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Abstract—The study of crowd behavior in public areas or
during some public events is receiving a lot of attention in security
community to detect potential risk and to prevent overcrowd. In
this paper, we propose a novel approach for change detection
and event recognition in human crowds. It consists of modeling
time-varying dynamics of the crowd using local features. It also
involves a feature tracking step which allows excluding feature
points on the background and extracting long-term trajectories.
This process is favourable for the later crowd event detection
and recognition since the influence of features irrelevant to the
underlying crowd is removed and the tracked features undergo
an implicit temporal filtering. These feature tracks are further
employed to extract regular motion patterns such as speed and
flow direction. In addition, they are also used as an observation
of a probabilistic crowd function to generate fully automatic
crowd density maps. Finally, the variation of these attributes
(local density, speed, and flow direction) in time is employed to
determine the ongoing crowd behavior. The experimental results
on two different crowd datasets demonstrate the effectiveness of
our proposed approach for early detection of crowd change and
accurate results for event recognition.

I. INTRODUCTION

There is currently significant interest in visual surveillance
systems for crowd analysis. In particular, the study of crowd
behavior in public areas or during some public events is
receiving a lot of attention for crowd safety to detect po-
tential dangerous situations and to prevent overcrowd. Many
accidents emphasize the need for analyzing crowd behaviors
by providing high-level description of the actions and the
interactions of and among the objects in crowds. That is
an extremely important information for early detection of
unusual situations in large scale crowd to insure assistance
and emergency contingency plan.

Crowd behavior analysis covers different subproblems such
as crowd change or anomaly detection [1], [2], [3], [4], and
crowd event recognition [5], [6], [7], in which the goal is
to automatically detect changes or to alternatively recognize
crowd events in video sequences. In general, there are three
main categories of crowd behavior analysis methods. The first
category is known as microscopic approaches where the crowd
is considered as a collection of individuals who have to be
segmented, detected and/or tracked to analyze crowd behavior.
This category includes the Social Force Model [3] which
is based on local characteristics of pedestrian motions and
interactions, or trajectory-based methods [8]. These methods
face considerable difficulties to recognize activities inside the

crowd because person detection and tracking tasks are affected
by occlusions.

In the second category known as macroscopic methods, the
crowd is treated as a whole and a global entity in analysis
[1]. For this purpose, scene modeling techniques are used
to capture the main features of the crowd behavior. These
methods are based on extracting the dynamics of the entire
scene and focus on modeling group behaviors instead of
determining the motion of individuals which makes them
less complex compared to microscopic methods. Hence, they
could be applied to analyze scenes of medium to high crowd
density. The third category known as hybrid methods study the
crowd at a microscopic and a macroscopic levels. They inherit
both properties to handle the limitations of each category of
methods and to complement each others for better performance
[5].

Our proposed approach is of hybrid nature since it in-
corporates optical flow information into the extracted local
features and it examines long-term trajectories to capture
both global and local attributes. The idea mainly consists of
using low-level local features to represent individuals in the
scene. By doing so, we avert typical problems encountered in
detection and tracking of persons in high density crowds, such
as dynamic occlusions and extensive clutter. Also, a feature
tracking step is involved in the process to alleviate the effects
of components irrelevant to the crowd. Better than, in our
proposed approach, we extend motion information to form
long-term trajectories which are less affected by noise.

In addition to the increasing need for automatic detection
and recognition of crowd events, our study is motivated by
the necessity of implying density estimation in such high
level applications since the risk of dangerous events increases
when a large number of persons is involved. In the simplest
forms, the used crowd density measure could be the number of
persons [9], [10] or the level of the crowd [11]. However, these
measures have the limitation of giving a global information
for the entire image and discarding local information about the
crowd. We therefore resort to another crowd measure, in which
local information at pixel level substitutes a global number of
people or a crowd level by frame [12].

We consider that local density is an important cue for
early detection of crowd event and it could complement crowd
dynamics information. For example, walking/running events
are typically recognized by measuring the speed, however,



it is also important to provide additional information about
the number or the density of individuals moving at high
speed. Other crowd events such as crowd formation/splitting
have been analyzed using the direction of optical flow, again
this information is not sufficient, because large number of
individuals has to be involved and to participate to crowd
formation. Another example that could justify the relevance of
using crowd density for event characterization is the blocking
situations in large scale crowd, in this case relying on motion
information is not enough since there is no enough space to
move, as a result the speed slows down. These examples illus-
trate the need to use density as additional cue for crowd event
characterization, also it helps to localize crowded regions.

To achieve an improved overall performance, the additional
information about local density is employed together with reg-
ular motion patterns as crowd attributes. These attributes which
are first extracted from long-term trajectories, are modeled
by histograms to describe the event or the behavior state of
a motion crowd. Then, their application for crowd behavior
analysis is demonstrated in two steps: First, the temporal
stability of these attributes is used for crowd change detection.
Second, crowd event recognition is carried out by classifying
a feature vector concatenating these histograms.

The remainder of the paper is organized as follows: Section
II presents our proposed sparse feature tracking framework
based on extracting long-term trajectories of local features.
Details about crowd attributes (local density and motion pat-
terns) are given in Section III. In Section IV, we explain how
to use these attributes in order to detect crowd change and
to recognize crowd events. A detailed evaluation of our work
follows in Section V. Finally, we briefly conclude and give an
outlook of possible future works.

II. CROWD TRACKING

Although there are different approaches to the tracking
problem, their application in videos of high dense crowds
remains a challenge. Actually, crowded scenes exhibit some
particular characteristics rendering the problem of multi-target
tracking more difficult than in scenes with few people, for
instance, the small size of a target in crowds, occlusions caused
by inter-object interactions, constant interactions among indi-
viduals, and full target occlusions that may occur (often for a
long time) by other objects in the scene or by other targets.

All the aforementioned factors contribute to the loss of ob-
servation of the target objects in crowded videos, that justifies
why conventional human detection or tracking paradigms fail
in such cases. To overcome this problem, alternative solutions
which consist of tracking particles [3], [6], [7] or local features
[4] instead of pedestrians have been proposed. Other methods
operate foreground masks and consider them as the regions of
interest [2], [1], called activity area in [1].

In the following, our proposed approach for crowd tracking
is presented. First, local features are extracted to infer the
contents of each frame under analysis. Then, we perform
local features tracking using the Robust Local Optical Flow
algorithm from [13] and a point rejection step using forward-
backward projection. The remainder of this section describes
each of these system components.

A. Extraction of local features

Under the assumption that regions of low density crowd
tend to present less dense local features compared to high-
density crowd, we propose to use local features as description
of the crowd. For local features, we assess Features from Ac-
celerated Segment Test (FAST) [14]. FAST has the advantage
of being able to find small regions which are outstandingly
different from their surrounding pixels. In addition, it was used
in [15] to detect dense crowds from aerial images and the
derived results demonstrate a reliable detection of crowded
regions. This feature is compared to the classic detector
Good Features to Track (GFT) [16], which is based on the
detection of corners containing high frequency information in
two dimensions and typically persist in an image despite object
variations.

B. Local features tracking

Local features tracking is performed by assigning motion
information to the detected features. In our framework, we
apply the Robust Local Optical Flow (RLOF) [13] [17], which
computes accurate sparse motion fields by means of a robust
norm1. A common problem in local optical flow estimation is
the choice of feature points to be tracked. Depending on texture
and local gradient information, these points often do not lie on
the center of an object but rather at its borders and can thus be
easily affected by other motion patterns or by occlusion. While
RLOF handles these noise effects better than the standard
Kanade-Lucas-Tomasi (KLT) feature tracker [18], it is still not
prone against all errors. This is why we establish a forward-
backward verification scheme where the resulting position of
a point is used as input to the same motion estimation step
from the second frame into the first one. Points for which
this “reverse motion” does not result in their respective initial
position are discarded. For all other points, motion information
is aggregated to form trajectories by connecting motion vectors
computed on consecutive frames. This results a set of nk
trajectories in every time step k:

Tk = {T k1 , ..., T knk
| =

T ki = {Xi(k −∆tki ), Yi(k −∆tki ), ..., Xi(k), Yi(k)}} (1)

where ∆tki denotes temporal interval between the start and the
current frames of a trajectory T ki . (Xi(k−∆tki ), Yi(k−∆tki )),
and (Xi(k), Yi(k)) are the coordinates of the feature point in
its start and current frames, respectively.

III. CROWD EVENT ATTRIBUTES

We consider simultaneously local density, speed and ori-
entation. These attributes are extracted within our proposed
sparse feature tracking framework described in Section II. For
local density, a probability density function (pdf) is computed
on the positions of moving local features using a Gaussian
kernel density, whereas, speed and orientation are extracted
from motion vectors. An illustration of the modules of crowd
attributes extraction is shown in Figure 1.

1www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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Fig. 1. Illustration of the proposed crowd attributes: crowd tracking using local features, estimation of crowd density map after distinction between moving
(green) and static (red) features, estimation of speed and flow direction from motion vectors.

A. Local crowd density

Our proposed local crowd density is estimated by measur-
ing how close local features are. This is based on the observa-
tion that the more local features come towards each other,
the higher crowd density is perceived. Since the extracted
local features defined in II-A contain components irrelevant to
the crowd density, we need to add a separation step between
foreground and background entities to our system. This feature
selection process can be optimally done by computing the
overall mean motion Γki of each trajectory T ki . Γki which
denotes the mean of displacement between (k − ∆tki )th and
the current frame k, is compared to a small constant ζ. Moving
features are then identified by the relation Γki > ζ while the
others are considered as part of the static background.

After filtering out static features, the crowd density map
is defined as a kernel density estimate based on the positions
of the moving local features. For a given video sequence of
N frames {I1, I2, ..., IN}, if we consider a set of mk moving
local features extracted from a frame Ik at their respective
locations {(xi, yi), 1 ≤ i ≤ mk}, the corresponding density
map Ck is defined as follows:

Ck(x, y) =
1√
2πσ

mk∑
i=1

exp−(
(x− xi)2 + (y − yi)2

2σ2
) (2)

where σ is the bandwidth of the 2D Gaussian kernel.

The resulting crowd density map characterizes the spatial
variations of the crowd thanks to the probability density
function involved in the process. This spatial variation that
arises across the frame conveys rich information about the
distributions of pedestrians in the scene.

B. Crowd motion: Speed and Orientation

The feature tracks defined in II are first used to show
the spatial distributions of the crowd by estimating crowd
density maps based on the positions of moving local features.
Second, the same feature tracks are used to extract crowd
motion information. It proceeds as follows: after filtering out
static features (of zero trajectory lengths because they are
stationary along frames, or of small trajectory lengths because
of the noise in video acquisition, or dynamic background), for
the remaining local features, the overall mean motion Γki is

compared to a certain threshold β set empirically according
to image resolution and camera perspective. The trajectory
is considered for further processing only if Γki > β. While
other short-term trajectories of small length (occur because
of tiny movement of crowd) are filtered out to not affect the
computation of speed and orientation. The advantage of using
trajectories instead of computing motion vectors between two
consecutive frames is that outliers are filtered out and the
overall motion information is less affected by noise.

Once the set of useful trajectories is determined, we restrict
the history of each 2D trajectory over last few frames because
otherwise by considering the whole trajectory an augmentation
in the speed will not be detected early and also the flow
direction might be less precise. For speed estimation, it is
computed as the quotient of the trajectory length divided by
the number of frames being tracked. For flow direction, we
consider the orientation of motion vector formed by the start
and the current position of the trajectory.

IV. ABNORMAL CHANGE DETECTION AND EVENT
RECOGNITION

Overall, the spatio-temporal crowd measures introduced
by density maps and motion vectors convey rich information
about the distributions and the movements of pedestrians in
the scene which are strongly related to their behaviors. To
perform that, we model the crowd attributes by histograms,
see paragraph IV-A. Then, the application of these attributes
for crowd behavior analysis is demonstrated in two steps: First,
the variations of a measure of stability in time is used to
detect change or abnormal event, see paragraph IV-B. Second,
a feature vector concatenating these histograms is employed
for event recognition, see paragraph IV-C.

A. Crowd modeling

Each crowd attribute is encoded by a 1D-histogram. Given
the crowd density map Ck at a frame k, the local density
information is quantized into Nd bins. We have chosen Nd = 5
according to Polus definition [19] of crowd levels (free,
restricted, dense, very dense and jammed flow). Then, to group
together motion vectors of the same direction, we quantize
the orientation Θ into NΘ bins. NΘ is set to 8 bins, which
results orientation bin size ∆Θ = 45 degrees. As proposed



in [2], the speed is quantized into Ns = 5 classes: very slow,
waking, walking fast, running, and running fast. It is important
to note that speed changes can be also affected by perspective
distortions, due to the fact that when people are getting away
from the camera, their motion vectors are of small lengths.
That is why, we rectify these effects on the speed.

B. Crowd Change Detection

According to the procedure described so far, at each
frame k, we obtain three histograms Hd(k), HΘ(k), and
Hs(k) which denote, respectively, the histograms of density,
orientation, and speed. If the motion patterns and the density
of the crowd remain similar within a period of time, the
corresponding histograms are similar as well. Whereas, if a
change occurs in the crowd behavior, that would generate
dissimilarities between the histograms.

For histogram comparison in time, we adapt the same
strategy as in [2]: we compare the density and the motion
patterns at each frame with those of a set of previous frames.
For each histogram Hi(k) at time k, a similarity vector Si(k)
is defined as:

Si(k) = (C(Hi(k), Hi(k −∆t1)),

C(Hi(k), Hi(k −∆t2)), ..., C(Hi(k), Hi(k −∆tn))) (3)

n is the number of frames used in the comparison, ∆tj are
the frame steps, and C is the histogram correlation defined
between H1 and H2 as:

C(H1, H2) =

∑
p (H1(p)−H1)(H2(p)−H2)√∑

p (H1(p)−H1)2
∑
p (H2(p)−H2)2

(4)
where H is the mean value of H .
Similar to [2], we define the temporal stability σi(k) of each
histogram Hi(k) as the weighted average of Si(k):

σi(k) = ωTSi(k),

ω =
1∑n

j=1 e
λ∆tj

(e−λ∆t1 , e−λ∆t2 , ..., e−λ∆tn) (5)

λ denotes the decay constant, ∆tj = j∆t (∆t is a constant).

In our approach, a change is detected if the similarity
between the current frame and the previous frames for one
of the crowd attributes (local density, speed, and orientation)
is low. For this, we compare each temporal stability σi(k),
1 ≤ i ≤ 3 to an adaptive threshold τi(k) computed as the half
average of the temporal stability values σi between (k−∆t1)
and (k −∆tn):

τi(k) =
1

2n

n∑
j=1

σi(k −∆tj) (6)

C. Event Recognition

The proposed crowd attributes are also used to recognize
crowd events. In particular, 6 crowd events are modeled; walk-
ing, running, evacuation, local dispersion, crowd formation and
crowd splitting. In our framework, we propose to perform
event recognition by classification. For testing, given a new

frame x, we aim at classifying it into one of the events y∗ ∈ Y ,
which maximizes the conditional probability:

y∗ = arg max
y∈Y

P (y|x, θ∗) (7)

where θ∗ are learned from the training data. This can be
performed by SVM classification, and for the feature vector,
we concatenate the 3 histograms Hd(k), HΘ(k), and Hs(k)
into Hk. For classification, we use Chi-Square kernel:

K(Hi,Hj) =
∑
I

Hi(I)−Hj(I))2

Hi(I) +Hj(I)
(8)

V. EXPERIMENTAL RESULTS

A. Datasets

First, for crowd change detection, we test our proposed
approach on the publicly available UMN dataset [20], which
has been widely used to distinguish between normal and
abnormal crowd activities. The dataset comprises 11 videos in
three indoor and outdoor scenes organized as follows: Videos
1:2 belong to scene 1, Videos 3:8 belong to scene 2, and the
scene 3 consists of Videos 9:11. Each of these videos can
be divided into normal and abnormal parts. Precisely, they
illustrate different scenarios of escape events such as running
in one direction, or people dispersing from a central point.

For the ground truth, as noticed in [2], [4], the labels
of abnormal events shown in the videos are not accurate.
There are some lags in the ground truth labels. To overcome
this conflict, we use the labels of change detection of some
videos from [2], [4], for the other videos we follow the same
annotation strategy; we manually label the frame in which
the crowd change occurs (for UMN dataset, once people start
running).

For evaluating crowd event recognition, we test our method
on PETS dataset [21], mainly on section S3, used to assess
event recognition algorithms. This dataset comprises 4 video
sequences of time-stamps 14:16, 14:27, 14:31 and 14:33, only
the first view is used in our experiments. As noticed in [5],
some sequences are composed of 2 video clips, this is the
case of 14:16, 14:27, and 14:33, which results 7 videos in
total. These videos depict 6 classes of crowd events: walking,
running, formation (merging), splitting, evacuation, and dis-
persion. We annotate these videos with the 6 classes as it is
shown in the following Table I.

events video [frames]

walking seq.14:16-a [0-40], seq.14:16-b [0-56]
running seq.14:16-a [41-107], seq.14:16-b [57-114]
evacuation seq.14:33-b [24:66]
dispersion seq.14:27-a [96:144], seq.14:27-b [86:134]
formation seq.14:33-a [0:180]
splitting seq.14:31 [58:130]

TABLE I. GROUND TRUTH FOR EVENT RECONGITION: THE TIME
INTERVALS INDICATE WHERE A SPECIFIC EVENT IS RECOGNIZED (FROM

ITS FIRST FRAME TO THE LAST ONE)



B. Experiments and Analysis

For quantitive evaluation of crowd change detection, we
employ the relative mean frame error metric proposed in [6]:

eF = Ne/Nfr (9)

where Nfr, Ne denote the total number of frames in the video,
and the error frames, respectively, see Table II.

Seq. UMN Nb Frames Ground
Truth

Our Det.
changes

eF

Video1 625 484 493 0.0144
Video2 828 665 669 0.0048
Video3 549 303 319 0.0291
Video4 685 563 582 0.0277
Video5 769 492 512 0.0260
Video6 579 450 466 0.0276
Video7 895 734 754 0.0223
Video8 667 454 471 0.0255
Video9 658 551 551 0
Video10 677 570 577 0.0103
Video11 807 717 722 0.0062

TABLE II. COMPARISON OF OUR DETECTION RESULTS WITH THE
GROUND TRUTH LABELS USING ERROR FRAME METRIC

As demonstrated in Table II, the comparison of our detec-
tion results with the ground truth labels shows satisfactory
performance and rather accurate in most videos. In terms
of eF metric, the error is small in most videos. In some
cases, the delay of some frames after that the event occurs
because of our strategy of detection, in which an abnormal
event is detected if the temporal stability is below the dynamic
threshold (defined as half the average of temporal stabilities).
This requires sometimes to be detected, which justifies the
delay, however, our strategy is suitable to lower false alarms.

We also compare our results with other methods, namely,
the Social Force Model (SFM) [3], the adjacency-matrix based
clustering (AMC) [4], and the similarity metric based on 2D-
histograms decoupling speed and orientation in [2]. Figures 2,
and 3 illustrate these comparisons on some videos of UMN
dataset. In these figures, the green bar indicates normal events,
and the red color denotes the detected or labeled abnormal
event. These comparisons show that our method gives better
results than SFM and comparable results regarding the two
other methods. It is important to mention that UMN does
not include events such as crowd formation/splitting, that
could justifies that using only motion information (speed and
orientation) could achieve satisfactory results. More tests on
crowd events are required to demonstrate the usefulness of
local crowd density as additional attribute.

Furthermore, precision and recall of our proposed approach
are listed in Table III. We compare our results to (AMC)
method [4], which also runs on the same dataset and labeled
the ground truth manually. The conflict concerning the ground
truth annotations impeded additional comparisons. This com-
parison shows that our method achieves comparable results in
terms of recall. 100% is achieved in terms of precision which
means zero false alarms for all videos, however, the evaluation
in terms of precision is not provided for the compared method
[4]. The lower recall rate (of small margin) of our method,
is for the same reason mentioned before about time lags in

the detection until the similarity metric becomes less than the
dynamic threshold.

Approach Recall (%) Precision (%)

Proposed approach 92.45 100
AMC approach 94 n/a

TABLE III. PERFORMANCE OF OUR PROPOSED CROWD CHANGE
DETECTION METHOD IN TERMS OF RECALL AND PRECISION USING UMN

DATASET COMPARED TO [4]

For crowd event recognition, we randomly split the dataset
PETS. S3 into (75%) for training and (25%) for testing. This
random split is done 10 times, and the following results are
the average of these 10 iterations. For each test sample, the
feature vector using the concatenation of the three histograms
is identified as one of the six classes following one-vs-
one strategy. We obtain (99.54%) as classification accuracy.
We also evaluate the recognition performance with confusion
matrix, see Table IV.

Furthermore, we report the classification accuracy on the
test set for each class separately, following one-vs-rest strategy,
see Table V. As it is illustrated in these tables IV, and V,
we achieve excellent results for all crowd events including
crowd formation/splitting, which justifies the relevance of our
proposed attributes.

(a) (b)

0
624

Our Approach

Ground Truth 484

496

493

Almeida et al.

(c)

Fig. 2. Results on Video1 of UMN [20] dataset (a) )The frame in which the
crowd change occurs (b) The frame in which our method detects the crowd
change (c) Comparisons of our result with [2] result and to the ground truth

VI. CONCLUSION

In this paper, we proposed a novel approach to automat-
ically detect abnormal crowd change and to recognize crowd
events in video sequences based on analyzing some attributes
of crowd tracks. The effectiveness of using local density
together with motion information has been experimentally
validated using videos from different crowd datasets. The
results show good performance for early detection of crowd
change, and accurate event recognition.

There are several possible extensions of this work: First,
because crowd events have temporal structure, Hidden Markov
Models (HMM) can tackle this classification better than SVM
(classification per-frame which disregards temporal order) by
capturing temporal patterns in the data. The small size of



walking running splitting dispersion evacuation formation
walking 0.9958 0.0042 0 0 0 0
running 0.0032 0.9968 0 0 0 0
splitting 0 0 1.0000 0 0 0

dispersion 0 0 0 1.0000 0 0
evacuation 0 0 0 0 0.9794 0.0206
formation 0 0 0 0.0067 0 0.9933

TABLE IV. CONFUSION MATRIX FOR EVENT RECOGNITION ON PETS2009. S3 DATASET

Events Walking Running Splitting Dispersion Evacuation Formation

accuracy 99.41 99.21 100.00 99.87 99.80 99.54

TABLE V. CLASSIFICATION ACCURACY OF OUR PROPOSED CROWD EVENT RECOGNITION METHOD ON TEST SET FROM PETS. S3 DATASET
FOLLOWING ONE-VS-REST STRATEGY

(a) (b)

0 676

Our Approach

Mehran et al.

Ground Truth

572

575

594

570

576

Almeida et al.

Chen et al.

(c)

Fig. 3. Results on Video10 of UMN [20] dataset (a) The frame in which the
crowd change occurs (b) The frame in which our method detects the crowd
change (c) Comparisons of our result with [2], [4], [3], results and to the
ground truth

PETS 2009.S3 dataset impeded us to investigate this method,
since HMM requires extensive training data. Another future
direction of this work could be the use of the same input (local
features tracking) to study group behaviors by performing
trajectory clustering.
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