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Abstract—The Multi-User MIMO downlink or MIMO Broad-
cast Channel (BC) formulation is relevant for cell center users.
Whereas multiple receive antennas do not allow to increase the
total number of streams (or degrees of freedom (DoF)) in the BC,
they allow the sharing of zero-forcing (ZF) between transmitter
and receivers so that a secondary base station (SBS) can serve
its secondary users (SU) while ZF beamforming (BF) to primary
users (PU). Channel State Information at the Transmitter (CSIT),
which is crucial in multi-user systems, is always imperfect in
practice, especially for the SBS-PU link. We consider mean and
covariance Gaussian partial CSIT, and the special case of a
(possibly location based) MIMO Ricean channel model. In this
paper we focus on the optimization of beamformers for the
secondary expected weighted sum rate (EWSR) under expected
PU interference power constraints. We apply a perfect CSI
technique, based on a difference of convex functions approach,
to a number of deterministic approximations of the EWSR,
involving the Massive MIMO limit (large number of transmit
antennas), Massive MIMO with a second-order refinement, and
the large MIMO limit (both large transmit and receive antenna
numbers).

I. INTRODUCTION

Define CBC

In this paper, Tx may denote transmit/transmitter/

transmission and Rx may denote receive/receiver/reception.

Interference is the main limiting factor in wireless transmis-

sion, due to its open nature. In cellular systems, one can

distinguish between the cell interior where a single cell design

is appropriate and the cell edge where a multi-cell approach is

mandatory. Since Channel State Information at the Tx (CSIT)

is more difficult to obtain than the CSIR at the Rx (except

perhaps in the TDD case), we focus here on the single cell

downlink which in the multi user (MU) case becomes the

Broadcast Channel (BC).

In [1] we studied a cognitive MISO Interference Channel

(IC) with K MISO secondary base station (SBS) - secondary

user (SU) pairs and an additional set of L single-antenna

Primary Users (PUs). In this paper the objective is to find the

set of beamforming (BF) vectors that maximize the Weighted

Sum Rate (WSR) of the Cognitive BC (CBC) network, under

Tx power constraints for the secondary BS (SBS), and interfer-

ence level constraints at the primary Rxs. Unfortunately, this

problem is non-convex. The proposed solution, which is an

iterative algorithm based on alternating optimization of subsets

of variables, converges to a local optimum. Deterministic

Annealing (DA) could be added as in [2] to find the global

optimum. In [1] the alternative problem formulation of SINR

balancing is considered.

Partial CSIT formulations can typically be categorized as

either bounded error / worst case (relevant for quantization

error in digital feedback) or Gaussian error (relevant for analog

feedback, prediction error, second-order statistics information

etc.). The Gaussian CSIT formulation with mean and covari-

ance information was first introduced for SDMA (a Direction

of Arrival (DoA) based historical precedent of MU MIMO),

in which the channel outer product was typically replaced

by the transmit side channel correlation matrix, and worked

out in more detail for single user (SU) MIMO, e.g. [3].

The use of covariance CSIT has recently reappeared in the

context of Massive MIMO [4], where a not so rich propagation

environment leads to subspaces (slow CSIT) for the channel

vectors so that the fast CSIT can be reduced to the smaller

dimension of the subspace. Such CSIT (feedback) reduction

is especially crucial for Massive MIMO.

The contributions here are significantly better partial CSIT

approaches compared to the EWSMSE approach in [5] (which

cannot even be used in the zero channel mean case), and

present deterministic alternatives to the stochastic approxima-

tion solution of [6]. We first treat the general Gaussian CSIT

case. Then we focus on a location aided CSIT case with zero

mean and identity plus rank one Tx side covariance matrix

and no Rx side correlations. The goal here is to go beyond

zreo-forcing (ZF) and to introduce a meaningful beamforming

design at finite SNR and partial CSIT, for e.g. a finite Ricean

factor when not much more than the (location based) LoS

information of the PUs is available at the SBS Tx.

II. SYSTEM MODEL

We shall focus on MIMO CBC designs in which each

user gets one stream since some user selection can make

this typically preferable over multiple streams/user. Fig. 1

illustrates the system model, where K SUs with N (or Nk)

antennas access the spectrum used by L multiple antenna

PUs. Consider downlink transmission with M antennas at the

SBS. The SBS designs its beamformers such that it limits

the interference power that it causes to the PUs. The N × 1
received signal at user k is

yk = Hk gk xk +

K∑

i=1, 6=k

Hk gi xi + vk (1)

where xi is the signal intended for user i, channel Hk has

size N ×M . We shall assume that the K ≤ M signal streams

xi have unit variance and that the noise is white with vk ∼
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Fig. 1. The Cognitive Broadcast Channel (CBC) system model.

CN (0, σ2
v,kIN ). We shall assume that the received signal in

(1) is rescaled1 so that the noise variance becomes σ2
v,k = 1.

The spatial Tx filter or beamformer (BF) is gk.

III. COGNITIVE BC (CBC) ZF FEASIBILITY WITH

MULTI-ANTENNA SUS

One key observation we wish to make here is the advantage

of the MIMO BC over MISO BC for cognitive radio purposes.

Whereas multiple Rx antennas at the SUs do not allow to

increase the total number of streams that the SBS can send,

in the MIMO case the zero forcing (ZF) of streams can be

shared between the SBS and the SUs. In this way, if the SUs

are equipped with N antennas, they can cancel N − 1 of the

K − 1 interfering streams. As a result, the SBS only needs to

ZF K − N of the secondary streams, leaving the possibility

to ZF to M −K+N − 1 PU antennas. In the case of Line of

Sight (LoS) propagation from the SBS to the PUs, the ZF to

PUs introduces only a single constraint per PU, regardless of

the number of PU antennas. However, here we shall consider

designs beyond ZF also.

1For the case of spatially correlated noise (interference) at the receiver, one
may need to equivalently consider Rx side channel correlation Cr,k after
noise whitening.

IV. MAX WSR WITH PERFECT CSIT

Consider as a starting point for the optimization the

weighted sum rate (WSR)

WSR = WSR(g) =

K∑

k=1

uk ln
1

ek
(2)

where g represents the collection of BFs gk, the uk are rate

weights, the ek = ek(g) are the Minimum Mean Squared

Errors (MMSEs)

1

ek
= 1 + gH

k HH
k HkR

−1

k
gk = (1− gH

k HH
k HkR

−1
k gk)

−1

Rk = QHH
k Hk + IM , Rk = Qk H

H
k Hk + IM ,

Q =
∑K

i=1 Qi , Qk =
∑

i6=k Qi , Qi = gig
H
i

(3)

Rk, Rk are the total and interference plus noise Rx covariance

matrices resp. and ek is the MMSE obtained at the output

x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = HkR
−1
k gk . (4)

Note that the use of the non-Hermitian matrices Rk, Rk will

be of interest in the partial CSIT case, and is made possible

due to the properties det(I +XY) = det(I +YX) and (I +
XY)−1X = X(I + YX)−1. Also note that a matrix of the

form HHH(QHHH+IM )−1 is Hermitian though. The WSR

cost function needs to be augmented with the secondary power

and primary interference constraints

tr{Q} ≤ P , tr{QHH
K+lHK+l} ≤ Pl, l = 1, . . . , L . (5)

In a classical difference of convex functions (DC program-

ming) approach, Kim and Giannakis [7] propose to keep the

concave signal terms and to replace the convex interference

terms by the linear (and hence concave) tangent approxima-

tion. More specifically, consider the dependence of WSR on

Qk alone. Then

WSR = uk ln det(R
−1

k
Rk) +WSRk ,

WSRk =
∑K

i=1, 6=k ui ln det(R
−1

i
Ri)

(6)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is convex

in Qk. Since a linear function is simultaneously convex and

concave, consider the first order Taylor series expansion in Qk

around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈ WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = − ∂WSRk(Qk, Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=
K∑

i=1, 6=k

uiH
H
i Hi(R̂

−1

i
−R̂−1

i )

(7)

Note that the linearized (tangent) expression for WSRk con-

stitutes a lower bound for it. Now, dropping constant terms,

reparameterizing the Qk = gkg
H
k , introducing PL+1 = P ,

DK+L+1 = I , performing this linearization for all users, and



augmenting the WSR cost function with the constraints, we

get the Lagrangian

WSR(g, ĝ, λ) =

L+1∑

l=1

λlPl+

K∑

k=1

uk ln(1 + gH
k B̂kgk)− gH

k (Âk +

L+1∑

l=1

λlDl)gk

(8)

where

B̂k = HH
k HkR̂

−1

k
, Dl = HH

K+lHK+l (9)

The gradient of this concave WSR lower bound is actually still

the same as that of the original WSR criterion! And it allows

an interpretation as a generalized eigenvector condition

B̂k gk =
1 + gH

k B̂kgk

uk
(Âk +

L+1∑

l=1

λlDl)gk (10)

or hence g
′

k = Vmax(B̂k, Âk +
∑

l λlDl) is the (normalized)

”max” generalized eigenvector of the two indicated matrices,

with max eigenvalue σk = σmax(B̂k, Âk +
∑

l λlDl). Let

σ
(1)
k = g

′H
k B̂kg

′

k, σ
(2)
k = g

′H
k Âkg

′

k and σk,l = g
′H
k Dlg

′

k.

The advantage of formulation (8) is that it allows straightfor-

ward power adaptation: introducing stream powers pk ≥ 0 and

substituting gk =
√
pk g

′

k in (8) yields

WSR=
∑

l

λlPl+

K∑

k=1

{uk ln(1+pkσ
(1)
k )−pk(σ

(2)
k +

∑

l

λlσk,l)}

(11)

which leads to the following interference leakage aware water

filling

pk =

(
uk

σ
(2)
k +

∑
l λlσk,l

− 1

σ
(1)
k

)+

. (12)

For a given vector λ = [λ1 · · ·λL+1]
T , g needs to be iterated

till convergence. And λ can be found by duality (line search):

min
λ≥0

max
g

∑

l

λlPl +
∑

k

{uk ln det(R
−1

k
Rk)− pk

∑

l

λlσk,l}.

(13)
Note that for each value of λ, a maximization over g is

required, which means a maximization over both the g
′

k and

the powers pk. Since the optimization over g
′

is iterative

anyway, the iterations can be simplified by freezing the g
′

k

and just performing minλ≥0 maxp in (13). This corresponds

to taking the solution for the powers pk in (12) and increasing

the consecutive λl beyond zero if so required to satisfy

the power/interference constraints (5). This can be done by

the ellipsoid algorithm [7] or with a greedy approach that

focuses on the constraint violation terms in order of decreasing

sensitivity. In the non-cognitive case (L = 0, only one power

constraint) this becomes the usual water filling procedure. Note

that as with any alternating optimization procedure, there are

many updating schedules possible, with different impact on

convergence speed. The quantities to be updated are the g
′

k,

the pk and the λl.

V. MEAN AND COVARIANCE GAUSSIAN CSIT

In this section we drop the user index k for simplicity. The

separable correlation model is

H = H+C1/2
r H̃C

1/2
t (14)

where H = EH, and C
1/2
r , C

1/2
t are Hermitian square-roots

of the Rx and Tx side covariance matrices

E(H−H)(H−H)H = tr{Ct} Cr

E(H−H)H(H−H) = tr{Cr} Ct
(15)

and the elements of H̃ are i.i.d. ∼ CN (0, 1). It is also of

interest to consider the total Tx side correlation matrix

Rt = EHHH = H
H
H+ tr{Cr}Ct . (16)

A. Location Aided Partial CSIT LoS Channel Model

Assuming the SBS disposes of not much more than the LoS

component information of PUs (and possibly SUs), consider

the following MIMO channel model

H = hr h
H
t (θ) + H̃

′

(17)

where θ is the LoS AoD and the SBS side array response

is normalized: ||ht(θ)||2 = 1. We shall model the unknown

Rx side LoS array response hr as a vector of i.i.d. complex

Gaussian variables

hr i.i.d. ∼ CN (0, µ
µ+1 ) and

H̃
′

i.i.d. ∼ CN (0, 1
µ+1

1
M ) , independent of hr,

(18)

where the matrix H̃ represents the aggregate NLoS com-

ponents. Note that (E||hr h
T
t (θ)||2F )/(E||H̃′ ||2F ) = µ can

be considered as a Rice factor. In fact the only parameter

additional to the LoS AoD θ assumed in (17) is µ. So, this is

a case of zero mean CSIT and Tx side covariance CSIT

Rt = EHHH =
µN

µ+ 1
ht(θ)h

H
t (θ) +

N

µ+ 1

1

M
IM . (19)

VI. EXPECTED WSR (EWSR)

For the WSR criterion, we have assumed so far that the

channel H is known. The scenario of interest however is

that of perfect or partial SU CSIT at the SBS but partial

(LoS) CSIT of PUs at SBS. Once the CSIT is imperfect,

various optimization criteria could be considered, such as

outage capacity. Here we shall consider the expected weighted

sum rate EHWSR(g,H) =

EWSR(g) = EH

∑

k

uk ln(1 + gH
k HH

k HkR
−1

k
gk) (20)

where we now underlign the dependence of various quantities

on H. The EWSR in (20) corresponds to perfect CSIR

since the optimal Rx filters fk as a function of the ag-

gregate H have been substituted, namely WSR(g,H) =
maxf

∑
k uk(− ln(ek(fk,g))). For the PU interference con-

straints, we shall consider also the expected interference.

Hence we shall now have Dl = EHH
K+lHK+l = Rt,K+l.

At high SNR, max EWSR attempts ZF and we get:



Theorem 1: Sufficiency of Incomplete CSIT for Full DoF

in the MIMO CBC In the MIMO CBC with perfect CSIR,

it is sufficient that for each of K users rank (Rt,k) ≤ Nk

and that the BS knows any vector hk ∈ Range (Rt,k) (as

long as the K resulting vectors hk are linearly independent)

and the column space of [Rt,K+1 · · ·Rt,K+L] in order for ZF

BF to produce K = max(0,M − rank([Rt,K+1 · · ·Rt,K+L]))
interference free streams (degrees of freedom (DoF)). �

In [6] a stochastic approximation approach for maximizing

the EWSR was introduced. In this approach the statistical

average gets replaced by a sample average (samples of H

get generated according to its Gaussian CSIT distribution in a

Monte Carlo fashion), and one iteration of the min WSMSE

(Weighted Sum MSE) approach gets executed per term added

in the sample average.

Some issues with this approach are that in this case the

number of iterations may get dictated by a sufficient size for

the sample average rather than by a convergence requirement

for the iterative approach. Another issue is that this approach

converges to a local maximum of the EWSR. It is not

immediately clear how to combine this stochastic approxi-

mation approach with deterministic annealing. Deterministic

annealing can be used as in [2] for a deterministic algorithm

as in Section IV to track the global optimum from SNR ≈ 0
(where the solution is clear analytically) to the desired SNR.

This is essentially a homotopy method in which the problem

gets resolved for an SNR that increases in small steps. At

each higher SNR, the global optimum will be in the region of

attraction of the global optimum at the lower SNR.

In the rest of this paper we discuss various deterministic

approximations for the EWSR, which can then be optimized

as in the full CSI case.

VII. MASSIVE MIMO LIMIT

If the number of Tx antennas M becomes very large, then

quantities of the form HH
k Hk converge to their mean (LLN).

Hence in the Massive MIMO limit, the EWSR gets maximized

by the algorithm in Section IV by replacing HH
k Hk by Rt,k

everywhere.

VIII. MASSIVE MIMO 2ND ORDER REFINEMENT

This second-order refinement was first suggested in [8, eq.

(15)]. Consider the second-order Taylor series expansion [9,

p. 644]

ln det(X+Y) ≈ ln det(X)+tr{X−1Y}−1

2
tr{X−1YX−1Y}

(21)

assuming small X−1Y. We shall take X+Y = I+QHHH,

X = I +QRt, Y = Q(HHH−Rt) with H as in (14), and

assuming tr{Cr} = 1. Hence we get

EH ln det(I +QHHH) ≈ ln det(I +QRt)

− 1
2 EHtr{A(HHH−Rt)A(HHH−Rt)}

(22)

where A = (I + QRt)
−1Q. Using 4th order Gaussian

moments [10] in (22) and using also becomes

EH ln det(I +QHHH) ≈ ln det(I +QRt)

− 1
2 tr{(HAH

H
+ tr{ACt}Cr)

2}+ 1
2 tr{AH

H
HAH

H
H} .
(23)

For the case Cr = 1
N IN and H = 0 (hence Rt = Ct), this

becomes

EH ln det(I +QHHH) ≈ ln det(I +QCt)

− 1
2N

(
tr{(I +QCt)

−1QCt}
)2 (24)

with differential

d(EH ln det(I +QHHH)) ≈ tr{Ct(I +QCt)
−1 dQ}

− 1
N tr{(I +QCt)

−1QCt}tr{Ct(I +QCt)
−2 dQ}

= tr{CtR
−1

dQ} − 1
N tr{R−1

QCt}tr{CtR
−2

dQ}
(25)

with R = I + QHHH and R = ER = I + QC. When

applying the RHS of (24) to the signal part in (6), we shall

count the ln det() term in the signal and the correction term in

the interference plus noise. We can now apply the algorithm

in Section IV with the following conventions:

B̂k = Ck R̂
−1

k with R̂k = I + Q̂Ck, R̂k = I + Q̂kCk

Âk = ukαkCkR̂
−2

k +

K∑

i=1, 6=k

uiCi(R̂
−1

i −R̂
−1

i + αiR̂
−2

i − αiR̂
−2

i )

(26)

and αi =
tr{̂RiQ̂Ci}

N , αi =
tr{̂R

i
Q̂

i
Ci}

N and Ck = Ct,k. Note

that the Massive MIMO limit is obtained by putting all α = 0.

IX. LARGE MIMO ASYMPTOTICS

The large MIMO asymptotics from [11], [12], in which

both M,N → ∞ at constant ratio, tend to give more precise

approximations when M is not so large. For the general

case of Gaussian CSIT with separable (Kronecker) covariance

structure, [11], [12] lead to asymptotic expressions of the form

EH ln det(I +HQHH)

= max
z≥0, w≥0

{
ln det

[
I + wCr H

−QH
H

I + zQCt

]
− zw

}
.

(27)

where the maximization over z and w should be carried

out alternatingly (and not jointly: the joint optimization may

correspond to a global maximum or a saddle point. The cost

function is concave however in z or w separately). For the

simpler case of zero channel means Hk = 0 and no Rx side

correlations Cr = I , and with per user Tx side correlations

Ck, the EWSR can be rewritten with large MIMO asymptotics

as

EWSR =
K∑

k=1

{
uk max

zk,wk

[ln det(I+zkQCk)+N ln(1+wk)−zkwk]

−uk max
z
k
,w

k

[
ln det(I+zkQkCk)+N ln(1+wk)−zkwk

]}
.

(28)



This criterion can be used to evaluate the EWSR for given

Q. It can also be used to optimize Q, in which case we can

apply again the algorithm of Section IV, with the following

conventions:

R̂k(z) = I + z Q̂Ck , R̂k(z) = I + z Q̂k Ck

B̂k = zkCkR̂
−1

k (zk) , Âk =
∑

i6=k

uiCi(ziR̂
−1

i (zi)− ziR̂
−1

i (zi))

(29)
where zk, zk are obtained from

max
zk,wk

g(zk, wk,Q,Ck) , max
z
k
,w

k

g(zk, wk,Qk,C) where

g(z, w,Q,C) = ln det(I + zQC) +N ln(1 + w) − z w .
(30)

For these optimizations, we get from ∂g/∂w = 0 that z =
N/(1 + w). From this and ∂g/∂z = 0 we get

w = f(w) =
1 + w

N
tr{(1 + w

N
IM +QC)−1QC} (31)

The curves y = w and y = f(w) have a unique intersection

in the first quadrant, with y = f(w) lying initially above y =
w. Hence the optimal w can be found by iterating w(i) =
f(w(i−1)). The first time, one can initialize with w(0) = 0. In

the iterative algorithm from Section IV, w can be initialized

with the value obtained in the previous iteration for g. The

corresponding optimal z is then z = N/(1 + w).

X. NUMERICAL RESULTS
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Fig. 2. EWSR vs SNR for M = N = 4, K = 2, L = 0.

In these initial simulations, we consider just the regular

MIMO BC, with CSIT based on the MIMO Ricean channel

model (hence the CSIT comprises the (downlink) Tx side LoS

antenna array response ht and the Rice factor µ, both of

which can be estimated from the uplink channel). In Fig. 2 the

expected sum rate (SR) is plotted versus SNR for M = N = 4
with K = 2, L = 0. For the Tx design, we consider either

ZF on the LoS component, with uniform power loading,

or an optimized design based on the Massive MIMO limit.

For each design, three cases of Rice factor are considered:

µ = 10, 100, ∞ (this last case is labeled ”Perfect CSIT” in

the figure). The expected SR is obtained by averaging over

channel realizations, according to the Ricean distribution with

respectively one of the three possible values for µ.

XI. CONCLUSIONS

We have studied Expected WSR maximization in the MU-

MIMO cognitive radio Broadcast Channel, for both perfect

and partial CSIT. The paper introduced a beamforming design

at finite SNR and finite Ricean factor when location based LoS

CSIT of PUs is available at the SBS. A simple solution can

be obtained through Massive MIMO asymptotics. Refinements

based on a second-order logdet expansion or on large MIMO

asymptotics were also introduced. All these approaches lead to

variations of a basic difference of convex functions approach to

which deterministic annealing can straightforwardly be applied

to find the global optimum. Furture work will include a more

extensive evaluation of the proposed approaches.

ACKNOWLEDGMENTS

EURECOM’s research is partially supported by its indus-

trial members: ORANGE, BMW Group, Swisscom, SFR, ST

Microelectronics, Symantec, SAP, Monaco Telecom, iABG,

and also by the EU FP7 projects ADEL and NEWCOM#.

REFERENCES

[1] F. Negro, M. Cardone, I. Ghauri, and D.T.M. Slock, “SINR Balancing
and Beamforming for the MISO Interference Channel,” in Proc.

IEEE Int’l Symp. Personal Indoor and Mobile Radio Communications

(PIMRC), Sept. 2011.
[2] Francesco Negro, Irfan Ghauri, and Dirk T M Slock, “Deterministic

Annealing Design and Analysis of the Noisy MIMO Interference Chan-
nel,” in Proc. IEEE Information Theory and Applications workshop

(ITA), San Diego, CA, USA, Feb. 2011.
[3] R. de Francisco and D.T.M. Slock, “Spatial Transmit Prefiltering for

Frequency-Flat MIMO Transmission with Mean and Covariance Infor-
mation,” in IEEE Asilomar Conf, on Signals, Systems, and Computers,
Pacific Grove, US, Oct. 2005.

[4] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach
to channel estimation in large-scale multiple-antenna systems,” IEEE

J. on Selected Areas in Comm’s (JSAC), Special Issue on: Large Scale

Antenna Systems, Jan. 2013.
[5] F. Negro, I. Ghauri, and D.T.M. Slock, “Sum Rate Maximization in the

Noisy MIMO Interfering Broadcast Channel with Partial CSIT via the
Expected Weighted MSE,” in IEEE Int’l Symp. on Wireless Commun.

Systems (ISWCS), Paris, France, Aug. 2012.
[6] M. Razaviyayn, M.S. Boroujeni, and Z.-Q. Luo, “A Stochastic Weighted

MMSE Approach to Sum Rate Maximization for a MIMO Interference
Channel,” in IEEE workshop on Signal Processing Advances in Wireless

Communications (SPAWC), Darmstadt, Germany, June 2013.
[7] S.-J. Kim and G.B. Giannakis, “Optimal Resource Allocation for MIMO

Ad Hoc Cognitive Radio Networks,” IEEE Trans. Info. Theory, May
2011.

[8] C. Martin and B. Ottersten, “Asymptotic Eigenvalue Distributions and
Capacity for MIMO Channels Under Correlated Fading,” IEEE Trans.

on Signal Proc., July 2004.
[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ.

Press, Cambridge, U.K., 2003.
[10] P.H.M. Janssen and P. Stoica, “On the Expectation of the Product of Four

Matrix-Valued Gaussian Random Variables,” IEEE Trans. Automatic

Control, Sept. 1988.
[11] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim, “On

the Capacity Achieving Covariance Matrix for Rician MIMO Channels:
An Asymptotic Approach,” IEEE Trans. Info. Theory, Mar. 2010.

[12] G. Taricco, “Asymptotic mutual information statistics of separately
correlated Rician fading MIMO channels,” IEEE Trans. Info. Theory,
Aug. 2008.


