
Memory Partitioning in Memcached:
An Experimental Performance Analysis

Damiano Carra
University of Verona

Verona, Italy
damiano.carra@univr.it

Pietro Michiardi
Eurecom

Sophia Antipolis, France
pietro.michiardi@eurecom.fr

Abstract—Memcached is a popular component of modern Web
architectures, which allows fast response times – a fundamental
performance index for measuring the Quality of Experience of
end-users – for serving popular objects. In this work, we study
how memory partitioning in Memcached works and how it affects
system performance in terms of hit rate. Memcached divides the
memory into different classes proportionally to the percentage
of requests for objects of different sizes. Once all the available
memory has been allocated, reallocation is not possible or limited,
a problem called “calcification”. Calcification constitutes a symp-
tom indicating that current memory partitioning mechanisms
require a more careful design.

Using an experimental approach, we show the negative impact
of calcification on an important performance metric, the hit
rate. We then proceed to design and implement a new memory
partitioning scheme, called PSA, which replaces that of vanilla
Memcached. With PSA, Memcached achieves a higher hit rate
than what is obtained with the default memory partitioning
mechanism, even in the absence of calcification. Moreover, we
show that PSA is capable of “adapting” to the dynamics of
clients’ requests and object size distributions, thus defeating the
calcification problem.

I. INTRODUCTION

Modern Web architectures are designed to provide low
latency response times to thousands of requests per second,
originated by a large number of clients trying to access, for
example, a complex Web page. By decreasing the delay of
the retrieved objects, it is possible to improve the Quality
of Experience (QoE) of end-users. To achieve such goal,
a common solution is to keep a large fraction of the data
(objects) served by a website in main memory. In this context,
Memcached (MC) [1] is a widely-used caching layer: it is a
key-value store that exposes a simple API to store and serve
data from the RAM. Thanks to its simplicity and efficiency,
Memcached has been adopted by many companies, such as
Wikipedia, Flickr, Digg, WordPress.com, Craigslist, and, with
additional customizations, Facebook and Twitter.

In this work we focus on memory partitioning, which is
the process by which MC assigns portions of the memory to
store objects.

By design, MC partitions the memory dedicated to store
data objects into different classes; each class is dedicated to
objects with a progressively increasing size, which takes into
account the typical size distribution of web data objects. When
a new object has to be stored, MC checks if there is available
space in the appropriate class, and stores it. If there is no space,
MC evicts a previously stored object in favor of the new one.

In MC, therefore, memory is granted to a class based on the
requests received for objects belonging to that class. Once all
the available memory has been allocated, memory reallocation
– that may be triggered by a change in the statistical properties
of the requested objects – is not supported.1 Such a strict
approach to memory allocation raises a problem referred to
as calcification – a problem observed in some prominent
operational setups [2]–[4].

The straightforward solution to calcification is to allow
MC to reassign memory previously allocated to a given class;
however, we identify a number of challenges in doing so. How
can the system detect whether calcification has occurred? What
can be used as an indication that a class needs to be granted
more memory than another class? How much memory should
be reallocated from one class to another class? How often
should the system evaluate memory allocation and proceed
with reallocation? The above questions suggest that, rather
than focusing on calcification alone, it is reasonable to revisit
the overall process of memory allocation. Despite the clear
consequences on hit rate, this problem has received little
attention in the literature.
Our contributions: Our first goal is to understand the impact
of calcification on MC performance. To do so, we use the well-
known hit rate metric, defined as the number of requests that
can be served directly from memory (the cache) over the total
number of requests received by a Web server. Since the hit
rate has a direct impact on the QoE, the evaluation of the
hit rate under different working conditions is of fundamental
importance.

Using an experimental testbed, we show and determine –
for the first time – how calcification adversely impact the hit
rate (Sec. III). In our experiments, we use the latest version
of MC and Twemcache (TMC) – a custom version developed
at Twitter that includes a series of policies to address the
calcification problem. In addition, we generate object size
distribution according to the model introduced by Atikoglu et.
al. [4], which is based on production-traces of MC at Facebook.
We then set off to design a new memory allocation scheme to
replace that implemented in MC: the gist of our mechanism is
to measure the absolute values of cache misses as an indication
that a class needs more memory; the memory required by a
problematic class is taken from the class that would suffer the
least, would its memory be reallocated. We implemented our

1Starting from version 1.4.11, MC now provides a mechanism to reallocate
the memory. However, the reallocation algorithm is extremely conservative,
therefore reallocation is rare.

new memory allocation mechanism – which is computationally
efficient and lightweight – and compare its performance to both
MC and TMC (Sec. IV).

Our results indicate that the memory allocation mecha-
nisms of both Memcached and Twemcache are far from being
optimal. With our scheme, we obtain superior hit rates both
in absence of and with calcification, which underlines the
importance of memory allocation in general.

II. MEMCACHED AND CALCIFICATION

Memcached (MC) is a key-value store that keeps data in
memory, i.e., data is not persistent. Clients communicate with
MC through a simple set of APIs: Set, Add, Replace to
store data, Get or Remove to retrieve or remove data. MC has
been designed to simplify memory management [5] and to be
extremely fast: since every operation requires memory locking
(note that memory locking is required even in case of a Get,
since access time statistics need to be updated), data structures
must be simple and their access time should be kept as small
as possible.

The basic unit of memory is called a slab and has fixed
size, set by default to 1 MB. A slab is logically sliced into
chunks that contain data items (objects2) to store. The size of
a chunk in a slab, and consequently the number of chunks,
depends on the class to which the slab is assigned. A class is
defined by the size of the chunks it manages and an object is
stored in the class that has chunks with a size sufficiently large
to contain it. Sizes are chosen with a geometric progression:
for instance, Twitter uses common ratio 1.25, and scale factor
76, therefore chunk sizes in class 1, 2, 3, . . . , are 76, 96, 120,
. . . Bytes respectively.

The total available memory to MC is allocated to classes in
a slab-by-slab way. The assignment process follows the object
request pattern: when a new request for a particular object
arrives, MC determines the class that can store it, checks if there
is a slab assigned to this class, and if the slab has free chunks.
If there is no free chunk (and there is available memory), MC
assigns a new slab to the class, it slices the slab into chunks
(the size of which is given by the class the slab belongs to),
and it uses the first free chunk to store the item. When all
slabs have been assigned to the classes, MC adopts the Least
Recently Used (LRU) policy for eviction. Note that LRU is
applied on a per-class basis: items in other classes are stored
in chunks of memory with different sizes, and chunks can not
be moved.

Once an appropriate portion of memory has been assigned
to a class, it will remain always associated to such class (unless
the server is restarted). Clearly, if the statistical properties of
the requested objects do not change over time, the hit rate
is not affected by such a static slab allocation. Instead, when
the statistical properties change (e.g., larger objects become
more popular), the problem of slab calcification becomes
tangible [3], and performance deteriorates. In the following,
we summarize current attempts and known best practices to
mitigate calcification:
Cache Reset: every T seconds all the objects are removed
from the cache. This policy requires manual intervention, as

2Throughout the paper we will use the terms “object” and “item” inter-
changeably.

it is not implemented in MC. Despite its simplicity, we note
that the abrupt service interruption due to the reset is harmful
in several aspects: i) client connections may result hanging;
ii) several transitory periods may be required to fill the cache;
and iii) the back-end servers and the database layer may suffer
load spikes due to an empty cache.
Memcached Automove: a recent version of MC allows slab
reassignment. Every 10 seconds, the systems collects the
number of evictions in each class: if a class has the highest
number of evictions three times in a row, it is granted a new
slab. The new slab is taken from the class that had no eviction
in the last three observations. As stated by the designers of
this policy, the algorithm is conservative, i.e., the probability
for a slab to be moved is extremely low (because it is rare to
find a class with no eviction for 30 seconds).
Twitter Policies: Twemcache (TMC) [3] accommodates a
set of eviction policies explicitly designed to solve the slab
calcification problem. With the Random eviction policy, for
each Set, if there is no free chunk or free slab, instead of
applying the class LRU policy, the server chooses a random
slab (that can belong to any class), evicts all the objects in
such a slab, reassigns the slab to the current class (by dividing
the slab into chunks of appropriate size), and uses the first free
chunk to store the new object – the remaining free chunks will
be used for the next Set requests. With the Least Recently
Accessed Slab eviction policy, instead of a random slab, the
server chooses the least recently accessed slab. Both policies
allow slabs to be reallocated among classes to follow request
dynamics. However, since the eviction procedure is executed
on a per-request basis and since slab eviction implies the
eviction of all its stored objects, we believe that both policies
may be too aggressive. Our experiments confirm such belief.

III. EXPERIMENTS

We now study the performance of MC and TMC in terms
of hit rate. Our experiments aim at showing the impact of
calcification, as well as the effectiveness of current schemes
available in the literature.

A. Experimental Setup
In scale-out Web application, a series of MC servers are

commonly configured in a shared-nothing setup, whereby each
server takes care of a subset of data objects using consistent
hashing [4]. This means that each MC server receives requests
for objects that have approximately the same statistical prop-
erties. Therefore, to study slab calcification, it is sufficient to
measure the performance of a single MC server. As for the
request arrival to the server, MC locks the memory at each
operation: even if requests are managed by many threads (used
to maintain open connections, process the requests and prepare
the responses), from the memory viewpoint, these requests
are processed in series; hence, generating the requests from
a single or from multiple clients has little or no impact on
memory management.

Following the above observations, in our experiments we
deploy a simple, yet representative, Web architecture that is
illustrated in Fig. 1. An application server is connected to a
database and to a MC server (the cache size is set to 1 GB). A
client issues requests for objects that are permanently stored
in the database. The application server checks if the requested

object is in the cache; if MC returns the object, the application
server serves the client; otherwise, it retrieves the object from
the database, serves the client and stores the object in MC.

Fig. 1. An illustration of the testbed used in our experiments: this is a simple,
yet representative, configuration.

The database is populated with two sets of objects. The
first set has Q1 = 7 Millions objects, whose size is randomly
drawn from a Generalized Pareto distribution with location
θ = 0, scale ϕ = 214.476 and shape k = 0.348238 – these
values have been reported by Atikoglu et. al. in [4]. The second
set has Q2 = 7 Millions objects, whose size is randomly
drawn from a Generalized Pareto distribution with different
parameters: θ = 0, ϕ = 312.6175 and k = 0.05. Even if
calcification has been observed in some prominent operational
setups [2]–[4], no detail has been given on the change of
the statistical properties of the requested objects. Therefore
our choice of the second set of parameters has been made to
induce slab calcification. We have tested different distributions
and parameters for the second set of objects (not shown here
for space constraints), obtaining always the same qualitative
results presented in the next sections.

To ensure a proper reproducibility of our results, we
provide a set of traces that can be used by automatic scripts
to populate a database, and to generate requests. In Sect. V we
provide additional details about this.

Our experiments are built as follows. The client generates
R = 200 Millions requests, divided into three phases. In the
first phase, the client selects random3 objects from the first
set; in the second phase, random objects of the second set
are increasingly requested; in the third phase only random
objects of the second set are considered. For each request, the
application server registers a hit if the object is in the cache.
To produce our results, we consider intervals of R = 500′000
requests and compute the aggregate hit rate thereof.

Note that, while the first phase reproduces the usual behav-
ior of the cache, the other phases have been designed to force
the system to deal with a change in the statistical properties of
the objects: this pinpoints the calcification problem in MC and
allows to study the effectiveness of current countermeasures.
Morevover, once the cache is full, it is not important how fast
the statistical properties of the requested objects change. In
other words, even if the change of the statistical properties
appears over 400 Millions requests (instead of 200 Millions),

3The probability distribution used to identify the object to request is a
truncated Normal distribution that shifts over the object identifiers as the
experiment progresses: in this way we emulate artificially the change in
popularity of the objects. Note that, while popularity may have different
distributions, the objects size are selected from the sets Q1 and Q2, therefore
the choice of the popularity has no impact on the memory allocation (more
details on this point can be found in [6]).

the calcification will occur slowly, but it will appear in any
case.

In the following, we also report a number of internal
statistics collected automatically by both MC and TMC. This
is done by taking “snapshots” of the internal state of such
systems, which report the number of hits, misses and objects
stored in the cache, for each class. The application server is
instructed to take such snapshot every 20 Million requests.

As final consideration, we note that the hit rate is influenced
by many factors. It depends, for instance, on the ratio between
the cache size and the sum of the sizes of all the objects in
each set, but this dependency is not linear: a simple mathe-
matical model to explain the sensitivity of the hit rate to the
different system parameters remains elusive. As such, rather
than the absolute value, it is interesting to study the relative
performance of the different approaches we analyze: thus, in
our experiments, we use the exact same sequence of requests
for each scheme. Next, we present a set of representative
results: we perform different runs for the same experiment
using different seeds to generate the objects that populate the
database and the requests; in all such cases, we consistently
obtain similar results.

B. Results
We consider four system configurations: MC, MC with the

reset policy, TMC with the random eviction policy, and TMC
with the slab LRA policy4. Fig. 2 shows the results, in terms of
hit rate over time. Note that we do not explicitly use time on the
x-axis: request arrivals and the notion of time are intertwined,
and we display the percentage of client requests that arrive to
the application server.

Fig. 2(a) indicates that, for MC, after an initial period
necessary to fill the cache, in the first phase the hit rate
becomes stable at a value of roughly 84%. In the second and
third phase, the impact of slab calcification on the hit rate is
evident, with a loss of 4%. As the client asks for more and
more objects with sizes that have been drawn from a different
distribution, the hit rate decreases progressively.

With the Reset policy, shown in Fig. 2(b), we impose
a cache reset four times during the experiment. The resets
mitigate the effects of slab calcification. During the transition
among object sets, the hit rate is affected by different object
size distributions: this is clearly visible in the third “wave.”
However, once the transition is over, MC can restore the hit
rate to a similar value to that of the first phase. Clearly, each
reset action provokes a transitory period to fill the cache, which
affects negatively the achieved hit rate.

Fig. 2(c) shows that the random eviction policy in TMC
achieves a lower, and extremely variable hit rate, when com-
pared to MC. As we anticipated in Sect.II, the eviction of
randomly selected slabs may be too aggressive, because an
individual slab may contain many popular items. As such,
using TMC in conjunction with the random eviction policy has
a negative impact on the hit rate overall. Our experiments show
that also the slab LRA policy in TMC obtains a smaller hit rate
than MC in the long run, albeit performing better than random
eviction. The reasons underlying these result are elusive and

4We omit the Memcached Automove policy, since we have verified that, in
our experimental setup, no slab has been moved.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

H
it

 r
at

e
(%

)

Requests (%)

Memcached

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

H
it

 r
at

e
(%

)

Requests (%)

Reset

(b)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

H
it

 r
at

e
(%

)

Requests (%)

Twemcache-SLRA
Twemcache-Rand

(c)

Fig. 2. Hit rate over time with calcification obtained by different schemes.

require more experiments on TMC alone, a study that falls
outside the scope of this work. In any case, the two TMC
eviction variants under-perform MC (with calcification) and
may be unstable.

Next, we discuss in more detail our baseline results by
inspecting the internal state of Memcached. Fig. 3 illustrates
the number, per class, of client requests, objects stored in the
cache, and cache misses. Fig. 3(a) represents the internal state
in the first phase of the experiment, while Fig. 3(b) considers
the last phase – the number of requests across different classes
has a different shape with respect to what shown in Fig. 3(a),
because the object size distribution is different.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 5 10 15 20

R
eq

u
es

t
/

M
is

s
/

O
b

je
ct

s

Class ID

Memcached

Requests
Misses
Stored objs

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 5 10 15 20

R
eq

u
es

t
/

M
is

s
/

O
b

je
ct

s

Class ID

Memcached

 Requests
Misses
Stored objs

(b)

Fig. 3. Requests, Misses, and Objects distribution, in the first (a) and in the
last phase (b).

In the first phase, the number of object and miss per
class are approximately proportional to the number of client
requests. In the last phase, instead, the number of stored
objects is not proportional to the requests, because the memory
partitioning is that obtained during the first phase of the
experiment and cannot adapt to any changes in object size
distribution.

IV. A NEW MEMORY PARTITIONING MECHANISM FOR
MEMCACHED

As observed previously, MC partitions the memory propor-
tionally to the number of requests to each class. Besides the
calcification problem, we now study whether such a partition-
ing mechanism can be re-factored, to achieve both a higher
hit rate in general, and to avoid slab calcification. Next, we
describe our approach, called Periodic Slab Allocation (PSA).

We begin with an intuitive description of PSA: by design,
MC partitions the memory into different classes. For example,
let’s consider Fig. 3 (a): classes whose ID is grater than, or

equal to 15 receive at most 104 requests, while classes whose
ID is smaller than or equal to 8 receive at least 106 requests.
Clearly, the contribution to the aggregate hit rate of each class
is different. Evicting all objects from a slab assigned to a high-
ID class incurs in an inflation in the number of misses for such
objects that is bounded by the maximum number of requests,
i.e., 104. On the other hand, the number of misses of low-
ID classes is at least 105, therefore there are more chances,
should the memory be reassigned to them, to decrease the
number of misses. The main problem to solve is to determine
the candidate classes to reassign slabs: if the reduction in the
number of misses for one class is higher than the increase in
the number of misses for another class, then slab reallocation
might contribute to a higher hit rate overall.

Algorithm 1 illustrates the most important steps of PSA,
which is driven by the number of misses incurred by MC. Slab
allocation is executed every time the cache collects M misses;
we call the interval of time between two of such events a round.
PSA runs in an individual thread and uses the internal statistics
collected by MC to inform slab allocation: the total number of
misses M , the number of misses per class m, the number of
requests per class r, and the number of slabs allocated to each
class s. Note that r and m are recomputed every round; clearly,∑

imi =M holds. At each round, PSA “moves” a single slab
from the class with the lower risk of increasing the number
of misses to the one that has registered the largest number of
misses.

For a given class i, we define its risk as the ratio between
the number of requests and the number of slabs allocated to
the class, ri/si: “moving” one slab from one class to another,
increases the number of misses, as a first approximation, by
a value equal to ri/si. While more sophisticated measures
can be used to estimate the variation in the number of misses
when slabs are removed, our measurements have shown that
the approach we propose is fairly accurate. If the class with
the lowest risk has more than one slab, the slab reassignment
follows a Least Recently Accessed (LRA) approach within the
class.5 Once slab allocation completes, LRU-based eviction
within each class ensures an efficient memory utilization, until
the next round.

Note that PSA considers the number of requests per class
and per slab: PSA aims at finding a working point where a
change in the memory partitioning does not increase the miss

5In TMC, the slab LRA policy is applied across classes, and thus is global,
not local to a class as in our approach.

Algorithm 1 Periodic Slab Allocation (PSA)
1. Input: s // vector of slabs allocated to each class
2. Input: r // vector of requests in each class
3. Input: m // vector of misses in each class
4.
5. Every M misses do
6. idtake ← i : (ri/si) < (rj/sj),∀ rj , sj ∈ r, s;
7. idgive ← i : mi > mj ,∀ mj ∈m;
8. MoveOneSlab(idtake, idgive);

rate. In summary, PSA can be thought of as a mechanism that
caters to a high hit rate by adapting how memory is partitioned
to mirror both object popularity dynamics and variations in ob-
ject size distribution. As a consequence, although not designed
to explicitly address it, PSA is an effective countermeasure
to the calcification problem. In terms of complexity, PSA is
comparable to what is currently implemented in MC and TMC
– the rate at which slabs are moved among classes is on par
to that of TMC.

We have implemented and integrated PSA in MC and evalu-
ate its performance following the same methodology described
in Sect. III. Fig. 4(a) shows how the hit rate achieved by PSA
compares to that of MC, in each experiment phase. With no
calcification (first phase), PSA achieves a 7% increase over
vanilla MC; in presence of calcification (third phase), the gain
in favor of PSA reach 10%. Note that the hit rate in the third
phase is lower than that in the first phase: this is due to the
particular object size distribution of the last phase, and should
not be attributed to the consequences of calcification. To verify
this, we run an additional experiment where we impose an
artificial reset to the PSA-based MC server: with the reset, we
make sure that memory partitioning is “molded” according
to the final object size distribution, following client requests.
Fig. 4(b) shows that, after the reset, the hit rate converges
to its previous value. Fig. 4(b) shows also the impact of the
only parameter of the PSA mechanism, namely M . The figure
indicates that the impact of M on PSA behavior is small.

V. DISCUSSION

The experimental evaluation of cache eviction policies or
memory partition mechanisms, requires rather complex setups.
First, it is necessary to populate a database system with
millions of objects, defining minimum and maximum sizes,
along with an appropriate definition of size distributions. Then,
it is essential to define client requests for such objects: to do so,
object popularity, and its dynamics, need to be appropriately
crafted. For experimental reproducibility, a clear specification
of such parameters is key, in conjunction to measurement
studies to inform the design of realistic distribution shapes
– a methodology we adopt in this work, building on the
information discussed by Atikoglu et. al. in [4].

Nevertheless, the performance analysis of a caching system
can be made smoother by building an appropriate set of
software tools to accomplish the above in an automatic manner:
this is usually referred to as benchmarking suites. With such
tools, it is possible to reproduce exactly the same experimental
conditions used to study system performance with little effort,
making it possible to compare and benchmark a variety of
existing and new memory management mechanisms.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

H
it

 r
at

e
(%

)

Requests (%)

PSA
Memcached

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

H
it

 r
at

e
(%

)

Requests (%)

artificial reset

PSA, M=5000
PSA, M=10000
PSA, M=20000

(b)

Fig. 4. Hit rate over time obtained by PSA compared with vanilla MC (a) and
by varying the parameter M (b).

Today, only a scattered set of pieces of software is available
in the open-source domain to realize experiments: most of
them, however, fall short in providing realistic setups and
simplicity, due to the number of internal parameters they
require. In our work, we attempt to address such problems by
creating a set of traces that can be used by automatic scripts (i)
to populate a database, and (ii) to generate requests. The format
of these traces is extremely simple: those used to populate the
database are a series of entries with (id, size) of the objects;
those used to generate client requests are a series of object
identifiers. The interested reader can find details, scripts and
the traces in [7].

VI. RELATED WORK

The analysis of cache performance has been the subject of
many past studies. In this paper we consider specifically MC,
therefore we first focus on the literature about such system.
Even if MC is widely used, the study of its performance has
received only little attention. Atikoglu et. al. provide in [4]
a set of measurement results from a production site – in our
experiments we use these statistics to generate our workload.
However, the paper does not analyze the different eviction
policies, and it does not consider the impact of memory
partitioning on the hit rate.

Gunther et. al. [8] highlight that MC has scalability issues,
since threads access the same memory, therefore locks prevent
the exploitation of the parallelism. For this reason, a number
of works [5], [9] consider the performance of MC in terms of
request throughput, proposing a set of mechanisms and data
structures to decrease the overall latency. These works do not
consider explicitly the impact of the memory partitioning on

the hit rate as we do. Nishtala et. al. [10] study scalability
problems, i.e., how to manage a multi-server architecture,
but they do not study the eviction policies and memory
partitioning.

Overall, the literature on caching mechanisms is vast: CPU
[11], browser [12], Web [13], and DNS caches [14], as well
as Content Delivery Networks [15] are each characterized by
different problems. Among previous works, CPU caches need
to solve similar problems to ours. In a CPU cache, many
processes share the same memory space, and a single process
may “pollute” the cache with its data [16], which has a negative
impact on performance. Similarly, in MC, different classes
share the memory, and the space taken by a class may hurt
the performance of other classes and therefore the overall hit
rate. The solution adopted for CPU caches [16]–[18] are based
on a common idea, in which the memory partitioning process
tries to balance the number of misses among the processes.

Finally, we note that in many caching mechanisms (e.g.,
Web, DNS), memory partitioning is generally not considered to
be problematic: previous works [12], [13], [19] mainly focus
on the how eviction policies manage objects with different
sizes. In MC, instead, eviction is done on a per-class basis, and
objects within a class have the same size.

VII. CONCLUSION AND PERSPECTIVES

In-memory key-value stores, such as Memcached (MC), are
increasingly used by large-scale Web applications: they cater
short response times and small delays, which are fundamental
to achieve improved quality of experience for end-users. In
this work, we studied an important aspect of MC, memory
allocation, and measured its impact on a key performance
metric, the cache hit rate. Using an experimental testbed, we
have shown that MC suffers from a static memory partitioning,
which is usually referred to as calcification. While calcification
has been discussed and cited in technical blogs [2] and some
papers [4], [10], we have shown, to the best of our knowledge
for the first time, its impact on the hit rate. We have also
studied TMC, a variant conceived at Twitter that includes
eviction policies to address calcification, and showed that the
price TMC pays for adaptivity is a lower hit rate.

The analysis of the calcification problem has revealed the
need for a new approach to memory partitioning altogether,
aiming at achieving as high hit rates as possible, while adapting
to dynamics in client requests, object popularity and charac-
teristics. Our design materialized in a new mechanism, which
we called PSA, that produced higher hit rates both in absence
of and with calcification.

In concluding, we remark that in-memory caches also
relieve back-ends from supporting the load to generate hot,
popular items requested by clients. Thus, instead of a client
perspective, which we have considered in this work, it would
be interesting to examine an alternative metric accounting for
the “pressure” on the back-end: the byte hit rate – the hit rate
weighted by the size of the objects – and its complementary,
measure of the amount of bytes generated by the back-end.
To this end, we consider a promising research direction the
general idea of assigning a “cost” to each object: for instance,
some objects may be more costly to retrieve from the database
than others due to their sizes. In the literature, there are a
number of examples [12], [13], [19] which consider object

cost to be related to the complexity of the database query to
generate the object, and not their size. Currently, PSA does
not support object cost: an extension in such a direction (e.g.
building on the work by Cao et. al. in [13]) would require a
number of modifications which we plan to address as part of
our future work.

REFERENCES

[1] (2013) Memcached. [Online]. Available: http://memcached.org/
[2] (2013) Caching with twemcache and calcification. [Online]. Available:

http://engineering.twitter.com/2012/07/caching-with-twemcache.html
[3] (2013) Twemcache. [Online]. Available: https://github.com/twitter/

twemcache
[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,

“Workload analysis of a large-scale key-value store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, 2012.

[5] A. Wiggins and J. Langston, “Enhancing the Scalability of Mem-
cached,” in Intel document, unpublished, http://software.intel.com/
en-us/articles/enhancing-the-scalability-of-memcached, 2012.

[6] D. Carra and P. Michiardi, “Memory partitioning in memcached: An
experimental performance analysis,” Department of Computer Science,
University of Verona, Tech. Rep., June 2013. [Online]. Available:
http://profs.sci.univr.it/∼carra/downloads/TR-UNIVR-Car-2013-01.pdf

[7] (2013) Benchmarks for testing memcached memory management.
[Online]. Available: http://profs.sci.univr.it/∼carra/mctools/

[8] N. Gunther, S. Subramanyam, and S. Parvu, “Hidden scalability gotchas
in memcached and friends,” in VELOCITY Web Performance and
Operations Conference, 2010.

[9] B. Fan and D. Andersen, “MemC3: Compact and concurrent memcache
with dumber caching and smarter hashing,” in Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2013.

[10] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in Proceedings
of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[11] G. Blelloch and P. Gibbons, “Effectively sharing a cache among
threads,” in Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures (SPAA), 2004.

[12] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[13] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
Proceedings of the USENIX Annual Technical Conference, 1997.

[14] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” in ACM SIGCOMM Workshop on Internet
Measurement (IMW), 2001.

[15] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and M. Levy,
“An analysis of Internet content delivery systems,” SIGOPS Operating
System Review, vol. 36, no. SI, pp. 315–327, 2002.

[16] G. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared
cache memory,” The Journal of Supercomputing, vol. 28, no. 1, pp.
7–26, April 2004.

[17] D. Thiebaut, H. Stone, and J. Wolf, “Improving disk cache hit-ratios
through cache partitioning,” IEEE Transactions on Computers, vol. 41,
no. 6, pp. 665 –676, jun 1992.

[18] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2006.

[19] O. Bahat and A. Makowski, “Optimal replacement policies for non-
uniform cache objects with optional eviction,” in Proceedings of the
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications (INFOCOM), 2003.

