalabs/node.asp?
id=2127, 2013. (Cited on page 51.)

[RV13] Ganesan Ramalingam and Kapil Vaswani, Fault tolerance via
idempotence, Proceedings of ACM SIGPLAN-SIGACT, POPL
’13, ACM, 2013, pp. 249–262. (Cited on pages 56 and 66.)

[SGLM08] Mark Storer, Kevin Greenan, Darrell Long, and Ethan Miller, Se-
cure data deduplication, Proceedings of the 4th ACM interna-
tional workshop on Storage security and survivability, StorageSS
’08, ACM, 2008. (Cited on pages 18 and 52.)

[Sho06] Amin Shokrollahi, Raptor codes, IEEE Transactions on Informa-
tion Theory 52 (2006), no. 6, 2551 –2567. (Cited on pages 12,
13, and 71.)

[SK09] Jerome H. Saltzer and M. Frans Kaashoek, Principles of com-
puter system design: An introduction, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2009. (Cited on pages 3,
11, 21, 22, 29, 56, 60, 66, 89, 130, 161, and 163.)

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler, The hadoop distributed file system, Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium
on, May 2010, pp. 1–10. (Cited on page 81.)

http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127

178 BIBLIOGRAPHY

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan,
Chord: a scalable peer-to-peer lookup protocol for internet ap-
plications, IEEE/ACM Trans. Netw. 11 (2003), no. 1, 17–32.
(Cited on pages 17 and 86.)

[SNS88] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller, Ker-
beros: An authentication service for open network systems,
Usenix Conference Proceedings, 1988. (Cited on page 51.)

[SR05] Richard Stevens and Richard Rago, Advanced programming in
the unix environment , Addison-Wesley professional computing
series, Addison-Wesley, 2005. (Cited on page 56.)

[SSVG13] Sriram Sankar, Mark Shaw, Kushagra Vaid, and Sudhanva Gu-
rumurthi, Datacenter scale evaluation of the impact of tem-
perature on hard disk drive failures, Trans. Storage 9 (2013),
no. 2, 6:1–6:24. (Cited on page 103.)

[Sta97] William Stallings, Data and computer communications - fifth
edition, Prentice-Hall India, 1997. (Cited on page 57.)

[Sto90] Philip Storey, Worm disk drive systems, Data Storage Tech-
nology, IEE Colloquium on, Feb 1990, pp. 6/1–6/3. (Cited on
page 106.)

[SVIG06] Russell Sears, Catharine Van Ingen, and Jim Gray, To BLOB or
not to BLOB: large object storage in a database or a filesys-
tem, Tech. report, Microsoft Research, 2006. (Cited on pages 59
and 88.)

[SZT+08] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy Za-
wodny, Arjen Lentz, and Derek J. Balling, High performance
mysql, 2nd edition, second ed., O’Reilly, 2008. (Cited on
page 88.)

[TCDM12] Laszlo Toka, Pasquale Cataldi, Matteo Dell’Amico, and Pietro
Michiardi, Redundancy management for P2P backup, IEEE IN-
FOCOM 2012, 2012. (Cited on pages 13, 41, 42, 95, 141,
and 142.)

[TDM10] Laszlo Toka, Matteo Dell’Amico, and Pietro Michiardi, Online
data backup: A peer-assisted approach, Peer-to-Peer Comput-
ing (P2P), 2010 IEEE Tenth International Conference on, 2010,
pp. 1–10. (Cited on page 38.)

BIBLIOGRAPHY 179

[The14a] The Data Rescue Center, Data recovery service, online, http:
//www.thedatarescuecenter.com, 2014. (Cited on pages 1
and 129.)

[The14b] , Data recovery service, pricing , online, http://www.
thedatarescuecenter.com/pricing.html, 2014. (Cited on
pages 1 and 129.)

[The14c] The GnuPG Project, Gnu privacy guard , online, https://www.
gnupg.org/, 2014. (Cited on page 19.)

[Tho14] Thomas Mager, Implementation of distback , online, http:
//www.eurecom.fr/~mager/DistBack/, 2014. (Cited on
page 55.)

[TMEBPM12] Thomas Mager, Ernst Biersack, and Pietro Michiardi, A mea-
surement study of the Wuala on-line storage service, IEEE
P2P 2012, 2012. (Cited on pages 16, 53, 58, 71, 74, 76, 77,
and 146.)

[TP11] Chad Teat and Svetlana Peltsverger, The security of crypto-
graphic hashes, Proceedings of the 49th Annual Southeast Re-
gional Conference (New York, NY, USA), ACM-SE ’11, ACM,
2011, pp. 103–108. (Cited on page 50.)

[Tri96] Andrew Tridgell, The rsync algorithm, Ph.D. thesis, Australian
National University, 1996. (Cited on page 62.)

[TSH+05] Joseph Tucek, Paul Stanton, Elizabeth Haubert, Ragib Hasan,
Larry Brumbaugh, and William Yurcik, Trade-offs in protect-
ing storage: a meta-data comparison of cryptographic, back-
up/versioning, immutable/tamper-proof, and redundant stor-
age solutions, Proceedings of Mass Storage Systems and Tech-
nologies. 22nd IEEE / 13th NASA Goddard Conference, April
2005, pp. 329–340. (Cited on page 105.)

[TYP13] Burcu Tepekule, Utku Yavuz, and Ali Pusane, On the use of
modern coding techniques in qr applications, Signal Processing
and Communications Applications Conference (SIU), 2013 21st,
April 2013, pp. 1–4. (Cited on page 11.)

[U.S14] U.S. Energy Information Administration, Short-term energy
and summer fuels outlook , online, http://www.eia.gov/
forecasts/steo/report/electricity.cfm, 2014. (Cited on
pages 3 and 131.)

http://www.thedatarescuecenter.com
http://www.thedatarescuecenter.com
http://www.thedatarescuecenter.com/pricing.html
http://www.thedatarescuecenter.com/pricing.html
https://www.gnupg.org/
https://www.gnupg.org/
http://www.eurecom.fr/~mager/DistBack/
http://www.eurecom.fr/~mager/DistBack/
http://www.eia.gov/forecasts/steo/report/electricity.cfm
http://www.eia.gov/forecasts/steo/report/electricity.cfm

180 BIBLIOGRAPHY

[VI12] Vinodh Venkatesan and Ilias Iliadis, Effect of codeword place-
ment on the reliability of erasure coded data storage systems,
Tech. report, IBM Reseach, 2012. (Cited on pages 30 and 78.)

[VN10] Kashi Venkatesh Vishwanath and Nachiappan Nagappan, Char-
acterizing cloud computing hardware reliability , Proceedings
of the 1st ACM Symposium on Cloud Computing (New York,
NY, USA), SoCC ’10, ACM, 2010, pp. 193–204. (Cited on
page 82.)

[Vog99] Werner Vogels, File system usage in windows nt 4.0 , Proceed-
ings of the Seventeenth ACM Symposium on Operating Sys-
tems Principles (New York, NY, USA), SOSP ’99, ACM, 1999,
pp. 93–109. (Cited on pages 7 and 79.)

[Vog09] , Eventually consistent , Commun. ACM 52 (2009),
no. 1, 40–44. (Cited on page 22.)

[Wal05] Chip Walter, Kryder’s Law , Scientific American 293 (2005),
32–33. (Cited on pages 2 and 130.)

[WB99] Stephen B. Wicker and Vijay K. Bhargava, Reed-solomon codes
and their applications, Wiley-IEEE Press, 1999. (Cited on
pages 12, 13, 33, and 139.)

[Wea06] Hakim Weatherspoon, Design and evaluation of distributed
wide-area on-line archival storage systems, Ph.D. thesis, EECS
Department, University of California, Berkeley, Oct 2006. (Cited
on page 118.)

[Wil92] Paul R. Wilson, Uniprocessor garbage collection techniques,
Proceedings of the International Workshop on Memory Man-
agement (London, UK, UK), IWMM ’92, Springer-Verlag, 1992,
pp. 1–42. (Cited on page 89.)

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles, Dynamic storage allocation: A survey and critical re-
view , Proceedings of the International Workshop on Memory
Management, IWMM ’95, Springer-Verlag, 1995, pp. 1–116.
(Cited on page 89.)

[WOW08] Zooko Wilcox-O’Hearn and Brian Warner, Tahoe: The least-
authority filesystem, Proceedings of the 4th ACM International
Workshop on Storage Security and Survivability (New York, NY,
USA), StorageSS ’08, ACM, 2008, pp. 21–26. (Cited on pages 15
and 71.)

BIBLIOGRAPHY 181

[YKMI88] Toshio Yamada, Hisakazu Kotani, Junko Matsushima, and
M. Inoue, A 4-mbit dram with 16-bit concurrent ecc, Solid-
State Circuits, IEEE Journal of 23 (1988), no. 1, 20–26. (Cited
on page 12.)

[YS99] Jimmy Yang and Feng-Bin Sun, A comprehensive review of
hard-disk drive reliability , Reliability and Maintainability Sym-
posium, 1999, pp. 403–409. (Cited on page 101.)

[Zha07] Ji Gao Zhang, Effect of dust contamination on electrical con-
tact failure, IEEE Holm Conference on Electrical Contacts, Sept
2007, pp. xxi–xxx. (Cited on page 103.)

[ZLL13] Ruijin Zhou, Ming Liu, and Tao Li, Characterizing the effi-
ciency of data deduplication for big data storage management ,
IEEE International Symposium on Workload Characterization
(IISWC), 2013, pp. 98–108. (Cited on page 127.)

	1 Introduction
	1.1 Motivation
	1.1.1 The Need for Back-up
	1.1.2 Why Not Use the Cloud for Back-Up?

	1.2 Gateway-Based Federated Network
	1.3 Back-up Plan
	1.3.1 Back-up Strategies
	1.3.2 Frequency of Back-up
	1.3.3 Back-up Location
	1.3.4 Back-up Plan for the Gateway Architecture

	1.4 Focus and Contribution of this Thesis
	1.5 Organization of this Thesis

	2 Related Work
	2.1 Introduction
	2.2 Redundancy Strategies
	2.2.1 Replication
	2.2.2 Erasure Coding

	2.3 Repair Strategies
	2.4 Storage vs. Back-up
	2.5 Existing Systems

	3 Swarm Architecture
	3.1 Introduction
	3.2 Swarm Architecture Overview
	3.2.1 Gateway
	3.2.2 Swarm
	3.2.3 Tracker

	3.3 Snapshot Representation
	3.3.1 On-Site Snapshot Representation
	3.3.2 Off-Site Snapshot Representation

	3.4 Data Management Strategy
	3.4.1 Data Placement Policy
	3.4.2 Swarms as Distributed Key-Value Stores
	3.4.3 Data Kept on the Tracker
	3.4.4 Implications

	3.5 Maintenance Procedure
	3.5.1 Failure Detection
	3.5.2 Repair

	3.6 Influence of the Number of Original Fragments
	3.6.1 Storage Overhead
	3.6.2 Data Rates
	3.6.3 Bandwidth Saturation
	3.6.4 Effect of Correlated Failures
	3.6.5 Load on the Tracker

	3.7 Encryption
	3.7.1 Authentication
	3.7.2 Data Encryption
	3.7.3 Integrity Checks

	3.8 Conclusion

	4 Implementation
	4.1 Introduction
	4.2 Communication
	4.2.1 RESTful Architecture
	4.2.2 Aggregates
	4.2.3 Partial Transfers

	4.3 Swarm Leader
	4.3.1 Modules for On-Site Back-Up
	4.3.2 Modules for Off-Site Back-Up
	4.3.3 Different Ways of Storing Files in a Swarm

	4.4 Tracker
	4.4.1 Resolution of Gateway Identifiers
	4.4.2 Internal Tracker Structure
	4.4.3 Total Tracker Outage

	4.5 Storage Node
	4.5.1 Storing Transmission Blocks
	4.5.2 Storage Reclamation

	4.6 Incentives
	4.7 Conclusion

	5 Impact of Correlated Failures
	5.1 Introduction
	5.2 Suitability of the Markovian Assumption
	5.2.1 Real World Traces
	5.2.2 Traces Matching Our Environment
	5.2.3 Independence of Permanent Failure Events
	5.2.4 Exponential Distribution of Permanent Failures

	5.3 Discussion
	5.3.1 Geographically-Related Correlated Failures
	5.3.2 Geographically-Diverse Correlated Failures

	5.4 Testing Back-Up Durability
	5.4.1 Experimental Setup
	5.4.2 Results and Conclusion

	6 Back-Up Simulation
	6.1 Introduction
	6.2 Time Required for Back-Up Creation
	6.2.1 Common Back-Up Scenario
	6.2.2 Cloud-Based Back-Up
	6.2.3 Swarm-Based Back-Up
	6.2.4 Conclusion

	6.3 Influence of the Timeout Period
	6.3.1 Costs Separated into Two Components
	6.3.2 Optimal Value for the Free-Traces

	6.4 Visualization of Bandwidth Usage
	6.4.1 Simulation Setup
	6.4.2 Results
	6.4.3 Conclusion

	7 Conclusion and Perspective
	7.1 Conclusion
	7.2 Perspective and Future Work

	A Synthèse en francais
	B Additional Implementation Details
	B.1 Maintenance Module
	B.2 Snapshot Creator Module

	C Glossary
	C.1 Acronyms and Abbreviations

	List of Figures
	List of Tables
	Bibliography

