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Abstract—We consider an extended wireless network with
transmit and receive nodes homogeneously distributed in R2.
The channel state information (CSI) is known at the centralized
processing unit at the receiver side but not at the transmitters
which transmit at equal power. By extending the definition of
Euclidean random matrices (ERM) and their spectral analysis
to two independent sets of points, we determine an approximated
expression of the average maximum achievable rate per unit area
of the system.

I. INTRODUCTION

Technologies as cloud radio access networks (C-RAN) and
remote radio heads (RRH) are currently object of intensive
studies and are expected to be strategic pillars of the future 5G
wireless networks. These technologies will make technically
feasible the concept of distributed antenna systems (DAS) with
highly centralized processing points. DAS, introduced in [1],
[2], are receiving large attention. Significant efforts have been
already spent in the analysis of cellular DAS in downlink [3]–
[6] assuming that the antennas are deployed at fix locations
in a regular grid or as Poisson Point Processes with a certain
intensity. This latter assumption opened the way to the appli-
cation of stochastic geometry [7]. A detailed overview can be
found in [6]. Multiuser DAS in uplink were studied in [8] and
[9] using random matrix theory [10] and considering a given
finite area. Due to strong underlying approximations, in both
cases, the DAS sum capacity is approximated by the limiting
capacity of a multiple input multiple output (MIMO) cellular
system with full base stations cooperation, as pointed out in
[11]. The good match between simulations and theoretical
results appears when the transmit antennas are much more than
receive antennas or when the average received signal to noise
ratio (SNR) is low, because the system becomes insensitive to
the receive antenna layout [11]. In [11] a single cell of given
area with receive antennas homogeneously distributed within
the cell is considered. A lower bound for the multiple access
channel capacity is provided under the assumption of constant
receive power per user terminal, channel state information
(CSI) at the receiver and with or without CSI at the transmitter.

A different research stream focuses on extended multicell
networks with cooperating multiple antenna base stations. In
this context, random matrix theory (RMT) resulted as a very
powerful investigation tool. The analysis of these systems
dates back to the works of Zaidel et al. [12] and it is based on a
simple one-dimensional linear network referred in literature as
Wyner network. The Wyner model is also adopted in most of
the subsequent contributions based on RMT, e.g. in [13] where
the benefit of cooperation on a multi-cell MIMO network is
studied as the number of users and antennas at the base station
grow large, in [14] where a more refined model is considered

with directional antennas and finite number of users and
antennas at the cooperating base stations. Critical weaknesses
of the existing large system analysis based on RMT are due to
the fact that the models do not account for the geographical
random distribution of transmit and receive wireless nodes.
A two-dimensional network model with randomly distributed
nodes was proposed in [16] and targeted the optimization
of the transmit power. The randomness in the system is
obtained by locating transmit and receive pairs randomly in a
lattice. Coherent potential approximation, a technique applied
in statistical mechanics, is applied.

In this work we aim to combine the two key aspects of
distributed antennas and extended cooperative networks and
analyze the fundamental limits of this channel under the
assumption of constant transmit power, knowledge of CSI at
the centralized processing unit and no CSI at the transmitters.
The analysis is carried out by extending the concept of ERM to
two sets of independent random points (in our context the sets
of transmitters and receivers) in an Euclidian space. Euclidian
matrices are large group of random matrices introduced in
[17] and found applications in various fields of physics. Given
a random set in an Euclidian space E and a deterministic
function f : E × E → R, the entries of an ERM realization
consists of the values of f(·, ·) on all possible pairs of elements
of the random set. A detailed overview can be found in [18]
and [19] and several techniques to approximate the eigenvalue
distributions and spectral properties of ERM are proposed.
Up to the author’s knowledge, this work presents the first
extension of ERM theory to two independent sets of points
as well as the first application of ERM theory to telecommu-
nication systems. We apply an approximated decomposition
of ERM which enables the application of free probability
theory [20]. Based on this approximation, we determine an
approximated expression of the average maximum achievable
rate per unit area of an extended network in R2. To account for
the randomness of the network topology, transmit and receive
antennas are modeled as independent and homogeneously
distributed over the entire area with given intensities.

II. SYSTEM MODEL

We consider a wireless system consisting of infinite transmit
and receive nodes in the Euclidean space R2. Both trans-
mit and receive nodes are independently and homogeneously
distributed over a squared lattice1 of spacing τ > 0. The
receive antennas are connected to a processing unit (e.g. via

1Note that this is a technical assumption and the spacing τ can be chosen
arbitrarily small. In the following, it will be clear that τ is requested to be
sufficiently small to satisfy the sampling theorem for a specific function in
R2.



optical fibers) such that decoding is performed jointly and
optimally. The link between each transmitter-receiver pair
is characterized by a pathloss attenuation dependent on the
Euclidean distance between transmit and receive nodes. Let
ri = (rx,i, ry,i) and tj = (tx,j , ty,j) be the Euclidean
coordinates of receiver i and transmitter j on the square grid.
Then, the pathloss is given by

f(ri, tj) = f(∥ri − tj∥2) (1)

where ∥ri − tj∥2 denotes the Euclidean distance between
the two nodes. For the applicability of the mathematical
tools proposed in the following section, f(·, ·) is required to
vanish at the boundary of a finite disc (assumption satisfied in
physical systems) and to satisfy the conditions of existence of
a Fourier transform. In order to keep the presentation insightful
and the computation simple, we follow the approach in [21]
and model the pathloss as an exponentially decaying function

f(ri, tj) = e−k0∥ri−tj∥2 (2)

where k0 > 0 is a positive constant. The transmit nodes do not
have knowledge of the channel and transmit at the same power
P. The receivers are impaired by additive white Gaussian noise
with variance σ2. The transmit signal to noise ratio (SNR) is
denoted with ρ = P

σ2 . Then, the signal received at the discrete
time interval t by receiver j is given by

yi(t) =
∑
j

Pf(∥ri − tj∥2)xj(t) + wi(t) (3)

where xi(t) is the unitary energy symbol transmitted by node
j; and wi(t) is the additive white Gaussian noise at receive
node i.

Throughout this paper, vectors and matrices are denoted
by bold lower case and bold capital letters; ·H denotes the
Hermitian operator; the inner product of two vectors u and
v is shortly indicated by juxtaposition, i.e. uv; δ(u) is the
indicator function equal to 1 if u = 0 and zero otherwise;
∥u∥2 is the Euclidean norm of vector u.

III. MATHEMATICAL TOOLS AND PERFORMANCE
ANALYSIS

The performance analysis is obtained considering a finite
system over a finite region and then determining its asymptotic
performance assuming constant intensities of transmitters and
receivers per unit area in the limit as the area and the number
of nodes grows large. Thus, it is convenient to define more
accurately the finite model.

Let AL be a squared box of side L and area A = L2 in
R2. More specifically, we assume that AL =

[
−L

2 ,+
L
2

)
×[

−L
2 ,+

L
2

)
. Then, we choose a τ such that L = τθ with θ

positive even2 integer and we consider the points on a regular
lattice w ≡ (τ(wx + 1/2), τ(wy + 1/2)) with wx, wy =

− θ
2 , −

θ
2 + 1, . . . θ2 − 1. We denote by A♯

L the lattice in AL.
We model the distributed transmit and receive antennas as
homogenous Bernoulli lattice processes ΦT

A♯
L

and ΦR
A♯

L

with

parameters γT = ρT τ
2 and γR = ρRτ

2, respectively. It
is worth noticing that two sequences of denser and denser
Bernoulli lattice processes with constant intensity ρT and ρR
converges in distribution to limiting Poisson point processes

2The assumption to be even is made to simplify the notation but it is not
strictly required.

[7]. Additionally, let T = {tj} and R = {ri} be two
realizations of the two Bernoulli lattice processes in A♯

L. They
have cardinality NT and NR, respectively. Then ρT = E{NT }

τ2θ2

and ρR = E{NR}
τ2θ2 , respectively. Corresponding to the sets T

and R we define the random matrix F whose (i, j) element
is the value of a deterministic function f(·, ·) in R2 ×R2, i.e.

F = f(ri, tj). (4)

To study the statistical properties of matrix F it is convenient
to express function f(·, ·) as the expansion of orthogonal
functions ψα in A♯

L. This approach has the advantage of
decoupling the effects of the randomness of the matrix from
the complexity of the function f(·, ·). Throughout this work,
we adopt as orthogonal set of functions on A♯

L

ψ
(L)
ℓ (w) =

1

θ
exp (+iωLℓw) (5)

where ωL = 2π
L , ℓ ∈ Z2 \ {0} is a two dimensional vector of

integers and w ∈ A♯
L. It is straightforward to verify that these

functions are orthogonal on A♯
L, i.e.∑

w∈A♯
L

ψ
(L)
ℓ (w)ψ(L)∗

m (w) =

{
0, ℓ ̸= m
1, ℓ = m.

(6)

Additionally, we assume that the orthogonal set satisfies the
property ∑

w∈A♯
L

ψ
(L)
ℓ (w) = 0. (7)

This property is satisfied for all pairs of integers (ℓx, ℓy) with
ℓx, ℓy ̸= ±nθ and n ∈ N0 for the function set defined in (5).
Then, we define the discrete transform

T
(L)
ℓ,m =

∑
r∈A♯

L

∑
t∈A♯

L

f(r, t)ψ
(L)∗
ℓ (r)ψ(L)

m (t)

=
1

θ2

∑
r∈A♯

L

∑
t∈A♯

L

f(r, t)e−iωL(ℓr−mt). (8)

It is straightforward to verify that

f(r, t) =
∑

ℓx,ℓy,mx,my={0,1,...θ−1}
(ℓx,ℓy )̸=(0,0)

(mx,my )̸=(0,0)

T
(L)
ℓ,mψ

(L)
ℓ (r)ψ(L)∗

m (t).

Then, the matrix F(L) can be written as

F(L) = Ψ
(L)
R T(L)Ψ

(L)H
T (9)

where T(L) is a (θ2−1)×(θ2−1) matrix with elements T (L)
ℓ,m,

Ψ
(L)
R is an NR × (θ2 − 1) matrix with element (j, ℓ) ψ(L)

j,ℓ =

ψ
(L)
ℓ (rj) and Ψ

(L)
T is an NT × (θ2 − 1) matrix with element

(k,m) ψ
(L)
k,m = ψ

(L)
m (tk). When the area of A(L) increases θ,

NR and NT also increase according to the following relations

NR = ρRτ
2θ2, NT = ρT τ

2θ2, NR =
ρR
ρT
NT .

(10)

In order to determine the asymptotic eigenvalue distribution
of the matrix F(L)HF(L) as L → +∞ it is essential to



characterize the matrix T(L) as L → +∞ and determine its
asymptotic eigenvalue distribution. The following proposition
summarizes the asymptotic properties of T(L) when the matrix
F(L) is defined over the exponentially decaying function in (2).

PROPOSITION 1 Let ϵ > 0 be an arbitrary small positive
value and let τ ≤ π2ϵ

2k0
. Then, the asymptotic eigenvalue density

function of matrix T(L) as L→ +∞ is given by

fT(x) =
(2πk0τ)

2/3

6π
x−5/3 2πk0τ

(
√
k20τ

2 + π2)3
≤ x ≤ 2π

k20τ
2

and can be effectively approximated elsewhere by
fT =

(
1− π

4

)
δ(x− η) where η is a positive constant

in the interval3
[

2πk0τ

(
√

k2
0τ

2+2π2)3
, 2πk0τ

(
√

k2
0τ

2+π2)3

]
.

The results of this proposition are derived in Appendix A.
In order to obtain an approximate expression of the eigen-

value distribution fFHF(λ) of matrix F(L)HF(L) as L→ +∞
or, equivalently, NR, NT , θ

2 → +∞ with constant ratios (10)
we approximate the matrices Ψ

(L)
R and Ψ

(L)
T by Gaussian

matrices of i.i.d. zero mean elements with variance θ−2.
Note that this approximation has been widely applied both in
telecommunication systems (e.g. [22]) and mesoscopic physics
(e.g. [19], [23]).

Under this approximation, we can apply the following
lemma.

LEMMA 1 Let Φ̃T and Φ̃R be Gaussian matrices of i.i.d.
zero mean elements with variance θ−2 and size θ2 ×NT and
θ2 × NR, respectively. Let A be a θ2 × θ2 diagonal matrix
with eigenvalue probability density function that converges
to fA(x), with x ∈ R, as θ2 → +∞. Then, as θ2, NT ,
NR → +∞ with constant ratios NR

θ2 → γR and NT

θ2 → γT ,
the asymptotic eigenvalue distribution fC(x) of the matrix

C = Φ̃TAΦ̃
H

R Φ̃RAΦ̃
H

T

obeys

sGC (s) + 1 = −GC(s) (γT sGC(s) + γT − γR)∫
x2fA(x)dx

1− γTGC(s) (γT sGC(s) + γT − γR)x2
(11)

being GC(s) the Stieltjes transform of fC(x), i.e.

GC(s) =

∫
fC(x)dx

x− s
. (12)

The derivation of this result is omitted since it follows along
the lines of the derivation in [24], Appendix A. An implicit
expression of GFHF(s), the Stieltjes transform of fFHF(λ)
is obtained by computing (11) for fA(x) = fT(x), the
eigenvalue probability density function provided in Proposition
1.

Under the constraint of constant transmit power, the average
maximum achievable rate per unit area and frequency band for

3Because of the constraints on τ for ϵ arbitrarily small also the values on
this interval are close to zero.
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Fig. 1. Asymptotic eigenvalue distribution of the matrix FHF in solid
red line for ρT = 20, ρR = 40, and k0 = 4. The asymptotic eigenvalue
distribution is compared to the empirical eigenvalue distribution given by the
histogram in blue.

a network over a finite lattice A#
L are related to the spectrum

of the matrix F by

C(ρ,FL, NR, NT ) =
1

2θ2τ2

NT∑
n=1

log2

(
1 + ρλn(F

(L)HF)(L)
)

where λn(·) denotes the n-th eigenvalue of the matrix argu-
ment. Asymptotically, as L → +∞ we can resort the well
known relation between achievable rate per unit area and
GFHF(s), the Stieltjes transform of the asymptotic eigenvalues
density function of the channel covariance matrix FHF, (see
e.g. [10], [25]–[27])

C(ρ, ρR, ρT ) =
ρT

2 ln 2

∫ ρ

0

v−1
(
1− v−1GFHF(−v−1)

)
dv

and assume GFHF(s) ≈ GC(s) to obtain and approximate
expression of asymptotic average achievable rate per unit area.

IV. SIMULATION RESULTS

In this section we compare the analytical results with the
empirical results obtained by simulating a network of finite
size. We consider systems with the pathloss by k0 = 4. In
Figure 1 we assume ρT = 20 and ρR = 40 and compare
the theoretical eigenvalue pdf to the empirical distribution.
Although the two curves match quite well in the central part
they present some mismatch in the extremes of the support:
the empirical distribution shows an higher concentration of
eigenvalues close to zero while the theoretical eigenvalue
distribution presents a larger support. In Figure 2, we consider
a system with transmitter intensity ρT = 20 while the intensity
of the receivers varies in the range ρR = [20, 200]. The curves
show the capacity per unit frequency band per unit area when
the number of the receivers’ intensity increases for Eb/N0 = 3
dB and Eb/N0 = 8 dB. At low values of Eb/N0 the analytical
approximation is very tight while it becomes looser when
Eb/N0 increases. Imbalances between the number of transmit
and receive antenna densities is also an additional factor that
influences the tightness of the analytical bound.
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APPENDIX

Before considering the 2-dimensional (2D) system model
we consider the 1-dimensional (1D) one. In this case, the
lattice is defined over the segment Ã = [−L/2, L/2] and
consists of the points w ≡ τ(wx + 1/2) with wx defined
as in the 2D case. The two Bernoulli lattice points ΦT̃

Ã♯
and

ΦR̃
Ã♯

are characterized by the parameters γ̃T = ρ̃T τ and
γ̃R = ρ̃Rτ and, if ÑT and ÑR is the cardinality of the
realizations of the two processes, then ρ̃T = E{ÑT }

τθ and

ρ̃R = E{ÑR}
τθ . Definitions similar to the 2D case hold for the

system model (3) and the matrix decomposition (9) with the
difference that the orthogonal set of functions in Ã♯ is defined
as ψ̃ℓ = 1√

θ
e+ıωLℓw. The discrete transform T̃L

ℓ,m in the 1D
case admits a closed form expression even for finite L thanks
to the existence of well known closed form expressions for∑θ/2−1

r=−θ/2 e
(−α+ıβ)r. Due to space constraints, we omit the

derivation and provide directly the diagonal elements of F̃(L)

in (13) at the top of next page, with ν = 2πℓ
θ . Similarly,

we can obtain the out-diagonal elements T̃
(L)
ℓ,m provided in

(14) on the top of next page. It is apparent that T̃ (L)
ℓ,m → 0

as θ → +∞ with rate θ−1. However, there are ℓ such that
limθ→∞

∑
m:m ̸=ℓ

∣∣∣T̃ (L)
ℓ,m

∣∣∣ does not converge to zero. Then, we
cannot adopt the classical argument based on the Gershgorin
circle theorem to prove the convergence of the eigenvalues
of the matrix T(L) to its diagonal elements. Nevertheless,
limθ→∞

∑
m:m ̸=ℓ T̃

(L)
ℓ,m → 0 and numerous simulations show

a perfect match between the eigenvalues of the matrix F(L),
as shown in Fig. 3. We leave the analysis of this aspect for
further studies and assume that the same property holds for
the 2D case. In the following we focus on the derivation of
the diagonal elements of the matrix T∞ for the 2D case. For
finite L = τθ and r = τR, t = τT with r, t ∈ A♯

L and
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Fig. 3. The black solid line shows the eigenvalues of matrix T(L) for
θ = 215 and k0 = 4. The read dashed line and the blue dotted line show the
diagonal elements of the finite and the asymptotic matrix. Finally, the dashed
black line shows the approximation affected by aliasing of the asymptotic
diagonal elements.

ν = µ, where ν = ωLℓ and µ = ωLm,

T (L)
ν,ν =

1

θ2

∑
T

∑
R

e−k0τ |R−T|e−ıν(R−T)

Observe that the diagonal elements T (L)
ν,ν depend only on ∆ =

R−T and our problem reduces to determine

T (ν) = lim
θ→+∞

∑
τ∆∈A♯

L

e−k0τ |∆|e−ıν∆ (15)

for ν ∈ [−π,+π)×[−π,+π). In order to compute the function
T (ν), let us observe that T (ν) is the 2-dimensional (2D)
Fourier representation of a discrete 2D sequence obtained by
sampling the function e−k0

√
x2+y2 in the point of the set A♯

L.
As well known (e.g. [28]), this frequency response T (ν) is
related to the Fourier transform T (Ω) of the continuous 2-
dimensional function f(r, t)

T (Ω) =

∫
R2

e−k0

√
x2+y2

e−ı(Ωxx+Ωyy)dxdy

by the relation

T (ν) =
1

τ2

+∞∑
r=−∞

+∞∑
s=−∞

T
(
νx
τ

+
2πr

τ
,
νy
τ

+
2πs

τ

)
. (16)

Thus, the problem boils down to determine T (Ω). From (16)

T (Ω) =

∫
R2

e−k0

√
x2+y2

e−ı(Ωxx+Ωyy)dxdy

=

∫ ∞

0

ρe−k0ρdρ

∫ 2π

0

e−ıρρΩ cos(ϕ−ϕΩ)dϕ

where ρ =
√
x2 + y2, ϕ = arctan y

x , ρΩ =
√
Ω2

x +Ω2
y,

and ϕΩ = arctan
Ωy

Ωx
. By making use of the Bessel function

identity

J0(x) =
1

2π

∫ 2π

0

e−ıx cos(ϕ−θ)dθ (17)

where J0(x) is the Bessel function of first kind, we obtain

T (Ω) = 2π

∫ +∞

0

ρe−k0ρJ0(ρΩρ)dρ =
2πk0

(k20 +Ω2
x +Ω2

y)
3/2



T
(L)
ℓ,ℓ = 1− 2(e−k0τ(θ−1)(ek0τ − cos(ν))− ek0τ cos(ν) + 1)

e2k0τ − 2ek0τ cos(ν) + 1
+

2ek0τ (2ek0τ − cos(ν)− e2k0τ cos(ν))

θ(e2k0τ − 2ek0τ cos(ν) + 1)2

+
2e−k0τ(θ−1)(ek0τ − cos(ν))

(e2k0τ − 2ek0τ cos(ν) + 1)
+

2e−k0τ(θ−1)(e2k0τ cos(ν)− 2ek0τ + cos(ν))

θ(e2k0τ − 2ek0τ cos(ν) + 1)2
(13)

T
(L)
ℓ,m =

cos(πm) cos(πℓ) cos(π(ℓ−m)/θ)(1− e−k0τθ)(4 cos(π(ℓ−m)/θ)− 2(ek0τ + e−k0τ ) cos(π(ℓ+m)/θ))

θ ((2 cos(π(ℓ−m)/θ)− (ek0τ + e−k0τ ) cos(π(ℓ+m)/θ))2 + (e−k0τ − ek0τ )2 sin(π(ℓ+m)/θ)2)
(14)

and by applying (16)

T (ν) = 2πk0τ
∑
r

∑
s

(
k20τ

2 + (νx + 2πr)
2
+ (νy + 2πs)

2
)−3/2

.

Note that for τ sufficiently small, i.e. such that, for an
arbitrarily small ϵ > 0,

T (±π,±π) = 2πk0τ

(τ2k20 + π2)
3/2

≤ ϵ ≈ 0

or more conservatively for

τ ≤ π2ϵ

2k0

we can neglect aliasing effects and the diagonal elements of
the matrix T in the limit for θ → +∞, can be approximated
by

T (ν) =
2πk0τ(√

τ2k20 + u2
x + ν2y

)3 |νx| < π and |νy| < π.

Fig. 3 shows the mismatch between the actual eigenvalues and
the asymptotic diagonal elements obtained by neglecting the
aliasing.

In order to utilize the spectrum of the matrix T in the
framework of random matrix theory we need to express it in
terms of probability distribution function FT(x) which denotes
fraction of eigenvalues of matrix T nongreater than x. To
determine FT(x) let us observe that

FT(x) =


0, for 0 ≤ x < η;
1− π

4 , for η ≤ x < 2πk0τ

(
√

k2
0τ

2+π2)3
;

1− 1
4π

(
2πk0τ

x

)2/3
+

k2
0τ

2

4π

for 2πk0τ

(
√

k2
0τ

2+π2)3
≤ x ≤ 2π

k2
0τ

2

(18)

This yields the asymptotic eigenvalue density function of
matrix T in Proposition 1.
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[25] S. Shamai (Shitz) and S. Verdú, “The impact of frequency–flat fading
on the spectral efficiency of CDMA,” IEEE Transactions on Information
Theory, vol. 47, no. 4, pp. 1302–1327, May 2001.

[26] L. Cottatellucci, R. R. Müller, and M. Debbah, “Asynchronous CDMA
systems with random spreading–part i: Fundamental limits,” IEEE
Transactions on Information Theory, vol. 56, no. 4, pp. 1477 – 1497,
Apr. 2010.

[27] L. Cottatellucci and M. Debbah, “On the capacity of MIMO Rice
channels,” in Proc. 42nd Allerton Conf. on Communication, Control and
Computing, Monticello, Illinois, Sep./Oct. 2004.

[28] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. New
Jersey: Prentice–Hall, 1975.


