
N°:$$2009$ENAM$XXXX$
$ $

Télécom ParisTech
Ecole de l’Institut Télécom – membre de ParisTech

46, rue Barrault – 75634 Paris Cedex 13 – Tél. + 33 (0)1 45 81 77 77 – www.telecom-paristech.fr

T
H
E
S
E

$

$ $

2013-ENST-0088

EDITE ED 130

!
!
!
!
!
!
!
!
!
!
!
!

présentée et soutenue publiquement par

Bilel BEN ROMDHANNE

le 16 Décembre 2013

Simulation des Réseaux à Grande Echelle

sur les Architectures de Calculs Hétérogènes

$

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

Télécom ParisTech

Spécialité “ Xxxx ”

Directeurs de thèse : Navid NIKAEIN et Christian BONNET$

T
H
È
S
E

Jury
M. Thierry TURLETTI, DR, Diana, INRIA Sophia Antipolis Président
M. Kaylan S. PERUMALLA, Professeur adjoint, School of CSE, Georgia Tech Rapporteur
M. Walid DABBOUS, DR, Diana, INRIA Sophia Antipolis Rapporteur
Mme. Elisabeth BRUNET, Professeur assistant, G2, Telecom SudParis Examinateur
Mme. Margaret L.LOPER, Directeur chercheur, ICL, Georgia Tech Research Institut Examinateur
M. Christian BONNET, Professeur, Communications mobiles, Eurecom Directeur
M. Navid NIKAEIN, Professeur assistant, Communications mobiles, Eurecom Directeur

$

$

!

TELECOM PARISTECH

École Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences

de TELECOM ParisTech

Mention Informatique

présentée et soutenue par

Bilel BEN ROMDHANNE

Simulation des Réseaux à grande
Échelle sur les architectures de

calcules hètèrogénes
Thèse dirigée par Navid NIKAEIN et Christian BONNET

Laboratoire EURECOM, Sophia Antipolis

soutenue le 16 Decembre 2013, devant le jury composé de:

Président du Jury Thierry TURLETTI , France

Rapporteurs Kaylan S. PERUMALLA , USA

Walid DABBOUS , France

Examinateurs Elisabeth BRUNET , France

Margaret L.LOPER , USA

Directeur de thèse Christian BONNET , France
Navid NIKAEIN , France

c⃝ 2013
Ben Romdhanne Bilel

ALL RIGHTS RESERVED

iii

v

Acknowledgments
I think that one of my major motivation during the last three years, is my dream to
write the following: I dedicate this work to my mother that supported, encouraged,
powered and resourced me during too many years (thirteen exactly). A special ded-
ication for my father also which gives me the example for a respectable life. I hope
that this work will be the pride of my parents. I want to thank my lovely wife which
shares with me the same experience, and sharing two PhD at the same time in the
same house, is not easy at all! Finally, I hope that one day, I will read a similar
dedication written by my young son Ahmed Yessine.

vii

Summary
Large-scale network simulation over heterogeneous Computing

architecture

The simulation is a primary step on the evaluation process of modern networked
systems. The scalability and efficiency of such a tool in view of increasing com-
plexity of the emerging networks is a key to derive valuable results. The discrete
event simulation is recognized as the most scalable model that copes with both par-
allel and distributed architecture. Nevertheless, the recent hardware provides new
heterogeneous computing resources that can be exploited in parallel.
The main scope of this thesis is to provide a new mechanisms and optimizations
that enable efficient and scalable parallel simulation using heterogeneous computing
node architecture including multicore CPU and GPU. To address the efficiency, we
propose to describe the events that only differs in their data as a single entry to
reduce the event management cost. At the run time, the proposed hybrid sched-
uler will dispatch and inject the events on the most appropriate computing target
based on the event descriptor and the current load obtained through a feedback
mechanisms such that the hardware usage rate is maximized. Results have shown
a significant gain of 100 times compared to traditional CPU based approaches.
In order to increase the scalability of the system, we propose a new simulation
model, denoted as general purpose coordinator-master-worker, to address jointly the
challenge of distributed and parallel simulation at different levels. The performance
of a distributed simulation that relies on the GP-CMW architecture tends toward
the maximal theoretical efficiency in a homogeneous deployment. The scalability
of such a simulation model is validated on the largest European GPU-based super-
calculator the TGCC Curie with 1024 LPs each of which simulates up to 1 million
nodes.
To further validate the efficiency and scalability of the proposed mechanisms and
optimizations, we applied the event grouping, hybrid scheduling, and GP-CMW to
popular network simulator NS − 3. Results have demonstrated a gain of25 times
under a large scale deployment including 288 GPUs and 1152 CPU on the TGCC
Curie.

ix

Résumé
Simulation des Réseaux à grande échelle sur les architectures de

calcules hètèrogénes

La simulation est une étape primordiale dans l’ évolution des systèmes en réseaux.
L’ évolutivité et l’ efficacité des outils de simulation est une clef principale de l’
objectivité des résultats obtenue, étant donné la complexité croissante des nouveaux
des réseaux sans-fils. La simulation a évÃ¨nement discret est parfaitement adéquate
au passage à l’ échelle, cependant les architectures logiciel existantes ne profitent
pas des avancées récente du matériel informatique comme les processeurs parallèle
et les coprocesseurs graphique.
Dans ce contexte, l’objectif de cette thèse est de proposer des mécanismes
d’optimisation qui permettent de surpasser les limitations des approches actuelles
en combinant l’utilisation des ressources de calcules hétérogéne. Pour répondre
à la problématique de l’efficacité, nous proposons de changer la représentation
d’événement, d’une représentation bijective (évènement-descripteur) à une représen-
tation injective (groupe d’évènements-descripteur). Cette approche permet de ré-
duire la complexité de l’ordonnancement d’une part et de maximiser la capacité
d’exécuter massivement des événements en parallèle d’autre part.
Dans ce sens, nous proposons une approche d’ordonnancement d’événements hy-
bride qui se base sur un enrichissement du descripteur pour maximiser le degré de
parallélisme en combinons la capacité de calcule du CPU et du GPU dans une même
simulation. Les résultats comparatives montre un gain en terme de temps de sim-
ulation de l’ordre de 100x en comparaison avec une exécution équivalente sur CPU
uniquement.
Pour répondre à la problématique d’évolutivité du système, nous proposons une nou-
velle architecture distribuée basée sur trois acteurs logiciels : Un coordonnateur, un
master et un worker. Cette architecture réponde simultanément aux limitations des
architectures parallèles et distribuées. Nous proposons aussi une version optimisée
de l’architecture qui maximise la stabilité et réduit la latence de la communication.
Les expérimentations de validation ont était sur le supercalculateur hybride TGCC
Curie avec 1024 instance, chacune simule un million de noeuds.
Pour proposer une valider grand-publique de notre approche, nous avons apportés
des modifications au simulateur de réseaux NS-3, les modifications portent sur le
générateur, l’ordonnanceur et l’exécuteur des évènements.
Les résultats comparatifs apportent la preuve que l’approche proposé ouvre des
nouveaux horizons de passage à l’échelle. Nous avons pu atteindre un gain de 25x
en combinant le groupement des évènements avec l’ordonnancement hybride.

Contents

1 Introduction 3
1.1 Motivation and Objectives . 3
1.2 Contributions Storyline . 4
1.3 Thesis Structure . 6
1.4 Publications . 7
1.5 Project Deliverables . 8

I Background 9

2 Network Experimentation 11
2.1 Introduction . 11
2.2 Network Experimentation Tools . 11

2.2.1 Real world Field Trial . 11
2.2.2 Real world Testbed . 12
2.2.3 Emulation Testbed . 13
2.2.4 Simulation Testbed . 13
2.2.5 Hybrid Testbed . 14

2.3 Network Experimentation Aspects 15

3 Discrete Event Simulation 19
3.1 Introduction . 19
3.2 Discrete-Event Simulation . 19

3.2.1 Terminology and Components 19
3.2.2 The Principle . 20

3.3 Parallel Discrete Event Simulation 20
3.3.1 Discrete Event Simulation Limits 21
3.3.2 Principles of Parallel Discrete Event Simulation 21
3.3.3 Parallel Simulation Model and Algorithms 22

4 Hardware Trends 25
4.1 Introduction . 25
4.2 Evolution of Computing Chips . 25

4.2.1 CPU: Historical Evolution and Trends 25
4.2.2 GPU: Historical Evolution and Trends 26
4.2.3 Emerging Solutions . 27
4.2.4 Multi-Core accelerator . 27

4.3 Parallel Programming: Models and API 28
4.3.1 Pthreads . 28
4.3.2 OpenMP . 28

xii Contents

4.3.3 MPI . 29
4.3.4 CUDA . 29
4.3.5 OpenCL . 29

5 Related Work 31
5.1 Introduction . 31
5.2 Large Scale Simulation . 31
5.3 PDES Issues . 33

5.3.1 Data Representation . 33
5.3.2 Event Scheduling . 34

5.4 Considerations Heterogeneous Computing Considerations 34

II Contributions 39

6 Cunetsim: An Experimentation Framework to Discover Scalability
Horizons 41
6.1 Introduction . 41
6.2 Fundamental Concepts . 42

6.2.1 The Worker Pool . 43
6.2.2 Separation Between an Event and Its Description 43
6.2.3 Massive Parallel Event Generation 43

6.3 Cunetsim Software Architectures . 44
6.3.1 The Worker Design . 44
6.3.2 The Master Design . 46
6.3.3 Legacy Architecture for Multi-Core CPU 47

6.4 Comparative Performances Results 48
6.4.1 Simulation Runtime . 50

6.5 Technical Challenges of GPU-based Simulation 53
6.5.1 Synchronization Challenge . 53
6.5.2 Memory Management Challenge 55
6.5.3 Precision Issue . 56

6.6 Configuration Issues of GPU-Oriented Simulation 56
6.6.1 Space Representation and partitioning 56
6.6.2 Tuning Parameters: Block Size as a Study Case 56

6.7 Conclusion . 58

7 Hybrid Events Scheduler 59
7.1 Introduction . 59
7.2 The Hybrid Scheduler . 61

7.2.1 Model and Components . 61
7.2.2 Scheduling Algorithms . 62

7.3 Performance Evaluation . 67
7.3.1 Scenario & Setup . 68
7.3.2 Comparative Evaluation . 69

Contents xiii

7.3.3 Performance Analysis . 70
7.4 Related Work . 74
7.5 Discussion . 75
7.6 Conclusion . 76

8 General Purpose Coordinator-Master-Worker Model 79
8.1 Introduction . 79
8.2 The General Purpose Coordinator-Master-Worker Model 81

8.2.1 Events Management: Description, Scheduling and Execution . 82
8.2.2 The Synchronization Mechanism of the GP-CMW Model . . . 87
8.2.3 GP-CMW Communication Model 88

8.3 Comparative Evaluation . 90
8.3.1 Comparative Performance Evaluation 91
8.3.2 Inherent Performance Evaluation 93

8.4 Related Work . 101
8.5 Conclusion . 103

9 Study Case of PADS Methodology Deployment: NS-3 105
9.1 Introduction . 105
9.2 Overview . 106
9.3 Events scheduling on NS-3 . 107
9.4 NS-3 Events scheduler extensions . 109

9.4.1 The Explicit CPU Parallelism 110
9.4.2 The Implicit CPU Parallelism 111
9.4.3 The GPU Offloading . 112
9.4.4 The Co-scheduler Approach 113

9.5 Comparative evaluation . 115
9.5.1 Medium Load . 115
9.5.2 High Load . 116

9.6 Conclusion . 117

III Conclusion 119

10 Conclusion 121

A Experimentation Methodology 123
A.1 Introduction . 123
A.2 Scientific Experimentation . 124
A.3 OpenAirInterface Experimentation methodology 124

A.3.1 OpenAirInterface Formal Experimentation Methodology . . . 125
A.3.2 Methodology Implementation 126

A.4 Conclusion . 127

B Résumé Étendue 129

xiv Contents

Bibliography 151

List of Figures

6.1 Mobility Events pattern . 45
6.2 Simplified master/workers model that targets GPU execution. . . . 47
6.3 Simplified master/workers model that targets CPU execution. 48
6.4 Simple Grid Topology . 49
6.5 End-to-End Packet Loss: . 50
6.6 Simulation runtime of the static network: 51
6.7 Simulation runtime of the mobile network: 52
6.8 Block size impact . 57

7.1 Events reordering and storage: top figure schematizes an events de-
pendency diagram while bottom figure schematizes how they will be
reordered and stored. Events dependency is transformed to interval. 62

7.2 Event scheduler model . 63
7.3 Statistical table used for recalibration 67
7.4 Topology of the benchmarking scenario 72
7.5 Normalized speedup with respect to the sequential runtime 72
7.6 The hardware usage rate. 72
7.7 The scheduling cost. 73
7.8 Variation of the input rate vs Time 73
7.9 Output event rate of different algorithms. 73
7.10 Average decision path length during the simulation. 73
7.11 Average interval length during the simulation. It closely reflects the

events dependency. 74

8.1 The GP-CMW blocks diagram: . 82
8.2 Events Life Cycle . 84
8.3 Examples of events grouping: . 85
8.4 The simulation runtime of the studied simulators: 92
8.5 The synchronization delay as a function of the number of LPs 93
8.6 The impact of the PAL and HAL on the simualtion runtime: 96
8.7 The synchronization delay as a function of the scenario and the con-

figuration . 97
8.8 The average external communication latency: 98
8.9 The average internal communication latency: 99
8.10 The average CPU usage rate: . 100
8.11 The average GPU usage rate: . 100
8.12 The average RAM usage rate: . 100
8.13 The average GRAM usage rate: . 101

9.1 Default NS-3events scheduling approach: 107

xvi List of Figures

9.2 Distributed event scheduling approach in NS3: 108
9.3 Scheduling Cost as a function of nodes number 110
9.4 Explicit CPU parallelism: . 111
9.5 Implicit CPU parallelism: . 112
9.6 GPU offloading: . 113
9.7 CO-scheduling approach: . 114
9.8 Simualtion runtime of each configuration as a function of the number

of CPU cores (1000 nodes) . 117
9.9 Simualtion runtime of each configuration as a function of the number

of CPU cores (500K nodes) . 118

A.1 Experimentation Workflow . 125
A.2 The user experimentation workflow: 127

List of Tables

2.1 Characteristics of exciting experimentation tools 17

7.1 List of different scheduling approaches 69

Acronyms

Here are the main acronyms used in this document. The meaning of an acronym is
usually indicated once, when it first appears in the text.

OAI Open Air Interface
CORE Core Emulator
FPGA Field-Programmable Gate Array
CPU Central Processing Unit
GPU Graphic Processing Unit
SoC System on Chip
NOC Network on Chip
FSM Finite State Machine
EP Event Pattern
UDG Unit Disk Graph
QUDG Quas-Unit Disk Graph
GPGPU General-Purpose Processing on Graphic Processing Unit
CIE Cloned Independent Events
IFE Independent Foreign Events

Chapter 1

Introduction

1.1 Motivation and Objectives

Over the last decades, we have witnessed a great progress and an increasing need
for discrete event simulation in a large range of scientific application. In particular,
discrete event paradigm is useful for time-stepped simulation, which provides leaps in
time and asynchronous updates (at potentially staggered virtual times) to different
parts of the state.
The distributed DES was recognized as mostly adequate for large scale and complex
simulation since it supports distributed features. In that context, network simulation
was a leading research area that provides a significant portion of recent innovation
in term of discrete event simulation theory and practice. Especially, large scale sim-
ulation appears as a real need when targeting the study of large systems evolving
hundreds of thousands of simulated elements such as network nodes. Distributed
simulation that relies on independent logical processes (LP) which communicate
through message is enough for traditional large scale simulation where nodes are
easily isolated. This paradigm requires minimizing the interaction between LPs
compared to that within each LP to maintain the efficiency of the system. How-
ever, when targeting to simulate intensive interactive systems such that of modern
wireless and mobile network, this paradigm becomes obsolete: we need either a
very large LP that cover all dependents elements, or a low communication latency
for inter-LP communication. Indeed, recent hardware provides several new features
that increases the available computing power but requires a modified software archi-
tecture. The main hardware innovation is the usage of multi-core resources which
enable parallel processing. Currently, the usage of multi-computing resource on the
same LP remains in exploration phases. One fundamental corner of the usage of
many computing resources is the parallel event scheduling that aims to execute sev-
eral events concurrently while conserving the simulation correctness. Accordingly,
the main research motivation of this thesis is the scalability issue of discrete event
simulation (DES) in view of the heterogeneous computing. This thesis emphasis
fours objectives:

• Studying and evaluating the pertinence of using emerging computing solution
on large scale simulation.

• Reconsidering the event-driven simulation concept to maximize the usage of
heterogeneous computing solutions.

4 Chapter 1. Introduction

• Designing a scalable methodology for general purpose, large scale and intensive
simulation.

• Proposing a new scheduling approach that unlocks the DES bottleneck.

1.2 Contributions Storyline

In the 2010/2011 time frame, when we started to work in this thesis, we set as
objective to increase the scalability of the intern simulation/emulation framework
OAI. However, this goal required that we first transform the platform, from the
concept of rapid validation tool to that of scientific experimentation tool .
Thus, before addressing the large scale issues, ensuring the reproducibility is a pri-
mary requirement that we must guarantee. Therefore, we design an experimenta-
tion methodology that defines a five-stepped workflow. That approach is largely
inspired from existing methodologies used in large scale simulation and emulation
frameworks [121, 117, 133]. When we started addressing the scalability issue, we
first rely on a software engineering methodology that aims to identify computing
bottlenecks and resolving them based on five possible approaches: GPU offloading,
CPU parallelism, vector-processing parallelism, code optimization and compiling
optimization. Each of these approaches provides a gain and induces an overhead.
While this methodology delivers a real improvement in terms of performance and
runtime, it becomes caducous when the overhead overpasses the gain. Accordingly,
we admit the limit of this step once we reach the efficiency boundary.
With this experience in mind, we conclude that an architectural and fundamental
work is required to propose an innovated answer to the scalability issue. Hence,
we survey related works that discuss large scale simulation in the area of network
simulation, and we determine four key issues:

1. Discrete event simulation is the most dominant approach to model large scale
system while providing functional features such as the interoperability.

2. Event scheduling is a major issue in parallel simulation and more particularly,
events-dependency detection is an expensive operation in terms of algorithm
complexity.

3. The communication between distinct machines remains a major limiting factor
of distributed simulation. Indeed, FLOPS becomes cheap while the commu-
nication is expensive.

4. Backward compatibility with sequential system is always maintained, trans-
forming parallel simulation into an extension rather than a standard.

These observations give rise to a new principal of events managements which is the
generation of independent and parallel events, without subsequent control during the
scheduling phase. Even if it looks like as a promising idea, its realization into the
OAI requires a major redesign work which may impact several projects that use

1.2. Contributions Storyline 5

it as a validation and experimental platform. Thus, occurs the idea of creating a
new simulator to validate the concept of generating grouped event in one hand and
the pertinence of using the GPU as a simulation context for parallel execution on
the other hand. We expect to increase the simulation efficiency by reducing the
simulation runtime for a given scale, but also increasing the simulation scalabil-
ity by allowing a unique logical process to handle much more simulated elements
than what can be done by a CPU. The proposed simulation framework is named
as Cunetsim: CUDA network simulator. Initial implementation provides six ele-
mentary services: mobility, connectivity, buffers management, broadcasting, traffic
generator and power management. Based on a GPGPU software design, the simula-
tion processing is defined by a list of time-stamped entries. At each entry, all nodes
process the same event but on different data. Conceptually, the event-scheduler han-
dles one entry for all nodes. The GPU driver and hardware transform that entry
into a group of threads, each of which processes an event of one node. According to
this methodology, we take advantage of the hardware management of threads and
the automatic hardware synchronization of simulated nodes. In contrast with tradi-
tional parallel simulation, we avoid complex scheduling policies that aim to detect
event dependency. We also compress the event representation which in turn reduces
the scheduling cost. While earliest results were promising in term of efficiency and
scalability, new requirements emerge: how to communicate with the outside world?
How to handle complex scenarios with heterogeneous node definition? And more
importantly how to overcome the GPU memory size limitation?
The interesting results of the initial Cunetsim implementation simplify a new frame-
work to create a parallel and generic version that features parallel simulation over
multiple GPUs. Further, we introduce a dynamic event scheduler that handles vari-
able inputs and an extended event generator to support realistic scenario. The
concept of an entry evolves from being relative to all nodes to becoming relative to a
sub group of simulated nodes. Nevertheless, the simulation logic remains invariant:
an entry is a compressed representation of a group of events that will be executed
in parallel. The design pattern that we adopt for this solution is the Master-worker
model where the master is a CPU process that manages the simulation and workers
are assimilated to the GPU cores that execute events. Unfortunately, the event
scheduling remains a centralized path where all entries must flow before being exe-
cuted. Thus, when the number of execution resources increases (several GPUs, each
of which includes thousands of cores), the event scheduler reappears as a bottleneck.
Accordingly, we conclude this research phase with two results: first, it is possible
to use a great computing power for a very large logical process efficiently using the
grouped events concept. Second, the event scheduling remains the main bottleneck
for large scale parallel simulation if it is centralized.
To further push the scalability boundary, we go one step back, and we reconsider the
hardware architecture: while the GPU is a powerful processor, it requires the CPU
as a host. Moreover, the CPU is evolving to the multi-core architecture providing
additional flexible computing resources. Thus, we can combine both CPU and GPU
on the same simulation rather than using the CPU solely as a manager. As from this

6 Chapter 1. Introduction

analysis the idea of the hybrid event scheduler emerged. The hybrid event scheduler
is a pseudo-conservative scheduler that aims to execute events on the most adequate
target between available executions resources. In particular, it switches grouped
events to the GPU and isolated ones to the CPU. This approach maximizes the
usage of heterogeneous computing resources on the shared memory. The gain from
the proposed hybrid event scheduler proved to be significant and can reach up to 3x
compared to traditional GPU scheduler.
The next intuitive step was to address the scalability further; we decide to distribute
the simulation framework through a meta-computing infrastructure. Therefore, we
incrementally design a three-tier software architecture donated as general purpose
coordinator-master-worker (GP-CMW) model. It extends the Master-Worker model
by introducing a top-level process which manages masters. In contrast with existing
distributed simulation framework, the proposed architecture reduces significantly
the management overhead through the network. The performance of a distributed
simulation that relies on the GP-CMW architecture tends toward the maximal theo-
retical efficiency. The scalability of the system was validated on the largest European
GPU-based supercomputer with 1024 LPs each of which simulates up to 1 million
nodes. Accordingly, we had crossed a scalability boundary by combing parallel and
distributed architecture into one global model that simplifies the management effort
from the user point of view.
Finally, To validate the efficiency of the proposed concepts, we apply them to the
popular network simulator NS-3 with the objective of a large scale deployment on
the largest European hybrid super-computer(the TGCC Curie), which includes up
to 288 GPUs and 1152 CPU. In particular, we customize the event scheduler of
NS-3 and the event generation model in order to highlight the efficiency of the hy-
brid scheduling policy. This validation approach provides a proof of concept for the
scalability and the robustness of the proposed model under production conditions.
Further, we proved that maximizing the LP size until using the totality of a com-
puting node is much more efficient than increasing the number of LPs within one
computing node.

1.3 Thesis Structure

This thesis is structured around two parts. The first part includes background
chapters that aim at providing a global view of the thesis context and investiga-
tion areas. In particular, the second chapter presents the network experimentation
tools. The third chapter focus on the discrete event simulation and the fourth chap-
ter highlights the hardware trends that lead the evolution of our work. The first
part is concluded in the fifth chapter that presents related works which address
large scale issues in network simulation or in DES. The second part of the thesis
includes contributions chapters. The sixth chapter presents the Cunetsim frame-
work that we use to explore the scalability horizons. The seventh chapter presents
the hybrid event scheduler that aims at maximizing the hardware usage rate of het-

1.4. Publications 7

erogeneous hardware including CPU and GPU. The eighth chapter introduces the
general purpose Coordinator-master-worker model that regroups the distributed and
the parallel simulations on one optimized model. To conclude this part, the ninth
chapter presents a study case of PADS methodology deployment through the ns−3

simulator. Finally, the thesis is concluded in the tenth chapter.

1.4 Publications

C1- B.R. Bilel,N.Navid, K. Raymond, B.Christian, OpenAirInterface large-scale
wireless emulation platform and methodology, MSWIM’11, The 14th ACM
International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, 31 october-4 Nov, Miami Beach,FL, USA.

P1- B.R. Bilel,N.Navid, Cunetsim: a new simulation framework for large scale
mobile networks, SIMUTOOLS’12, Proceedings of the 5th International ICST
Conference on Simulation Tools and Techniques, 19-23 March, Desenzano,
Italy.

C2- B.R. Bilel,N.Navid, Cunetsim: A GPU based simulation testbed for large
scale mobile networks, ICCIT’12, Communications and Information Tech-
nology (ICCIT), 2012 International Conference on, 19-21 June, Hammamet,
Tunisia.

C3- B.R. Bilel,N.Navid, M.S.M. Bouksiaa, Hybrid cpu-gpu distributed framework
for large scale mobile networks simulation, DSRT’12, Distributed Simulation
and Real Time Applications (DS-RT), 2012 IEEE/ACM 16th International
Symposium on, 25-27 October, Dublin, Ireland.

C4- B.R. Bilel,N.Navid, B.Christian, Coordinator-Master-Worker Model For Ef-
ficient Large Scale Network Simulation, SIMUTOOLS’13, Proceedings of the
6th International ICST Conference on Simulation Tools and Techniques, 5-7
March, Cannes, France.

P2- B.R. Bilel,N.Navid,M.S.M. Bouksiaa, B.Christian, Scalability demonstration
of a Large Scale GPU-based Network simulator, SIMUTOOLS’13, Proceedings
of the 6th International ICST Conference on Simulation Tools and Techniques,
5-7 March, Cannes, France.

C5- B.R. Bilel,N.Navid,M.S.M. Bouksiaa, B.Christian, Hybrid scheduling for
event-driven simulation over heterogeneous computers, PADS’13, ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS),
19-22 May, Montreal, Canada.

P3- B.R. Bilel,N.Navid,M.S.M. Bouksiaa, B.Christian, Events flow stability
demonstration for a hybrid GPU-CPU scheduling in large scale network,
PADS Colloquium’13, ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation -PhD Colloquium-(PADS), 19-22 May, Montreal, Canada.

8 Chapter 1. Introduction

J1- B.R. Bilel,N.Navid, B.Christian,General-Purpose Coordinator Master worker
Model for Large Scale Distributed Simulation, submitted to SMPT, simulation
modelling practice and theory Journal.

1.5 Project Deliverables

D1- LOLA D4.1 Specification of PHY&MAC Adaptations for the Target Architec-
tures.

D2- LOLA D5.1 Testbeds Definition.

D3- LOLA D5.2 Testbed 2: First report on Integration of WP3 Traffic Models and
WP4 L2 Algorithms on Testbed 1.

D4- CONECT D4.1 Testbed deployment and scenario specification.

D5- CONECT D2.1 : STATE-OF-THE-ART ON PACKET LEVEL COOPERA-
TION TECHNIQUES.

Part I

Background

Chapter 2

Network Experimentation

2.1 Introduction

Since the introduction of the first interconnected machines, the usage of a digital
communication has grown rapidly and is part of all human and economy domain.
Nowadays, networks are presents everywhere, in each home, company, car, and may
be with each person on the earth. This evolution impacts both network size and
data amounts that increase continuously. Accordingly, investigating or modifying
any components of that gigantic system requires a complex validation process. Thus,
after an initial theoretical analysis, algorithms and protocols are generally evaluated
experimentally. To cope with the broad range of requirements that recent network
experiments need to fulfill, different evaluation techniques have been established.
In this chapter, we survey the most common experiment tools, and classify them
according to their implementation granularity and realism level.

2.2 Network Experimentation Tools

A network experimentation tool is a framework that allows the experimenter to
realize a given experiment. Several peripheral services can be added to this definition
such as pre-definition service that help the experimenter to define the experiment
or archiving/analyzing tools that simplify the usage of the output.
Regarding the literature reviews, classification works consider two fundamental pa-
rameters: the implementation granularity and the realism level. Accordingly, we
highlight five principal approaches to network experimentation: real world field
trial, real world testbed, emulation testbed , simulation testbed and hybrid testbed.

2.2.1 Real world Field Trial

Real world field experiment consists of deploying an experimental subject through
real world infrastructure in order to study its behavior, efficiency or limits. In gen-
eral, experimenters use real computers and network equipment, where they rapidly
deploy their subjects of study (protocols, hardware, software). This approach was
one of the first validation methods in network research and industry because its
initialization requirements are limited and it provides realistic results. Nevertheless,
given the number and complexity of the factors involved in the current networks,
real world fields display three limitations:

12 Chapter 2. Network Experimentation

• Precision: the real world experiment is based on a black-box approach where
the system is evaluated as a whole. Thus, it is difficult to isolate a part of the
system in order to analyze its impact, behavior or performance. Consequently,
debugging and profiling activities are incompatible with such method.

• Reproducibility: a real world experiment is by definition, achieved in an open
context where real traffic and real equipment cohabit with experimental one.
As a consequence, it is hard to control environmental parameters that may
influence the experiment. Thus, the reproducibility of such experiments is
limited and remains an open issue.

• Scalability: the scalability of real world field is relatively limited due to three
reasons:

1. The deployment cost

2. The management complexity

3. The monitoring issues.

2.2.2 Real world Testbed

Real world testbed experiment consists on the deployment of the studied subject
on a dedicated experimental infrastructure that imitates real world conditions [128].
By agreement, the testbed can be isolated or integrated onto a real and production
context [71]. In contrast with experimentation, testbed increases the control by
providing formal experimentation methodologies. Nevertheless, the reproducibility
and the scalability of such an experiment remain challenging. In fact, the complexity
of controlling all relevant parameters in a field test is precisely why so many users
often turn to setting up testbeds where they can measure or control a large number of
environmental parameters of interest and easily reproduce the same experiment over
and over again. There are three principal tendencies that guide tested investigation:
(1) Increasing the realism level (2) increasing the control and (3) increasing the
scalability.

1. Increasing the realism level implies that the testbed grows as close as possible
to target networks by incorporating the totality of involved components that
may influence the experimentation[34, 116]. However, experimentation control
and scalability remain limited due to inherent cost of such solutions.

2. Increasing the experimentation control implies the specification of environ-
mental characteristics such as the transmission medium, medium access and
usage, traffic patterns, power consumption, etc. That feature is particularly
important for wireless network understanding that requires a full control of
the medium[11, 115]. Indeed, the scalability of such approach remains a re-
striction.

2.2. Network Experimentation Tools 13

3. Increasing the scalability implies the usage of additional resources. However,
according to the high cost of such testbed, the leading approach is to federate
foreign testbeds into a large infrastructure that can be shared between involved
teams [112, 40]. In fact, federated real world testbeds such as[70] increases
the tradeoff between the experimentation reproducibility and its realism level
compared to field experimentation.

2.2.3 Emulation Testbed

In the literature reviews, researchers talk about emulation when a sub part of the
studied system is partially modeled using a mathematic or software representation
while the other parts of the system are real. Another work considers an experi-
ment as an emulation when the environment of the studied subject becomes fully
controlled. Regarding network emulation frameworks, literature reviews highlight
the control of the experiment. The objective is to be able to configure all the pa-
rameters of an experiment execution. Depending on the framework goal, modeled
components may be either the medium, the hardware or software. Emulating the
network medium is typically used in wireless context where the channel specification
and modeling are under improvement [50, 29, 63].
In particular, FPGA based framework such as [66, 19] provide a full control on the
medium environment, propagation, collision and dispersion. Using FPGAs as de-
velopment context is also used in emulation context to study the radio medium [18].
Modeling the hardware is commonly used in network emulator that addresses proto-
cols development such as CORE [6]. The main goal of such approach is to execute
real protocol implementation that can be used in testbeds and field experimenta-
tions. Modeling the software is mainly used when the protocol stack and/or a part
of the software is not the subject of study such that its real implementation did not
improve the experimentation but slows the execution. A good example of software
emulation is trace based network emulation [93]. Several works that can be classified
as an emulation framework or approach, are positioned between [24, 59, 52, 79, 89].
Indeed, the scalability of emulation frameworks remains restricted due to the im-
posing cost per emulated node whatever the used emulation approach.

2.2.4 Simulation Testbed

In the literature reviews, researchers talk about simulation when the experiment
consists of using models to represent the studied system. In fact, each component
of the simulated system is represented using a model. External elements such as
the environment, foreign systems are also represented using models. Models can be
defined using more or less complex algorithms [22, 68].
The challenging part of a network simulation is the representative implementation
of the real system in a model [65]. To cope with the original system’s complexity,
the simulation model requires abstractions and simplifications, which in best-case
do not produce an impact on the definitive result. Moreover, the run-time of the

14 Chapter 2. Network Experimentation

simulation depends on the degree of detail in the implementation [148]. Hence, the
network simulation is an appropriate tool to evaluate specific effects, but due to
the modeling approach, they may not capture correctly the entire system behavior.
Thus, when interpreting the results of a given simulation, it is perpetually required
to take into account these limitations.
There are two main categories of simulations: continuous [25] and discrete [130]
simulations. In continuous simulations, the model is represented as a set of differ-
ential equations. They are often used for researching physical phenomena, such as
aerodynamics or hydraulics, which require numerical solutions. On the other side,
discrete simulations implement the model as a sequence of events at discrete time
points. In computer networking, the DES is an important instrument for protocol
development and evaluation.
The major advantage of network simulation is unquestionably its scalability. How-
ever, its realism level is directly related to the correctness of the used models. Recent
network simulators such as omnet++ [137] and NS− 3 [60] provide a good trade-
off between models simplicity and quality. Production network simulators such as
opnet [56] pushes the balance further by incorporating the real world code such
as the IP stack implementation, until grazing the definition of network emulator
rather that of simulator. In particular we highlight the ability of several simulation
testbeds such as NS−3 to execute external software source code that can be exactly
which will be used on real implementation. The feature is denoted as direct code
execution [75].

2.2.5 Hybrid Testbed

Each of the previous network experimentation tools presents strengths and weak-
nesses in terms of scalability and realism level. These features seem conflicting since
increasing the realism requires complex model or real implementation while increas-
ing the scalability requires a reduced complexity per simulated element. However,
the need of realistic and large scale experiment rises proportionally to the growth of
networks scale. Moreover, experimentation that involves heterogeneous components
such as wireless and wired nodes gain momentum and credibility. Accordingly, the
idea of combining the usage of different experimentation tools on the same frame-
work appears the most adequate to cope with both requirements. In the literature
reviews, we distinguish two main categories of hybrid experimentation tools: the
federating tools of the same class and the federating different experimentation class
tools.
Federated experimentation frameworks have a directed line that defines a global goal
such as considering very large Internet experimentation or achieving a very large
scale packet level simulation [136, 87]. For example, the Planetlab project federates
different type of experimental testbeds [113, 51]. In this context, we note that
the HLA protocol is a standardization that allows the federation of heterogeneous
simulators[35]. While that category of hybrid experimentation targets to maximize
the scalability of a given tool/framework by increasing its distribution level, it is still

2.3. Network Experimentation Aspects 15

limited by the inherent characteristics of the considered tool (testbed, emulation or
simulation).
In contrast, federating different experimentation tools provides a sophisticated and
flexible combination between local realistic and global large scale experimenta-
tion [53]. For example, when studying the integration of 4G equipment on the
Internet, a typical hybrid experimentation will emulate 4G nodes using a full proto-
cols stack implementation on radio devices using OpenAirInterface, emulates Wi-Fi
and 3G nodes that share the same medium using CORE and simulates the network
backbone using NS3. In that sense, the NEPI project [77] is one of the federat-
ing framework that aims to provide a global methodology and interface to combine
a variety of network experimentation tools. To face the increasing complexity of
such experimentation, federated frameworks must synchronize the global time of
the experiment and primary components definition. Generally, the referential time
of hybrid network experimentation is a real time while the primary components is
always the node.
Finally, it has to be mentioned that tendencies of sophisticated experimentation
tools such as NS3 and CORE is to provide dual or triple capabilities including
emulation, simulation and visualization, which appears as an emerging feature of
such tools [149].

2.3 Network Experimentation Aspects

In previous sections, we classify five types of network experimentation tools, based
on their realism level. Realism level and scalability can be used to classify experi-
mentation tools. Table 2.1 summarizes a realism-based classification approach that
focus on most common examples of each category. Nevertheless, the realism level re-
mains one aspect of the experiment. A synthesis of the literature reviews highlights
five major axes that define a given experimentation tool.

1. The architecture: the tool architecture summarizes the concepts that define
the achievement of the tool. It includes the experiment base which defines
how the experiment is described in the tool (components definition, topology,
traffic description). The second aspect of the architecture is the component
base. In fact, each component can be defined using realistic/simplified defini-
tion. Finally, the simplification aspect considers the user point of view. It is
relative to the simplicity of the usage of the tool and not to the quality of the
experiment.

2. Scientific experiment features: in order to be considered as a scientific experi-
ment, the experimentation tool must address three features: the reproducibil-
ity, the revisability and the traffic quality. The reproducibility is the ability
to reproduce the same experiment, expects to produce the same output and
observes the same behavior. The revisability concerns the capacity of the ex-
perimenter to explore the studied system during the experimentation in order

16 Chapter 2. Network Experimentation

to extract meaningful results. The granularity of the exploration is important
in the revisability of a given experiment (including dynamic debug and pro-
filing). The traffic quality is an experimentation feature that may define the
scientific quality. Thus, the ability of a given testbed to play real traces or to
generate realistic traffic is an important feature.

3. The effectiveness: the effectiveness of an experimentation tool defines its ca-
pacity to achieve the experiment rapidly without interference between the
experiment and the experiment management. The effectiveness of a given tool
also depends of its scalability, defined as its capacity to scale in terms of size of
the simulated scenario (number of element, duration of the experiment, traffic
load, and the scope of the space). In table 2.1, we characterize the effectiveness
aspect by three parameters: the scalability, the overhead and the efficiency.
The first defines the ability to scale, the second is the tradeoff between the
simulation and the management processing. Finally, the efficiency of a given
experimentation tool reflects its processing runtime.

4. The cost : the economic aspect is an important factor that determines the
notoriety and the usage of a given tool. This aspect includes three charac-
teristics: the initialization cost, the operating cost and the maintenance cost.
The first defines the cost of the experiment initialization including hardware
and software. The second defines the cost of the usage during an experiment
(i.e. the power). The third aspect is relative to usage in the long term and
describes the evolution capacity of the tool.

5. The usability : In contrast with previous aspects, the usability is relative to the
usage experience. It includes the methodology of the experiment (that also
impact the scientific aspect), the simplicity of the deployment which is very
critical when addressing distributed simulation and the experiment setup that
implements the experimentation methodology.

In table 2.1, we highlight the correspondence between the five classes of tools and
the experimentation aspects.

2.3. Network Experimentation Aspects 17

Table 2.1: Characteristics of exciting experimentation tools
Characteristic Filed test Testbed Emulation Simulation Hybrid
Experiment bases ++ Real + Real -Real/model Model +/-Real
Components bases ++Real ++Real +Real Algorithm Variable
Simplifications absent Possible Definable Abstraction Variable
Reproducibility -Insight Insight +/-Accurate ++Accurate +Accurate
Revisability +/-Insight +Insight +Accurate +Insight ++Accurate
Traffic ++Real ++Real +/-Real +/-Real +Real
Scalability −− - ++ +/-
Overhead −−− −− - +/- +/-
Efficiency −−− −− - ++ +/-
Initialization Cost −−−(expensive) −− +/- ++ +
Operating Cost −− −− −− ++ +/-
Maintenance Cost −−− −− - ++ +
Methodology −−− ++ ++ +++ +++
Deployment ++ + +/- −− +/-
Setup −−− - +/- ++ +

Chapter 3

Discrete Event Simulation

3.1 Introduction

Discrete event simulation (DES) is the process of modeling the operation of a given
system as a discrete sequence of events in time. Each event occurs at a given time-
point of the simulation time axis and marks a change of state in the system [120].
Discrete-event simulation is largely used as a major software design approach in sci-
entific simulation. The reason behind the success of discrete-event based simulation
in computer networking is that the simulation paradigm fits very well to the con-
sidered systems. In fact, DES provides a simple yet flexible way to achieve complex
experiments and to study the behavior of the systems under different conditions.
In the remainder of this chapter, we provide a brief introduction to discrete-event
simulation in Section 3.2 and we summarize the principals of parallel discrete event
simulation (PDES) in section 3.2 . In particular, we highlight issues and principles
of PDES.

3.2 Discrete-Event Simulation

In this section, we first introduce the basic terminology used in literature and de-
scribe their relationship. Second, we present the principal of DES and we survey the
concept of time driven event scheduling. For an in-depth introduction the reader is
referred to [80, 142].

3.2.1 Terminology and Components

There are three notions shared among the majority of DES: the entity, the system
and the discrete system.

• An entity is an abstraction of a particular subject of interest. An entity
is described by its attributes, e.g., an entity packet could have attributes
length, source and destination addresses. The term object is often used as
synonymous.

• A system is defined by a set of entities and their relationship. The set of
entities and their relationships fulfill a certain purpose, i.e., the system has a
certain goal that it tries to achieve.

• A discrete system is a system whose state, defined by the state of all entities
of the system, changes only at discrete points in time. The change of the state

20 Chapter 3. Discrete Event Simulation

is triggered by the occurrence of an event. What an event exactly is, depends
mainly on the system and on the goal of the study., e.g. sending and receiving
a packet, moving in the space or updating the battery state.

Usually, the system of interest is quite complex. In order to evaluate its perfor-
mance by means of computer simulation a model is built. The model is a software
representation of the system, hence it consists of selected entities of the system of
interest and selected relationships between the entities. By agreement, the model is
a system itself. In computer simulations, it is always the model that is considered,
mainly to reduce the involved complexity and the associated cost and effort.

3.2.2 The Principle

The idea of a discrete-event simulator is to jump from one event to the next, whereby
the occurrence of an event may trigger changes in the system state as well as the
generation of future events. The events are recorded as event descriptor (also known
as the event notice) in the future event list (FEL), which is an appropriate data
structure offen a time ordered structure to manage all the events in the discrete-
event simulation. An event descriptor is composed of at least two information (time,
type) where time specifies the time when the event will occur, and types provide
the kind of an event. The future event list should implement efficient functions to
insert, to find, and to remove event descriptor, which are placed in the future event
list. With every discrete event time ti a snapshot of the system is created (stored
in memory) that contains all required data to progress the simulation. In general,
all discrete-event simulators share the following components:

• System state: a set of variables that describe the state of the system.

• Clock : the clock gives the current time during the simulation.

• Future event list : a data structure appropriate to manage the events

• Statistical counters: a set of variables that contain statistical information
about the performance of the system.

• Initialization routine: a routine that initializes the simulation model and sets
the clock to 0.

• Timing routine: a routine that retrieves the next event from the future event
list and advances the clock to the occurrence time of the event.

• Event routine: a routine that is called when a particular event occurs during
the simulation.

3.3 Parallel Discrete Event Simulation

Ever since discrete event simulation has been adopted by a large research community,
simulation developers have attempted to draw benefits from executing a simulation

3.3. Parallel Discrete Event Simulation 21

on multiple processing units in parallel. Hence, a wide range of research has been
conducted on Parallel Discrete Event Simulation (PDES). In the remainder of this
section, we survey the challenges of parallel DES, common architecture and major
synchronizations algorithms.

3.3.1 Discrete Event Simulation Limits

Technological systems are becoming increasingly complex with the emergence of
new technologies that combine wide interconnectivity with composite structures
and architectures. In general, two orthogonal trends in terms of complexity can be
identified: (i) an increase in structural complexity and (ii) an increase in computa-
tional complexity. Both impose high demands on the simulation architecture and
the hardware executing the simulations.
We denote the size of a simulated system as an indicator of the structural complexity
of a simulation model. In what concerns network research, growing systems like peer-
to-peer networks and ubiquitous mobile networks, induced an enormous increase in
the size of communication systems. Such large systems typically add complex be-
havioral characteristics which cannot be observed in networks of smaller size (e.g.,
testbeds) or captured by analytical models. Thus, in order to study those char-
acteristics, simulation models a large numbers of simulated network nodes. Since
every network node is represented in memory and triggers events in the simulation
model, memory consumption and computation time increase significantly. Even if
the investigated network is relatively small, computational complexity becomes an
important factor if the simulation model is highly detailed and involves extensive
calculations [47]. In particular wireless networks which make use of advanced radio
technologies such as OFDM(A) [72] and Turbo Codes [14] fall in this category.
Sophisticated radio propagation models, interference modeling, and signal coding
models increases the overall complexity.
Simulation frameworks aim to compensate these issues by enabling simulations to
be executed in parallel on multiple processing units. By combining memory and
computation resources of multiple processing units, simulation time can be reduced
at the cost of higher memory requirements and management overhead. Although
this approach is known for more than two decades [42, 44, 110], recent technological
advances considerably reduce the hardware cost of parallel computing infrastructure.
Thus making such hardware available to a large research community which hand
over the spotlight on discipline [86, 127].

3.3.2 Principles of Parallel Discrete Event Simulation

The approach taken by PDES is to divide a simulation model in multiple instances
which are executed on independent processing units in parallel. The central chal-
lenge of PDES is thereby to maintain the correctness of the simulation. Any sim-
ulation framework exhibits three central data structures: i) state variables of the
simulation model, ii) a timestamped list of events, and iii) a global clock. During

22 Chapter 3. Discrete Event Simulation

a simulation run, the scheduler continuously removes the event with the smallest
timestamp (emin) from the future event list(FEL) and executes the associated han-
dler function. T denotes the timestamp function which assigns a time value to each
event and E is the set of all events in the event list. While the handler function is
running, events may be added to or removed from the event list. Choosing emin

is crucial as otherwise the handler function of an event ex with T (emin) < T (ex)

could change state variables which are later accessed when emin is handled. In this
case the future (ex) would have changed the past (emin) which we call a causal
violation. Thus, we formulate the central challenge of PDES as follows: Given two
events e1 and e2, decide if both events do not interfere, hence allowing a concurrent
execution, or not, hence requiring a sequential execution. Parallel simulation frame-
works employ a wide variety of synchronization algorithms to decide this question.
The next section presents a selection of fundamental algorithms and discusses their
properties.

3.3.3 Parallel Simulation Model and Algorithms

A parallel simulation model is composed of a finite number of partitions which are
created in accordance to a specific partitioning scheme. Three exemplary partition-
ing schemes are i) space parallel partitioning scheme, ii) channel parallel partition-
ing, and iii) time parallel partitioning. The space parallel partitioning scheme di-
vides the simulation model along the connections between simulated nodes. Hence,
the resulting partitions constitute clusters of nodes. The channel parallel parti-
tioning scheme bases on the assumption that transmissions that utilize different
(radio) channels and/or mediums do not interfere with each other. Thus, events
on non-interfering nodes are considered independent. As a result, the simulation
model is decomposed in groups of non-interfering nodes. However, channel paral-
lel partitioning is not generally applicable to every simulation model, thus leaving
it for specialized simulation scenarios. Finally, time parallel partitioning schemes
subdivide the simulation time of a simulation run in time-intervals of equal size.
The simulation of each interval is considered independent from the others under the
premise that the state of the simulation model is known at the beginning of each
interval. However, the state of a network simulation usually comprises a significant
complexity and is not known in advance.

3.3.3.1 Local Causality Constraint

A discrete-event simulation, consisting of logical processes that interact exclusively
by exchanging time stamped messages obey the local causality constraint if and
only if each LP processes events in non-decreasing time stamp order. In practice,
the number of LPs (i.e., partitions) is equal to the number of CPUs provided by
the simulation hardware. Consequently LPs directly map to physical processes.
Furthermore, the timestamped and message-based communication scheme consti-
tutes two important properties. First, they allow a transparent execution of LPs

3.3. Parallel Discrete Event Simulation 23

either locally on a multi-CPU computer or distributed on a cluster of independent
computers. Second, and more importantly, timestamps provide the fundamental
information used by synchronization algorithms to decide which events to execute
and to detect causal violations. In the literature, there are two classes of synchro-
nization algorithms: conservative and optimistic algorithms. While conservative
algorithms aim to strictly avoid any causal violation at the time of the simulation
run, optimistic algorithms allow causal violations to occur, but provide means for
recovering.

3.3.3.2 Conservative Synchronization Algorithms

Conservative synchronization algorithms strive to strictly avoid causal violations
during a simulation run. Hence, their central task is to determine the set of events
which are safe for execution. In order to decide on this question, conservative
algorithms rely on a set of simulation properties [43]. The Lookahead of a LP is the
difference between the current simulation time and the timestamp of the earliest
event it will cause at any other LP. The Earliest Input Time (EIT) denotes the
smallest timestamp of all messages that will arrive at a given LP via any channel
in the future. Accordingly, the Earliest Output Time (EOT) denotes the smallest
timestamp of all messages that a given LP will send in the future to any other LP.
Based on these definitions, a LP can safely execute all events which have a smaller
timestamp than its current EIT since it is guaranteed that no messages with a
smaller timestamp will arrive later.
Null-Message Algorithm
The simple approach presented above does not solve the synchronization problem
entirely as it can cause the simulation to deadlock. This problem is addressed by the
Null-Message Algorithm (NMA) which was first introduced by Misra and Chandra
[317]. The algorithm uses nullmessages, i.e., messages which do not contain simula-
tion model related information, to continuously increase the EIT of all neighboring
LPs. For this purpose, null-messages carry the LP’s current EOT timestamp, which
is determined by adding the lookahead to its current local time. Hence, nullmes-
sages can be considered as a promise of an LP not to send any message with a
smaller timestamp than EOT in the future. Upon receiving a null-message, each
LP updates its EIT to a potentially greater value. If the updated EIT has advanced
beyond events in the event queue, those are now considered safe for execution. This
algorithm guarantees to prevent deadlocks if the simulation model does not contain
zero-lookahead cycles. However, this algorithm implies a significant management
overhead. In fact, each synchronization algorithm imposes two types of overhead:
messaging overhead which is caused by sending (simulation model) messages to
LPs on remote machines and the actual synchronization overhead which is caused
by blocking and additional (synchronization) messages that are only used by the
algorithm (e.g., null-messages). While messaging overhead is a property of the sim-
ulation model, the synchronization overhead is a property of a particular algorithm.

24 Chapter 3. Discrete Event Simulation

3.3.3.3 Optimistic Synchronization Algorithms

In contrast to conservative algorithms, optimistic synchronization algorithms allow
LPs to simply execute all events (in time stamp order) as they come in, but without
ensuring that causal violations will not occur. This probably counter-intuitive be-
havior is motivated by the observation that conservative algorithms sometimes block
LPs unnecessarily: Often not enough information is available to mark a certain event
safe, although it actually is. Hence, the simulation performance is reduced signif-
icantly. Thus, optimistic algorithms assume that an event will not cause a causal
violation. This approach has two primary advantages: First, it allows exploiting a
higher degree of parallelism of a simulation model. If a simulation model contains
two mostly independent partitions, which interact only seldom, only infrequent syn-
chronization is actually needed. Second, the overall performance of the parallel
simulation depends less on the lookahead. Thus making it attractive to models
with small lookahead such as in wireless networks. Clearly, the downside is that a
causal violation leaves the simulation in an incorrect state. As a result, optimistic
algorithms provide recovery mechanisms: during a simulation run, the PDES engine
continuously stores the simulation state. Upon a causal violation, the simulation is
rolled-back to the last state known to be correct.

Chapter 4

Hardware Trends

4.1 Introduction

This chapter aims to highlight the hardware evolution that has accrued in the last
decades. In particular, we survey parallelism and optimization features that concern
CPUs and the emergence of dedicated co-processor that democratizes the large scale
parallel computing. In this context, we present the GPU as a massively multi-
core chip and the computing accelerator as a dedicated multi-core device. In the
remainder of this chapter, we first survey CPU architectures and features. Secondly,
we present an overview of current GPU state of the art. Thirdly, we summarize
the concept of multi-core accelerator that was inaugurated by the the Xeon Phi
processor. Finally, we conclude the chapter by a survey of parallel programming
APIs for such hardware.

4.2 Evolution of Computing Chips

4.2.1 CPU: Historical Evolution and Trends

Historically, the CPU was designed to achieve all computing tasks requested by the
OS. Since the introduction of the 8086 micro-processor and the democratization of
the PC, the CPU improvements tell two roads: increasing the CPU frequency and
extending the instructions set.
Nevertheless, increasing the frequency of the computing chip induces a phenomenal
increase in thermal settings and power consumption. Accordingly, in the beginning
of the previous decade, CPU manufactures recognize that increasing the frequency
cannot be the future development approach. The common trend is to fit multiple
CPU cores within the same chip. First attempts was really the juxtaposing of two
independent CPUs which in turn limits any advanced collaboration and saturates
the internal bus. Progressively, CPU architecture evolves and becomes composed of
several computing cores and on-chip memory stages. The communication between
different cores is progressively optimized, and the management of the distributed
memory becomes mature. However, the concept of multi-core CPU relies on the
independence of each core such that each of them is able to execute any task.
Consequently, all cores are built following the same complex architecture which in
turn reduces the ability to maximize the number of integrated cores.
On the other hand, the enhancement of the instructions set remains relevant. In
particular, the introduction of vector instructions was pertinent for scientific and

26 Chapter 4. Hardware Trends

multimedia usages. These instructions allow the processing of several words in one
clock cycle. In the current state of the art, it is possible to process up to 4 words
(256 bits) in parallel by each core using the AVX instruction set. AVX2 promises
the processing of 8 words in the next CPU generation.
In parallel, CPU manufacturers continue to improve CPU architecture to provide
more and more features. The trend is that, between two consecutive generations,
the gain is between 10% and 20%. An additional relevant feature is the simulta-
neous multithreading (SMT), denoted as the hyper-threading technology by Intel
and partially implemented by AMD. The concept relies on an advanced instruction
scheduling that allows each hardware core to emulate the execution of two (or more)
threads. Each of which is assumed to be executed on one virtual core. Depending
on the optimization of the software, the relative gain could vary (between 10% and
25%).

4.2.2 GPU: Historical Evolution and Trends

By definition, a graphics processing unit (GPU) is a co-processor that ensures the
graphical rendering. The evolution of the current graphics processor begins with
the introduction of the first 3D devices. The early graphics systems featured a fixed
function pipeline (FFP), and architecture following a very rigid processing path
utilizing almost as many graphics APIs as there were 3D manufacturers. While the
90s period counted many innovative GPU manufacturers, the early of 2000s was
marked by the concentration of the GPU industry around two actors: NVIDIA and
ATI. The main evolution of that time was the introduction of more and more flexible
programming API such as the DX7 and the OpenGL (1999-2000) and the support
of 32-bit floating point computing with GPU. A revolution in the GPU industry was
the beginning of the first unified graphics and computing GPU, programmed in C
with CUDA. The Geforce 8800 was the first CUDA compliant GPU that includes up
to 128 CUDA cores while the most powerful CPU of that time includes two cores.
The GPU development grew in two directions: simplification of the programming
interface and the increase of the number of computing cores. Thus, the OpenCL
API is mostly supported by the majority of chip manufacturers, including AMD,
NVIDIA, Intel and ARM.
It is relevant to highlight that current GPUs are throughput-oriented devices made
up of hundreds of processing cores. They maintain a high throughput and cache
memory latency by multithreading between thousands of threads. GPUs rely on a
two level hierarchical architecture. It is made of vector processors at the top level,
termed streaming multiprocessors (SMs) for NVIDIA GPUs and SIMD cores for
AMD GPUs. Each vector processor contains an array of processing cores, termed
scalar processors (SPs) for NVIDIA GPUs and stream processing unit for AMD
GPUs. All processing cores inside one vector processor can communicate through
an on-chip user-managed memory, termed shared memory for NVIDIA GPUs and
local memory for AMD GPUs. The CUDA [147] and OpenCL [132] APIs share
the same SPMD (Single Program Multiple Data) programming model. CUDA vir-

4.2. Evolution of Computing Chips 27

tualizes SMs as blocks (equivalent to workgroups in OpenCL) and SPs as threads
(equivalent to workitems in OpenCL), which allow programmers to execute thou-
sands of threads and blocks across different generations of GPUs regardless of the
amount of physical processors. A key concept of the CUDA programming model
is the warp, equivalent to the wavefront in AMD GPUs. A warp is a group of 32
threads that execute in lockstep in a SIMD fashion. Because the GPU architecture
shares a single instruction unit for all threads in a warp, a warp is the smallest unit
of work.

4.2.3 Emerging Solutions

In addition to the two dominant chips on the computing area, (CPU and GPUs)
the last few years have marked the emergence of new categories that aim to provide
innovative solutions for existing limitations. In particular, system on chip (SoC) and
CPU accelerators, have a good potential as a computing support for future large
scale system.

4.2.3.1 System On Chip

A system on a chip or system on chip (SoC) is an integrated circuit (IC) that
integrates all components of a computer or other electronic system into a single
chip [49]. It may contain digital, analog, mixed-signal, and often radio-frequency
functions-all on a single chip substrate. In what concerns this study, we focus on SoC
that integrates CPU and GPU cores in the same SoC that integrates heterogeneous
Cores.
Recently AMD (Fusion APUs) [20], Intel (Sandy Bridge) [55, 150] and ARM (MALI)
[103] proposed new solutions that integrate general purpose programmable GPUs
together with CPUs on the same die. In this computing model, the CPU and GPU
share memory and a common address space. These solutions are programmable us-
ing OpenCL [132] or solutions such as DirectCompute [151, 9]. Integrating a CPU
and GPU on the same chip has several advantages. First it is cheaper because of
system integration and the usage of shared structures. Secondly, this promises to im-
prove performance because there are no data transfers between the CPU and GPU.
Thirdly, programming becomes simpler because explicit GPU memory management
is not required. Not only does CPU-GPU chip integration offer performance benefits
but it also enables new directions in system development.

4.2.4 Multi-Core accelerator

The concept of multi-core accelerator is a new approach, mainly boosted by In-
tel. Thus, the MIC architecture was prototyped and revealed for exclusive partners
before proposing the XEON Phi coprocessor to the community. The product is
packaged on a PCIE device that regroups a multi-core CPU (57-61 cores) and a
dedicated memory. While that accelerator is underclocked in comparison with the

28 Chapter 4. Hardware Trends

main CPU, it has the advantage of being x86 compliant and easily used via tradi-
tional compilation tools. In contrast with the GPU, the accelerator emphasizes three
features: first it provides fully independent cores which may execute independent
threads. Secondly, it is compliant with existing x86 code. Thus, the redesign re-
quirements are natively limited. Thirdly, the computing power in single and double
precision remain competitive compared to that of GPUs. In addition, Intel high-
lights the importance of combing powerful core for isolated and non-parallelizable
tasks with the usage of many medium cores for parallelizable tasks and processes.

4.3 Parallel Programming: Models and API

The purpose of parallel computing is to raise the performance by executing the
application on multiple processors. Even if parallel computing is traditionally cor-
related with the HPC community, it is becoming more common for mainstream
computing due to the recent emergence of multi-core architecture. However, the op-
timal usage of such hardware requires adequate programming tools that maximize
the parallelism features. In that sense, there are several APIs which provide parallel
and distributed programming support. In particular, we identify five representative
APIs: the Pthreads, the OpenMP, the MPI, the OpenCL and the CUDA.

4.3.1 Pthreads

Pthreads is the acronym of Portable Operating System Interface (POSIX) Threads.
Pthreads is implemented as a header (pthread.h) and a library for creating and
handling each of the workers called threads. Worker administration in Pthreads
requires to explicitly manage the threads lifecycle from the creation to the exit.
Furthermore, the definition of workload division and mapping must be explicitly
defined by the software designer. To preserve critical section, i.e. the part of code
that accesses shared data, Pthreads grants mutex (mutual exclusion) and semaphore.
Mutex authorizes only one thread to access a critical section at a given time, whereas
semaphore permits different threads to access a critical section.

4.3.2 OpenMP

OpenMP is a generic specification that considers shared memory parallelism. It
consists of a collection of runtime library routines and environment variables that
simplify the parallel programming in a shared memory context. OpenMP is avail-
able as an extension of Fortran, C and C++ programs. The primary worker of
the OpenMP design is threads. The worker management is implicit and relies on
the usage of pre-compilation Pragma directives which indicate that a given section
could be executed in parallel. The number of parallel threads is an environmental
variable that depends on the hardware capacities. Thus, unlike Pthread, the de-
veloper involvement is limited to the design of threads interaction and data usage.

4.3. Parallel Programming: Models and API 29

Workload partitioning and task-to-worker mapping require a relatively little pro-
gramming effort. OpenMP also abstracts the workload distribution among workers
and how tasks are to threads.

4.3.3 MPI

Message Passing Interface (MPI) is a specification for message passing operations.
The concept of MPI considers that each worker is an independent process. MPI
is currently the standard for developing HPC applications on distributed memory
architecture. It provides language bindings for C, C++, and Fortran. Some of
the most popular MPI implementations include OpenMPI, MVAPICH, MPICH,
GridMPI, and LAM/MPI. The control of the workers is ensured using a command-
line tool (or using scripts) and the system ensures the management of different pro-
cesses among available hardware according to the given configuration. Programmers
have to control what tasks are to be computed by each process. Communication
among processes adopts the message passing paradigm. MPI broadly classifies its
message-passing operations as point-to-point and collective. MPI Barrier is used to
specify that synchronization is needed. The barrier operation blocks all processes
until being reached by all processes that participate on the barrier.

4.3.4 CUDA

The Compute Unified Device Architecture (CUDA) is a general purpose scalable
parallel programming model for writing highly parallel applications. It provides
several key abstractions: a hierarchy of thread blocks, shared memory, and barrier
synchronization. In the current state of the art, CUDA is exclusively compliant
with Nvidia GPU. The model views a parallel system as a couple of a host (i.e.
CPU) and devices (i.e. GPU). Parallel computing tasks are done in GPU by a set of
parallel threads. The model organizes the threads on a two-level hierarchy, namely
block and grid. Block is a set of cloned threads, each of them is identified by a Tid
(thread id) while the grid is a set of loosely coupled of blocks. The management of
the workers is implicitly achieved by the CUDA driver. Thus, programmers specify
the parameters of the grid and block required to process the given work. It has to
be mentioned that thread synchronization is done implicitly using available routines
such as the function syncthreads().

4.3.5 OpenCL

OpenCL is a new standard for job-parallel and data-parallel heterogeneous comput-
ing on a range of modern CPUs, GPUs, DSPs, and other microprocessor designs.
OpenCL provides abstractions and a set of programming APIs based on past suc-
cesses with CUDA, TBB, and other programming toolkits. OpenCL defines a set of
core functionality that is supported by all devices, as well as optional functionality
that may only be implemented on high-function devices, and includes an extension

30 Chapter 4. Hardware Trends

mechanism that allows vendors to expose specific hardware features and experi-
mental programming interfaces for the benefit of software developers. Although
OpenCL cannot mask significant differences in hardware architectures, it does guar-
antee portability and correctness. This makes it much easier for a developer to
begin with a correctly functioning OpenCL program tuned for one architecture, and
create a correctly functioning program optimized for another architecture.

Chapter 5

Related Work

5.1 Introduction

In this chapter, we present the related work that address the issues of parallel
and distributed simulation over heterogeneous computing nodes. The chapter is
composed of three sections. The first section introduces the most common ap-
proaches which address large scale simulation. The second section highlights the
event scheduling issues and the third section summarizes most common optimiza-
tions that emerge in the distributed simulation domain.

5.2 Large Scale Simulation

In the literature reviews, there are three major approaches to deal with large scale
simulation: (1) CPU-based parallel and distributed simulation, (2) partial accelera-
tion using specific Co-processor and (3) the fully GPU approach.

1. In a CPU-based parallel and distributed simulation [97], the platform is com-
posed of several simulation instances that collaborate to ensure the simulation
in a given way. The most common distributed and parallelization of CPU-
based simulation are:

• Spatial distribution: each instance simulates a part of the global space
and/or population.

• Functional distribution: each instance ensures one(s) task/ function(s)
for the global simulation.

• Collaborative distribution: includes dynamic distributed simulations and
the simulation which combines the usage of several CPU cores per simu-
lation instances. In most common terminology, we talk about a federated
approach to summarize this category.

Such a federated approach makes use of existing models and provides a rapid
parallelization of existing sequential simulators [107]. In this context, GTNetS
is an experimental framework that democratizes the usage of flat/hierarchical
architecture to manage large scale network simulation [118]. Afterwards, the
development experience of GTNetS was applied to the open source network
simulator ns− 3 with good performance in term of scalability [69]. However,
such approach introduces a significant overhead due to the synchronization

32 Chapter 5. Related Work

among different processes and/or machines and requires sophisticated and ex-
pensive simulation infrastructure [96]. This overhead may drastically increase
in a mobile environment if the network topology and machine mapping is not
dynamically managed (e.g. through node migration). For the majority of
CPU-based simulators, the performance degradation happens when the sim-
ulation combines the limiting factors such as mobility rate, number of nodes,
and traffic load increases. Regarding distributed simulators, such performance
degradation happens when the inter-machines communication increases. A
scalability demonstration, based on the distributed NS-3 has carefully avoided
the problem of the interaction between nodes in different simulation machines
[69]. Even if parallel and distributed simulators have crossed a scalability
boundary, they introduce new problems such as the cost of a simulated node,
the strategy of initial nodes distribution and their migration across different
machines.

2. The partial acceleration aims to increase the efficiency of the simulation lo-
cally by offloading the most CPU-intensive part of a given simulation from
the CPU to a dedicated co-processor. The FPGA was widely used as an ac-
celeration solution[30] however, in some recent approaches, the GPU is used
to offload intensive computing tasks such as channel modeling [10] and queu-
ing [101] within the simulator. Recent studies recommend the GPU usage for
more general-purpose simulation [109], or even as a GPU-accelerated simula-
tion architecture when accuracy and runtime performance are both critical [7].
Thus, the GPU becomes an increasingly attractive alternative to the expensive
CPU-based parallelism, with significant computational power at a relatively
low cost. With the advent of the GeForce8 series GPU in 2006 and the com-
pute unified device architecture (CUDA) [94], the GPU becomes an available
computing support. Even if this approach reduces significantly the computing
time, the simulation remains primarily in the CPU which continues to be the
system bottleneck in large scale scenarios. Further, a continuous data transfer
between the GPU memory and the CPU one presents a serious limitation.

3. The fully GPU approach aims to offload the totality of the simulation tasks
on the GPU space. In addition, the required memory will be exclusively on
the GRAM. This approach offers three advantages:

• The impact of the CPU is minimized, in contrast with traditional parallel
simulation.

• The memory transfer between the main memory and the GRAM is almost
null during the simulation.

• The synchronization latency between different simulation cores is re-
duced.

However, the GPU is not fully X86 compliant, does not support CPU fea-
tures, needs a particular software architecture to disclose its power and does

5.3. PDES Issues 33

not support memory lock mechanism. Because of these constraints, the fully
GPU simulation approach is poorly studied. In the same context, we propose a
proof of concept, denoted as Cunetsim that uses the GPU as a main simulation
environment and the CPU as a controller. Cunetsim is an experimental simu-
lation platform allowing validation and experimentation of novel approaches.
As opposed to previous works, Cunetsim is designed to provide an independent
parallel execution environment for each simulated node. Nodes communicate
through message passing based on the buffer exchange. Thus, the framework
avoids the usage of global knowledge and increases the parallelism level. It is
based on the master/worker model for a CPU-GPU co-simulation and provides
hybrid synchronization model which maximizes the efficiency and guarantees
the correctness of the simulation. The simulation exploits the large number of
computing cores of the GPU to execute nodes in parallel and the high speed
memory access to reduce node communication latency.

5.3 PDES Issues

Improving the efficiency and scalability of DES remains a challenging issue for mod-
ern modeling approaches that require complex and sophisticated representation. In
such context, PDES is commonly used as a scalable and efficient solution when
compared with sequential approaches [33]. PDES relies on the partitioning of the
model over several logical processes (LP)s collaborating with each other to perform
the whole simulation [111, 62]. However, respecting the simulation correctness while
dealing with parallel execution makes event management extremely expensive. This
is also acknowledged as one of the critical limitations of large parallel simulations,
especially when dealing with heterogeneous resources, and raises two issues: data
representation and event scheduling [110].

5.3.1 Data Representation

To store future events, most of the PDES frameworks use a sorted data structure.
In the literature reviews, the efficiency of central data structures was largely stud-
ied for both sequential and parallel execution, e.g. central event list (CEL) [122].
Nevertheless, under large parallelism conditions, such a data structure becomes
the bottleneck. Authors in [33] address the efficiency of three CEL implementa-
tions, namely the heap, the splay tree and the calendar, and they conclude that the
performance of the CEL concept remains mitigated when thousands of concurrent
processes access that structure. Therefore, the CEL implementation needs to be
parallelized to cope with the parallel architecture of heterogeneous computing re-
sources. The concurrent priority queue [134, 38] is a relevant solution to access and
manage the CEL in parallel. An event list or message queue is usually distributed
to each logical process in a PDES with its own local clock. The concurrent inser-
tion and deletion of the priority queue, by involving mutual exclusion or atomic
functions, leads to the improvement of the overall performance using a global event

34 Chapter 5. Related Work

list [122]. In the same sense, Chen et al. propose a distributed queue which con-
siders multi-core CPUs [27]. However, the above mentioned mechanisms, mutual
exclusion and concurrent priority queue, are target-dependent, they could not be
directly applied to GPU targets. A different approach is proposed in et al. [100],
which relies on a hybrid time-event driven simulation based on a GPU-oriented CEL
concept that uses a linked list implementation. Despite the fact that this approach
has been developed with the aim of improving the GPU-based simulation, the over-
head of managing a large number of parallel events remains an open issue due to a
limited number of concurrent access to the same physical memory.

5.3.2 Event Scheduling

In the DES and PDES, a large portion of the overall simulation time is used for
the events scheduling [102]. Moreover, the efficiency of the scheduler also depends
on the synchronization method [84]. The conservative approaches prohibit out-
of-order event execution, which in most cases is based on the lookahead concept
to preserve the causality rule [46]. Parallel event scheduling is separately studied
for a multi-core CPU target [139, 36] and GPUs [100]. Both approaches use a
central event queue and several independent threads to fetch the next event from
the queue. The multi-threading approach is also applied to reduce the scheduling
cost and increase the simulation efficiency but only for a limited number of cores
(4 and 8 respectively). Authors in [99] propose a dedicated GPU scheduler based
on the SIMD programming model where the event queue is split into several sub-
queues to avoid central bottlenecks. All the above mentioned approaches regard a
GPU core as a CPU core, which in turn reduces the achievable gain.
The optimistic approach allows an out-of-order execution while ensuring the simu-
lation correctness. Several optimizations were introduced recently to increase the
efficiency of optimistic parallel simulations over multi-core CPUs while keeping a rea-
sonable backward compatibility with a standard software architecture [138, 88, 27].
Although such an approach increases the general efficiency by relaxing a substantial
limitation of the conservative approach, it introduces a significant memory overhead
related to the state-vector saving mechanism, which becomes critical when targeting
a very large logical processes.

5.4 Considerations Heterogeneous Computing Consider-
ations

Following the rapid evolution of computing hardware and their capabilities, the
sequential simulation approach may not be able to maximize the hardware useage
rate to maximize the simulation efficiency. Thus, there is a consensus on the issue:
To increase the simulation efficiency and scalability, weakness of centralized solution
needs to be avoided. On the other side, the computer architecture -that has long
remained invariant (CPU-RAM HDD)- has changed radically in the last decade: the

5.4. Considerations Heterogeneous Computing Considerations 35

computer becomes a group of heterogeneous resources that collaborate to perform a
task. Ignoring that improvement results in a low hardware usage rate which increases
the inherent cost of any simulation due to additional resources and power that must
be deployed to bridge the waste of resources. To deal with that issue the ingenuity
of researchers has proposed a variety of optimizations that we can classify into four
classes[110]: architectural optimization, local optimization, bottlenecks acceleration
and hybrid optimization.

1. The architectural optimization attempts to parallelize efficiently and distribute
the simulation over a set of computing nodes. In the flat design, different LPs
are considered to be equivalent, and they collaborate to perform the simulation
in a distributed fashion [83]. The scalability remains an issue in the flat design
when the number of LPs increase [47]. In the literature several optimizations,
such as the lookahead [46] and the opportunistic and combined synchroniza-
tion [110], are proposed to reduce the idle time induced by the synchronization
process. The two-level hierarchical design provides a solution to the scalabil-
ity issue by introducing a centralized management service (called the server or
master) in charge of synchronization and job assignment processes. The well-
known example is the master/worker model compatible with meta-computing
systems [95]. The main challenge here is the communication overhead caused
by the non-locality of the master with respect to the worker when the simula-
tion becomes large (i.e. in order of several millions of simulated components).
Furthermore, the master remains the critical bottleneck in such a setup as it
drives the entire simulation. The multi-tier design addresses the scalability
for heterogeneous computing nodes by partitioning them into several non-
overlapping subsystems with one dedicated master [144]. The number of tiers
depends on the setup and available resources, which could potentially cause
large synchronization delay due to cascading masters. This concept is extended
to support GPU [4], where the synchronization and communication overhead
are significantly reduced in terms of the number of exchanged messages. How-
ever, the delay remains an open issue in multi-tier architecture. Furthermore,
the state vector mechanism remains existing and introduces a significant delay
since each master manages larger works then traditional LPs [106, 26]; thus,
the latency issue needs to be addressed.

2. The local optimization It aims to improve the efficiency of each LP in its envi-
ronment. We distinguish two main trends: local parallelism and engineering
optimization. Local parallelism acts at the event/instruction level to maxi-
mize the usage of multi-core CPUs or GPUs. The parallel event scheduling
over CPU presents a reasonable tradeoff between the backward compatibil-
ity and the efficiency since it uses available cores to execute in parallel future
events[85]. However, this approach relies on a central event list and one sched-
uler, which remains the bottleneck when targeting larger CPUs (e.g. INTEL
MIC with 80 cores) [123]. A dedicated GPU scheduling approach was pro-
posed in [15], where authors use the event clustering approach to maximize

36 Chapter 5. Related Work

the GPU usage while simplifying the scheduling work. Nevertheless, this ap-
proach supports only one GPU that limits its scalability by that of the GPU
in use. On the other hand, engineering optimization aims to maximize the us-
age of new hardware capabilities such as different memory levels on the CPU
and vectorial units. It acts mainly at the process/instruction level (i.e. the
usage of the AVX instructions that allow the processing of 8 words per clock
cycle maximize the performance of the re-wrote routines). A smart usage of
that capability allows a significant performance gain [8]. Nonetheless, that
approach is closely related to the implementation of each solution in one side
and to the considered hardware on the other side.

3. Bottlenecks acceleration aims to improve the simulation efficiency by reducing
the impact of a specific part of the simulation which limit the system perfor-
mance due to its process complexity. Except software solutions which back
to the previous case(local optimization), bottlenecks acceleration offloads that
process on a specific hardware such as DSPs, FPGAs or GPUs. The DSP is
mainly used to process signals and presents a real gain when the simulation
considers physical phenomenon such as the radio signal simulation, but does
not offer a rich programming model suitable for experimentation. The FPGA
provides a great tradeoff between the efficiency of the DSP and a reasonable
programming flexibility. Therefore it was largely used to accelerate existing
solutions. For example, Steenkister et all [19] used the FPGA as a signal ac-
celerator for wireless network simulation. The OpenAirInterface [18] initiative
provides an SDR implementation of 4G wireless network (i.e. LTE/LTE-A)
using full GPP model while the RF subsystem is processed by a specific FPGA.
Even if FPGA provides an important processing gain, it does not provide a
flexible programming model and cannot be used in large scale. In the same
context, the GPU emerges as a carrier solution that combines programmabil-
ity and large computing power. Nevertheless it requires a specific software
architecture since its programming model is not fully compliant with the x86
architecture. Despite this limitation, Perumalla et all [108] demonstrate the
feasibility of using the GPU as a simulation context and several works prove
its efficiency as signal processing accelerator [5, 10]. Other efforts have been
given to provide an efficient processing solution based SoC and NOC or even
a larger computing solution proposed recently by INTEL [32]. In particular,
the XEON Phi co-processor [64] provides up to 64 CPU computing cores per
device. That solution seems promising, and several recent works assert that
its development-cost/gain tradeoff is interesting [124, 58].

4. In contrast with these fundamental approaches, the hybrid optimization pro-
poses to combine their advantages to reach maximal scalability and efficiency
levels. We denoted it as the hybrid category as a reference to its combinatory
nature. It introduces a revised software architecture while using massively lo-
cal optimization and optimized libraries. Moreover, the usage of heterogeneous
computing resources is considered to maximize the performance. In this per-

5.4. Considerations Heterogeneous Computing Considerations 37

spective, ns−3 is a well-known network simulator that combines new software
architecture with massively optimized code [76]. Further, new frameworks that
rely on virtualized resources combine both architectural and local optimiza-
tion to perform optimal usage of virtual and real resources [149]. Nevertheless,
GPU and hardware acceleration solutions in general are weakly considered in
such approaches.

Part II

Contributions

Chapter 6

Cunetsim: An Experimentation
Framework to Discover Scalability

Horizons

6.1 Introduction

Packet-level network simulators are usually based on a discrete event paradigm
where the simulated system is model using a sequence of events. Each event has a
discrete timestamps that defines a strict order for the execution. In discrete event
simulation, each event is represented by one descriptor that includes the times-
tamps and execution parameters (i.e. a callback). A simulation framework includes
an event scheduler which manages event descriptor and defines the events execution
order. In general, such events represent mobility, connectivity, medium modeling
(wired or wireless) and in/out packets processing. The time complexity and the used
memory of a given simulation are proportional to the number of events. Neverthe-
less, the number of generated events increases exponentially as a function of both
the total number of nodes and traffic load. As a consequence, event management
becomes the main bottleneck when targeting large scale simulation. There is also
a trade-off between the accuracy of the models, in particular air-medium models
(wave propagation), and time complexity that has to be taken into account when
targeting large scale simulation.
Accordingly, the parallel and distributed execution appears a trivial candidate since
it provides more computing power and memory. However, such an approach intro-
duces new challenges in the management level. In literature reviews, we identify
that the communication between different simulation LPs is particularly expen-
sive [48]. In addition, we note that the majority of existing frameworks are based
on a distributed approach which ignore new hardware features, despite the fact that
the potential speedup of the parallel simulation is clearly identified and proved in
several pioneer publications. Investigation research works that draw the limitation
of parallel simulation within one context, identify the event scheduling as a major
bottleneck which can not be avoided. In fact, even if it is possible to execute several
events concurrently, the scheduling process remains centralized which generates the
bottleneck of parallel simulation. Several optimization works propose innovative
approaches to parallelize the execution. However, the inherent barriers of the DES
concept requires passing through a central path for all events.
In contrast with existing approaches, we propose (1) to generate parallel events

42
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

rather than detecting their possible concurrent execution and (2) to schedule par-
allel cloned events only once. These two conceptual modifications are the major
contribution of this chapter. The second innovation that we introduce is how we
plan to implement these concepts. In fact, we propose to use the GPU as the main
simulation support while the CPU acts as the master of the simulation. We target
to use Nvidia CUDA GPUs based on the rich development ecosystem around. We
define the simulation model according to four points:

1. The unitary component of the simulation is the node, any simulated entity is
obligatory relative to a given node.

2. The event generator generates the same event for all nodes. This means that
at a given time, all nodes will execute the same event.

3. Each node will be executed in one independent GPU Core. Thus, we guarantee
a concurrent execution.

4. The event descriptor is not relative to one node but to all nodes. As a conse-
quence, the event scheduler handle one entry.

We expect that this model will overcome the limitations of traditional DES relative
to the scheduling. As a proof of concept, we propose a new CPU-GPU co-simulation
framework denoted as Cunetsim, CUDA Network Simulator. Cunetsim is an exper-
imental simulation platform allowing rapid validation and evaluation. In contrast
with previous works, Cunetsim is designed to provide an independent parallel ex-
ecution environment for each simulated node. Nodes communicate through the
message passing based on the buffer exchange. Thus, the framework avoids the
usage of global knowledge and increases the parallelism level. It is based on the
master/worker model for a CPU-GPU co-simulation and provides hybrid synchro-
nization model which maximizes the efficiency and guarantees the correctness of the
simulation.
This chapter is structured as following: the second section presents an overview of
the four fundamental concepts that direct the design of cunetsim. Section 3 presents
the software architecture and features. Section 4 presents a comparative evaluation
that highlights the performance of cunetsim compared to existing simulation frame-
works. Section 5 gives an overview of several technical challenges that characterize
a GPU simulation compared to CPU one. Section 6 summarizes two configuration
issues that impact dramatically the performance of the simulation and must be con-
sidered when targeting a GPU-oriented simulation. Finally, section 7 concludes this
chapter.

6.2 Fundamental Concepts

The goal of cunetsim is to achieve a large scale simulation as fast as possible. The
idea of executing the simulation on the GPU seems promising but the usage of such
computing power remains delicate due to the required software design which differs

6.2. Fundamental Concepts 43

from the traditional x86 code. To harmonize GPU requirements with network sim-
ulation specificity, cunetsim framework is built around three fundamental concepts:
the workers pool, the separation between the event and the event descriptor and the
massive parallel events generation.

6.2.1 The Worker Pool

In master/worker model a worker is assimilated to be an LP that manages a part
of the simulation. In general, the worker is still in the same machine during the
execution. In the GPU, it is impossible to allocate one process to each computing
core and then feed it by events. Thus, we consider that a worker represents an
elementary simulated entity (defined by data+ process+ FSM). The workers pool
models the total number of simulated entities and share available resources.

6.2.2 Separation Between an Event and Its Description

In DES parallel event scheduling is a permanent challenge which is largely addressed
in the literature reviews [45, 82, 127]. Under large scale conditions the event schedul-
ing becomes one of the main bottlenecks. Moreover, detecting events independence
in order to schedule them in parallel requires sophisticated algorithms. Neverthe-
less, whatever the algorithm used to achieve the event scheduling, its cost remains
proportional to the number of events. As a consequence, we got the idea of extend-
ing the 1 : 1 relationship between an event and its descriptor to n : 1, such that
a given event scheduler can handle multiple events using a unique descriptor. This
approach disassociates the event number from the scheduling complexity. In fact,
if we succeed to overload the event descriptor in order to represent several events
rather than just one, then we can bypass the scheduling bottleneck.

6.2.3 Massive Parallel Event Generation

The massive parallelism concept is a suitable software model for SIMD hardware
and in particular for the GPU programming. The main idea consists of generating
cloned threads, each of which performs the same operation on an independent data.
This concept is derived from the graphical processing software, where each pixel
or polygon is processed independently and in parallel by the same algorithm. We
propose to generate cloned events rather than detecting events that can potentially
be executed in parallel.
Our understanding of this concept is the following: identical simulated entities may
generate the same event in order to be executed in the same timestamp. Each event
is relative to one entity and will be executed on the corresponding data, attributes
and memory. However, with the adequate data representation it is possible to
represent these events with one entry on the scheduling system. Thus, the event
scheduler handles one entry while execution resources execute several events (as
defined by the generator).

44
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

6.3 Cunetsim Software Architectures

The software architecture of cunetsim is based on a master/worker model where the
master manages the simulation and the workers pool executes the computing tasks
[96]. Cunetsim is a proof of concept of large scale network simulation. Thus, the
finite state machine defining the worker is based on five states: i) the application,
(ii) the protocol stack, (iii) the mobility, (iv) the connectivity and (v) the packet
services. The master is composed of five components: (i) the event scheduler, (ii) the
data abstraction layer, (iii) the scenario manager, (iv) the monitoring component
and (v) the helper . In this chapter, we focus on two components: the event scheduler
and (ii) the data abstraction layer. We note that from a software point of view, we
denoted the scheduling of a given state at a given timestamp as an event pattern
(EP) [18]. This usage is relative to the fact that the scheduler is handling a kind
of pattern that will generate several real events at the execution level. Figure 6.2
presents an overview of the event flow between the master and the workers pool.
In particular, the figure highlights how the hardware scheduler transforms an event
pattern to a group of events, each for one worker.

6.3.1 The Worker Design

The Worker implements the simulated node, modeled as a stack of independent EPs.
Nodes communicate through message passing. Only buffers are exchanged between
nodes to avoid global knowledge. In Cunetsim, each node contains five ordered EPs.

6.3.1.1 Application (APP)

The application EP models the application and provides a packet-level traffic gen-
erator to simulate application data, based on packet size and inter-departure time.
Each instance is completely independent, allowing the framework to support an im-
portant load. The traffic generator tags the packet as a function of communication
type: unicast, multicast and broadcast.

6.3.1.2 Protocol stack (PROTO)

The protocol stack EP represents the internal processing of the communication flow.
A realistic implementation of a given protocol stack requires a significant develop-
ment effort. Nevertheless, such an implementation does not impact the proof of
the proposed concepts. Thus, we simplify the protocol stack implementation and
provide minimal service to ensure the processing of received packets from outside
of the APP. The PROTO event pattern ensures also the packet forwarding opera-
tion. Cunetsim implements various broadcasting techniques, such as probabilistic,
counter-based and location-based. Such implementations support GPU parallelism.

6.3. Cunetsim Software Architectures 45

6.3.1.3 Mobility (MOB)

The MOB EP calculates a specific movement in the defined space following a mo-
bility model, for each node. There is a generic mobility container, implemented as
a unique CUDA kernel. Figure.6.1 explains the identification of the mobility rou-
tines, based on the id of each node. The preliminary implementation provides two
mobility models: RandomWayPoint and RandomDirection [57] and three boundary
policy models: Annulment of excess, Sliding on the boundaries and Bouncing on the
boundaries.

Figure 6.1: Mobility Events pattern

According to the Tid, each worker recognizes its data which in return allows it to
select the corresponding model.

6.3.1.4 Connectivity (CON)

The connectivity EP identifies all neighbors of the concerned node. This problem
is NP-Complete[23]. The complexity of the brute force approach is of the order of
O(N2) in 2D space. In Cunetsim design, we divided the space into geometric cells
where the radius of the cell must be at least the double of the maximum transmission
range (2∗Rmax). In this case, each node will find its neighbors in its own cell as well
as in the neighboring cells. This approach reduces significantly the complexity. We
define a connectivity container, which we will call a specific connectivity model (the
Unit Disk Graph (UDG) or the Quasi Unit Disk Graph (QUDG)). This kernel will
be instantiated into N GPU threads, where N is the nodes number in the scenario.

6.3.1.5 Packets services (PKT)

The packets-services EP manages the packets exchange between nodes. The notion
of packet can represent any protocol data unit (PDU), which is layer-dependent. To
simulate multiple interfaces, a node may have more than one buffer, each of which

46
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

is associated with a given interface. Packet services support both send and receive.
Packet-send service allows a node to write a packet to the selected in-buffer of the
neighbor(s). The write operation is atomic. Packet-receive service allows a node
to read at most one packet from its in-buffer at each simulation time (i.e. round).
However, the in-buffer is capable of receiving up to M packets from other nodes at
each round. The receiving service determines which message has to be read by the
node based on the lowest timestamps and/or channel quality estimation.

6.3.2 The Master Design

The master ensures the simulation correctness, simplifies the framework usability by
providing high-level simulation APIs, and guarantees the simulation reproducibility.
To reach these goals, it relies particularly on two main components: the events
scheduler and the data abstraction layer.

6.3.2.1 Cunetsim Events Scheduler

Cunetsim events scheduler (CES) implements a conservative approach for all depen-
dent EPs according to a strict order between sequential EPs for each node. This
model was developed in[15] where the notion of EP Pool is introduced: a EP pool,
Πi incorporates all event Ej relative to all nodes that must be executed at T = i.
For a given Πi, all Eij must finally assert that Π is achieved. This presents a simple
yet efficient implementation of the coherence and consistency paradigm. In addi-
tion, CES incorporates an opportunistic mechanism for independent EPs having
the same timestamps. In fact, independent EPs concern typically heterogeneous
components and occur when nodes are composed of different EP sequences. In such
case, conservative approach does not define a deterministic order according to the
timestamp.
To summarize, the Cunetsim hybrid event scheduler works as follows: The con-
servative approach is used for sequential EPs as defined by the simulation model.
The optimistic approach is applied when there are several events pools having the
same timestamps. It has to be mentioned that the CES benefits from the GPU
hardware scheduling capabilities. Indeed, the optimistic approach is achieved using
the GigaThreads scheduler (i.e. GPU hardware acceleration), the relaxed approach
using the wrap schedulers of each SM. The conservative approach is implemented
in software.
Figure 6.2 models a simplified adaptation of the master/worker model for a mono-
GPU software architecture. The master handles grouped events and delegates the
creation of cloned events to the GPU Giga-thread-scheduler1. Furthermore, that

1One of the most important technologies of the Fermi architecture is its two-level, distributed
thread scheduler. At the chip level, a global work distribution engine schedules thread blocks to
various SMs, while at the SM level, each warp scheduler distributes warps of 32 threads to its
execution units. The first generation GigaThread engine introduced in G80 managed up to 12,288
threads in realtime. The Fermi architecture improves on this foundation by providing not only
greater thread throughput, but dramatically faster context switching, concurrent kernel execution,

6.3. Cunetsim Software Architectures 47

concept relies on the hardware synchronization features.

Master FELEvents flow

W3W2W1

W6W5W4

Hw

scheduler

GPU context CPU context

Figure 6.2: Simplified master/workers model that targets GPU execution.

The hardware scheduler accelerates significantly the scheduling task.

6.3.2.2 Data Abstraction Layer

Cunetsim data are modeled based on the kernel/flow model. We define several flows
where each one presents a specific part of the simulation data. Data is grouped by
functionality. Each EP uses one (or more) flow(s) and each node has a specific buffer
with R/W rights. One node can access foreign data with read right. Flow model
is natively used by graphics application to manage the communication between the
GPU and the CPU. We apply a flow loading-offloading mechanism between the
GPU memory (limited and non-extensible) and the principal memory (larger and
extensible). The master manages the transfer of data flows between the principal
memory and the GPU one, such that no EPs will be in a famine situation.
The data abstraction component provides two services: memory allocation abstrac-
tion (MAA) and critical section management (CSM). MAA insures the double al-
location of each data flow in both the RAM and the DRAM. The synchronization
of both copies of the flow is a manual operation which must be specified by the
user. Critical section is a recurrent challenge in case of shared memory between
several processes. Software mutual exclusion such as semaphores, mutex and locks
are commonly used in CPU context. However, GPU context does not provide such
explicit solutions. The problem arises mainly when two nodes try at the same time
to write messages in a third node’s buffer. CSM provides an abstraction of this
problem based on CUDA atomic operations: thanks to atomicInc, a node makes an
atomic reservation operation before proceeding to the writing of the message.

6.3.3 Legacy Architecture for Multi-Core CPU

The master/worker architecture that we present in section 6.3 is natively adequate
for the GPU architecture. However, the GPGPU is a recent discipline and rare

and improved thread block scheduling. [104]

48
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

are the data-centers which use the GPUs as computing co-processors. Furthermore,
current and future CPUs are also multi-core and provide interesting features, such
as vector parallelism. Accordingly, it seems primary to provide a CPU version
which will validate the efficiency of the proposed concepts under fair conditions.
Nevertheless, it is mandatory that both version (CPU and GPU) share the same
models, design and implementation. Thus, we use the PGI unified binary technology
[3] to create a CPU binary from the GPU source code.
While the legacy architecture is directly derived from that targeting the GPU, it
presents two particularities: first, it uses a software API to create different events
from cloned ones; secondly, it does not require a data transfer and can use a large
data set. Figure 6.3 presents a typical legacy architecture that uses the OpenMP
API as an event dispatcher. In the remainder, the legacy version will be refered to
as Cunetsim-LN, where N represents the number of workers.

Master FELEvents flow

CPU context

W1

W2

W3

W4

Open

MP

API

Figure 6.3: Simplified master/workers model that targets CPU execution.

From a user/developer point of view, the creation of different workers is
transparent, the OpenMP API ensures this task.

6.4 Comparative Performances Results

To evaluate the performance of the proposed design under large scale conditions
regardless of different models impact, we extend the benchmarking methodology
for network simulators presented in[143] to support wireless and mobility. In this
methodology, authors implement identical node models for all considered simulators.
They show that NS-3[2], Jist and Omnet++ have the best performance. However,
the benchmarking model does not address mobility and wireless issues. Furthermore,
the comparison does not include sinlago [1], known as a stable simulator on large
scale conditions. In the following study, we have chosen Sinalgo as a representative
framework of CPU-based solution while NS-3 is involved as the most optimized open
source simulator, providing also a stable distributed version over MPI. The CPU
version of cunetsim, which involves 4 CPU cores is a representative case of the CPU
implementation of the fundamental concepts discussed in section 6.2. The mobility
and connectivity algorithms are the same for all simulators. Only a simple flooding

6.4. Comparative Performances Results 49

protocol is implemented using equivalent algorithms.
We propose two benchmarking scenarios: The first compares the performance of
each simulator’s kernel regardless of the efficiency of implemented models, while the
second addresses their robustness in mobile conditions. The first scenario models a
simple static network, where the nodes are arranged in a grid topology as illustrated
in Figure 6.4. The scenario model includes one traffic source which generates 600

Figure 6.4: Simple Grid Topology

The traffic source is the node with the lowest id, the receiver is the node with the
highest id, the intermediate nodes forward received packets according to the channel
description.

uniform packets with 1 second of inter-departure time. Packet size is fixed to 128
bytes. All nodes relay unseen packets after a delay of 1 second, thus flooding the
totality of the network. The delay of 1 second models the propagation. Nodes
do not provide any packet management services. Transmission and reliability are
modeled on the channel using a dropping probability which is identical on all links.
The sender is the node with the lowest identity and the receiver is the one with the
highest identity.
In the second scenario, nodes are mobile. The mobility model is the random way
point with speed uniformly distributed between 1−5m/s. The maximum transmis-
sion range, Rmax, is 100 and the connectivity model is UDG. The simulation space
is a cubic free space whose dimensions are 1600 ∗ 1600 ∗ 1600 m. Each node moves
before each round and recalculates its connectivity set.
Both of these scenarios are outlying real networks and include major node simpli-
fications. Nevertheless, they have two advantages: they guarantee a relevant and
neutral comparative since they minimize the models impact and they provide a
representative estimation of the computing power needed for such simulations. All
simulation runs are conducted using a simple PC including an INTEL i7 940 CPU
(4 cores with hyper-threading), 6GB of DDR3 and one GPU: the GeForce 460 1GB
(336 cores for GPGPU computing). The OS is Ubuntu Linux 11.10, the Java ver-
sion is 1.6 and the Nvidia driver version is 285.05.33. Our measurements were taken
using NS-3.13, Sinalgo 10.75.03 and Cunetsim prototype.
To validate the model equality, we use the first scenario with all simulators where we
vary the drop probabilities in the interval [0, 1]. Figure.6.5 depicts the end-to-end
packet loss repossessed and normalized from different simulators, given the dropping

50
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

probability and the network size. All studied simulators produce similar results. We
conclude that our implementations are equivalent -in terms of output- to those of
[143]. We evaluate simulators’ efficiency regarding the simulation runtime. Our
results give the average of five executions. The minimal simulation time is set to
700 seconds.

Figure 6.5: End-to-End Packet Loss:

Under the same conditions, all simulators present equivalent E-TO-E loss,
considered as the output.

6.4.1 Simulation Runtime

To evaluate the simulation runtime of NS − 3,sinalgo, and both cunetsim versions,
we have fixed the drop probability to 0.1 and we have increased the network size
from 4 to 102K nodes. We analyze the measurement relative to the first scenario
in section 6.4.1.1 and that relative to the second one in section 6.4.1.2.

6.4.1.1 First Scenario (static topology)

Figure 6.6 shows the average simulation runtime for each simulator. For small
to medium networks, Cunetsim-L4 is the fastest simulator up to 2000 nodes and
remains faster than Sinalgo and ns − 3 in all cases. Beyond, Cunetsim (GPU)
becomes the most efficient simulator and the deviation is growing with the network
size. As a function of the simulators runtime, we distinguish four network size
intervals: small networks [2-50], medium networks [50-200], large networks [200-
2000] and the very large networks [2000-102000].
For the small scale, Cunetsim-L4 and ns − 3 are the most efficient simulators. In
fact, both simulators use the very high-speed L3 cache compared with slower RAM.
Cunetsim-GPU is outperformed due to two reasons: first the latency of data transfer
between the RAM and GDRAM is significant, second the GPU is underused since

6.4. Comparative Performances Results 51

Figure 6.6: Simulation runtime of the static network:

CPU simulators are efficient under small scale conditions. however, their limited
computing power appears as major handicap under large scale conditions.

only few cores are active (the number of workers is less than the number of available
cores).

For medium scale, both versions of cunetsim are faster than ns− 3S. In fact, when
the network size increases, cunetsim uses additional GPU cores. However, the
data transfer between the RAM and the GDRAM remains significant which allows
Cunetsim-L4 to be the fastest solution. In both intervals, distributed NS-3 suffers
from the initial setup load of the MPI, relegating it behind the classic version.

As the number of nodes increases, sinalgo outperforms ns-3 thanks to its optimized
nodes management. However, the distributed version of ns− 3 remains stable over-
whelming easily sinalgo. Furthermore, cunetsim-L4, reaches the CPU limit while
Cunetsim-GPU remains stable in this interval. Finally, from the threshold of 2000
nodes, both of Cunetsim-GPU and Cunetsim-L4 need 0.35 second, 80 times faster
than ns− 3 and 26 times faster than Sinalgo.

For very large scale, the power of GPU is revealed, the number of cores involved in
the simulation provides a significant computing power in contrast with the limited
number of CPU cores. Accordingly, cunetsim-L4 cannot rivals with the GPU version
even if it remains the most efficient CPU-based simulator. Thus, for 48K nodes
cunetsim needs 5.93 seconds, 3.5 times faster than cunetsim-L4, 22 times faster
than sinalgo and 150 times faster than ns− 3. It is interesting to compare in such
scale Cunetsim-4L and the distributed ns − 3 since both use the same computing
power in theory. In fact, Cunetsim-4L overcomes NS-3 due to two major reasons:
first, it uses a shared memory synchronization (over OpenMP) while NS-3 uses an
important protocol stack (over MPI). Secondly, the events scheduling is completely
different: Cunetsim has a prior knowledge regarding events relationship while NS-3
has only their timestamps as a scheduling information.

52
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

6.4.1.2 Second Scenario (mobile nodes)

Figure 6.7: Simulation runtime of the mobile network:

The complexity of the wireless mobile scenario highlights the limitation of classic
approaches under large scale conditions.

Figure. 6.7 shows the average measured simulation runtime for each simulator. The
mobility causes link connection and disconnection according to the relative position
of each node. Such an operation is extremely expensive in terms of computing re-
sources. Thus, combining distributed software architecture with a massively parallel
computing support such as the GPU reveals its efficiency under these conditions.
Accordingly, except for very small networks (4 nodes) the GPU version of cunetsim
is definitively the most efficient solution in term of scalability (able to reach 100k
) and running time. Ns − 3 is the fastest CPU-based simulator up to 36 nodes
and cunetsim-L4 becomes the fastest CPU-based simulator beyond. NS-3 runtime
increases exponentially as a function of network size while Sinalgo and Cunetsim-L4
present stable behavior. The distributed version of NS-3 increases its leeway but
does not influence the global behavior. Thus, distributed NS-3 remains faster than
sinalgo up to 800 nodes but its computing time becomes unstable further. Cunetsim-
L4 runtime remains relatively invariant for small to medium networks, and becomes
a function of nodes’ number nearby of 1000. Sinalgo presents a quasi-linear runtime
as a function of the network size but cannot achieve a very large scale simulation
in realistic time (simulating 48K nodes requires 3552 seconds). Cunetsim runtime
is linear per segment between 4 and 8000 nodes. From this threshold, it becomes
relative to the network size but remains reasonable, even for 100K nodes. In all
cases, Cunetsim is extremely faster than all CPU-based simulators. Thus, for 48k

nodes cunetsim is up to 9.2x faster than Cunetsim-L4 and 260 times faster than
sinalgo. NS-3 is unable to compete in such scale. In addition, the CPU-legacy ver-
sion presents very interesting results since it is 28 times faster than Sinalgo for the
same scale. According to distributed ns−3 results, distributing the simulation over
several LPs to maximize the usage of multi-core CPUs is not sufficient.

6.5. Technical Challenges of GPU-based Simulation 53

6.5 Technical Challenges of GPU-based Simulation

In this chapter, we demonstrate that the usage of the GPU is capable of providing
opportunities in terms of simulation efficiency. However, the usage of the GPU
requires an important software modification and tuning in order to achieve the
target efficiency. Several works propose optimization principals to cope with GPU
specificity [91]. During the development of Cunetsim, we face several technical
challenges that present significant impact in the correctness and the efficiency of
the simulation. In this section, we summarize three major challenges that must
be considered when designing any massively parallel simulation framework: the
synchronization, the memory management and the precision issue.

6.5.1 Synchronization Challenge

In sequential simulation, each logical process has its referential clock that governs
the time advancement. All simulated entities refer to that clock in order to compute
or execute any operation. When targeting parallel simulation on multi-core CPU
context, there are several primitives which allow the synchronization of executed
processes. In event driven simulation, each event is supposed to be atomic. The
simulation is suspended until achieving the current event. Parallel DES provides
equivalent features for each executed event with data protection mechanisms.
The procedure is different when we target the GPU as an execution context. Let us
have an overview of the parallel execution on the GPU. To execute cloned events,
the user provides three elements: the event implementation, the event multiplicity
representing the number of instances that user wants to launch and the relative
data, typically represented by a vector. The event multiplicity is defined by two
3-dimensional parameters: the block and the Grid. The block value represents the
number of threads that will share the same SM during their execution. The grid
value represents the number of blocks. Assume that we use 1D parameter, thus, we
have a vector of thread per block and a group of independent blocks.
The CUDA programming model assumes that threads of the same block will be
executed as good as possible in parallel and assumes that there is no guarantee about
block order2. From the masters point of view, before launching the grouped entry
corresponding to cloned events, the timestamps were T1 and after its execution it
will be T1 + e. From workers’ point of view, each one starts executing the event
at T1 and finishes at T1 + e. However, at a given real time during the execution,
it is possible that some workers have their clock at T1 while others are at T1 + e

(note that workers are concurrent on the available resources and that the number
of workers is much more important than that of GPU cores). Accordingly, during
the execution of an event, workers are inevitably non-synchronized.
Depending on the type of the event, the non-synchronization may impact or not the
simulation correctness. For example if the event is totally internal such as trans-

2If you have 6 blocks that must be executed on 3 SMs, there is no guarantee that blocks 1,2
and 3 will be executed before 4,5 and 6.

54
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

ferring a packet from layer N to layer N + 1 or executing the battery updating
routine, the user does not care about which worker finishes first. However, if the
event requires the usage of shared data, then the software designer must specify ac-
cess and protections rules and may use synchronization techniques. In the following
sections, we propose two basic techniques that can resolve the event synchronization
challenge.

6.5.1.1 Physical threads synchronization

There are two levels of hardware threads synchronization: the block and the
grid. At the block level, the CUDA API provides an interesting primitive
(__synchthreads()) that forces the synchronization of all threads of the same blocks.
The __synchthreads works as a mandatory checkpoint for all threads. On the grid
level, it is conceptually forbidden to define a specific order between blocks. Thus,
the safest method consists of dividing the corresponding events into two logical sub-
events, each of which performs a part of the event. In this case, the host process
creates the physical checkpoint.
These methods guarantee the simulation correctness. However, they introduces a
significant waste of resource. In cunetsim case, we observe performance degrada-
tion that may reach up to 50% when we rely on such mechanisms to ensure the
workers synchronization. This is what justifies that there is a need for a simpler
synchronization that avoids the usage of standard synchronization methods.

6.5.1.2 Atomic Operation

If the synchronization issue is relative to data usage, then it is possible to use atom-
ics operations to manage critical memory access. The general concept is to provide
a mechanism for a thread to update a memory location such that the update ap-
pears to happen atomically (without interruption) with respect to other threads.
This ensures that all atomic updates issued concurrently are performed (often in
some unspecified order) and that all threads can observe all updates. Atomic func-
tions perform read-modify-write operations on data residing in global and shared
memory. Atomic functions guarantee that only one thread may access a memory
location while the operation completes. The hardware ensures that all statements
are executed atomically without interruption by any other atomic functions. The
atomic function returns the initial value, not the final one, stored at the memory
location. Its success means that the concerned variable includes the new value, not
the returned one. The order in which concurrent atomic updates are performed is
not defined and may appear arbitrary. However, none of the atomic updates will be
lost. Concerning the CUDA API, there are different kinds of atomic operations:

• Add (add), Sub (subtract), Inc (increment), Dec (decrement)

• And (bit-wise and), Or (bit-wise or) , Xor (bit-wise exclusive or)

• Exch (Exchange)

6.5. Technical Challenges of GPU-based Simulation 55

• Min (Minimum), Max (Maximum)

• Compare-and-Swap

Nevertheless, these atomic operations do not provide a sophisticated mechanism
that lock large memory zone which is mandatory in any simulation. Thus, we have
created several structures that imitate the behavior of a critical section with minimal
impact on the performance. For example, the implementation of LIFO buffer relies
on one integer index. At the initialization phase, the index is set to zero which
means that the buffer is empty. Each time that a worker wants to write data into
that buffer, it increments the index atomically. The read value is the index of the
empty frame where a worker can write. Any other worker that also wants to write
data in the same buffer will read the next value. On the other side, the consumer
uses the atomic decrementation if there is no confusion. Otherwise, the consumer
must lock the buffer in order to read without interference. The easiest way to lock
is to put the index to its maximal value which blocks writers. Flexible LIFO buffer
allowing simultaneous reading and writing in different frames is managed by two
indexes: reading and writing.

6.5.2 Memory Management Challenge

In contrast with traditional programming model where the data management relies
on a unified addressing space physically located on the RAM, the GPU programming
model requires specific attention on data and memory management. First, there are
at least two memory spaces: the CPU and the GPU(s). Generally, users must
allocate the required memory space in both. After an initialization phase on the
CPU space, the data will be transferred to the GPU context. If this operation
is limited to initialization and termination phases, the overhead remains reduced.
However, it is common that the user needs a continuous updating for supervision
and monitoring tasks. Accordingly this transfer becomes a significant overhead that
must be optimized. The second issue is the different memory levels on the GPU
itself (global, shared, register, texture, constant). While traditional CPU compilers
are mature enough to maximize the usage of the L1, L2 and L3 caches without a
specific attention from the developer, GPU compilers do not curently offer such a
behavior. In fact, a GPU compilers handle complicated software architectures where
it is difficult to predict threads interaction based on the code. Accordingly, the user
must specify which data will be cached on each memory stage.
To deal with the first issue, Cunetsim framework provides a unique API that man-
ages both memory allocation and simplifies the data transfer between them. Never-
theless, the real challenge relies on the significant difference between both sizes. In
fact, the RAM is natively extensible and larger than the GRAM. Thus, when the
required memory is larger than what the GRAM can provide, we use the notion of
stream. A stream is dynamically loaded and offloaded to the GRAM according to
the processing advancement.

56
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

6.5.3 Precision Issue

The implementation of the floating point on NVIDIA device is not fully IEEE com-
pliant. To analyze the difference between a GPU and CPU implementation, we use
the distance computing between two nodes as a benchmark test and calculate this
distance using both, over 1 million of samples. The difference between each pair of
results is less than 0.01%. Depending on the scenario, this difference might cause
some simulation inaccuracy (e.g. channel realization).

6.6 Configuration Issues of GPU-Oriented Simulation

In addition to technical challenges that we presented in section 6.6, parallel and
distributed simulation over GPU imposes several configuration issues that influence
the general performance. In this section, we will present two representative issues:
the space representation and the block size as a study case of tuning parameters.

6.6.1 Space Representation and partitioning

In distributed simulation, the partitioning of the simulated environment is always
challenging and influences seriously the performance [125, 31]. In parallel simula-
tion based on shared memory, the issue seems less critical in CPU context. In fact,
environment data such that space is shared between different execution processes.
Hence, when the number of concurrent processes is reduced (between 4 and 8),
environment information can be shared and protected. However, in massively par-
allel context where thousands of independent processes are executed simultaneously,
locking environment data for any modification becomes extremely inefficient. The
solution that we adopt is to divide environmental data into several independent and
contiguous frames so that the concurrency between processes will be reduced to a
reasonable number. To apply this approach to Cunetsim, we divide the simulation
space into contiguous geometric cells that respect fives rules:

• A worker evolves into one cell at a given time.

• A worker can interact with elements of its cell and that of neighboring cells.

• A worker can move from one cell to another.

• Each cell keeps the information about any present node.

• Locality information is saved on the fastest memory.

6.6.2 Tuning Parameters: Block Size as a Study Case

One embarrassing phenomenon that concerns the GPU programming is the sensi-
bility to both hardware and software tuning parameters. In fact, it is difficult to
predict the behavior of a given code on GPU without profiling operation. More-
over, defining analytically the best configuration seems unrealistic. One significant

6.6. Configuration Issues of GPU-Oriented Simulation 57

tuning parameter that impact the simulation performance is the block size: how
many threads will we put together in order to be executed on the same SM? In
fact, a hardware scheduler is associated with each SM. It decomposes the block
into warps so that threads of the same warp have the same code path. A warp is
executed in parallel, but warps of the same block are concurrent. The SM sched-
uler manages the execution of warps and interrupts the execution of one to launch
another with respect to internal algorithms that aim at maximizing the hardware
usage rate. CUDA specification suggests that the number of threads’ block must
be four times greater than the number of execution core on the target SM to reach
maximal efficiency. However, from a GPU generation to another, the specification
of the SM changes. Currently the number of execution cores varies from 32 to 192.
Furthermore, the GPU architecture defines a maximal block size (between 512 and
1024). Our experimental measurement shows that there is no optimal value for all
configurations.

Figure 6.8: Block size impact

According to the number of threads per block and the number of nodes (total
number of threads), the performance of the simulation radically changes. Thus, for
very large scale, 32threads per block seems the most adequate configuration.

To highlight the impact of the block size, we use a referential scenario that relies on
wireless mobile nodes. We increase the number of nodes from 1024 to 100 K nodes
in order to increase the simulation load, and we repeat the experimentation with six
sizes: 32,64,128,256,512 and 1024. Figure 6.8 shows the simulation runtime of the
experimentation series. First, we note that there is no optimal configuration, each
size presents punctual superiority. Secondly, we note that for a given simulation
load, the difference between the maximal and the minimal value is about 20%.
Accordingly, we propose two solutions to maintain a reasonable trade-off between
efficiency and decision complexity: the dynamic update and the static referential

58
Chapter 6. Cunetsim: An Experimentation Framework to Discover

Scalability Horizons

table.
Dynamic update: the principal of the dynamic update is to detect the most
adequate block size according to the simulation environment retrospectively. Thus,
the master process increases the block size continuously from 32 to 1024 in order
to detect the optimal configuration. The master iterates this operation periodically
to adapt the block size to the simulation behavior. The dynamic update method
introduces a small overhead since it relies on real measurement during the simulation
but may approach the ideal configuration.
Static Referential Table: generally, the number of different GPU architecture on
the same testbed is reduced (1-3). Thus, it is possible to determine apriority the
best configuration for each couple (GPU-event) and store this information into a
static table. This method does not interfere with the simulation and allows the user
to approach a good configuration.

6.7 Conclusion

To address the scalability issue, we propose to consider two limitations: the com-
puting power and the event scheduling complexity. Thus, we propose to use the
GPU as a main simulation context to take advantage of its computing power. To
cope with the GPU specificities, we propose to generate cloned events that share
the same event code and to group them into a unique entry that will be handled
by the event scheduler. As a proof of concept, we propose to create a new sim-
plified network simulator that aims at validating the pertinence of these proposals.
Furthermore, we analyze the pertinence of dissociating between the event and its
descriptor during management phases (generation and scheduling).
Finally, Cunetsim aims at unlocking the parallel capabilities of the state-of-the-art
hardware and software architectures to achieve simulation scalability and efficiency
with a significantly lower cost. Cunetsim is a fully GPU-based simulator which
provides a CPU-GPU co-simulation framework for large-scale scenarios.
In contrast with existing GPU acceleration approaches, the simulation is fully exe-
cuted on the GPU. Furthermore, Cunetsim proposes an efficient solution to manage
critical sections which presents a real challenge of the GPU programming model.
Performance results show that the runtime could be improved when GPU parallelism
is used to carry out the simulation. In particular, Cunetsim is able to achieve up
to 260 faster than existing simulators, when targeting large scale mobile networks.
Nevertheless, based on the cunetsim experience, we have two critical observations:
first, it seems inadequate to achieve a general purpose simulation exclusively on the
GPU context due to the memory limitation on the one hand and to the obligation
of event grouping, on the other hand. Secondly, achieving a very large scale simula-
tion requires a distrusted infrastructure -at least to provide the necessary memory
space- where the simulation context and the simulated population are distributed
on distinct machines. Both issues are discussed in the following chapters.

Chapter 7

Hybrid Events Scheduler

7.1 Introduction

Discrete event simulation (DES) is largely used to model, analyze, and evaluate
complex systems, where formal analysis is difficult or non-deterministic. However,
the scalability of DES remains challenging due to the increasing system and model
complexity on the one hand, and the phenomenal inter-connectivity features of re-
cent systems on the other hand. In addition, one fundamental limitation of current
DES is the absence of a dedicated event management policy that considers het-
erogeneous computing capabilities. In that context, event scheduling is identified
as an inherent bottleneck of DES. In particular, scheduling the execution of future
events while maintaining a continuous load under large-scale conditions increases
the scheduling cost, until it becomes the bottleneck [47]. Most popular scheduling
approaches rely on a centralized event scheduling model optimized mainly for the
homogeneous computing node architecture. Such a model remains limited and does
not exploit the full modern hardware potential. Hence, the parallel and distributed
scheduling approaches reemerge as a major factor to increase the scalability over
heterogeneous computing architectures [135]. The objective is to exploit a mul-
titude of parallel and interactive processors unified at the level of event scheduler
to cooperate with each other. Examples include multi-core CPUs, multi-GPUs,
multi-processor system-on-chip and accelerated processing unit. Regarding this re-
quirement, we highlight the need of a verified scheduling framework that combines
hardware abstraction with simplified management.
Most of those architectures seem promising, but their ecosystems in some cases are
either not fully developed or conflicting [21]. Benefits of GPU-enabled supercomput-
ers have been highlighted in [108], where authors suggest revisiting and expanding
the vision of DES. Nevertheless, most of the recent attempts assume the backward
compatibility with the sequential scheduling concept [99, 139]. Such a methodology
presents a conceptual weakness since it considers a multi-core computing node as
a simple extension of a mono-core one. Furthermore, to remain backward compat-
ible, the expected gain will be significantly reduced when compared to a dedicated
software design which exploits the parallel computing capabilities of the current
hardware as well as the communication latency [4].
In this work, we introduce a new parallel event scheduler for heterogeneous com-
puting architectures, denoted as Hybrid scheduler (H-scheduler). The H-scheduler
is designed to dynamically allocate events to available computing resources while
keeping a stable event rate. This is achieved as the scheduler is aware of the heap

60 Chapter 7. Hybrid Events Scheduler

of processors and their capabilities and has a constant access to their instantaneous
loads and execution time through a feedback mechanism. The scheduler operates on
all the available computing resources within the same addressing memory space. To
increase the scheduler efficiency, each event is associated with a specific descriptor
that will be stored into a 3-dimensional data structure.This 3D data structure al-
lows the framework to cope with consecutive timestamped events, isolated/recursive
events, and cloned event. Since the objective of this work is to maximize the effi-
ciency of the simulation, first attempt was to use opportunistic scheduling policies.
However, we decide to use the conservative scheduling policy to avoid the over-
head generated by the recovery mechanism and the state vector when considering
optimistic policy in parallel and heterogeneous settings.
The H-scheduler is composed of four main processes: event dispatcher, event injec-
tor, GPU-scheduler, and CPU-scheduler, where events are flowing.

1. The dispatcher fetches the newly generated events from different queues and
adds them to a corresponding position within a 3-dimensional data structure
optimized for the parallel execution.

2. The injector directs a group of parallel events to the most adequate sub-
scheduler (CPU or GPU) based on the received feedback information.

3. The GPU-scheduler ensures the execution of grouped entries on the dedicated
GPU.

4. The CPU-scheduler ensures the execution of any switched entry on the dedi-
cated CPU.

Each sub-scheduler is optimized for a specific hardware in order to maximize the
activity rate of the corresponding computing resources. Several optimizations are
proposed to accelerate the scheduling decision as the bottleneck may change over
time. The H-scheduler mechanism relies on three policies for both dispatcher and
injector processes: rapid, advanced and hybrid. The rapid policy aims to minimize
the decision cost while the advanced one aims to optimize the execution target
according the hardware load. The hybrid policy uses both advanced and rapid
policies to maximize the stability of the system. Comparative assessments have
demonstrated that the performance gain could be increased by a factor of 2 compared
to centralized and conservative schedulers.
The remainder of this chapter is organized as follows. Section 2 provides a related
work on the scheduling in the event-driven simulation. Section 3 presents the H-
scheduler in detail. The performance assessments and analysis are described in
Section 4 followed by a discussion in Section 5. Finally, the conclusion is presented
in Section 6.

7.2. The Hybrid Scheduler 61

7.2 The Hybrid Scheduler

To operate on a heterogeneous computing node, the hybrid scheduler relies on three
fundamental concepts: (A) the event descriptor, (B) the event structure, and (C)
the event flow.
(A) The event descriptor extends the traditional event metadata, namely times-
tamps, id, in/out data, to support additional information used to reduce the parallel
event scheduling cost. In particular, it includes (i) event dependency information,
(ii) event execution timestamp, (iii) I/O data access, (iv) event structure informa-
tion, and (v) execution targets. The event dependency defines if an event has one
or multiple dependencies (if it needs current output as input). The event execution
timestamp identifies which events can be scheduled in parallel for a given timestamp
and is calculated based on the current timestamp and the safety lookahead. The
I/O data access defines the permissions given to an event to read and/or write a
shared memory area. The event structure information identifies an event as a CIE
or a IFE for the given timestamp. Finally, the execution target defines where an
event could be executed in the CPU, GPU or both.
(B) The event structure expands how the events are represented so as to increase
the parallelism in a heterogeneous computing architecture. In this purpose, events
are dispatched over a 3-dimensional arraylist, where each element of the array rep-
resents the timestamp and the associated list represents the parallel event sets for a
given timestamp interval. The parallel event set is composed of the CIE (SIMD-like)
and IFE the (MIMD-like). It has to be mentioned that the CIE are processed by
the scheduler as a unique entry while the IFE are considered as a heap of events
and processed by the scheduler as multiple entries.
(C) The event flow concept considers the simulation as a dynamic system where
events are flowing between the producers and consumers. Depending on the sim-
ulation characteristics and the available resources, system bottleneck may change
over time. Therefore, the event rate stability has to be dynamically maintained so
as to maximize the simulation efficiency. Consequently, feedback information from
each computing resource is needed to control the event rate through the scheduling.
In the following sections, we will elaborate in detail upon the scheduler design and
algorithms.

7.2.1 Model and Components

To perform an efficient parallel event scheduling in large scale conditions over a
heterogeneous computing machine, the scheduler is designed as a system including
several processes and buffers. It includes the future event list (FEL), the dispatcher,
arraylists (AL), the injector, the GPU-scheduler, the CPU-scheduler, and the feed-
back mechanism as shown in the Figure 7.2. The FEL is a standard FIFO providing
reliable status flag used to collect and manage the produced events. There is one
dedicated FEL per computing resources to gather the generated events and one FEL
for all the incoming events. The dispatcher is the front-end of the scheduler, it first

62 Chapter 7. Hybrid Events Scheduler

E 2.1

E 2.2

E 2.3

E1

E3

E4

E5

E6 E8

E7

E 9.1

E 9.2

E 9.3

E 9.4

Timestamp

Timestamp

 (SISD)

C
IE

 (
S

IM
D

)

E 9.4

E 9.3

E 9.2

E 9.1E5

E7

E6 E8

E4E1

E3

E 2.3

E 2.2

E 2.1

E 10.2

E 10.1

E 10.1

E 10.2

IF
E

 (
M

IM
D

)

Figure 7.1: Events reordering and storage: top figure schematizes an events de-
pendency diagram while bottom figure schematizes how they will be reordered and
stored. Events dependency is transformed to interval.

reads the events from the FEL following a given scheduling policy (e.g. weighted
round robin). Then, it adds events into the global 3-dimensional AL data structure
based on the event descriptor to ensure the simulation correctness. The injector
proceeds on the per-interval basis and dynamically determines the target comput-
ing resource, i.e. GPU or CPU, as well as the subset of events to be allocated based
on the event descriptor, received feedback information and the target capacities.

As a result, the subset of allocated events will be pushed to the local 2D-AL of a
target. Please note that the injector starts the next interval only when all the events
associated to the current interval are executed. Both the GPU and CPU scheduler
receive events on a dedicated local AL buffer, where events are organized (see Fig-
ure 7.1). On the one hand, the dedicated GPU scheduler is the responsible of map-
ping each entry to an asynchronous and non-blocking GPGPU calls. On the other
hand, the dedicated CPU-scheduler will make use of multi-processing/threading
technology (e.g. openMP). Upon the execution of an event, a new event might be
generated (similar to producer-consumer processes) and pushed into the dedicated
FEL. To dynamically adjust the event flow, each target sends feedback information
about the instantaneous load and the execution time per event.

7.2.2 Scheduling Algorithms

In this part, we will develop the three different algorithms of the H-scheduler, namely
the advanced algorithm, the rapid algorithm and the hybrid algorithm.

7.2. The Hybrid Scheduler 63

ES

ED

EE

3D-ALInjector

2D-AL 2D-AL 2D-AL ...

CPU

Sched

GPU

Sched

GPU

Sched

Dispatcher

FEL N

FEL 2

FEL 1

FEL 0
Incoming Events

...

feedback

Figure 7.2: Event scheduler model

7.2.2.1 Advanced Algorithm

The advanced algorithm aims at thoroughly selecting the most adequate computing
target for each event. The event flow starts from the FEL where all events are firstly
inserted. The dispatcher is the first process which handles the events and as a result,
the event will be pushed in the adequate position in the 3D-AL. Based on the event
timestamps, the dispatcher determines the correct sub-list where the event must
be inserted. Then, it starts resolving its dependency using the event descriptor. If
the dispatcher detects a dependency between two events, it has three choices: (1)
splitting the interval into two new ones, which of each includes independent events
while respecting the timestamps correctness, (2) creating a merged event including
both events or, (3) transforming the sub-list to a sequential one. Algo 1 presents
the pseudo code of the dispatcher. There are two tasks related to that process: the
events dependency detection and the conflict resolution. To detect the dependency
of two events, the dispatcher relies on their descriptors as follows: first it explores
their explicit dependency descriptors. Secondly, it computes their durations, thus
if both events are concurrent then they can be considered as independent. Thirdly,
if both events do not use the same data, the dispatcher concludes that they are
independent (this feature must be explicitly enabled by the user). To resolve the
dependency, the most adequate choice is to split the interval. However, if such
a procedure induces another conflicting situation, the dispatcher creates a merged
event. Finally, if dealing with the interval becomes complicated due to the large
number of included events, then the sub-list will be transformed into a sorted list.
The injector processes the AL sequentially, sub-list by sub-list. If the sub-list is
sequential, then all the events will be forwarded to one target. Otherwise, the
injector considers each event individually based on the following routine: if the event
is mono-compliant (CPU or GPU), then it is switched to the adequate sub-scheduler.
If there are several instances of the target (several GPUs or CPUs) then the entry in
question will be switched to the target having the lowest load currently. Concerning

64 Chapter 7. Hybrid Events Scheduler

for e ∈ FEL do
if e.timestamps /∈ existing interval then

createNewInterval(I, e.timestamps);
insertEvent(I,e);

end
else

for e1 ∈ I do
if dependency(e1,e) then

resolve(e1,e);
end

end
end

end
Algorithm 1: Pseudo code of the dispatcher.

grouped entries, the injector analyzes the parallelism information to determine the
target. If there are few parallel events, then the CPU is the most adequate target,
and if that number is extremely large, the chosen target is the GPU. The boundaries
of this decision are a function of the number of CPU & GPU cores. At the beginning
of the simulation we use two arbitrary intervals where the decision is deterministic:
[1, 2∗core∗3+1]⇒ CPU and [200,+∞]⇒ GPU. Nevertheless, if the parallelism size
is intermediate (number of instances greater than CPU’s interval’s upper boundary
and lower than GPU’s interval’s lower boundary), then the injector inspects the load
of each target and chooses the available one. Finally, it ensures the synchronization
of all secondary ALs using a synchronization checkpoint at the end of each interval.

The CPU-scheduler ensures event execution over available CPU cores. At the initial-
ization phase, the CPU-scheduler starts by discovering available resources (asking
the hardware and reading the configuration file); then it creates as many execution
threads as available cores. Afterward, it feeds execution threads with events as
soon as possible, without dependency control. Therefore, events of one sub-list are
expected to be executed in parallel over available resources. Since the H-scheduler
respects a conservative scheduling approach, it does not execute events of different
sub-lists concurrently. The CPU-scheduler notifies the injector once an interval has
finished, and waits for its permission to consider the next one. The GPU-scheduler
is slightly different, since it relies on a hybrid software-hardware scheduling mecha-
nism. At the software level, sub-list always includes grouped entries that it translates
to a CUDA call with predefined generic parameters. The CUDA driver ensures next
steps, including generating threads and sending them to the GPU. At the hard-
ware level, the embedded GPU GigaThread scheduler first distributes event thread
blocks to various SMs, and then assigns each individual thread to an SP inside the
corresponding SM.

7.2. The Hybrid Scheduler 65

for I ∈ MAL do
for e ∈ I do

if e.target=CPU then
schedule(e,CPU);

end
else

if e.target=GPU then
schedule(e,GPU);

end
else

if e.instance ∈ [1, NCPU] then
schedule(e,CPU);

end
else

if e.instance ∈ [NGPU,+∞] then
schedule(e,GPU);

end
else

balancedschedule(e,GPU,CPU);
end

end
end

end
Synchronize(I);

end
end

Algorithm 2: Pseudo code of the injector.

66 Chapter 7. Hybrid Events Scheduler

7.2.2.2 Rapid Algorithm

The rapid algorithm is a simplified version of the advanced one which aims at mini-
mizing the decision cost. It particularly concerns the dispatcher and the injector. It
relies on a major simplification of the bottleneck of each process using a determin-
istic model. As for the dispatcher, the most expensive routine is the dependency
resolution; in particular, splitting an interval into two independent ones requires an
expensive modification of the main AL structure. The rapid algorithm applies events
merging if the dispatcher detects any dependency within one interval. However, we
note that the dependency detection routine can not be simplified since it affects the
correctness of the simulation. Concerning the injector, the most expensive routine
is the identification of the most suitable target. The rapid algorithm reduces the
complexity by extending the borders of decision intervals for both CPU and GPU:
the CPU interval becomes [1, N], and the GPU one becomes [N + 1,+∞], where
N is a tuning parameter. The second critical routine is how to determine the most
adequate target if we have multiple instances (multiple CPUs or GPUs). In that
case, rather than evaluating resource loads, the injector uses a predefined assignment
such as a round robin mechanism which aims at ensuring a minimal load balancing
based on the number of events.

7.2.2.3 Hybrid Algorithm

The hybrid algorithm aims at ensuring the maximal stability for the system. It
relies on two mechanisms: the algorithms switching and the parameter recalibration.
The switching mechanism changes the operating algorithm for both injector and
dispatcher processes based on a bottleneck detection approach. Each process has
one in-buffer which includes status flags indicating if the buffer is empty, almost-
empty, almost-full or full. The in-buffer of the injector is the main AL, and that of
the dispatcher is the FEL.
For each process, if the in-buffer is full, the hybrid mechanism assumes that the
consumer process is the bottleneck and acts as follows: if the filling rate is between
empty (E) and almost empty (AE) then the selected algorithm is the advanced. If
that rate is between AE and almost full (AF) then the selected algorithm remains
the advanced one, but the recalibration frequency is increased. Finally, if the in-
buffer filling rate is between AF and full (F) then the selected algorithm is the rapid
one. The switching decision occurs between two intervals and cannot be achieved
during the execution of an interval.
The recalibration mechanism computes continuously the values of three parameters
which define the behavior of both algorithms: the NCPU & NGPU of the advanced
algorithm and the N of the rapid one. It maintains a statistical table which includes
the average execution time of event sets in different targets. Figure 7.3 presents
an example of a statistical table, where the recalibration process can assert that
NCPU = 24, NGPU = 192 and N = 48. To compute the average execution
time of a specific event set size, the recalibration mechanism considers the last M
samples, which is a tuning parameter defined by the user. Therefore, the statistical

7.3. Performance Evaluation 67

table copes with the evolution of the simulation on one hand and the hardware
characteristic on the other hand.

Target\ size

CPU

GPU

1

0.2

1

...

...

1

...

...

1

24

0.8

1

36

1

1

42

1

1

48

1

1

54

1.5

1

...

...

1

192

6.4

1

288

9.6

2

384

...

...

Figure 7.3: Statistical table used for recalibration

7.3 Performance Evaluation

To implement the H-scheduler, we rely on cunetsim framework [16, 17]. The im-
plementation is based on five parallelization frameworks, namely CUDA, OpenMP,
MPI, the thrust data management API [12], and the PGI development Kit [146],
which are briefly explained below.

1. The Compute Unified Device Architecture (CUDA) is a software parallel com-
puting platform and a programming model created by NVIDIA. Regarding this
work, the last CUDA release provides two main features: atomic operations
and the GPUDirect technology which accelerates the communication between
the GPU and the different components of the computer.

2. The Open Multiprocessing (OpenMP) is an API that supports multiprocessing
in a shared memory context. We rely on the OpenMP to provide a compliant
version with multi-core CPUs as explained later.

3. The Message Passing Interface (MPI) is a standardized and portable message-
passing system designed to supply programmers with a standard for dis-
tributed programming. We use the MPI to ensure the communication and
the synchronization between different ELPs of the system.

4. Thrust is a parallel algorithm library which imitates the C++ Standard Tem-
plate Library (STL). Thrust’s interface enables performance portability be-
tween GPUs and multicore CPUs. Interoperability with established technolo-
gies (such as CUDA, TBB and OpenMP) facilitates integration with existing
software. Due to these features we use thrust API to implement different data
structures.

5. The PGI suite is a commercial C/C++ compiler which provides several au-
tomatic and semi-automatic parallelization features. Furthermore, it incorpo-
rates a full CUDA CC++ compiler for targeting X64 CPUs. What is even

68 Chapter 7. Hybrid Events Scheduler

more important, is that it introduces the unified binary technology (PUB),
which consists in creating a multi-target binary (GPU, INTEL CPU and AMD
CPU) from an initial native CUDA code.

In the remainder, we will study the efficiency of the H-scheduler under extreme
load. Therefore, we use a very large scale network scenario which generates billions
of events. First, we will describe the evaluation scenario and setup and afterword
we will compare the efficiency of different scheduling policies under fair conditions.
Finally, we will analyze the performance of the H-scheduler where we detail the
impact of each algorithm. We will particularly analyze the variation of the output
event rate during the simulation, the decision path length and the variation of
lookahead interval length during the simulation.

7.3.1 Scenario & Setup

We propose a large scale network experimentation scenario where we customize
the benchmark methodology proposed in [16] by defining a static network topology
composed of three independent activity areas (AA). Each of these follows a grid
configuration where the edge of an AA contains 750 nodes as illustrated in Figure
7.4; thus each AA includes 562.5K nodes1. The scenario includes one traffic source
which generates 600 uniform 128 − byte packets with 1 second of inter-departure
time. All nodes forward unseen packets after a one-second delay to model the
network latency whilst medium’s reliability is reflected using dropping probability.
Depending on the latter, each node decides whether or not to relay a received packet.
The drop probability (DP) is the parameter which allows us to introduce a random
factor on the network behavior. To provide a valuable event rate while keeping a
significant variation on the number of exchanged messages we use a DP of 0.1. The
simulation duration is 5602 seconds which ensures that the last generated message
can reach the destination.
In addition, we introduce a second scenario where we define for each node a random
inter-departure-time within the interval [0.1, 2] and a DP within [0, 0.28]. This
scenario is used to study the robustness of the H-scheduler when the timestamp of
different events present a significant entropy.
Although these scenarios are outlying real networks and include major simplifica-
tions, we claim that they provide an important events load with a large rate variation
as shown in Figure 7.8. Moreover, they are based on a pool of simple events which
does not require powerful computing resources individually, and use a simple imple-
mentation of both nodes and channels. This approach guarantees a fair comparison
and focus on the simulator performance rather than on models efficiency. Therefore,
the main difference between considered approaches remains the scheduler efficiency.
We use the Cunetsim framework, except for the NS3 case; thus all events are dual
compliant with both CPU and GPU targets when we aim at using the GPU. As

1That value represents the hardware limitation of the used GPU in term of memory space since
each node needs 3.8 Ko

7.3. Performance Evaluation 69

for the experimental context, the used frameworks are CUDA 5.0 and Open-MPI
1.4.1. The OS is Ubuntu Linux 11.10, the PGI compiler version is the 12.9 and
the Nvidia driver version is 295.41. The hardware platform is one PC including an
INTEL i73930k CPU (6 cores with hyper threading), 32 GB of DDR3 and three
GeForce GTX860 2GB (1536 cores for GPGPU computing).

7.3.2 Comparative Evaluation

This section aims at highlighting the efficiency of the major conservative scheduling
approaches which differ in their execution targets and parallelism techniques. We
distinguish three groups according to their execution targets namely CPU, GPU and
CPU+GPU as summarized in table 7.1. We will use Cunetsim framework where
we will change solely the scheduler except for the ns − 3 simulator where we use
the default scheduler. Moreover, we will use the same implementation of nodes and
channels to guarantee a fair comparison. Based on the default scenario, we consider
three metrics: the speedup with respect to a reference sequential execution, the
hardware usage rate and the scheduling cost.

Table 7.1: List of different scheduling approaches
Scheduling approach Target Parallelism Example
1 CPU non sequential
2 CPU Op NS3 scheduler [105]
3 CPU Msv + Op Cunetsim-CPU
4 GPU Op [100]
5 GPU Msv Cunetsim
6 GPU Msv + distributed Cunetsim-GPU
7 GPU+CPU Msv + Op H-scheduler

Op =opportunistic and/or optimistic, Msv= Massive

Figure 7.5 shows the normalized speedup of each approach with respect to the
reference sequential runtime obtained as the average runtime of the sequential ns−3.
We observe that GPU-based approaches are extremely faster than all CPU-based
ones. However, we observe that the opportunistic approach on GPU (case 4) which
presents a speedup of (40x), does not consider the SIMD architecture of GPUs.
In fact, its results are due to the efficiency of the hierarchical GPU memory and
the existence of 24 independent SMX2 in the used platform. On the other side,
the GPU-based approach which relies on massive parallelism concepts (cases 5− 6)
presents an outstanding speedup which varies between 400x and 900x. Nevertheless,
we note that D-cunetsim cannot reach the maximal expected speedup (3 ∗ 400x)
while it uses 3 GPUs. According to a detailed profiling analyzes, we can assert
that the scheduler is the bottleneck of the D-cunetsim. In addition, we notice that

2The Kepler notation of the Streaming multi-processor

70 Chapter 7. Hybrid Events Scheduler

the H-scheduler is twice faster than the default scheduler while both use the same
hardware. This considerable gain demonstrates that the hybrid scheduling approach
reduces significantly the bottleneck impact.
Figure 7.6 presents the average hardware usage rate of each approach for the CPU
and GPU. It reflects the used resources to ensure the simulation. As expected, CPU-
based schedulers ignore the GPU, however their CPU usage differs. The sequential
scheduler uses on average 20% of the CPU which represents the usage of one CPU
core. Ns− 3 uses on average 80% of the CPU. Since there are 6 instances of ns− 3,
each of which uses one CPU core, we can deduce that the corresponding waste of
resources (about 20%) is due to the communication overhead. Therefore, we can
infer that the event grouping policy presents a significant added value. The fourth
case shows a mitigated score; it uses a small fraction of CPU and GPU resources but
outperforms all CPU-based schedulers. This behavior confirms that GPU provides
signficant gain but that the software design must be reconsidered to cope with
hardware specifications.
Regarding dedicated GPU schedulers (5−7), we notice that the mono-GPU version
of Cunetsim (case 5) efficiently uses the GPU and one core of the CPU; that it gives
the expected results. On the other side, we note that the H-scheduler reaches the
maximal CPU and GPU usage rate. In particular, it outperforms the distributed
scheduler which does not exceed 80% of the GPU usage rate while the H-scheduler
achieves almost the 100%. These observations prove that the H-scheduler is able to
maximize the usage of powerful solutions.
Figure 7.7 presents the average CPU usage rate of the scheduling process regardless
of the simulation. Unsurprisingly, the H-scheduler needs on average between 6x and
8x more resources than CPU-based approaches and up to 3x more than GPU ones.
In fact, it uses at least 4 different threads to achieve the scheduling process. In the
experiment case, we use 6 threads distributed as follows: dispatcher, injector, one
CPUs-cheduler and three GPU schedulers. Moreover, these threads work in parallel
since the different data structures ensure the role of intermediate buffers.
We conclude that the H-scheduler is able to maximize the simulation efficiency,
compared to a classical one. Moreover, it is able to deal natively with heteroge-
neous platforms if events are compliant. However, this efficiency requires additional
dedicated resources compared to centralized approaches.

7.3.3 Performance Analysis

The H-scheduler is composed of several processes, each of which has two algorithms
with the ability to switch between them based on the feedback mechanism. In
addition, each algorithm reconfigures itself periodically. In this section we propose
to analyze the impact of each algorithm on the global behavior of the H-scheduler.
To study the impact of each algorithm, we conduct the following experimentation
series: first we will measure the average event rate per simulated timestamp, gener-
ated during the simulation across 100 runs. We realize so many runs as the shape
of the curve of Figure 7.8 appears so perfect for a simulation including a random

7.3. Performance Evaluation 71

factor. Nevertheless, we verify that the message propagation on the proposed net-
work respects that shape. In particular, each peak of this curve reflects a maximal
network activity in one AA. The second scenario which includes randomly variable
connections between nodes has a less regular curve3.
Using the default scenario we proceed as follows: first, we only enable the ad-
vanced algorithm, secondly we enable the rapid one, and finally the hybrid al-
gorithm without any reconfiguration process or setting a timer, and finally we
consider the H-scheduler as described in section 7.2. The simulated time is 5602

seconds while the execution time varies between 413 and 670 seconds which com-
plicates the comparison. To present an understandable representation, we nor-
malize the output event rate with respect to the following formula Outputrate =

Nevents/Executionduration. Corresponding results are shown in Figure 7.9.
First of all, we notice that the advanced algorithm (red curve) is in general more
efficient than the rapid one (green curve). However, the latter punctually achieves
higher output rate in some cases, especially at the end of the simulation, charac-
terized by a reduced number of messages. Furthermore, we notice that the hybrid
algorithm provides better results while it introduces a large variability during time
as shown by the width of the curve (blue). We can assert that, when allowing
each component to use the most adequate algorithm as a function of the situation,
we reach a higher event rate with a risk of inefficient oscillation. Finally, the full
H-scheduler which involves both hybrid algorithm and the continuous recalibration
presents unquestionably the highest output rate but also the most variable behavior.
In fact, we can distinguish four distinct and quasi-parallel sub-curves, each of which
presents the maximal achievable rate of one of the available computing processors(1
CPU and 3 GPUs). We note that the recalibration procedure allows the scheduler
to match rapidly the typical hardware parameters which gives a significant gain of
almost 30% compared to the switching mechanism alone and about 90% compared
to the default scheduler.
To illustrate the impact of the continuous re-calibration, we propose to analyze the
evolution of two parameters during the simulation: first we will consider the average
decision path length, computed as the average number of steps required to make the
decision on where the event will be directed. Secondly, we will consider the average
scheduling interval length during one simulated second. Concerning the path length
illustrated in Figure 7.10, we identify a first phase, where the length seems extremely
variable, oscillating between 1 step (18%) and 5 steps (13 %). This represents the
learning phase, which was arbitrary fixed to 500 simulated seconds. Afterwards,
we observe a transition phase where the average decision path length decreases
rapidly until reaching a steady state where the scheduling decision needs in average
between one and two steps. We conclude that the continuous recalibration allows a
significant gain in term of scheduling cost without compromising the decision quality.
Regarding the scheduling interval length illustrated in Figure 7.11, we notice that

3We note that we vary the DP for that scenario between 0 and 0.28 because we loose the network
activity beyond that threshold.

72 Chapter 7. Hybrid Events Scheduler

the interval length is sensitive to the experimentation conditions; therefore its value
decreases to 1-5 ms when the number of messages is high and increases to 10-15 ms
when events are mixed. Considering that message events are natively dependent,
this behavior reflects the events relationship in firm way. Moreover, we notice that
there is no learning phase since the unique rule during the whole simulation is to
maximize event parallelism.
Accordingly, we can conclude that the H-scheduler presents an interesting ability
of dealing with variable simulation rates under large scale conditions while max-
imizing the hardware usage rate even in a heterogeneous context. Moreover, the
re-calibration procedure and the dynamic behavior allow a significant support of
the hardware characteristics without prerequisite knowledge.

Figure 7.4: Topology of the benchmarking scenario

Figure 7.5: Normalized speedup with respect to the sequential runtime

Figure 7.6: The hardware usage rate.

7.3. Performance Evaluation 73

Figure 7.7: The scheduling cost.

Figure 7.8: Variation of the input rate vs Time

Figure 7.9: Output event rate of different algorithms.

Figure 7.10: Average decision path length during the simulation.

74 Chapter 7. Hybrid Events Scheduler

Figure 7.11: Average interval length during the simulation. It closely reflects the
events dependency.

7.4 Related Work

Improving the efficiency and scalability of DES remains a challenging issue for mod-
ern modeling approaches that require complex and sophisticated representation. In
such context, PDES is commonly used as a scalable and efficient solution when
compared with sequential approaches [33]. PDES relies on the partitioning of the
model over several logical processes (LP)s collaborating with each other to perform
the whole simulation [111, 62]. However, respecting the simulation correctness while
dealing with parallel execution makes event management extremely expensive. This
is also acknowledged as one of the critical limitations of large parallel simulations,
especially when dealing with heterogeneous resources, and raises two issues: data
representation and event scheduling [110].
To store future events, most of the PDES frameworks use a sorted data structure. In
the literature reviews, the efficiency of central data structures was largely studied for
both sequential and parallel execution, e.g. central event list (CEL) [122]. Neverthe-
less, under large parallelism conditions, such a data structure becomes the bottle-
neck. Authors in [33] address the efficiency of three CEL implementations, namely
the heap, the splay tree and the calendar, and they conclude that the performance
of the CEL concept remains mitigated when thousands of concurrent processes ac-
cess that structure. Therefore, the CEL implementation needs to be parallelized
to cope with the parallel architecture of heterogeneous computing resources. The
concurrent priority queue [134, 38] is a relevant solution to access and manage the
CEL in parallel. An event list or message queue is usually distributed to each logical
process in a PDES with its own local clock. The concurrent insertion and deletion
of the priority queue, by involving mutual exclusion or atomic functions, leads to
the improvement of the overall performance using a global event list [122]. In the
same sense, Chen et al. propose a distributed queue which considers multi-core
CPUs [27]. However, the above mentioned mechanisms, mutual exclusion and con-
current priority queue, are target-dependent, they could not be directly applied to
GPU targets. A different point of view was proposed by Park et al. [100], which
relies on a hybrid time-event driven simulation based on a GPU-oriented CEL con-

7.5. Discussion 75

cept that uses a linked list implementation. Despite the fact that this approach has
been developed with the aim of improving the GPU-based simulation, the overhead
of managing a large number of parallel event remains an open issue due to a limited
number of concurrent access to the same physical memory.
In the DES and PDES, a large portion of the overall simulation time is used for
the event scheduling [102]. Moreover, the efficiency of the scheduler also depends
on the synchronization method [84]. The conservative approaches prohibit out-
of-order event execution, which in most cases is based on the lookahead concept
to preserve the causality rule [46]. Parallel event scheduling is separately studied
for a multi-core CPU target [139, 36] and GPUs [100]. Both approaches use a
central event queue and several independent threads to fetch the next event from
the queue. The multi-threading approach is also applied to reduce the scheduling
cost and increase the simulation efficiency but only for a limited number of cores (4
and 8 respectively). Authors in [99] propose a dedicated GPU scheduler based on
the SIMD programming model where the event queue is splitted into several sub-
queues to avoid central bottlenecks. All the above mentioned approaches regard a
GPU core as a CPU core, which in turn reduces the achievable gain.
The optimistic approach allows an out-of-order execution while ensuring the simu-
lation correctness. Several optimizations were introduced recently to increase the
efficiency of optimistic parallel simulations over multi-core CPUs while keeping a rea-
sonable backward compatibility with a standard software architecture [138, 88, 27].
Although such an approach increases the general efficiency by relaxing a substantial
limitation of the conservative approach, it introduces a significant memory overhead
related to the state-vector saving mechanism, which becomes critical when targeting
a very large logical processes.
In contrast with previous works, the H-scheduler design consider extremely large
LPs while maximizing the simulation efficiency over heterogeneous computing ar-
chitecture. In particular, it outperforms prior works by considering events as flow
and detecting the system bottleneck on the fly in order to adjust the behavior of
the scheduler dynamically.

7.5 Discussion

This chapter aims at emphasizing the importance of using heterogeneous computing
resources to maximize the simulation efficiency and scalability. Thereby, we use an
adequate machine including identical GPUs and a well-designed scenario, suitable for
a high events rate. Nevertheless, we identify five issues which need to be discussed:
first, we do not consider the data structure filling issue. In fact, all events have
the same importance whatever the status of the concerned buffer. An adaptive
policy may use a RED [41] approach to manage different buffers. Secondly, the
management of the algorithms switching relies on a loopback mechanism which
measures the load of each auxiliary resource. While this approach seems efficient
to cope with very large scale simulations, analytical evaluation demonstrates that it

76 Chapter 7. Hybrid Events Scheduler

may cause unsuitability when the simulation pattern becomes unpredictable (such as
the second scenario). Therefore, a weighted flow management appears as a solution
to maintain the queue stability.
Thirdly, we use a limited range of computing hardware, including one GPU family
and one Hexa-core CPU. We expect to evaluate the robustness of the H-scheduler
under large heterogeneous conditions where we combine powerful CPUs (Xeon E5
2650) with professional GPUs and accelerators (Xeon Phi).
In addition, we notice that switching between the scheduling algorithms and exe-
cution targets may induce an instability in event rate. Thus we apply a timer to
stabilize the system. We expect that a smoothed transition between algorithm may
increase the efficiency while providing enhanced stability. To conclude this discus-
sion, we highlight that we rely on a data-abstraction mechanism which allows any
event to access any data whatever its location. Therefore, the H-scheduler omits the
data-access cost when computing the most suitable execution target. Nevertheless,
we note that the data locality is an emerging issue which may be considered on the
event scheduling level, especially when targeting heterogeneous computers.

7.6 Conclusion

Discrete event simulation is widely recognized as an essential tool to analyze complex
systems. Modern structures often require sophisticated models while simulating a
large number of entities in continuous interaction. However, the scalability of this
simulation remains challenging, whether in terms of runtime as well as the number
of simulated entities. In this context, parallel (and distributed) discrete event sim-
ulation is actually the most relevant solution allowing to significantly increase the
scalability. However, event scheduling during the simulation over PDES requires
optimized design to deal with emerging hardware innovation while respecting the
simulation correctness. In particular, new computers are transformed into a heap
of heterogeneous processors, each of which is more adequate for a specific task.
Nonetheless, most of the existing schedulers are derived from a sequential concept
which reduces their ability to cope with parallel hardware specifications. Accord-
ingly, the events flow is generally under expectation, and the idle time is consequent.
We present in this work a new scheduling approach which aims at maximizing the
event throughput over heterogeneous computers. According to these considerations,
we rethought the event-driven simulation architecture to consider event flows rather
than individual events. Therefore, events are clustered as a function of their process
and timestamps for the scheduling step while events flows are further directed to the
adequate execution target. The implementation of this concept is denoted as the H-
scheduler addressing the heterogeneous computing. It considers both GPU & multi-
core CPU. In the current version, the H-scheduler is composed of four components:
the dispatcher which computes the possible parallelization issues for events, the
injector which determines the execution target of each parallel event group, the
CPU-scheduler which ensures the execution of events on the corresponding CPU and

7.6. Conclusion 77

the GPU-scheduler which ensures the execution of events on the corresponding GPU.
Both injector and dispatcher present an abstraction layer which simplifies the user’
job. Besides, both CPU-scheduler and GPU-scheduler are achieved according to a
hardware/software co-design methodology. Therefore, we combine the simplicity of
usage and efficiency of specific target-oriented solutions.
Accordingly, experimental results demonstrate that the H-scheduler overcomes the
majority of existing schedulers. In particular, it is able to achieve a reference simu-
lation 1200x faster than the sequential one and 2x faster than the original Cunetsim
scheduler while using the same workstation.

Chapter 8

General Purpose
Coordinator-Master-Worker

Model

8.1 Introduction

In distributed simulation, it is fundamental to rely on a dedicated software design
that copes with the scale. In fact, if the software design relies on a classic master-
worker approach, increasing the size of the simulated system leads to a nonlinear
increase in the required resources and the execution time, which in turn reduces the
simulation efficiency [48].
To speedup a large scale simulation, there are two trivial approaches: 1) parallelism
and/or distribution of the simulation over several LPs. 2) usage of a dedicated ac-
celerator to handle the bottleneck. The distribution of a simulation over multiple
computing nodes delivers a significant scalability gain at the cost of higher com-
plexity and overhead. In particular, the simulation overhead relative to correctness
mechanisms remains significant. Indeed, the expected gain is asymptotic and cannot
exceed a given limit that depends on both the software and the hardware inherent
characteristics [47]. In the literature reviews, the initial software architecture used
to define a distrusted and parallel simulation was the flat architecture where LPs
collaborate to realize the simulation using distributed algorithms for communica-
tion and synchronization. Such a design is widely used for small to medium scales
(in terms of LPs number). However, its relative overhead increases rapidly accord-
ing to the simulation scale. To limit such an overhead when targeting large scale
simulations, a two level hierarchical architecture was introduced, where a specific
process (also known as the server) ensures the management of the simulation. The
involvement of this process varies from one implementation to another.
The master-worker (MW) model is an example of a two-level hierarchical architec-
ture that handles efficiently meta-computing systems [98]. Such a design is optimized
for recent public hardware; however, specific considerations must be done to increase
(1) the data locality as flops are cheap, but communication is expensive, and (2)
the simulation efficiency by exploiting the capability of heterogeneous computing
node. To deal with the MW limitations while coping with computational challenges
of heterogeneous computing node architecture, hierarchical approach was proposed
in [4]. Authors propose a new concept based on the interaction between CPU-based
and GPU-based components. In addition, a specific consideration for the data local-

80 Chapter 8. General Purpose Coordinator-Master-Worker Model

ity was introduced. Nevertheless, this approach does not address the GPU memory
restriction and as a consequence, a constant synchronization delay [26].
In contrast with existing master-worker software architecture, we had proposed [17]
an enhanced design that introduces a coordination process on the top of the system.
The proposed model is donated as the CMW and aims to provide an asynchronous
hierarchical architecture, in which each master manages a local group of workers
within the same addressing space. The set master-workers defines a logical process
which is able to handle a large part of the simulated population. The head process,
on the other side, manages the simulation through a distributed environment. De-
spite the advantage of the CMW model that we highlighted in chapter 7 and in [17],
it presents three major issues:

1. The software design is close to the hardware which reduces its portability.

2. The model presents some stability weakness under very high load.

3. The absence of a priority management mechanism maximizes the instability.

It has to be mentioned that we denoted the initial version in which relies the hybrid
scheduler introduced in chapter 7, as the basic CMW in order to differentiate it
from the GP-CMW.
In this chapter, we aim to overcome these limitations and to consider meta-
computing systems for greater flexibility. The main rule is to maximize the interac-
tions inside a computing node with minimum communication overhead outside. A
specific consideration is also given to the stability and extensibility of the solution
in order to support future hardware trends. Thus, we propose a general purpose
version of the coordinator master worker model (GP-CMW) that introduce two
abstraction layers: the priority management layer (PAL) that maximize the stabil-
ity by separating both control and data plane; and the hardware abstraction layer
(HAL) that regroups features thoroughly bound to hardware such as heterogeneous
event scheduling and internal communication mapping. The GP-CMW is an asyn-
chronous hierarchical model: at the top level, the coordinator ensures the global
time synchronization and the load balancing among the masters. On a second level,
the master locally manages the time synchronization and event scheduling among
the workers. At the third level, the workers are the executing threads perform-
ing tasks. From the coordinator point of view, the master manages one simulation
instance, which is why the master-worker subsystem is notified as an extended log-
ical process (ELP). The PAL is an intermediate layer between the coordinator and
masters on the one hand, and different masters, on the other hand. The HAL is a
local layer in each addressing space and includes the heterogeneous events scheduler
that manages event execution through all available resources. The asynchronous
feature is ensured by the fact that the synchronization is carried out at two different
scales: the master-coordinator level uses a large granularity synchronization while
the master-worker level uses a fine granularity.

8.2. The General Purpose Coordinator-Master-Worker Model 81

The reminder of the chapter is organized as follows. In Section 2, we summarize
the related works. In Section 3, we present the GP-CMW model and its features.
Section 4 presents the benchmarking scenarios and validation results for the GP-
CMW model in comparison with the basic CMW model. Finally Section 5 concludes
the chapter and provides a short contributions.

8.2 The General Purpose Coordinator-Master-Worker
Model

The GP-CMW model is a software architecture that considers distributed large scale
simulation across heterogeneous meta-computing resources. It is designed around
three software components and two optimization layers:

1. C the coordinator: is a top-level CPU process with two essential tasks: load
balancing and synchronization among all the active masters.

2. M the master: is a CPU process representing an intermediate entity. It man-
ages workers operating potentially on different computing resources within
the same shared memory context and communicates with the coordinator and
others masters through the PAL.

3. W the worker: is the elementary actor of the GP-CMW that performs the
simulation routines and interacts with the input and output data.

4. HAL the hardware abstraction layer: is a unique process per addressing space
that performs event scheduling through workers. In addition, the HAL maxi-
mizes the usages of specific communication resources into the same addressing
space.

5. PAL the priority abstraction layer : manages the communication priority
between the coordinator and masters as well as between masters. It gives the
highest priority to managing flows in order to maintain the system stability.

In the GP-CMW model, the simulation is first distributed over a certain number of
workers for the considered simulation scenario. Then, workers are partitioned into
separate simulation instance according to the user-defined spatial and/or operating
policies [67, 119]. Each simulation instance is managed by one master, and all
workers interact with the outside world uniquely through the master. In a typical
case, each simulated instance is performed by one master on one computing nodes.
Figure 8.1 summarizes the hierarchical architecture of the GP-CMW model where
we highlight the separation between simulation and control plans. In particular,
we observe the role of the HAL to extend the execution context of one ELP over
available resources (CPU and GPUs).
In the following sections we will detail the event management model which empha-
sizes the events-flow concept. Secondly, we will highlight the particularity of the

82 Chapter 8. General Purpose Coordinator-Master-Worker Model

Coordinator

PAL

MasterMaster

HAL

Worker Worker

...

Simulation Plan

Control Plan

Worker

Worker

Worker

CPU context

GPU context

Figure 8.1: The GP-CMW blocks diagram:

The coordinator flows goes exclusively through the PAL. the PAL manages also
master-master communication. Inside a given addressing space the HAL manages
the interaction between the local master and involved workers. It includes both
events scheduling and communication switching.

optimized synchronization model and finally we will discuss the hierarchical com-
munication model.

8.2.1 Events Management: Description, Scheduling and Execution

In DES an event represents the execution of one state, activity, model or algorithm
with concrete timestamps and parameters. A main activity of the simulation pro-
cess consists of the management of events. A typical event life cycle in DES includes
at least four steps: generation, scheduling, buffering and execution (see Fig-
ure 8.2(a)). By agreement, there are two types of generated events: that defined
by the user scenario (i.e. via a permanent events’ generator) and that generated
recursively due to a previous event execution. Whatever the generation method, an
event has specific timestamps that define when it must be executed with respect to
the simulation time. A sequential scheduling process consists of sorting incoming
events based on their timestamps and buffering them into a FIFO list in order to
be executed. A basic parallel scheduling process aims at executing events in paral-
lel if they have exactly the same timestamps (called the conservative approach) .
Optimized scheduling models relaxed this constrain using a time window to deter-
mine parallelizable events (opportunistic approach) [43, 131, 114]. Advanced parallel
scheduling algorithms analyze events dependency to maximize the parallelism rate
while conserving the simulation correctness [144]. In case of parallel scheduling for

8.2. The General Purpose Coordinator-Master-Worker Model 83

multiple execution targets, a central scheduler becomes an imminent bottleneck. In
fact, such a situation can be modeled as a workflow with one producer and many
consumers [1:N], where consumers are the execution processors, and the producer is
the scheduler. Therefore, increasing the number of consumers with direct exchange
order results inevitably on a famine situation at the consumers’ level and a bottle-
neck at the producer’ level. Moreover, one critical issue of parallel scheduling process
remains its high cost that increases rapidly as a function of the number of events on
the one hand and the number of execution processors on the other hand. Thereby,
the majority of parallel schedulers deal with a limited number of simulated elements
(thousands per LP) and execution processors (Typically 6-64 in the current state
of the art [28, 90]).
In contrast with traditional approaches, the GP-CMW events management proposes
three features:

1. The separation between the event description, scheduling and execution.

2. The concept of flow of events .

3. The grouping/ungrouping of events representation during the simulation.

The event description relies on an enhanced representation that includes common
information (id, timestamps, callback) but also dependency meta-data that simpli-
fies the parallel scheduling process. In the remainder, we denoted the creation of
the event descriptor and its enhancement with additional data as the event descrip-
tion. Indeed, the events management process on the GP-CMW separates the event
description from the scheduling and the scheduling from the execution. Thus, the
description is achieved by the master while the scheduling is done by the HLA and
the execution by a workers pool. The GP-CMW model combines the generation of
cloned independent events (CIE) with the detection of foreign independent events
(FIE) that can be potentially executed in parallel to maximize the simulation effi-
ciency. Finally to bypass any potential bottleneck due to an increasing events rate
under large scale simulation conditions, the GP-CMW model represents the CIE as
one entry. This simple yet efficient technique provides a significant gain in terms
of scheduling cost. To realize this approach, we propose to modify the event life
cycle by breaking it down into three independent stages: the events description, the
events scheduling and the events execution (see Figure 8.2).
According to these modifications, we can expect that we combine the advantage of an
efficient hardware usage with a reasonable abstraction level on the software design.
Moreover, the usage of several intermediates buffers and processes guarantees that
the flow of events becomes smoother, reducing the instability of the system during
the execution.

8.2.1.1 Events Description Stage

On the events description stage, the master pre-processes incoming and generated
events in order to reduce the complexity of scheduling stage. Thereby, it includes

84 Chapter 8. General Purpose Coordinator-Master-Worker Model

Event Scheduling-

Execution process

Generation

Scheduling

Buffering

Execution

In
d
u
c
e
d
E
v
e
n
ts

(a) The default event life
cycle in the DES includes
four mandatory steps

Events Modeling Stage

Events Scheduling Stage

Events Execution Stage

Buffering

Generation Grouping Description

Buffering

Re-ordering Swithcing Scheduling

Ungrouping Executing Termination

(b) The separation between the event model-
ing the event execution provides more flexibil-
ity and reduces the impact of potential bottle-
necks.

Figure 8.2: Events Life Cycle

four steps:

1. The generation: the master generates initial events according to the user-
defined simulation scenario. In particular, the desired timestamp of each event
is generated. In parallel, it processes incoming events during the simulation1.

2. The grouping:the master identifies and groups CIE into one entry. The main
issue of the grouping step is to preserve the event descriptor so that it can be
reversible. Thus, the simplicity of events parameter grouping determines the
efficiency of the procedure.

3. The enhanced event descriptor (EED):the master generates and extends the
event descriptor to provide additional information for event groupings. In
particular, it includes: dependency information, execution timestamp, I/O
data access, structure information and execution targets

4. The buffering: To conclude this stage, events descriptors are stored into an
intermediate buffer, where they still waiting to be scheduled and further exe-
cuted.

It has to be mentioned that the main issue of the grouping step is to preserve
the event descriptor so that it can be reversible. Thus, the simplicity of events
parameter grouping determines the efficiency of the procedure. Figure 8.3 presents

1 That events can be recursively generated by other events during the execution or received
from outside.

8.2. The General Purpose Coordinator-Master-Worker Model 85

two grouping examples, case A is non-optimized and generates additional work while
the case B is optimized and simplifies both grouping and ungrouping steps. Indeed,
the main part of work remains in charge of the system designer which must provide
identical parameters for CIE.
The five components of the enhanced event descriptor are described as follow:

1. Event dependency information: defines if an event has one or multiple de-
pendencies (needs current output as input) that fall within the same time
interval [13].

2. Event execution timestamp: identifies which events can be scheduled in par-
allel for a given timestamp and is calculated based on the current timestamp
and the safety lookahead.

3. I/O data access: defines permissions given to an event to read and/or write a
shared memory area.

4. Event structure information: defines the type of the event (CIE or isolated).
In case of CIE, it includes multiplicity information.

5. Execution targets: defines where an event could be executed, CPU, GPU or
both.

Grouping

Move P1T1Id=0

Move P2T1Id=1

Move P3T1Id=2

Move P4T1Id=3

<0,3> Move T1 P1 P2 P3 P4 <0,3> Move T1 P*

Grouping

Move P*T1Id=0

Move P*T1Id=1

Move P*T1Id=2

Move P*T1Id=3

Figure 8.3: Examples of events grouping:

This figure presents two events grouping cases: If the events that will be grouped
have different parameters, the grouping process must concatenate all of these
parameters which complicates the operation. However, if all events share the same
pointer to a common structure (table, vector, flow...) then the grouping process
generates the grouped entry rapidly.

86 Chapter 8. General Purpose Coordinator-Master-Worker Model

8.2.1.2 Events Scheduling Stage

The event scheduling stage of the GP-CMW model is the achievement of the schedul-
ing expertise that we acquired during this thesis. It is derived from the H-scheduler
presented in chapter 7. However, the scheduling approach of the GP-CMW is more
generic and consider extreme situation in order to increase the global stability. From
a conceptual point of view, it includes four steps: the reordering, the switching, the
scheduling and the buffering.

1. Reordering: Received Events are reordered and grouped according to time-
windows. This pre-scheduling step reduces the complexity of the following
steps. The output of this step is a group of events that can be executed in
parallel.

2. Switching: Pre-scheduled events will be switched to one of the available
computing resources. In particular, grouped events (CIE) will be switched to
the GPU and isolated one will be switched to the CPU.

3. Scheduling: The scheduling concerns each computing resource indepen-
dently. An associated sub-scheduler manages the given events. However, these
sub-schedulers are synchronized at the end of each time window.

4. Buffering: Scheduled events are buffered in order to be executed. This
step is fundamental because each sub-scheduler may have several executing
resources which must be supplied from a common buffer.

8.2.1.3 Events Execution Stage

The event execution stage is the concrete achievement of the simulation. Thus,
its main step is the execution! However, it includes two mandatory steps: the
ungrouping and the termination.
Conceptually, the ungrouping step consist on the creation of several events (or events
descriptor) from one CIE entry in order to be executed. The concept did not specify
how, since the ungrouping method depends on the target hardware. The execution
step is achieved by a pool of threads that act in parallel. The nature of that threads
is not specified on the concept. The designer is free to implement the model accord-
ing to its relative constraints. The termination step represents the after-execution
management operations such as memory liberation and acknowledgement, but also
the handling of induced event that can be generated during the execution. The
implementation that we propose relies again on the H-scheduler and requires the
collaboration of the HAL and workers pool.
Implementation: on the event execution stage, all sub-schedulers act simultane-
ously to ensure events processing. Regarding the CPU-scheduler, the process is the
following: first it creates as many threads as available cores. Afterwards, it pops
events from the corresponding 2DAL and affects them to the nearest free thread.
If the CPU-scheduler finds grouped events, it relies on the OpenMP API to ensure

8.2. The General Purpose Coordinator-Master-Worker Model 87

the parallel execution. If an executed event generates a new event(s), there are two
approaches: if the generated events can be executed during same time, then the
sub-scheduler short-circuits the system and executes it directly. Otherwise, the new
event(s) is re-injected on the simulation loop. The GPU-scheduler is slightly dif-
ferent since it relies on a hybrid software-hardware scheduling mechanism. On the
software level, it always handles grouped entries that it translates to a CUDA call
with predefined generic parameters. The CUDA driver ensures next steps, including
generating threads and sending them to the GPU. At the hardware level, the embed-
ded GPU Giga-Thread-scheduler first distributes events threads blocks to various
SMs, and second assigns each individual thread to an SP inside the corresponding
SM.

8.2.2 The Synchronization Mechanism of the GP-CMW Model

When targeting distributed simulation, the system synchronization guarantees that
there is an independent mechanism that ensures the time coherence of the simu-
lation across different machines. Accordingly, it defines a referential time of the
synchronization and a clock-advancement to drive the simulation. In general, pur-
pose simulation that uses discrete events concept, there are three distinct notions
of time: (i) the physical time, representing the duration of the physical phenomena
that we model or the time that the modeled real event requires to be performed
(ii) the simulation time, representing the physical time in the simulation, and (iii)
the wallclock or execution time, which is the elapsed real time during the execution
of the simulation as measured by the hardware clock. Accordingly, the majority of
the existing conservative mechanisms proposed to synchronize the simulation time.
Regarding time advancement, there are two methods relative to the DES: the time-
driven and the event-driven simulation. In time-driven method, the clock increases
sequentially from one value to the next with a predefined granularity which defines
a time interval. In distributed context, this model relies on the acknowledgment
of each elapsed interval by each involved process. The acknowledgment can be ex-
plicit using NULL message or implicit using the communication timestamps. In
event-driven simulation, the clock jumps from the current event-timestamp to the
next. Such a model avoids crossing empty intervals but implies a sophisticated
synchronization mechanism in distributed context. In general purpose distributed
simulation, the lookahead is the key ingredient for all conservative synchronization
methods. A simplified definition is that the ability of a simulation instance (also
known as a logical process in the literature reviews) to predict future behavior with
respect to modifying the event lists of other instances (LPs). More precisely, an
instance P has a lookahead with respect to an instance Q if the simulation clock of
the instance P is at time s, and yet P can determine that under no circumstances
will it insert or delete an event from the event list of the instance Q with timestamps
t > s [92].
In the GP-CMW model, we aim at maximizing the efficiency of the distributed sim-
ulation while minimizing the management overhead. Consequently, we opt for a hy-

88 Chapter 8. General Purpose Coordinator-Master-Worker Model

brid and hierarchical synchronization mechanism where we separate the coordinator-
master plane from the master-worker plane2. Each component of the model has
its own clock which progresses independently. The coordinator clock advances ac-
cording to a time-driven model. It defines a group of synchronization time points
(denoted as checkpoints) that must be acknowledged by all active masters. The
elapsed time between two consecutive checkpoints represents one work unit (WU).
The mechanism is an active and conservative method that have the benefit of avoid-
ing any additional recovery routines to preserve the correctness. However, the usage
of a conservative checkpoints-based mechanism implies that all ELPs must wait until
receiving the release message of each finished WU. That waiting delay may become
significant if the designer uses a short WU. The master clock is time driven and is
incremented according to the time intervals computed by the events scheduler. In
particular, each master acknowledges the HAL by the duration of the WU; yet the
embedded scheduler divides this duration into several independent and contiguous
intervals. The rule is that all the events of the same interval can be executed in
parallel despite their timestamps divergence. It has to be mentioned that during a
WU, each master can progress according to its inherent speed which may induce a
correctness issue. Therefore, we apply an optimized lookahead protocol to ensure
a correct communication between all ELPs [129]. Finally, the worker clock is the
unique element which is event-driven. Indeed, only the clock of active workers will
be updated to the current master time. An active worker is that which will execute
an event during the upcoming timestamps while a passive worker is one that did
not have something to do in that time. Accordingly, the worker clock jumps from
the current event timestamps to the next one, similarly to a traditional event-driven
simulation, from a worker point of view.

A second important feature that distinguishes the GP-CMW model is the ability to
support variable WU duration. In fact, this feature allows each master to request the
duration of the next WU. Therefore, the coordinator computes the optimal duration
according to received requests. Different policies can be applied such as the Max,
the Min and the average. Depending on the simulation nature, the user may define
the most adequate one.

8.2.3 GP-CMW Communication Model

In this section, we will survey communication features of the GP-CMW model.
First, we will present the hierarchical model that governs the interaction between
different entities. Secondly, we will discuss three issues that influence the simulation
efficiency and the resolving features that we propose to limit the damage.

2We have omitted to represent the PAL and HAL on the synchronization process because they
have not interfered with the system logic.

8.2. The General Purpose Coordinator-Master-Worker Model 89

8.2.3.1 Hierarchical communication Model

The GP-CMW model relies on a hierarchical communication policy between sim-
ulated entities; defined as the interaction between workers. The GP-CMW model
defines four methods that aim at maximizing the usage of available communication
buses:

1. If both workers are in the same GPU block, the message is written on the
GPU shared memory and a reference is given to the destination. If there
is more than one destination, the message is written to the in-buffer of the
destination(s) ensuring that each worker has the entire control on its message.

2. If both workers are in the same GPU but on foreign blocks, the message is
written on the GPU global memory and a reference is given to the destination.
Multiple destinations will receive distinct messages.

3. If both workers are in the same ELP (i.e. the same memory space), the
message is written on the destination in-buffer using direct memory access. In
this case, the destination can either be a CPU worker or a worker in a different
GPU.

4. If both workers are in two foreign ELPs, the source worker writes the message
on the out-buffer of its master, denoted as the source master. The source
master will transfer the message to the destination master.

It has to be mentioned that the HAL incorporates a routing table that includes
the torque (id, physical location) of each worker. Thus, when a worker requests a
communication with another one, it fetches the locality information in that table
in order to configure its communication method. Moreover, it caches this data for
future usage.

8.2.3.2 Communication Issues and Features

In distributed and parallel discrete event simulation, the communication between
different entities remains a renewable challenge. While computing power was the do-
main limitation in previous decades; it is nowadays the communication that counts
largely match than the computing power. When we started the creation of a new
parallel and distributed simulation framework, we faced three major issues: burst-
ing, priority and redundancy. The first and second issues concern distributed con-
text. The bursting occurs when several ELPs exchange an important number of
small messages. It induces a significant overhead on the network and increases the
simulation latency. The priority issue concerns the management of the simulation
flows through the distributed infrastructure. It becomes critical when the global
communication load reaches the hardware limit. These two issues are related to
the distributed context while the redundancy issue is a parallel limitation on shared
memory context. In fact, the redundancy concerns the management of duplicated
messages (i.e. multicast communication where the same message is addressed to

90 Chapter 8. General Purpose Coordinator-Master-Worker Model

several destinations). The most common policies are these of smart pointer and
independent real copies [145]. The first minimizes the memory usage with risk of
a bottleneck while the second avoids central management in spite of an excessive
memory usage.
To deal with these issues, the GP-CMW model addresses each of these indepen-
dently. To reduce the impact of the bursting, the GP-CMW model includes an
aggregation mechanism at each master that works as follows: the master opens an
internal reception buffer where it saves all the messages coming from simulated en-
tities and going outside. It defines a small listening window where is catches and
delays all outgoing messages. At the expiration of that window, it sorts this buffer
and creates one aggregated message per destination. Even if the user defines a very
small window, experimental results prove that this approach remains relevant as
detailed in section 8.3.2. On the other side, when a master receives an aggregated
message, the decomposition routine is relatively easy and still faster than switching
each message independently. By agreement, we consider this operation as a main
feature of the PAL.
To deal with the variable delay due to the concurrence between flows, the GP-CMW
model relies on the PAL that privileges control flows. Furthermore, it gives the high-
est priority to the synchronization flow. This concept is not innovative in itself and
was applied on different simulation and emulation frameworks [78]. Nevertheless, it
is a new feature of the GP-CMW model compared with the basic one that increases
significantly the stability of the system. Besides, it works transparently without any
additional configuration which simplifies the user experience.
Finally, to deal with the redundancy issue, the GP-CMW model relies on indepen-
dent real copies. Thus, if one simulated entity addresses one message to several
destinations it will create as many copies as destinations; when a message crosses a
network it will be rewritten as many times as it must be forwarded. While this choice
implies a phenomenal increase in the memory usage, it has the advantage of avoiding
any bottleneck related to the centralized processing of smart-pointers. Moreover, it
is natively compliant with both GPU and CPU which makes it the best candidate
for parallel and distributed simulation over heterogeneous computing resources.

8.3 Comparative Evaluation

To highlight the efficiency of the GP-CMW model, in contrast with existing soft-
ware architecture, we propose two evaluations: first, we propose to simulate a large
scale network scenario that involves up to one million of mobile wireless nodes and
we compare three simulators: the distributed NS − 3 and two versions of cunet-
sim, one uses the basic CMW architecture and the second uses the GP-CMW. By
agreement, we denoted the first as basic CMW and the second GP-CMW. This
experiment focuses on the macro efficiency of the proposed solution. Second, we
propose to simulate a massively multi-player online game. This simulation requires
an impressive computing power and cannot be done using existing simulators. Thus,

8.3. Comparative Evaluation 91

we use cunetsim, and we compare some software configurations in order to highlight
the impact of each optimization.

8.3.1 Comparative Performance Evaluation

In this section, we propose to compare the performance of three distributed network
simulators when targeting large scale simulation. The scenario involves up to one
million of mobile wireless nodes. The experiment is achieved on the curie supercom-
puter using hybrid computing nodes (GPU+CPU). Since we focus on the macro
performance, we highlight the simulation runtime and the synchronization delay.
The evaluation parameter is the number of LP (ELP for cunetsim) that achieve the
simulation.

8.3.1.1 Experimentation Scenario

The experiment scenario represents a grid of 32 ∗ 32 activity areas (AA). Each AA
is a 3D parallelepiped of 200 ∗ 500 ∗ 500m. Each one includes 1020 mobile nodes
and 4 wired nodes. Mobile nodes move in the space according to a random-way-
point model with an average speed between 1− 5m/s. Wired nodes are in corners
of the AA (Z = 2). Each wired node is connected to some other wired nodes
from other AAs as represented in figure 7.4. In the matter of the wireless features,
the maximal transmission range is 100m. The channel is modeled using a QUDG
where the Rmin = 20m and the Rmax = 100. The simulation time is fixed to
1000 seconds. A node is able to send and receive up to 10 packets per second.
Each node has to send 200 packets to a given server. The decision to generate a
packet relies on random number generator. Nodes retransmit unseen packets using a
flooding protocol. That simplified model presents two advantages: first it guarantees
the fairness of the comparison since it relies on the same models implementation.
Second, it highlights the efficiency of the simulator’ kernel despite the impact of
model implementation efficiency.

8.3.1.2 Experimentation Setup

The goal of this evaluation is to study the robustness of the software design under
large scale distribution condition. Thus, we limit the size of each AA to 1024 nodes
which is an adequate size for ns− 3 if we associate one AA with each LP. However,
this is a very small size for cunetsim that copes with larger simulation per LP
(details in chapter 7). Accordingly, we achieve 6 experimentation series where we
vary the number of LPs from 32 to 1024 3. All these experiments wer achieved on
the TGCC-Curie supercomputer using its hybrid nodes. It includes 144 computing
nodes, each of which includes 2 Intel westmere Xeon CPUs (8 cores) and 2 NVIDIA
M2090 GPUs (1024 CUDA cores). The interconnection between nodes is based on
an InfiniBand QDR full tree network.

3 For 32 LPs, each one simulates 32 AAs; for 1024, LPs each one simulates one AA

92 Chapter 8. General Purpose Coordinator-Master-Worker Model

8.3.1.3 Performances metrics

In this section, we propose to analyze the performance of the considered simulators
according to two metrics: the simulation runtime and the synchronization delay.
Simulation Runtime The simulation runtime is a generic metric which gives an
overview of the global efficiency. It consists of the measurement of the needed
time to achieve the totality of a given simulation. Figure 8.4 presents the average
simulation runtime according to each LPs configuration. In what concerns the NS−
3 simulators, we observe that its scalability seems respectable. In particular, we
note that its runtime is approximately divided by two each time we double the
computing power. In contrast, the basic CMW configuration is up to 5x faster
with 32 LPs but the difference decreases when the number of LP increases. This
is mainly due to the limit of cunetsim when the simulated population per LP is
relatively small. To focus on the contribution presented in this chapter, we compare
the difference between the basic CMW and the GP-CMW. First, we observe that for
a small number of LPs’(32), the GP-CMW is as efficient as the basic model, which
demonstrate that the gain compensates the inherent overhead due to additional
management processes. Second, we observe that the GP-CMW model scale better
when using larger distribution until becoming up to 2x faster when using 1024 LPs.
If we highlight that both experimentats handle the same number of event, use same
models and give the same output, we can assert that GP-CMW management model
is effectively the most adequate solution for large scale hybrid simulation.

Figure 8.4: The simulation runtime of the studied simulators:

While both basic-CMW and GP-CMW models seem efficient under small scale
conditions (32-64 LPs), the basic-CMW model presents major efficiency decrease
when targeting a large number of LPs. In contrast, the GP-CMW scales well until
1024 LPs.

Synchronization Delay
We define the synchronization delay for each WU as the time difference between
the first received acknowledgment and the emission of the release of the next WU.
The value is computed at the coordinator level for cunetsim and as the average of
all LPs for ns − 3. To highlight the variation of the delay during the experiment,
we rely on a statistical representation that summarizes the average value, the max,
the min and the variance.

8.3. Comparative Evaluation 93

Figure 8.5 highlights the synchronization delay of the ns−3, the basic CMW model
and the GP-CMW one, according to the increase of the number of LPs. We note
that the synchronization delay of ns − 3 increases continuously between 32 and
256 LPs. The delay becomes significant and unstable when the simulation includes
256 LPs. Thus, the average delay is about 3ms while the difference between the
max and the min value is up to 6ms. This major variation is due to the load
divergence between LPs that increases, and reaches a peak at 256 LPs. However,
when the simulation uses respectively 512 and 1024 LPs, the synchronization delay
decreases until becoming 1ms in average. We remind that ns−3 uses a direct binary
synchronization based on a lookahead mechanism. Accordingly, it is clear that this
mechanism scales well and ensures a respectable synchronization delay on average.
In contrast, we observe that the basic CMW is sensitive to the number of LPs:
the average synchronization delay increases from 0.3ms to 3ms while the maximal
delay during a large scale simulation reaches 4.5ms. This behavior highlights the
absence of any priority management mechanism and indicates the limitation of the
basic CMW model in terms of scalability. The GP-CMW (that includesthe PAL)
presents a stable behavior. The average delay oscillates between 0.3ms and 0.5ms

while the maximal delay does not exceed 1ms despite the number of LPs. We
also notice that the GP-CMW model is the most stable framework whatever the
scalability conditions.

Figure 8.5: The synchronization delay as a function of the number of LPs

The synchronization delay of the ns− 3 and the Basic-CMW models is sensitive to
the the number of LPs. In particular, the synchronization delay of the basic-CMW
model increases continually. In contrast, the GP-CMW maintain a stable average
synchronization delay regardless of the number of LPs

8.3.2 Inherent Performance Evaluation

To study the performance of the GP-CMW model, we propose to compare its be-
havior with that of the original model. Previous works that study the CMW model
[17, 16] validate a significant gain compared to existing software models. However,

94 Chapter 8. General Purpose Coordinator-Master-Worker Model

the benchmarking scenario relies on a simplified grid network with flooding proto-
col. In this work, we propose to model a popular massively multi-player online game
named Command and conquer, Tiberius alliance. The experiments are achieved us-
ing the Cunetsim framework, where we implement the game models as specified in
section 8.3.2.1. The software and hardware platform are identical for both models
which guarantee a fair comparison. The simulation scenario and setup are summa-
rized in section 8.3.2.2. In order to highlight the efficiency of the GP-CMW model,
the proposed comparative study focuses on four metrics: the simulation runtime,
the synchronization delay, the communication latency and the hardware usage rate.

8.3.2.1 Game Model

The game is defined by a group of independent worlds, each of which is represented
by a 1000 ∗ 1000 grid. A world is initially occupied by the forgotten, which have
their own infrastructure to manage resources. They have several types of military
bases with increasing complexity level, from 1 to 50. The ultimate goal of the game
is to control the world. When a player integrates a world it has one initial base with
limited resources and must develop its base, army and defense. Players can create,
integrate or leave an alliance. The alliance members share the controlled resources
and infrastructure. However, the alliance size is limited to 50 players which means
that all alliances are in direct concurrence to control resources and infrastructures
and infinite the world. Moreover, alliances can define a diplomatic relationship with
others. The development of players can rely on free available resources -limited
in time- or buy resources packets using EA [39] funds. The Financial stock of the
game is to sell such packets during the life of a world, which may last up to one year.
Predicting the evolution of a world is painful, using simple analytic models since
there is a large number of unpredictable parameters, which may influence the game
process. For example, a war between two groups of alliances may double the num-
ber of connections, the connection duration as well as the number of sold packets.
During the three monitoring months of the experimentation, servers were down for
maintenance more than 20 times (approximately 30 minutes each). Furthermore,
the main web site was down twice for more than 3 hours and several worlds were
down without previous notification. Therefore, we can expect that it was difficult for
EA to predict players’ behavior even if they have all available traces. The interest
of modeling this game is twofold: first, event generation of such simulation is dense
enough and sustainably random which presents a good candidate for a very large
scale and realistic simulation. Secondly, the rapidity of the cunetsim framework
allows the publisher to predict the impact of marketing strategy modifications in
real-time.
To model the game, we define two workers’ classes: a player and an alliance. Con-
cerning the player, we define three patterns which describe its behavior: mobility,
communication and connection. Furthermore, the alliance behavior is defined by
two patterns: the diplomatic pattern and resource control. To generate the corre-
sponding patterns, we supervise the behavior of 1000 players and 30 alliances which

8.3. Comparative Evaluation 95

evolve in French worlds number 2,6,7 and 10.

8.3.2.2 Experimentation Scenario and Setup

The goal of the proposed experimentation is to predict the servers load and life on
the one hand, and players’ behaviors, on the other hand. Based on the Cunetsim
framework, we define two referential scenarios: the first models one hundred worlds
during one year with a granularity of one minute, which is equivalent to 525600
rounds and the number of players in each world is randomly chosen between 2 and 5
thousands. This scenario represents a medium simulation load. The second scenario
is similar, except that the number of players in each world varies between 25 and
30 thousands, which represents a very intensive simulation load.
While each world is represented by one independent ELP, all simulations are syn-
chronized at each round. This approach allows the user to predict the impact of
any modification simultaneously in all the worlds. The simulation infrastructure is
based on three workstations, each of which includes two NVIDIA GPUs: GTX 680
and one Hexa-cores CPU (i7 3930k). The operating system is the Ubuntu 12.04
LTS. The CUDA API version is the 5.0. We also use the PGI suite V13 as a compi-
lation solution for heterogeneous targets. The hyper-threading feature of the CPU
is activated. The PCIE generation is updated to the third standard.

8.3.2.3 Performance Metrics

Previous works related to the basic CMW model [17] discussed its efficiency com-
pared to existent parallel and distributed simulator architectures that target multi-
cores hardware. Therefore, we focus this study on a comparison between the basic
and the GP-CMW models. We consider four referential metrics, according to two
different measurement routines: to analyze the simulation runtime and the hardware
usage rate, we use the average value of 10 experimentations. However, regarding the
synchronization delay and communication latency, we have chose a representative
execution with minimal ambiguity.
Simulation Runtime
The simulation runtime is a generic metric which gives an overview of the global
efficiency. It consists in measuring the needed time to achieve the totality of a given
simulation. In the proposed case, this metric is particularly fair since we use the
same simulator, models and infrastructure. In this section, we consider the first
and the second scenarios which differ by their scale and load. In the first scenario,
the total number of simulated workers is about 350k player and 10k alliances. The
simulation generates approximately 2 Tera-events. The second scenario is more
complex, since it involves about 2 million workers and generates up to 50 Tera-
events. Figure 8.6 emphasizes the simulation runtime of both models where we
compare four configurations of the simulation platform: (1) the basic CMW model
without any optimization. Its measurements present the referential. (2) The basic
CMW model with the PAL. (3) The basic CMW model where we activate HAL. (4)
Finally, we use the totality of the GP-CMW including the two optimization layers.

96 Chapter 8. General Purpose Coordinator-Master-Worker Model

Figure 8.6: The impact of the PAL and HAL on the simualtion runtime:

We observe that the GP-CMW model is up to 20% more efficient than the basic
one under medium load and up to 2.3x faster under extreme load. The impact of
the HAL is more meaningful since it maximizes the usage of available hardware.

The referential runtime of the first scenario is about 3 hours. Relative gains of the
second and the third configurations are respectively 12% and 7%. Therefore, we can
admit that each optimization layer provides a measurable gain. Nevertheless, the
HAL seems more critical. This aspect is comprehensive since the H-scheduler uses
the totality of available resources while the PAL optimizes existing flows. In prac-
tice, the HAL uses the totality of the CPU cores for sporadic events that maximizes
the hardware usage rate. Finally, the combination of all these improvements results
in a gain of 19%. This gain proves that the proposed optimizations are compliant
and may work simultaneously in perfect harmony. With regard to the second sce-
nario that presents an important simulation load, results are more differentiated.
The referential runtime is about 18 hours and relative gains of the second and the
third configurations are respectively 50% and 100%. In this measurement series,
the impact of each layer is visible: we notice that the most valuable optimization
is definitively the HAL. The PAL participates on the stability of the simulation es-
pecially under utmost load. This observation is confirmed with the impressive gain
of 260% of the GP-CMW model compared to the referential one. Its results prove
that the introduction of the two optimization layers allows maximal stability and
efficiency.
Synchronization Delay
In the proposed massively multi-player game, we define the synchronization delay
as the required time to synchronize the beginning of any round in every simulated
world. The measurement is achieved on the coordinator level according to the
elapsed time between the first and the last received acknowledgment. Figure 8.7
presents the synchronization delay of the four configurations described previously in
section 8.3.2.3. We rely on a statistical representation that summarizes the average
value, the max, the min and the variance. With regard to the first scenario, we
observe that the average delay is relatively constant for all configurations between
0.26 ms and 0.28 ms. However, we notice that the stability of each system -defined
as the deference between the maximal and the minimal values - is improved when

8.3. Comparative Evaluation 97

the PAL is activated (Config 2 and 4). This conclusion is confirmed with the second
scenario where we notice that the average synchronization delay without the PAL
is about 0.48 ms and reaches 2 ms in several picks. In contrast, configurations that
include the PAL maintain the same delay of the previous scenario (between 0.26
and 0.28 ms). Furthermore, the variance of these configurations remains less than
0.19 ms while the basic CMW model reaches a variance of 1 ms. According to
these results, we conclude that the introduction of a priority management solution
into a distributed simulation framework that relies on a heterogeneous computing
resources is mandatory to maintain the stability of the synchronization mechanism
and more generally the stability of the simulation system under variable conditions.
It also provides a real gain in terms of simulation runtime.

Figure 8.7: The synchronization delay as a function of the scenario and the config-
uration

To highlight the variation of the synchronization delay, we use the candle-sticks
representation: the box presents 95% of measured values during the simulation.
The average value is the line in the middle of the box while the max and the min
values give an overview of the overall variability during the simulation.

Communication latency We define the communication latency as the elapsed
time between the transmission of a message by the sender and its reception by the
receiver. This is a real time value, relative to the simulation framework behavior
and performance. In a distributed and parallel simulation, we distinguish between
two communication categories: (i) distinct ELPs known as External communication
and (ii) simulated entities of the same ELP known as internal communication. We
compute two values for each worker and master (ELP). We rely on a statistical
representation that summarizes the communication latency for both scenarios.
Figure 8.8 presents the measurement of external communication for the four config-
urations presented in section 8.3.2.3. We notice that the basic CMW requires in
average about 5 ms to ensure the transmission of a message between two distinct
ELPs. In contrast, configurations that include the PAL are up to 5x faster. We note
that the HAL remains neutral since it does not induce any additional overhead. We
conclude that the aggregation policy that we introduce to manage external commu-

98 Chapter 8. General Purpose Coordinator-Master-Worker Model

nication is particularly efficient and allows to increase the inter-ELP communication
feature.
Figure 8.9 shows the measurement of internal communication for the four config-
urations. We note that the basic CMW model requires in average about 5 us to
ensure an internal message transmission while configuration that relies on the HAL
achieves the same work up to 10x faster. We note that the PAL does not have any
impact on the inside communication latency. In fact, this significant gain is mainly
due to the usage of the direct access memory feature that allows any worker to ac-
cess the input-buffer of other workers if authorized without an intermediate request
to the CPU.
Accordingly, we conclude that the introduction of the HAL and the PAL provides a
significant gain in both internal and external communication latency. We also assert
that combining these features allows a maximal stability.

Figure 8.8: The average external communication latency:

We observe that the PAL significantly reduces the outside communication latency.
The aggregation approach provides is up to 5x faster than direct communication

Hardware Usage Rate The hardware usage rate is a generic term that regroups
the measurement of each component usage during the software execution. With
respect to this study we focus on four components: the CPU, the GPU, the RAM
and the GDRAM. The measurement is referred to the maximal load and presented
as a percentage. We rely on the OS primitives to evaluate the usage, and we compute
the average value during the simulation.
Figure 8.10 presents the average CPU usage rate during the simulation. We notice
that the GP-CMW model is able to maximize the usage of all available cores (6
cores) while the basic CMW model uses one CPU core to manage the simulation.
This is mainly due to the efficiency of the HAL that integrates the hybrid scheduler
which may schedule each event on the most adequate target. In particular, the
hybrid scheduler uses the CPU to execute isolated and sporadic events.
Figure 8.11 presents the average GPU usage rate during the simulation. It has to
be mentioned that we consider the average value of the two GPUs of each machine.
We notice that the GPU is correctly solicited by both models since its usage rate

8.3. Comparative Evaluation 99

Figure 8.9: The average internal communication latency:

We observe that the HAL reduces significantly the outside communication latency.
This is mainly due to the usage of the improved direct communication inside each
addressing space.

exceeded the 70%. However, the GP-CMW model reaches up to 90%. The main
reason for this non-negligible gain is the hybrid scheduler that avoids executing
ungrouped events on the GPU.
Figure 8.12 presents the main memory load during the simulation. As expected,
the GP-CMW model requires up to 50% more memory than the default one. This
is mainly due to the usage of intermediate buffers, used to thin the events’ flow.
Finally, Figure 8.13 presents the GPU memory load (GDRAM). We notice that
both models maximize the usage of available memory. In fact, both models target
to maximize the efficiency of this memory (the CMW is basically designed to target
simulation over GPUs).
Accordingly, the GP-CMW model provides a real gain in terms of smart usage
of heterogeneous resources. In particular, the HLA (that integrates the hybrid
scheduler) provides an efficient separation between the event modeling and execution
which allows the framework to select the most adequate target dynamically. In
contrast, the default model switches all the events to the GPU (or the CPU in the
legacy mode) which limits the simulation flexibility. We conclude that the GP-CMW
model, presented in this work, maximizes the efficiency and flexibility of the system.

100 Chapter 8. General Purpose Coordinator-Master-Worker Model

Figure 8.10: The average CPU usage rate:

the GP-CMW model ensures the maximal usage rate, according to the usage of the
efficient H-scheduler whitch uses the CPU as a simulation resources

Figure 8.11: The average GPU usage rate:

All configurations provide a reasonable GPU usage rate since the basic CMW
model is designed for GPU-based simulation. However, the event switching policy
of the H-scheduler maximize the usage of the GPU also since it reduce the
execution of non grouped events in such resource.

Figure 8.12: The average RAM usage rate:

As expected, the introduction of intermediate buffers increases the usage of the
memory. The overhead is about 25% which may be significant in several cases.

8.4. Related Work 101

Figure 8.13: The average GRAM usage rate:

The used memory is relatively similar since there is no significant variation
between their usage logic. However, since the GP-CMW maximize the GPU usage
rate, it maximize also the GRAM usage.

8.4 Related Work

The digital simulation was introduced since the second world war for the require-
ments of the Manhattan project. The necessity of such a rapid and efficient vali-
dation tool was closely related to the computer usage. Since that time, computer
hardware had evolved considerably, and the computing power doubles each two
years almost. Nevertheless, the complexity and the scalability requirements of dig-
ital simulation increase rapidly. Consequently, the sequential simulation appears
inadequate with that requirements since it provides a limited tradeoff between the
computing time and the simulation extent. Thus, there is a consensus on the issue:
To increase the simulation efficiency and scalability, community needs to avoid the
weakness of centralized solution. On the other side, the computer architecture -that
has long remained invariant (CPU-RAM HDD)- has changed radically in the last
decade: the computer becomes a group of heterogeneous resources that collaborate
to perform a task. Ignoring that improvement results on a low hardware usage rate
which increases the inherent cost of any simulation due to additional ressources an
power that must be deployed to bridge the waste of resources. To deal with that
issue the ingenuity of researchers has proposed a variety of optimizations that we
can classified into four classes[110]: architectural optimization, local optimization,
bottlenecks acceleration and hybrid optimization.
The architectural optimization attempts to efficiently parallelize and distribute the
simulation over a set of computing nodes. In the flat design, different LPs are
considered to be equivalent and they collaborate to perform the simulation in a
distributed fashion [83]. The scalability remains an issue in the flat design when
the number of LPs increase [47]. In the literature several optimizations, such as the
lookahead [46] and the opportunistic and combined synchronization [110], are pro-
posed to reduce the idle time induced by the synchronization process. The two-level
hierarchical design provides a solution to the scalability issue by introducing a cen-
tralized management service (called the server or master) in charge of synchroniza-

102 Chapter 8. General Purpose Coordinator-Master-Worker Model

tion and job assignment processes. The well-known example is the master/worker
model compatible with meta-computing systems [95]. The main challenge here is
the communication overhead caused by the non-locality of the master with respect
to the worker when the simulation becomes large (i.e. in order of several millions
of simulated components). Furthermore, the master remains the critical bottleneck
in such a setup as it drives the entire simulation. The multi-tier design addresses
the scalability for heterogeneous computing nodes by partitioning them into several
non-overlapping subsystems with one dedicated master [144]. The number of tiers
depends on the setup and available resources, which could potentially cause large
synchronization delay due to cascading masters. This concept is extended to support
GPU [4], where the synchronization and communication overhead is significantly re-
duced in term of number of exchanged messages. However, the delay remains an
open issue in multi-tier architecture. Furthermore, the state vector mechanism re-
mains existing and introduces a significant delay since each master manages larger
works then traditional LPs [106, 26], thus the latency issue needs to be addressed.
The local optimization aims to improve the efficiency of each LP in its environment.
We distinguish two main trends: local parallelism and engineering optimization.
Local parallelism acts at the event/instruction level to maximize the usage of multi-
core CPUs or GPUs. The parallel event scheduling over CPU presents a reasonable
tradeoff between the backward compatibility and the efficiency since it uses available
cores to execute in parallel future events[85] . However this approach relays on a
central events list and one scheduler, which remains the bottleneck when targeting
larger CPUs (e.g. INTEL MIC with 80 cores) [123]. A dedicated GPU scheduling
approach was proposed in [15], where authors use the event clustering approach to
maximize the GPU usage while simplifying the scheduling work. Nevertheless, this
approach supports only one GPU that limits its scalability by that of the GPU in
use. On the other hand, engineering optimization aims to maximize the usage of
new hardware capabilities such as different memory levels on the CPU and vectorial
units. It acts mainly at the process/instruction level (i.e. the usage of the AVX
instructions that allow the processing of 8 worlds per clock cycle maximize the
performance of the re-wrote routines). A smart usage of that capabilities allows a
significant performance gain [8]. Nonetheless, that approach is closely related to the
implementation of each solution in one side and to the considered hardware on the
other side.
Bottlenecks acceleration aims to improve the simulation efficiency by reducing the
impact of a specific part of the simulation which broken-down the system due to its
process complexity. Except software solutions which back to the previous case(local
optimization), bottlenecks acceleration offloads that process on a specific hardware
such as DSPs, FPGAs or GPUs. The DSP is mainly used to process signals and
presents a real gain when the simulation considers physical phenomenas such as
radio signal simulation, but does not offer a rich programming model suitable for
experimentation. The FPGA provides a great tradeoff between the efficiency of the
DSP and a reasonable programming flexibility. therefore it was largely used to ac-
celerate existing solutions. For example, Steenkister et all [19] used the FPGA as

8.5. Conclusion 103

a signal accelerator for wireless network simulation. The OpenAirInterface [18] ini-
tiative provides an SDR implementation of 4G wireless network (i.e. LTE/LTE-A)
using full GPP model, while the RF subsystem is processed by a specific FPGA.
Even if FPGA provides an important processing gain, it does not provide a flex-
ible programming model and cannot be used in large scale. In the same context,
the GPU immerges as a carrier solution that combines programmability and large
computing power. Nevertheless it requires a specific software architecture since its
programming model is not fully compliant with the x86 architecture. Despite this
limitation, Perumalla et all [108] demonstrate the feasibility of using the GPU as
a simulation context and several works proof its efficiency as signal processing ac-
celerator [5, 10]. Other efforts have been given to provide an efficient processing
solution based system-on-chip (SoC) and network-on-chip (NOC) or even a larger
computing solution proposed recently by INTEL [32]. In particular the XEON Phi
co-processor [64] provides up to 64 CPU computing core per device. That solu-
tion seems promising and several recent works assert that its development-cost/gain
tradeoff is interesting [124, 58].
In contrast with these fundamental approaches, there are a fourth category that
propose to combine their advantages to reach a maximal scalability and efficiency
levels. We denoted it as the hybrid category as a reference to its combinatory
nature. It introduces a revised software architecture while using massively local op-
timization and optimized libraries. Moreover, the usage of heterogeneous computing
resources is considered to maximize the performance. In this perspective, ns − 3

is a well-known network simulator that combines new software architecture with
massively optimized code [76]. Further, new frameworks that rely on virtualized re-
sources combine both architectural and local optimization to perform optimal usage
of virtual and real resources [149]. Nevertheless, GPU and hardware acceleration
solutions in general are weakly considered in such approaches. The basic CMW
model [17] contemplates the hybrid approach differently since it combines modified
software architecture with the usage of heterogeneous computing resources includ-
ing multi-cores CPUs and GPUs. However, it was natively designed for network
simulation and presents some stability and extensibility weakness. Accordingly, the
GP-CMW, that we detail in this chapter, is a generalization of the basic model
that can be used for general purpose simulation and increases the stability and the
extensibility of the system.

8.5 Conclusion

Parallel and distributed simulations are considered as the main approach to improve
the speedup for large and extra-large scale simulation. However, existing simulation
models do not take into account the heterogeneous computing node architecture
combining multi-core CPU with powerful GPUs, which represents key ingredients
for a parallel and distributed simulation in view of a large number of events. In
this context, one of the central challenges is to find an optimal tradeoff between

104 Chapter 8. General Purpose Coordinator-Master-Worker Model

communication and data locality. On the other side, meta-computing systems com-
posed of several interconnected heterogeneous systems emerge as a real alternative
to traditional expensive and complex data-center. However, the usage of such in-
frastructure requires maximizing the interaction within each computing node while
minimizing the communication overhead among the network.
To cope with these specifications, we propose a three-level software architecture for
general purpose simulation software. The proposed architecture extends the com-
monly used master-worker model by introducing a third top-level process denoted
as the coordinator and two optimization layers respectively: the priority abstrac-
tion layer (PAL) that maximizes the priority of the control plan and the hardware
abstraction layer (HAL) that ensures the execution of events over heterogeneous
computing resources. The new model is denoted as the general purpose coordinator-
master-worker model and relies on two fundamental concepts: 1) the separation
between control and data flows. 2) The disassociation between event modeling,
scheduling and execution.
In contrast with the basic CMW model, comparative evaluations prove that the GP-
CMW model provides a significant stability, maximizes the hardware usage rate and
increases the efficiency. In particular, it is able to handle a very large scale simulation
up to 2.5x faster than the default model under the same conditions. Accordingly,
we can assert that the separation between events’ description and execution on the
one hand and between control and simulation plan on the other hand, presents
a promising perspective when targeting efficient simulation over meta-computing
systems.

Chapter 9

Study Case of PADS Methodology
Deployment: NS-3

9.1 Introduction

The main research topic of the thesis is the scalability issue of discrete event sim-
ulation (DES) and particularly the challenges of efficient parallel and distributed
discrete events simulation. We choose to consider the particularity of recent hard-
ware trends such as the GPGPU computing over heterogeneous resources. In the
contribution part of this thesis, we detail a new events management model that
separates the event from its descriptor. That feature allows the grouping of several
cloned event into one descriptor which simplify the parallel scheduling process. In
addition, we propose a hybrid events scheduling mechanism targeting the parallel
simulation over heterogeneous resources. This mechanism allows new opportunities
in terms of flexibility and extensibility of the simulation framework while increasing
the usage rate of available resources. Furthermore, we propose a general purpose
coordinator-master-worker model that addresses the problem of large scale paral-
lel and distributed simulation (PADS) over meta-computing infrastructure. This
model aims at maximizing the activity inside each computing node and minimizing
the interaction of distinct entities in order to reduce the global overhead . These con-
tributions are mainly validated using the Cunetsim simulation framework. Cunetsim
is a lightweight network simulator that we developed from scratch at EURECOM to
study the feasibility of our hypothesis. While this framework is sufficient as a proof
of concept when targeting simplified benchmarking scenario, it is not widely used
by the community in order to be recognized as definitive validation support. In fact,
Cunetsim implements simplified models of a reduced number of patterns (mobility,
connectivity, packets services ...) and it lacks realism compared to existing network
simulator such as NS-3.
Even if the proposed contributions seem promising, it will be difficult to convince
the community to use the cunetsim framework. In fact, recurrent answers when
we suggest the usage of cunetsim to our colleagues include(1) the required effort in
term of development. (2) The learning phase due to the modification of scenario
description that generates parallel events and (3) the limited usage of very large scale
simulation in their work makes obsolete the usage of a new framework, just because it
is faster. Meanwhile, one of our goals is to release Cunetsim as an open source project
to the simulation community. Thus, it is important that we prove the feasibility
of their integration into existing frameworks that already have a large public and a

106 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

significant notoriety. Naturally, we choose the famous network simulator NS-3 as a
study case to demonstrate the benefit of the techniques developed in Cunetsim.

9.2 Overview

The NS − 3 simulator is the newest project that extended the popular NS − 2

simulator that has long been widely used as a validation platform for research and
education on networking systems. The main goal of the NS−3 project is to produce
a discrete-event network simulator with an emphasis on layers 2-4 of the network
stack. The project aims to provide fundamental solution for NS − 2 limitation in
particular, in terms of design weakness, scalability and extensibility. The NS − 3

team identifies a number of factors contributing to the scalability limitation of its
predecessor, including software architecture and events managements. However, the
fundamental bottleneck is the execution on a single processor. In contrast, NS − 3

is natively designed to support parallel and distributed simulation using a federated
simulation developers kit and a ghost-node approach. It uses also a middleware layer
(Runtime Infrastructure- RTI) that allows direct communication between simulated
nodes. NS−3 relies on a conservative synchronization approach: no federate in the
parallel simulation will ever process an event that would later have to be undone
due to receiving messages in the simulated past [61]. A multi-core parallelism work
is proposed on [126]; the concept uses a multi-threaded execution context, which
is supplied by one LP. A comparative evaluation of parallel simulation using ns-3
highlight the importance of using the multi-threading to improve the simulation
runtime [81].
However, all these optimization ideas consider the backward compatibility with two
design rules: (1) the event scheduler does not have any knowledge about the event
except its timestamp and (2) one event is relative to one simulated entity. In this
context, it has to be mentioned that NS − 3 is split between a core simulator part
and a models part [73]. The simulator core looks like an independent discrete event
driven simulator that considers the models part as a foreign layer which generates
events. This layer-separation between the events generation and the simulator core
increases the consistency of NS − 3 architecture. Nevertheless, the event man-
agement model is still conventional and becomes the bottleneck under large scale
conditions [143]. The parallel event scheduling over multi-core CPU had been pro-
posed in [73, 74] and can be used on the ns − 3. Though, the event scheduling
remains a significant bottleneck when targeting large scale simulation even if we
rely on a modified event scheduler that supplies several threads.
In the remainder of this chapter, we first highlight the importance of the event
scheduling on ns − 3 as a system bottleneck in section 3. In section 4, we propose
different solutions that address the scheduling issue according to previous experience
on the cunetsim framework. In section 5, we propose a comparative evaluation of
that solutions using a partial implementation of each one. We conclude the chapter
on in section 6.

9.3. Events scheduling on NS-3 107

9.3 Events scheduling on NS-3

NS − 3 implements a conservative and sequential event scheduler that sorts the
future events list according to the simulation timestamps in order to determine the
scheduling order. Since a layer-separation design is used, the scheduler does not have
any prior knowledge about event characteristics. Thus, when the event generator
generates a group of identical events that may be executed in parallel (i.e. using
a simple loop for), the scheduler will handle them individually one per one (Figure
9.1).
Distributed NS − 3 is available since 2009 (the version 3.8). It implements a con-
servative parallel discrete event simulator. It considers special point-to-point links
that connect network across logical processes (LPs). Each LP manages one execu-
tion context and communicates with other LPs using MPI interface. Figure 9.2
models two LPs, each of which manages one independent future events list. The
main limitation of that concept remains in its incapacity to handle heterogeneous
computing resources. Moreover, it requires the creation of several LPs to maximize
the usage of multi-core CPU which implies in turn a significant overhead.

Event generator
Execution thread

For ()

{

}

Scheduler

Recursive events

Figure 9.1: Default NS-3events scheduling approach:
The scheduler relies on a conservative method where events are sorted according to

their timestamps and executed sequentially. The scheduler did not have any
prior-knowledge about events nature except their simulation timestamps.

To highlight the events scheduling cost on the ns−3 framework under various loads,
we propose to profile the software execution. For this purpose, we identify three
software blocks: events generation, scheduling and execution. Events generation
includes all software parts upstream the events scheduler while event execution is
identified as the achievement of these events. We rely on the referential benchmark-
ing scenario that we describe in chapter 6. The scenario models a simple network,
where nodes are arranged in a grid topology. It includes one traffic source which
generates 600 uniform packets every 1 second. Packet size is fixed to 128 Bytes. All
nodes relay unseen packets after a delay of 1 second, thus flooding the totality of
the network. The delay of 1 second models the propagation. Nodes do not provide
any packet management services. Transmission and reliability are modeled on the
channel using a fixed dropping probability which is identical on all links. The sender
is the node with the lowest identity, and the receiver is the one with the highest

108 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

L
P

 1

Event generator
Execution thread

For ()

{

}

Scheduler

L
P

 2

Event generator
Execution thread

For ()

{

}

Scheduler

Recursive events

External events

Figure 9.2: Distributed event scheduling approach in NS3:
There is a group of LPs, each of which achieves a part of the simulation

independently. LPs exchange events using a remote infrastructure based on MPI.
Received events are inserted into the events queue to be scheduled on the correct

time. A lookahead mechanism avoid any causality rule violation.

9.4. NS-3 Events scheduler extensions 109

identity. To increase the simulation load we increase the number of simulated nodes
since the number of events is proportional to that of nodes. Figure 9.3(a) present
the normalized CPU usage rate of each software block as a function of the nodes
number.
Figure 9.3(a) presents the simulation runtime of each software block during this
experiment. We notice that the event modeling and scheduling impact remain low
under small to medium load. In particular, when the simulation includes one thou-
sand nodes, the event scheduling represents about25% of the CPU usage. However,
the scheduling cost increases rapidly and reaches up to 50% for 10000 nodes and
exceeds the 70% for 300k nodes. There are two aspects that impact the event
scheduling: firstly, the event generation respects a given pattern where each node
forwards a packet to almost three neighbors. Thus, the events number is linearly
proportional to the number of nodes on the simulation. Secondly, recursive events
present an important proportion of the total number of the handled events. That
means that the event scheduler performs a large number of reordering/sorting oper-
ations to determine parallel events. These reasons explain why the event scheduling
uses up to 70% of the total computing power. While these results show how expen-
sive it is to handle a large number of events individually under such conditions, it
has to be mentioned that the highest part of the processed events in this scenario
are based on messages exchange. However, the ns − 3 implementation that uses
a smart pointer concept minimizes the real exchange of identical message. Indeed,
the processing of that event becomes extremely fast compared with their scheduling
cost. We conclude that the measurement presented in this figure may schematize a
maximal asymptote for general purpose simulation.
Accordingly, the scheduling is definitively identified as a critical bottleneck that we
must address to improve the simulation efficiency. In addition, specific modifications
and optimizations are required to handle both resources usage maximization and
scheduling complexity. Thus, we propose several event scheduling extensions that
survey the state of the art in DES.

9.4 NS-3 Events scheduler extensions

To address the events scheduling issue, we propose to evaluate the efficiency of four
distinct extensions, each one presents numerous advantages and drawbacks. The
first extension is the explicit parallel scheduling through multi-threading. The idea
is to allow the event scheduler to execute events that do not present a relative
dependency in parallel using several threads. The second extension is the implicit
parallel scheduling through OpenMP API. The idea is to modify the events generator
such that the grouped events will be presented as a unique entry that includes into
its source code parallel arguments and OpenMP Pragma. The third extension is the
GPU parallel offloading. The idea is to modify the events generator such that the
grouped events will be presented as a unique entry that includes into its source code
parallel arguments and OpenACC Pragma. Finally, the fourth extension is based

110 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

(a) Evolution of the events scheduling cost in the first scenario: the scheduling cost increases
as a function of the number of nodes. It presents up to 50% of the CPU usage when
simulating 8000 nodes and reaches 70% for the maximal simulation load. Note that almost
of the processed events of this scenario are relatively lightweight compared to their own
scheduling cost.

Figure 9.3: Scheduling Cost as a function of nodes number

on the usage of a co-scheduler. The co-scheduler will catch all the parallel events
and determines to use the most adequate execution target. These extensions were
proposed in different previous works, but to the best of our knowledge this is the first
work that provides an implementation of all of them using the same productivity
framework; ns− 3. Thus, we can expect reliable and comparable results.

9.4.1 The Explicit CPU Parallelism

The explicit CPU parallelism consists of the execution of parallelizable events on
different CPU cores at the same time. The decision of which is parallelizable depends
on the scheduling policy. The conservative policy suggests that we execute events
in parallel if they have exactly the same timestamps. Thus, the unique dependency
control is done according to the simulation time. This approach has the advantage
of proposing an interesting trade-off between the decision cost and the runtime gain.
In addition, it requires a minimal modification at the scheduling level without any
modification from the user point of view.
Regarding the ns − 3 scheduler, previous effort proposes to parallelize events exe-
cution according to a conservative policy [126]. However, there is no official imple-
mentation that supports this feature. Thus, we propose the following scheduling
mechanism: first, an execution threads pool is generated and wait to be supplied.
The scheduler fetches next event according to its timestamp and executes it on the
available thread. Secondly, the scheduler continuously fetches and supplies events
to the execution threads until reaching an event that presents a higher timestamp.
In this case, the scheduler waits until the achievement of all previous launched

9.4. NS-3 Events scheduler extensions 111

events, before restarting a new round. Figure 9.4 schematizes the explicit parallel
scheduling where the scheduler supplies three execution threads.
Weakness and limitations:
The explicit CPU parallelism presented in this section has two main weakness: first
it may induce a significant waste of resource due to the strict conservative approach
that forbids the parallel execution of non-co-timed events. Secondly, the system
relies on a central events scheduling path(FEL+ scheduler) and several execution
threads. Accordingly, that central path becomes the system bottleneck when in-
creasing the number of execution threads. In fact, this approach may reduce the
overall simulation runtime but does not address the underlying issue of the event
scheduling.

Event generator
Execution threads

For ()

{

}

Scheduler

Recursive events

Figure 9.4: Explicit CPU parallelism:
The event scheduler detect all events presenting the same timestamps and schedule
them to be processed as soon as possible. Recursive events are re-injected on the

main event queue.

9.4.2 The Implicit CPU Parallelism

The implicit CPU parallelism aims at offloading the intelligence from the scheduler
to peripherals components. Thus, rather than generating a large number of identical
events and detecting that it is possible to schedule them in parallel subsequently,
it is possible to generate one grouped event that will be scheduled as one and will
be ungrouped at the execution. This approach has the advantage of reducing the
number of scheduled entries while keeping the same number of events at the execu-
tion. Thus, the scheduling cost decreases proportionally to the number of grouped
events. This approach is denoted as implicit in the sense that it is transparent from
the scheduler point of view.
Regarding the ns-3 implementation, we propose to use the OpenMP framework as
following: first, we modify the scenario structure such that the generation loop be-

112 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

comes integrated on the event. Secondly, we modify the event data such that all
required data becomes an input/output parameters of the new event. Thirdly, we
include the OpenMP Pragma in the event body. The Pragma is a pre-compilation
directive that allows the OpenMP library to transform that part of the code into
multi-threaded execution. Figure 9.5 depicts the implicit parallelism where the
grouped event flow as a unique entry from the FEL to the scheduler. At the execu-
tion level, the corresponding number of threads is created to ensure the execution
in parallel.
Weakness and limitations:
The implicit parallelism provides a significant gain and reduces the events scheduling
cost, even under high load. However, its implementation requires a considerable
modification on the simulation design.

Event generator

#OMP FOR...

For ()

{

}

Scheduler

Recursive events

OMP

API

Execution threads

Figure 9.5: Implicit CPU parallelism:
The main modification happens at the generation and the event code where we

include the corresponding loop into the event code. The principal gain remains on
the scheduling cost that decreases proportional to the increase of the grouping size.

9.4.3 The GPU Offloading

The GPU offloading consists of the usage of the massive parallel computing power
of the GPU to offload cloned events that may be processed in parallel without
ambiguities. Similarly, to the implicit CPU parallelism, the implicit GPU offloading
is transparent from the scheduler point of view. The main modification remains on
the event code and the generation scenario. The advantage of this approach appears
with large scale parallelism where we execute tens of thousands of cloned events.
Regarding the ns-3 implementation, we propose to use the OpenACC framework as
follows: first, we modify the scenario structure such as the generation loop becomes
integrated on the event. Secondly, we modify the event data such that all required
data becomes an input/output parameters of the new event. Thirdly, we define the
data management Pragma that define how the memory transfer will be achieved
between CPU and GPU contexts. Afterwords, we include the OpenACC Pragma
in the event code. Figure 9.6 schematizes the GPU offloading, where the grouped

9.4. NS-3 Events scheduler extensions 113

event flows as a unique entry from the generation to the scheduler. It has to be
mentioned that the GPU-scheduler of this diagram represents a software/hardware
engines that works transparently, from the main scheduler point of view. It manages
the creation and the termination of GPU threads.
Weakness and limitations:
The GPU offloading approach provides a significant gain in terms of runtime when
combined with a good design of the event code. However, its main weakness is
its sensibility to the tuning parameters. Moreover, the data transfer between both
simulation contexts induces a significant overhead.

Scheduler

Event generator

Execution threads

GPU threads

For ()

{

}

#ACC FOR...

For ()

{

}

Recursive events
GPU

Scheduler

Figure 9.6: GPU offloading:
Similarly to the implicit CPU parallelism, the main modification happens at the
generation and the event code where we include the corresponding loop into the

event code. However, it has to be considered that the execution context is not the
same which requires additional data management.

9.4.4 The Co-scheduler Approach

In previous sections, we had presented three optimization approaches that aim at
maximizing the usage of available computing resources to increase the scalability
and the efficiency of the simulation. In addition, two of them propose to reduce
significantly the events scheduling cost based on a grouping policy. Each of these
approaches presents several advantages and weaknesses that limit the overall ex-
pected gain. To synthesize these approaches into one efficient and all-in-one solu-
tion, we propose to combine them on the same simulation framework. Therefore, to
maximize the scheduling efficiency we introduce a co-scheduler that manages both
GPU offloading and implicit CPU grouped events (Figure 9.7). In contrast, the
main event scheduler ensures the explicit CPU parallelism as detailed previously.
Regarding the ns-3 implementation, we propose to customize the events scheduler
as follows: first, an execution threads pool is generated and waits to be supplied.
One of these threads serves as the co-scheduler. Similarly to the explicit parallelism

114 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

mechanism, the main scheduler fetches events having the same timestamps in order
to execute them in parallel. Nevertheless, the scheduler needs to identify which entry
represents a grouped event and which represents a single event. Accordingly we
introduce additional modification that breaks up the layers separation rule: rather
than limiting the scheduler knowledge to the event timestamps, we also provide
the knowledge about the event nature. On the implementation, we introduce new
binary argument for all events, to indicate if this event is grouped or not. Thus, if the
argument value is set, the entry is grouped and must be switched to co-scheduling
thread; otherwise, it will be switched to one of the available threads.
Weakness and limitations:
Without doubt, the concept of combining all possible parallelism approaches in one
framework is promising. However, it requires modifications in the simulation kernel,
models, scenario and logic. In addition, proposed co-scheduler induces extra pro-
cessing requirements for management operation. This overhead must be considered
when evaluating the final gain.

Execution threads

Co-

Scheduler

OMP

API

Execution threads

Event generator

#OMP FOR...

For ()

{

}

#ACC FOR...

For ()

{

}

Recursive events

GPU

Scheduler

For ()

{

}

Scheduler

Figure 9.7: CO-scheduling approach:
The modification touch both the scheduling and the event generation, additional

knowledge is required to manage the switching operation.

9.5. Comparative evaluation 115

9.5 Comparative evaluation

In order to study the efficiency of each approaches, we propose a benchmarking
simulation scenario using the NS − 3 framework where we modify either the event
scheduler or models or both as described in section 9.3 that simulates a group of
identical node evolving into a 3D space (1600 * 1600 * 200 m). The simulation
duration is 1001 rounds. Each node moves before each round and recalculates its
connectivity set. There are six types of events: (1) Creating a message, (2) Sending a
message, (3) Receiving a message, (4) Routing a message, (5) Moving and (6) Com-
puting connectivity set. Concerning the first four events types, we used always the
native ns-3 implementation. However, for the moving and connectivity estimation
we provide three implementations: native one (for one node), an OpenMP imple-
mentation where we modify data management and an OpenACC implementation
where we manage data transfer into the event body. To highlight the strength and
the weakness of each approache we vary two parameters: the number of nodes from
1k to 500k and the number of execution cores from 1 to 48. Experimentation series
are achieved on the TGCC Curie super computer [140]. We use the same simulation
scenario presented in section 9.3; except that nodes move into a 3D space. In the
remainder of this section, we highlight the runtime of five configurations:

1. Distributed: Is the official distributed version of NS − 3, that uses one CPU
cores per LP.

2. Explicit CPU: The configuration of the explicit CPU uses one LP. The number
of execution threads is relative to the number of cores.

3. Implicit CPU: The configuration of the implicit CPU uses one LP. The number
of execution threads is relative to the number of core(using OpenMP).

4. GPU Offloading: The GPU offloading configuration uses one CPU core and
one GPU. There is also one LP. Accordingly its runtime does not change as a
function of the number of cores.

5. Hybrid Scheduling: The configuration of the hybrid schedule uses one GPU
and splits available cores between implicit and explicit execution.

9.5.1 Medium Load

We consider the simulation of 1000 nodes during 1001 seconds as a medium load of
one execution LP. Figure 9.8 represents the results of five experimentation series,
respectively using 1, 4, 8, 16 and 32 CPU cores. Results relative to 1 core shows the
inherent gain or overhead for each configuration. We highlight that the distributed
version and the explicit CPU parallelism are reduced to a simple NS − 3 instance
when the simulation framework is based on one CPU core.
When the simulation framework uses one CPU core, we notice that the implicit
CPU parallelism is up to 2x faster than the native distributed and the explicit CPU

116 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

parallelism. The unique difference between the fist and the third configuration is
the usage of the event grouping approach. Thus, we can assert that the expected
gain of the event grouping is valuable and simplifies the scheduling work, even with
a single processing core. In the same context, The usage of the GPU offloaded
approach provides a gain of 10x, even if only two types of events are offloaded on
the GPU (moving and connectivity). This result consolidates the idea that the GPU
is adequate for bottleneck offloading. Finally, the co-scheduling approach is almost
as efficient as that using the GPU except that we can observe the overhead due to
the additional computing tasks.
Regarding the scalability of each approach when dealing with multiple resources,
the behavior differs considerably. First, the explicit CPU approach provides a sig-
nificant gain with 4 and 8 cores. However, from the threshold of 16 cores, the gain
becomes insignificant. Accordingly, it seems that the scheduler becomes almost the
bottleneck when the number of execution threads becomes significant. Secondly,
the distributed approach scales well with the increase in the number CPU cores.
Thus, the simulation runtime decreases proportionally to the increase of the num-
ber of cores. It is necessary to note that the distributed version becomes up to
1.5x faster than the explicit-CPU parallelism when the framework uses 32 cores.
This observation confirms that the event scheduler is a critical bottleneck that lim-
its the scalability of the parallel simulation. Thirdly, the implicit CPU parallelism
approach is clearly more scalable than the first and the second ones. In fact, its
simulation runtime decreases proportionally to the number of cores until 16 cores.
However, there is no difference between using 16 and 32 cores, which seems to be
the scalability limit. Afterwards, the co-scheduling approach presents a significant
gain regardless of the number of CPU cores and the used resources. Thus, it scales
as good as the GPU offloading version when using one CPU core and outperforms
all previous approaches when the number of cores increases. Moreover, it presents
a significant scalability features and copes with a large number of CPU cores. This
assumption is validated for up to 32 cores.

9.5.2 High Load

Figure 9.9 presents the results of a high load scenario that considers the simula-
tion of 500k nodes during 1001 seconds. We realize five series of experimentation,
respectively using 1, 4, 8, 16 and 32 CPU cores. In this figure, we observe that
the explicit CPU approach is up to 2x faster than the distributed one when using 4
cores. However, this gain decreases continuously until it disappears when the sim-
ulation uses 16 cores. In such conditions, the distributed approach becomes more
efficient above. Since both approaches rely on the traditional event description, we
can definitively assert that event scheduler bottleneck cannot be avoided without a
particular design on the event description.
Regarding the approaches that rely on grouped events representation(3,4 and 5), we
observe that it is one order of magnitude more efficient than the ungrouped ones.
Thus, using 4 CPU cores, the implicit CPU parallelism is up to 2x faster than the

9.6. Conclusion 117

Figure 9.8: Simualtion runtime of each configuration as a function of the number of
CPU cores (1000 nodes)

explicit one (multi-threaded), the GPU offloading is up to 5.5x faster, and the co-
scheduling approach is up to 10x faster using the same resources. The limit of using
a central scheduler appears when using 16 executions cores. Accordingly, combining
the usage of ungrouped events with centralized scheduling is definitely identified as
an inadequate approach to maximize the usage of heterogeneous computing resource
while limiting the overhead. Afterwards, the co-scheduling approach that relies on a
hybrid event scheduling method targeting in the same time the implicit/explicit CPU
parallelism and the GPU offloading appears more efficient than all other approaches.
It is up to 10x faster than the distributed solution and 15x than the multi-threaded
one. Nevertheless,
To conclude these measurement series demonstrates that, parallelizing the execution
could improve the simulation runtime but the scheduling remains a performance
bottleneck. The distributed simulation minimizes that impact but introduce an
additional overhead due to distributed management mechanisms. Grouping event
approach is adequate for a particular event that can be grouped into one entry. This
approach reduces the scheduling cost and simulation runtime. However, its scala-
bility remains limited as the central path (scheduler+FEL) becomes the bottleneck
when targeting large scale simulation. The same conclusion is relative to GPU based
offloading except that it may provide more important gain when targeting massively
parallelizable events.

9.6 Conclusion

In this chapter, we analyze the scheduling issues and limitations of the famous net-
work simulator the ns− 3. We formally identify the events-scheduling as the major
bottleneck under large scale conditions. In particular, we highlight the scheduling
cost of a very large number of events and the impact of events reordering. To deal
with such limitations, we propose five approaches that we compare to identify the

118 Chapter 9. Study Case of PADS Methodology Deployment: NS-3

Figure 9.9: Simualtion runtime of each configuration as a function of the number of
CPU cores (500K nodes)

most adequate with heterogeneous computing context. These approaches are the
explicit CPU parallelism, the distributed approaches, the implicit CPU parallelism,
the GPU offloading and the hybrid approach.
Comparative evaluation reveals the strength and the weakness of each approach.
Above all, we observe that the multithreading is adequate to handle a reduced
number of core but does not address the scheduling cost issue. In contrast, implicit
CPU parallelism seems more flexible in term of resources handling but require an
event modification which may be refused by the community. The GPU offloading
approach provides a significant gain when applied correctly but requires also an
event design modification and a dedicated data management model to ensure the
data transfer between the CPU and the GPU. While such approach provides a
significant gain in term of runtime, it violates the design pattern rules that separate
between the simulation core and events generators. Thus, an architectural decision
must be associated with the GPU usage.
Finally, the hybrid scheduling approach provides the maximal gain and combines
the advantages of all the previous approaches. However, its concept relies on a
cross layer design rather than a layered architecture. In particular, the intelligence
of the system is proportionally distributed between events generation, scheduling
and execution. There is no unwise software block in such model, all components
must consider what will happen during the simulation and collaborate to ensure the
simulation. This may shock conservative designer but seems inevitable to cope with
the evolution.

Part III

Conclusion

Chapter 10

Conclusion

The scalability issue is a primary topic in the discrete event simulation that solicits
several research works. In this thesis, we consider the problem of efficient large-
scale simulation through heterogeneous hardware. In particular, we highlight the
event management as critical limitation of DES. The most expensive operation in
the management of the event is the scheduling of their execution in time. One
characteristic of existing schedulers is the layer separation rule. It consists of the
full separation between the scheduling, the generation and the execution of events.
Thus, we propose to relax the layers separation rule in order to provide additional
information to the scheduler and to reconsider the event management model.
During the management phases, an event is substituted by an event descriptor.
Thus, from generation to the execution, the system handles events descriptors. The
proposed approach extends the concept of event descriptor to group several events
on the same descriptor. As a consequence, the management and scheduling cost are
reduced, which in turn improves the simulation efficiency. Moreover, the proposed
concept allows an efficient usage of the GPU as a main simulation context. In
addition, we adopt a new event scheduling methodology that target to maximize
the usage of available computing resources, including the GPU and CPU. The event
scheduler dynamically switches each event/entry to an adequate execution target,
based on the event type, load of the system and the specific characteristics of each
execution target.
The proposed concepts are particularly adapted to share memory context. Thus, it
requires specific software design to enable distributed simulation. Accordingly, we
extend the well-known master-worker model to combine the advantage of parallel
and distributed architecture on a three level model denoted as the general purpose
coordinator master worker model. The idea is that the coupled master-worker resides
in the same shared memory space and consists of one extended logical process. The
coordinator is the top-level process and ensures master management operation such
as the global synchronization.
The Cunetsim simulation framework is the main validation tool used in this thesis.
The achievable scalability is assessed on the European supercomputer TGCC-Curie
with 1024 LPs. Comparative results show that we can speedup the simulation up
to 100x compared to CPU-based framework. We further validate the applicability
of the proposed approaches, namely event-grouping and hybrid-scheduling, to the
popular NS3 network simulator. According to the evaluation results, the optimized
NS3 version is up to 25x faster than the basic one.
We assert that the event grouping approach combined with an optimized event mod-

122 Chapter 10. Conclusion

eling, hybrid event scheduling, and coordinator-master-worker present a promising
solution to achieve significant efficiency and scalability gain when targeting next
generation of simulation framework.

Appendix A

Experimentation Methodology

A.1 Introduction

When we started delimiting the activities axes od this thesis, the first question that
faces us is: are we doing reliable scientific experimentation? And from this interro-
gation stems another question: what is a reliable scientific experimentation in this
research field? In fact, science computer and telecommunication are relatively new
research activity compared to fundamental science such as mathematics and physics.
Those historical sciences had developed during centuries a formal representation of
scientific experimentation and validation methodology. On the other side, science
computer community competes to be recognized as a science [37]. A major issue
that confuses is the absence of standardization of the scientific experimentation as
a validation methodology. On the other hand, it is important to bear in mind the
phenomenal evolution of these sciences. In fact, during the last decades telecommu-
nication and science computer areas converge continually. Emerging networks and
technologies are the concrete representation of their fusion, where a simple smart-
phone, is a computer, a phone, a camera and embedded two or more networking
interfaces. The complexity of such networks gives the experimentation a dominant
position on their validation process.
Nevertheless, defining an experimentation standard remains a difficult task since any
experimentation considering such Emerging networks evolves several uncontrolled
parameters on one hand and includes several complex subsystems on the other hand.
During the short life of computer science as a science, four experimentations method-
ologies dominate the literature: (1) there is the real world experimentation which
relies on real systems that scientist study and analyze. However, such experimen-
tation is difficult to reproduce due to the large range of uncontrollable parameters.
(2)There is also the emulation which combines real components with modeled ones.
It increases the reproducibility of the experimentation; however, just as the real
experimentation it remains expensive and non-extensible. (3) There is the digital
simulation which relies on the modeling of the simulated system with different gran-
ularity level. Its main limitation remains the realism level. In fact, the reliability of
the simulation is a consequence of the reliability of the used models. (4) Finally, we
distinguish the numerical models as that which use high level models, to produce
an approximate view of what can happen. That methodology remains limited to
primary usage and cannot be considered as a validation tool.
In what concerns the intern research activities of the mobile communication de-
partment, we mainly rely on the OpenAirInterface platform as a development and

124 Appendix A. Experimentation Methodology

validation tool. That platform provides the complete implementation of the LTE
protocols stack and several peripheral instruments that ensure its casual usability.
While existing ecosystem satisfy the requirement of rapid validation under develop-
ment conditions, it seems insufficient to provide trustable scientific experimentation.
Thus, we survey the literature to characterize scientific experimentation. In that
sense, we identify four mandatory requirements: the reproducibility, the extensi-
bility, the applicability and the revisability. Based in that analysis we propose a
five-stepped methodology that aims to guarantee at least two requirements: the
reproducibility and the revisability.

A.2 Scientific Experimentation

To define the boundaries of the experimentation methodology that we aim to create,
we lead our fundamental work by searching scientific experimentation basis. In this
sense, we summarize properties of scientific experimentation that we had retained
as required. In computer science research filed, all development phases (Analysis,
conception, test and validation, optimization) share one fundamental tool: the ex-
periment. Nevertheless, the scientific feature of a computer science needs to be
proved. In the literature reviews [54], we identify three properties that must be
satisfied in order to be qualified as scientific:

• Reproducible: En experimentation is considered as reproducible if, for the
same input, it produces the same output and presents the same behavior.
Nevertheless, the notion of same may be ambiguous, in particular due to the
usage of random numbers on the experimentation.

• Extensible: The extensibility of a given experiment may concern different
aspects. In computer science, the number of involved elements, the density of
the traffic/ activity. The extensibility is assimilated to the scalability on the
area of network experimentation.

• Usable: The usability of a given experiment concerns the ability to operate
on the results of the experiment and to identify the problem and/or the source
of the problematic behavior. This property is particularly critical for large and
complex system.

A.3 OpenAirInterface Experimentation methodology

In this section, we introduce our definition of the most adequate experimentation
methodology which copes with OAI specifications and users requirements. First, we
survey the proposed formal workflow that defines five sequential steps. Second, we
present a general outlook of the corresponding implementation on both sides: user
and developer.

A.3. OpenAirInterface Experimentation methodology 125

A.3.1 OpenAirInterface Formal Experimentation Methodology

In order to guaranty the reproducibility of OAI experimentation, we propose a
sequential workflow, where the output of each step is the input of the next[18].
Five consecutive steps are defined: scenario description, configuration, execution,
monitoring, analysis, where each step is split into several sub-steps as explained in
the following (see Figure A.1).

Figure A.1: Experimentation Workflow

We propose a five-stepped workflow; each step provides several mandatory/ or
optional sub-steps.

Scenario Description This step builds a complete xml layout of an experiment.
This step is splitted into four sub-steps: (i) system/envirnment, where system (e.g.
bandwidth, frequency, antenna) and environement (e.g. pathloss and channel mod-
els) parameters are defined; (ii) network topology, where network area, network
topology (i.e. cellular, mesh), nodes’ type, initial distribution, and mobility model
(e.g. static, random way point, grid) are set; (iii) application, where real application
and/or emulated traffic pattern in terms of packet size and inter-departure time are
defined; (iv) EMU IO Parameters, where supervised parameters (e.g. emulation
time, seed, performance metrics) and analysis method (e.g. protocol PDUs and
operation) are set.
Configuration This step defines a sequence of components’ initialization based on
the scenario description. It includes four sub-steps: (i) network interface, where the
OAI IP interface is configured, (ii) traffic and mobility, where traffic pattern and
mobility model parameters are set, (iii) protocol stack, where protocols are configured
given the network topology and PHY abstraction, where a channel model prediciting
the modem performance is configure.
Execution This step defines the execution environment for the simulation in order
to synchronize nodes and run the experimentation. It includes three execution
modes: (i) debug mode, (ii) CPU mode and(iii) CPU-GPU mode.
Monitoring This step defines how the experiment is monitored (passive and/or

126 Appendix A. Experimentation Methodology

active). It includes: (i)execution logs, where experiment traces and logs are collected,
labeled and archived, (ii) packet traces, where protocol signaling is captured and
stored during the experiment.
Analysis This step processes raw data and produces results and statistics. It in-
cludes three -non exclusive- analysis objectives: (i)performances evaluation, where
the key performance indicators are measured and evaluated, (ii) protocol validation,
where the protocol control- and user-plane signaling are validated versus protocol
specification, and (iii)system testing, where the system as a whole is analyzed and
tested.

A.3.2 Methodology Implementation

OAI is designed to be an independent experimentation platform that can be easily
deployed in order to be shared by a given community. The minimal deployment
model includes two independent categories: users and developers.
In what concerns the users’ side, the workflow includes three servers: front-end,
simulation and data-base. The front-end manages the interaction with the user
based on a web interface. Authorized users can define an experimentation using
an XML file or via an experimentation wizard that helps the user to generate its
descriptive XML file. The XML includes mandatory parts the define respectively the
scenario description, configuration, execution and monitoring parameters. When
the front-end server receives the description file, it parses the XML and deduces
the required resources and based on the user privileges the server proposes one or
more execution schedule. If the user validates one of them, the experimentation
is pushed on the execution queue of the simulation server. At the scheduled time,
the simulation server takes action: it pops the description file and configures the
simulation environment. Hence, it launches the execution and during the simulation
runtime the monitoring process logs the output on the data-base server on real time
according to the user scenario description. At the end of the simulation, the user
receives an acknowledgment and may access and analyzes it output through the
front-end server that embedded several analytic routines and algorithms.
In what concerns the developers’ side, the procedure is quite different: its deploy-
ment relies on two servers: front-end and SVN. A developer can at any time get the
last valid version and compiles it for internal usage. However, commit a contribu-
tion requires four validation steps: first, it must validate the quality of the proposed
documentation through an automatic parser. Second, it must validate its unitary
correctness through a list of compilation protocol that validates the binary across all
supported software and hardware platforms. Third it realizes a primary integration
test that validate the global correctness. That test relies on a group of referential
scenarios that had a known output. Finally, the contribution is submitted to the
server in order to pass the final validation. The development process is composed
of several consecutive and short development rounds, each of which finish by an
integration phase. The final integration phase validates the correctness of all new
contributions that had been submitted during the last round. If there is an incom-

A.4. Conclusion 127

Figure A.2: The user experimentation workflow:

the user’ workflow starts from scenario description using an XML file, passing per
the simulation achievement until finishing by the output usage.

patibility between new contributions, the integrator decides to resolve the conflict
using a predefined correction protocol or to cancel the contribution that makes the
problem. In finite, the developer will receive an integration report that include the
current state, a list of detect bugs and requirements. We note that this development
routine is largely inspired from that of ns−3 [69] for the development side and that
of Emulab [141] for the users’ side.

A.4 Conclusion

Experimental methodology is a fundamental corner of any experimentation frame-
work. Thus, addressing the scalability issue of a discrete events simulation requires
a trustable methodology that guarantees the reproducibility, the applicability and
revisability. In this chapter, we survey OAI experimentation workflow, composed
of five consecutive steps: scenario description, configuration, execution, monitoring
and analysis. The implementation of that methodology on the OAI platform is
splitted on two independent sides: user and developer. Each side defines a specific
implementation of that methodology which ensures the correctness and the coher-
ence of the platform and experimentations. Accordingly, the three first requirement
of a valid scientific experimentation are guarantees, we can focus on the scalability
issue.

Appendix B

Résumé Étendue

Introduction
De nos jours, la notion de réseaux a évolué dans trois sens : la composition,
la taille et le trafic. Ainsi, l’importance des équipements mobiles et nomades
devint si importante que le nombre de tablettes et de smart phones ven-
dus en 2013 dépassèrent celui des ordinateurs fixes et portables. Le nombre
d’équipements a augmenté de sorte que de plus en plus de réseaux privilégient
le IPv6 et le trafic mondial atteint une telle densité que plusieurs fibres op-
tiques maritimes ont atteint leur limite.
D’autre part, l’évolution très rapide des technologies sans fils exige un cycle de
développement rapide et efficace. Dans ce contexte, la simulation numérique
est une étape importante dans l’évolution des systèmes en réseaux et tout
particulièrement les réseaux mobiles à grande échelle. En effet, il est important
de pouvoir simuler de trés grandes topologies allant jusqu ’à des centaines de
millions de noeuds.
La simulation à évènements discrets est tout particuliérement adèquate à la
modélisation de l’évolution de tels réseaux. Elle permet notamment de décu-
pler la puissance de calcul disponible en se basant sur des mécanismes de
distribution qui font appel à la coopération des processus logiques dans un
même scenario.
Cette approche consistait à associer un processus logique avec un processus
physique (CPU-core). Cependant, le surplus de latence et de gestion augmente
rapidement avec le nombre de noeuds de calcul, présentant de ce fait une limite
d’extensibilité. Cette méthode s’avère limitée et ne permet pas d’exploiter les
possibilités de calcul parallèle offertes par les nouveaux ordinateurs.
En effet, un ordinateur récent est un système de calcul hétérogène qui embar-
que des processeurs multi-cores et des processeurs de rendu graphique (GPU)
qu’on pourrait utiliser pour des opérations génériques. Dans ce travail, les
GPU retiennent toute notre attention pour deux raisons : d’abord, un GPU
embarque des centaines de processeurs capables de fonctionner en parallèle.
Ensuite, les GPU embarquent une mémoire très rapide en comparaison avec la
mémoire principale (RAM). L’utilisation des GPU et des CPU dans une même
simulation en parallèle permet de maximiser la puissance de calcul disponible
et de profiter d’une bande passante gigantesque.
Ce travail met l’accent sur les avantages de ces ordinateurs et les probléma-
tiques relatives à la modification de l’architecture logicielle. Pour ce fait,

130 Appendix B. Résumé Étendue

nous mettons en évidence l’intérêt de paralléliser la simulation au niveau
de l’évènement discret. Nous nous focalisons sur l’ordonnancement des
évènements comme un goulot d’étranglement. Nous discutons le concept
d’évènements groupés qui se gèrent comme un seul et nous concevons un
ordonnanceur hybride qui maximise l’utilisation des CPU et des GPU.
Nous validons l’intérèt de nos propositions avec un simulateur développé pour
cette fin, mais aussi avec une version modifiée du simulateur réseaux populaire
NS-3.
Le manuscrit est organisé comme suit:
Une introduction générale se focalise sur l’objectif de ce travail et
la méthodologie de recherche et d’analyse que nous avons entammé.
L’introduction inclut une liste de publications et de délivrables que nous avons
réalisé durant les travaux de cette thèse. La suite du manuscrit est organisée
en deux parties. La première partie est une étude de l’état de l’art et se
compose de quatre chapitres:

• Expérimentation réseaux.

• Simulation à évènement discret.

• Les tendances des nouveaux hardware.

• Etat de l’art de la simulation à grande échelle.

La deuxième partie se compose de quatre chapitres qui mettent en évidence
mes contributions:

• Cunetsim: une plateforme expérimentale à la découverte des horizons
du passage à léchelle.

• Ordonnanceur d’évǹements hybride.

• Architechture logicielle trois-tier: coordinateur-master-travailleur.

• Etude de cas d’une optimisation parall̀le et distribuée: NS-3

Etat de lárt
Expérimentation Réseaux
L’expérimentation est un support de validation primordial et dont
l’importance augmente considérablement avec la complexification des réseaux
et de leurs technologies et en particulier les réseaux sans fil et mobiles.
Dans la littérature scientifique nous identifions cinq catégories d’outils
d’expérimentation réseaux:

• Expérimentation sur le terrain: une expérimentation qui se déploie sur
un réseau d’exploitation ou un réseau réel qui inclut un trafic réel est dite

131

sur le terrain. Cet outil d’expérimentation présente l’avantage de pro-
duire des résultats réalistique et l’inconvénient d’être non reproductible
et compliqué à mettre en oeuvre.

• Expérimentation dans les frameworks réels:Un framework réel est un
outil d’expérimentation qui fait appel à des équipement et des logiciels
réels. A la différence d’une expérimentation sur le terrain, un framework
est complètement dédié à l’expérimentation. Du fait, les expérimenta-
tions sont réalistiques et relativement reproductibles. Toute fois, la mise
en oeuvre d’une expérimentation dans un framework réel nécessite un
investissement logistique considérable.

• Emulation numérique: pour introduire une certaine fléxibilité et agilité
dans l’expérimentation, l’emulation se base sur la modélisation d’une
partie du système étudié. La partie modélée peut être logicielle ou
matérielle. L’utilisation de l’émulation augmente le contrôle et la flexibil-
ité de la mise en place de l’expérimentation mais réduit l’aspect réaliste
des résultats obtenues. Il est important de mentionner que l’emulation
augmente considérablement la scalabilité de l’expérimentation en terme
du nombre d’éléments étudiés.

• Simulation numérique: une simulation numérique consiste à modéliser
le système étudié en utilisant une représentation numérique. La simu-
lation peut faire appel à des équations différentielles ou des algorithmes
complexes pour représenter le système. Dans les simulations à évène-
ment discret, le temps de la simulation est discret et les composants
élémentaires du systm̀e sont représentés par des machines d’états finies.
L’avantage de la simulation est de permettre un passage à l’échelle rapide
et une expérimentation simplifiée. Toute fois, l’utilisation du modèle
pour représenter le système en question, réduit le niveau de certitude
des résultats produits.

• Expérimentation hybride: une expérimentation hybride fait appel à
plusieurs outils en fonction de la complexité de la partie étudié. Ainsi,
une expérimentation à large échelle pourrait simuler le coeur du réseaux,
emuler les protocoles réseaux pour les technologies 4G et utiliser un
équipement réel pour les transmissions radio. Une expérimentation hy-
bride augmente le niveau du réalisme des résultats concernant les parties
importantes du système étudié.

132 Appendix B. Résumé Étendue

Simulation à évènement Discret
Introduction
Selon les revues de la littérature, de la simulation à événements discrets (DES)
est le fait de modéliser le fonctionnement d’un système donné comme une
séquence d’événements discrets dans le temps. Chaque événement se produit
à un moment-point de l’axe de temps de simulation donné et marque un
changement d’état dans le système. Simulation à événements discrets est
largement utilisé comme une approche de la conception de logiciel majeur dans
la simulation scientifique. La raison derrière le succès de la simulation à base
d’événements discrets dans les réseaux informatiques est que le paradigme de
simulation s’adapte très bien aux systèmes considérés. En fait, DES fournit un
moyen simple et flexible pour réaliser des expériences complexes et d’étudier
le comportement des systèmes sous diverses conditions.
Terminologie et Composants
Il existe trois notions partagées entre la majorité du DES : l’entité, le système
et le système discret.

• Une entité est une abstraction d’un sujet d’intérêt particulier. Une entité
est décrite par ses attributs, par exemple, un paquet de l’entité pourrait
avoir des adresses attributs longueur, source et destination. Le terme
objet est souvent utilisé comme synonyme.

• Un système est défini par un ensemble d’entités et leurs relations.
L’ensemble des entités et leurs relations remplir une fonction, c’est à
dire, le système a un certain objectif qu’il cherche à atteindre.

• Un système discret est un système dont l’état, défini par l’état de toutes
les entités du système, modifie seulement en des points discrets dans
le temps. Le changement de l’état est déclenché par l’apparition d’un
événement. Quel événement est exactement, dépend principalement sur
”le système et sur ”l’objectif de l’étude. , Par exemple, l’envoi et la
réception d’un paquet, le déplacement dans l’espace ou la mise à jour de
l’état de la batterie.

Habituellement, le système d’intérêt est assez complexe. Afin d’évaluer sa
performance par simulation informatique d’un modèle est construit. Le mod-
èle est une représentation logicielle du système, d’où il est constitué d’entités
sélectionnées du système d’intérêt et les relations entre les entités sélection-
nées. Par convention, le modèle est un système lui-même. Dans les simulations
informatiques, il est toujours le modèle qui est considéré, principalement pour
réduire la complexité et le coût et les efforts associés.
Le principe
L’idée d’un simulateur à événements discrets est de passer d’un événement
à l’autre, de sorte que la survenance d’un événement peut déclencher des

133

changements dans l’état du système ainsi que la génération d’événements fu-
turs. Les événements sont enregistrés comme cas descripteur (aussi connu
comme l’avis de l’événement) dans la future liste d’événements (FEL), qui
est une structure de données appropriée, une structure temporelle ordonnée
pour gérer tous les événements de la simulation à événements discrets. Un
descripteur d’événement est composé d’au moins deux informations (heure,
événement) où le temps spécifie le moment où l’événement se produit, et le
type donne le type d’événement. L’avenir liste d’événements devrait mettre
en ’uvre des fonctions efficaces d’insérer, de trouver et de supprimer les cas
descripteur, qui sont placés dans la future liste d’événements. Avec chaque
événement ti de temps discret d’un instantané du système est créé dans la
mémoire de l’ordinateur qui contient toutes les données nécessaires pour pro-
gresser la simulation. En général, tous les simulateurs à événements discrets
part les éléments suivants :

• L’état du système : un ensemble de variables qui décrivent l’état du
système.

• Horloge : l’horloge donne l’heure au cours de la simulation.

• Liste des événements futurs : une structure de données appropriée pour
gérer les événements

• Les compteurs statistiques : un ensemble de variables qui contiennent
des renseignements statistiques sur les performances du système.

• Initialisation routine : une routine qui initialise le modèle de simulation
et règle l’horloge à 0.

• Routine de distribution : une routine qui récupère le prochain événement
de la future liste d’événements et avance l’horloge à l’heure de survenue
de l’événement.

• Routine de l’événement: une routine qui est appelée quand un événement
particulier se produit au cours de la simulation.

Simulation à événements discrets parallèle
Depuis simulation à événements discrets a été adopté par une large com-
munauté de recherche, les développeurs de simulation ont tenté de tirer les
bénéfices de l’exécution d’une simulation sur plusieurs unités de traitement en
parallèle. Ainsi, un large éventail de recherches ont été menées sur la simula-
tion de l’événement parallèle discrets (PDES). Dans le reste de cette section,
nous passons en revue les défis de parallèle DES l’ architecture commune et
les principaux algorithmes de synchronisations.
Discrets limites de la simulation de l’événement

134 Appendix B. Résumé Étendue

Les systèmes technologiques sont de plus en plus complexe avec l’émergence
de nouvelles technologies qui combinent large interconnexion avec les struc-
tures et architectures composites. En général, deux tendances orthogonales
en termes de complexité peuvent être identifiés : (i) une augmentation de
la complexité structurelle et (ii) une augmentation de la complexité algorith-
mique. Tant imposer des exigences élevées sur l’architecture de simulation et
le matériel exécution des simulations.
On note la taille d’un système simulé comme un indicateur de la complexité
de la structure d’un modèle de simulation. En ce qui concerne la recherche
de réseau, systèmes de culture, comme les réseaux peer-to -peer et les réseaux
mobiles omniprésents, induit une augmentation considérable de la taille des
systèmes de communication. Ces grands systèmes ajoutent généralement des
caractéristiques complexes qui ne peuvent être observés dans les réseaux de
plus petite taille (par exemple, les bancs d’essai) ou capturés par des modèles
analytiques. Ainsi, afin d’étudier les caractéristiques, les modèles de simula-
tion d’un grand nombre de noeuds de réseau simulées. étant donné que chaque
noeud de réseau est représentée en mémoire et déclenche des événements dans
le modèle de simulation , la consommation de mémoire et l’augmentation du
temps de calcul considérablement . Même si le réseau étudié est relativement
faible, la complexité de calcul devient un facteur important si le modèle de
simulation est très détaillé et implique de nombreux calculs. En particulier, les
réseaux sans fil qui utilisent des technologies radio avancées telles que OFDM
(A) et les Turbo Codes tombent dans cette catégorie . Des modèles sophis-
tiqués de propagation radio, la modélisation d’interférence, et les modèles de
codage du signal augmentent la complexité de l’ensemble.
Cadres de simulation visent à compenser ces problèmes en permettant des sim-
ulations pour être exécutés parallèlement sur plusieurs unités de traitement.
En combinant les ressources de mémoire et de calcul de plusieurs unités de
traitement, le temps de simulation peut être réduite au coût des besoins de
mémoire plus élevés et les frais de gestion. Bien que cette approche soit connue
depuis plus de deux décennies, les récents progrès technologiques permettent
de réduire considérablement le coût du matériel de l’infrastructure de calcul
parallèle. Rendant ce matériel à la disposition de la communauté de recherche
à grande qui la main sur le feu des projecteurs sur la discipline.

Principes de la simulation à événements discrets parallèle
L’approche adoptée par le PDES est de diviser un modèle de simulation dans
plusieurs instances qui sont exécutés sur les unités de traitement indépen-
dantes en parallèle. Le défi central de PDES est ainsi à maintenir l’exactitude
de la simulation. Tout cadre simulation présente trois centrales structures de
données : i) les variables d’état du modèle de simulation, ii) une liste horo-
datée des événements, et iii) une horloge mondiale. Au cours d’une simulation
, le planificateur supprime en permanence l’événement avec le plus petit times-

135

tamp (emin) de la future liste d’événements (FEL) et exécute la fonction
associé . T désigne la fonction d’horodatage qui attribue une valeur de temps
de chaque événement et E est l’ensemble de tous les événements dans la liste
des événements. Bien que la fonction de gestionnaire soit en cours d’exécution,
les événements peuvent être ajoutés ou supprimés de la liste d’événements.
Choisir emin est cruciale car sinon la fonction de gestionnaire d’un ex événe-
ment avec T (emin) < T (ex) pourrait changer les variables d’état qui sont
ensuite accessibles quand emin est manipulé. Dans ce cas, l’avenir (ex) au-
rait changé le passé (emin) que nous appelons une violation de causalité .
Ainsi, nous formulons le défi central de PDES comme suit : étant donné deux
événements E1 et E2, décider si les deux événements ne gênent pas, permet-
tant ainsi une exécution simultanée, ou pas , donc nécessitant une exécution
séquentielle . Simulation des cadres de travail parallèles emploient une grande
variété d’algorithmes de synchronisation de trancher cette question. La sec-
tion suivante présente une sélection d’algorithmes fondamentaux et discute
leurs propriétés.
Modèle De Simulation Parallèlement Et Algorithmes
Un modèle de simulation parallèle se compose d’un nombre fini de partitions
qui sont créées conformément à un schéma de partitionnement spécifique.
Trois exemplaires régimes de partitionnement sont i) régime espace parallèle
de partitionnement, ii) canaliser partitionnement parallèle, et iii) le temps
partitionnement parallèle. Le schéma de partitionnement espace parallèle di-
vise le modèle de simulation ainsi que les connexions entre les n’uds simulés.
Par conséquent, les cloisons résultant constituent des groupes de noeuds. Les
bases du régime partitionné canal parallèles sur l’hypothèse que les transmis-
sions qui utilisent différents (radio) des canaux, les médiums, les codages etc.
n’interfèrent pas. Ainsi, les événements sur les n’uds non interférents sont
considérés comme indépendants. Par conséquent, le modèle de simulation est
décomposé en groupes de noeuds non interférents. Cependant, parallèlement
canal partitionnement n’est généralement pas applicable à tous les modèles
de simulation, laissant ainsi pour spécialisées scénarios simulation. Enfin, les
dispositifs de séparation parallèles de temps subdiviser le temps de simula-
tion d’un essai de simulation dans des intervalles de temps de même taille. La
simulation de chaque intervalle est considérée comme indépendante des autres
sous l’hypothèse que l’état du modèle de simulation est connu au début de
chaque intervalle. Cependant, l’état d’une simulation de réseau comprend
généralement une complexité importante et n’est pas connue à l’avance.

136 Appendix B. Résumé Étendue

Tendances de l’évolution du matériel
Introduction
Dans ce paragraphe nous visons à mettre en évidence l’évolution du matériel
qui s’est accumulés au cours des dernières décennies. En particulier, nous ex-
aminons le parallélisme et l’optimisation des caractéristiques qui concernent
les processeurs et l’émergence de coprocesseur spécialisé que la démocrati-
sation grande échelle du calcul parallèle. Dans ce contexte, nous présen-
tons le GPU comme une puce massivement multi-core et l’accélérateur de
l’informatique comme un dispositif multi-core dédié. Dans le reste de ce
chapitre, nous examinons d’abord l’architecture CPU. Deuxièmement, nous
présentons un apercu de l’état logique de l’art de GPU. Troisièmement, nous
résumons le concept d’accélérateur multi-core qui a été inauguré par le pro-
cesseur Xeon Phi. Enfin, nous concluons ce chapitre par une enquête auprès
des API de programmation parallèle pour ce type de matériel.

Evolution de l’informatique Chips
CPU: Evolution historique et tendances
Historiquement, la CPU a été conÃ§u pour réaliser toutes les tâches infor-
matiques demandés par le système d’exploitation. Depuis l’introduction du
micro-processeur 8086 et la démocratisation de l’ordinateur, les améliora-
tions de la CPU disent deux routes: l’augmentation de la fréquence du CPU
et s’étendant aux instructions énoncées. Néanmoins, l’augmentation de la
fréquence de la puce informatique induit une augmentation phénoménale dans
les paramètres thermiques et de consommation d’énergie. Par conséquent,
au début de la décennie précédente, les fabriquants de CPU reconnaissent
que l’augmentation de la fréquence ne peut pas être la future approche de
développement. Les tendances communes ont été de juxtaposer deux (ou plus)
processeurs sur la même puce. Les premières tentatives étaient vraiment la
juxtaposition de deux processeurs indépendants qui limite toute collabora-
tions avancées et sature le bus interne. Pro progressivement, de l’architecture
du processeur évolue et devient composée de plusieurs noyaux computing et
stades de mémoire sur puce. La communication entre les différents cores est
progressivement optimisée, et la gestion de la mémoire distribuée devient ma-
ture. Cependant, le concept de multi-core CPU repose sur l’indépendance
de chaque noyau de sorte que chacun d’eux est capable d’exécuter n’importe
quelle tâche.
Par conséquent, tous les noyaux sont construits suivant la même architecture
complexe qui, en retour, de réduire la capacité de maximiser le nombre de
cores intégrés. Au meilleur de notre connaissance, le plus grand processeur
multi-core comprend jusqu’à 16 cores, qui est une très petite échelle par rap-
port aux GPU que nous présentons plus loin. De l’autre côté, l’amélioration
des instructions établies demeure pertinente. En particulier, l’introduction
d’instructions vectorielles est pertinente pour les usages scientifiques et mul-

137

timédias. Ces instructions permettent le traitement de plusieurs mots en un
seul cycle d’horloge. Dans l’état actuel de la technique, il est possible de
traiter jusqu’à quatre mots (256 bits) en parallèle par chaque noyau en util-
isant le jeu d’instructions AVX. AVX2 promet le traitement de 8 mots dans
la prochaine génération de CPU.
En parallèle, les fabricants de CPU de continuer à améliorer l’architecture du
processeur à pro-Vide fonctionnalités de plus en plus. La tendance est que,
entre les deux générations successives, le gain est compris entre 10% et 20%.
Une caractéristique supplémentaire pertinente est le multithreading simultané
(SMT), noté que la technologie Hyper-Threading d’Intel et partiellement mis
en oeuvre par AMD. Le concept repose sur une planification d’instructions de
pointe qui permet à chaque core l’exécution de deux (ou plusieurs) des fils.
Chacune d’entre elles est supposée être exécutée sur un noyau virtuel. En fonc-
tion de l’optimisation du logiciel, le gain relatif est compris entre 10% et 25%.
Pour conclure, la combinaison de ces éléments permet au processeur d’être
une solution compétitive. Cependant, l’architecture globale de l’ordinateur est
construite autour d’un petit nombre de puces qui partagent le même matériel
(entre un et quatre puces). Dans le même temps, le développement de sup-
ports de communication évolue différemment: dans la communication fournit
une bande passante importante tandis que la communication à l’extérieur de
la machine est encore lent. Cette restriction particulière favorise l’utilisation
de coprocesseurs que nous allons détailler dans les sections suivantes.
GPU: Evolution historique et tendances
Par définition, une unité de traitement graphique (GPU) est un copro-
cesseur qui assure le rendu graphique. L’évolution du processeur graphique
actuelle commence avec l’introduction des premiers appareils 3D. Les pre-
miers systèmes graphiques sélectionnés d’un pipeline de fonction fixe (FFP),
et l’architecture suivant un trajet de traitement très rigide en utilisant presque
autant d’API graphiques comme il y avait des fabricants 3D. Alors que la péri-
ode des années 90 comptait de nombreux GPU innovante fabricants, le début
de 2000 a été marquée par la concentration de l’industrie du GPU autour
de deux acteurs: NVIDIA et ATI. La principale évolution de ce temps a été
l’introduction de plus en plus souple API de programmation tels que le DX7
et l’OpenGL (1999-2000) et le support de 32 bits à virgule flottante infor-
matique avec GPU. Une révolution dans l’industrie du GPU a été le début
des premiers graphiques unifiés et GPU Computing, programmé en C avec
CUDA. La Geforce 8800 était le premier GPU compatible CUDA qui com-
prend jusqu’à 128 cores CUDA alors que le CPU le plus puissant de l’époque
comprend deux noyaux. Le développement de GPU a augmenté dans deux di-
rections: la simplification de l’interface programmation et l’augmentation du
nombre de core de calcul. Ainsi, l’API OpenCL est principalement soutenu
par la majorité des fabricants de puces, notamment AMD, NVIDIA, Intel et

138 Appendix B. Résumé Étendue

ARM. Il est pertinent de souligner que les GPU actuels sont des dispositifs ori-
entés débit-composées de centaines de cours de traitement. Ils maintiennent
un débit élevé et une mémoire cache de latence par multithreading entre des
milliers de threads. GPU reposent sur une architecture hiérarchique à deux
niveaux. Il est composé de vecteur pro-processeurs au plus haut niveau, appelé
multiprocesseurs (SMS) en streaming pour les GPU NVIDIA et SIMD noy-
aux pour les GPU AMD. Chaque processeur vectoriel contient un tableau des
cors de traitement, appelé processeurs scalaires (PS) pour les GPU NVIDIA
et de l’unité de traitement de flux pour GPU AMD. Tous les cores de traite-
ment à l’intérieur d’un processeur vectoriel peuvent communiquer à travers
un mémoire gérés par l’utilisateur sur puce, appelée mémoire partagée pour
les GPU NVIDIA et la mémoire locale pour les GPU AMD. Le CUDA [148]
et [133] OpenCL API partagent la même SPMD (Programme Single Multi-
ple Data) modèle de programmation. CUDA vitalise SMS blocs (équivalent
aux groupes de travail en OpenCL) et SPS fils (équivalents à des éléments
de travail dans OpenCL), qui permettent aux programmeurs d’exécuter des
milliers de threads et de blocs à travers les différentes générations de GPU
indépendamment de la quantité de processeurs physiques.
Programmation parallèle: Modèles et API
Le but du calcul parallèle est d’améliorer les performances en exécutant
l’application sur plusieurs processeurs. Même si le calcul parallèle est tradi-
tionnellement corrélé avec la communauté HPC, il est de plus en plus commun
pour intégrer l’informatique en raison de l’émergence récente de l’architecture
multi-core. Cependant, l’utilisation optimale de ce matériel nécessite des out-
ils de programmation adéquate qui optimisent les fonctionnalités de paral-
lélisme. En ce sens, il existe plusieurs API qui fournissent un appui de la
programmation distribuée parallèle et. En particulier, nous identifions cinq
API représentatives: les Pthreads, OpenMP, MPI, l’OpenCL et CUDA.
Pthreads
Pthreads est l’acronyme de l’interface du système d’exploitation (POSIX)
Portable Threads. Pthreads sont mises en oeuvre dans un en-tête (pthread.h)
et une bibliothèque pour la création et la manipulation de chacun des tra-
vailleurs appelés threads. Travailleur administration dans Pthreads nécessite
de gérer explicitement le fils du cycle de vie de la création à la sortie. En outre,
la définition de la division de la charge de travail et la cartographie doit être
explicitement défini par le concepteur de logiciels. Afin de préserver section
critique, c’est à dire la partie du code qui accède à des données partagées,
Pthreads accorde mutex (exclusion mutuelle) et sémaphore. Mutex autorise
un seul thread d’accéder à une section critique à un moment donné, alors que
sémaphore permet différents threads d’accéder à une section critique.
OpenMP
OpenMP est une spéciation générique qui considère la mémoire partagée paral-

139

lélisme. Il se compose d’un ensemble de routines de bibliothèque d’exécution
et les variables d’environnement qui simplifient la programmation parallèle
dans un contexte de mémoire partagée. OpenMP est disponible comme une
extension des programmes Fortran, C et C + +. Le travailleur primaire de la
conception OpenMP est fils. La gestion des travailleurs est implicite et repose
sur l’utilisation de pré-compilation directive Pragma qui indiquent qu’une sec-
tion donnée peut être exécutée en parallèle. Le nombre de fils parallèles est une
variable environnementale qui dépend des capacités matérielles. Ainsi, con-
trairement à Pthread, l’implication de révélateur est limitée à la conception
des fils interaction et l’utilisation des données. Charge de travail partition-
nement et la cartographie tâche à travailleur exigent relativement peu d’effort
de programmation. OpenMP aussi abstraction de la distribution de la charge
de travail entre les travailleurs et la faÃ§on dont les tâches sont les filets.
MPI
MessagePassing Interface (MPI) est une spécification pour la transmission de
messages opérations. Le concept de MPI estime que chaque travailleur est un
processus indépendant. MPI est actuellement le standard pour le développe-
ment d’applications HPC sur l’architecture de mémoire distribuée. Il fournit
des liaisons de langage pour C, C + + et Fortran. Certains des implémenta-
tions les plus populaires MPI comprennent OpenMPI, MVAPICH, MPICH,
GridMPI, et LAM / MPI. Le contrÃ´le des travailleurs est assuré à l’aide
d’un outil de ligne de commande (ou des scripts) et le système assure la ges-
tion des différents processus entre le matériel disponible selon la configuration
donnée. Les programmeurs doivent contrÃ´ler ce que les tâches doivent être
calculés par chaque processus. Communication entre les processus adopte le
paradigme message passe. MPI classe largement ses opérations de transmis-
sion de messages de point-à-point et collective. MPI Barrier est utilisé pour
spécifier que la synchronisation est nécessaire. Les blocs de fonctionnement
de la barrière jusqu’à ce que tous les processus en cours atteint par tous les
processus qui participent à la barrière.
CUDA
Le Compute Unified Device Architecture (CUDA) est un modèle de program-
mation à usage général pour écrire des applications hautement parallèles. Il
fournit plusieurs abstractions clés: une hiérarchie de blocs de filetage, mé-
moire partagée, et la synchronisation de barrière. Dans l’état actuel de la
technique, CUDA est exclusivement compatible avec les GPU Nvidia. Le
modèle considère un système parallèle d’un couple d’un hÃ´te (c.-à-CPU) et
les périphériques (c.-à-GPU). Tâches de calcul parallèles sont effectuées dans
GPU par un ensemble de threads parallèles. Le modèle organise les discussions
sur une hiérarchie à deux niveaux, à savoir le bloc et la grille. Block est un jeu
de fils clonés, chacun d’eux est identifié par un Tid (fil id), tandis que la grille
est un ensemble de couplage lâche de blocs. La gestion des travailleurs est

140 Appendix B. Résumé Étendue

implicitement réalisée par le pilote CUDA. Ainsi, les programmeurs à spécifier
les paramètres de la grille et le bloc requis pour traiter le travail donné. Il
doit être mentionné que la synchronisation des threads est fait implicitement
en utilisant des routines disponibles tels que la de fonction syncthreads.
OpenCL
OpenCL est une nouvelle norme pour le travail parallèle et informatique
hétérogène de données parallèle sur une gamme de processeurs modernes,
GPU, DSP, et d’autres conceptions microprocesseur. OpenCL fournit des
abstractions et un ensemble d’API de programmation basé sur les réussites
passées avec CUDA, TBB, et d’autres outils de programmation. OpenCL
définit un ensemble de fonctionnalités de base qui est pris en charge par tous
les appareils, ainsi que des fonctionnalités en option qui ne peut être mis
en oeuvre sur des dispositifs à haute fonctionnalité, et comprend un mécan-
isme d’extension qui permet aux fournisseurs d’exposer des caractéristiques
matérielles spécifiques et des interfaces de programmation expérimentaux pour
le bénéfice des développeurs de logiciels. Bien que OpenCL peut pas masquer
des différences importantes dans les architectures matérielles, il ne garantit
pas la portabilité et l’exactitude. Cela le rend beaucoup plus facile pour
un développeur pour commencer un programme OpenCL fonctionne correcte-
ment réglé pour une architecture, et de créer un programme de fonctionnement
correctement optimisé pour une autre architecture.

141

Les travaux liés
Introduction
Dans ce chapitre, nous proposons de mettre en évidence les travaux connexes
qui répondent aux questions de simulation parallèle et distribué sur les ordi-
nateurs hétérogènes. Le chapitre est composé de trois sections. La première
section présente les approches les plus courantes qui traitent simulation à
grande échelle. La deuxième section met en lumière les problèmes de plani-
fication de l’événement et la troisième section résume optimisations les plus
courants qui émergent dans le domaine de la simulation distribuée.
Simulation à grande échelle
Dans les revues de la littérature, il existe trois principales approches pour faire
face à la simulation des grandes échelle: (1) parallèles à base de CPU et sim-
ulation distribuée, (2) l’accélération partielle à l’aide spécifique co-processeur
et (3) l’approche entièrement GPU. Une.

• En parallèle sur la base d’une unité centrale de traitement et la simula-
tion distribuée [98], la plate-forme est composée de plusieurs instances
de simulation qui collaborent pour assurer la simulation d’une manière
donnée. Le plus commun distribué et parallélisation de la simulation
basée sur l’UC sont:

– Répartition spatiale: chaque instance simule une partie de l’espace
et / ou de la population mondiale.

– La répartition fonctionnelle: chaque instance assure un (s) tâche /
fonc-tion (s) pour la simulation globale.

La distribution de collaboration: comprend simulations distribuées dy-
namiques et la simulation qui combine l’utilisation de plusieurs cours de
processeur par cas de simulation. Dans la terminologie la plus courante,
nous parlons d’une approche fédérée pour résumer cette catégorie. Une
telle approche fédérée utilise des modèles existants et fournit une par-
allélisation rapide de simulateurs séquentiels existants. Dans ce con-
texte, GTNetS est un cadre expérimental qui démocratise l’utilisation
de l’architecture plat / hiérarchique pour gérer à grande échelle réseau
sim-lation. Ensuite, l’expérience de développement de GTNetS a été
appliquée aux open source ns simulateur de réseau - 3 avec une bonne
performance en terme de évolutivité. Cependant, cette approche induit
une perte en raison de la synchronisation entre les différents processus
et / ou des machines et nécessite simulation sophistiqués et coûteux en
infrastructure. Cette surcharge peut augmenter considérablement dans
un environnement mobile si la topologie du réseau et de la cartographie
de la machine n’est pas dynamiquement géré (par exemple grâce à la mi-
gration de noeud). Pour la majorité des simulateurs à base de CPU, la

142 Appendix B. Résumé Étendue

dégradation des performances se produit lorsque la simulation combine
les facteurs limitants tels que le taux de mobilité, le nombre de nouds, et
augmentation de la charge de trafic. En ce qui concerne les simulateurs
distribués, comme la dégradation des performances se produit lorsque
les inter-machines de communica-tion augmente. Une démonstration de
l’évolutivité, sur la base de la NS-3 distribué a soigneusement évité le
problème de l’interaction entre des noeuds dans différentes machines de
simulation. Même si simulateurs parallèles et distribués ont dépassé une
limite d’évolutivité, ils introduisent de nouveaux pro-blèmes tels que le
coût d’un noeud simulé, la stratégie de distribution des nouds initial et
leur migration dans les différentes machines.

• L’accélération partielle vise à accroitre l’efficacité de la simulation au
niveau local en déchargeant la partie la plus intensive du processeur
d’une simu-lation donnée de la CPU à un co-processeur dédié. Le FPGA
a été largement utilisé comme une solution d’accélération [30] Toutefois,
dans certaines approches récentes, le GPU est utilisé pour décharger des
tâches de calcul intensif telles que la modélisation du canal [10] et les
files d’attente [102] dans le simulateur. Des études récentes recomman-
dent l’utilisation du GPU pour plus simulation à usage général [110], ou
même comme une architecture de simulation accélération GPU lorsque
la précision et les performances d’exécution sont à la fois critique [7].
Ainsi, le GPU devient une alternative de plus en plus attrayant pour la
base de CPU-par-allélisme cher, avec une puissance de calcul importante
à un coût relativement faible. Avec l’avènement de la GPU de la série
GeForce8 en 2006 et le calcul architecture de dispositif unifié (CUDA)
[95], le GPU devient un support informatique disponibles. Même si cette
approche réduit considérablement le temps de calcul, la simulation reste
principalement dans la CPU qui continue d’être le goulot d’étranglement
du système dans les grandes scénarios d’échelle. En outre, un transfert
continu de données entre la mémoire de GPU et le CPU d’une présente
une sérieuse limitation.

• L’approche entièrement GPU vise à décharger la totalité des tâches de
simulation sur l’espace de GPU. En outre, la mémoire nécessaire sera
exclusivement sur le GRAM. Cette approche offre trois avantages:

– L’impact de la CPU est réduite au minimum, en contraste avec la
simulation parallèle traditionnelle.

– Le transfert de la mémoire entre la mémoire principale et le GRAM
est pratiquement nulle au cours de la simulation.

– Le temps de latence de synchronisation entre les différents noyaux
de la simulation est réduite.

143

Cependant, le GPU n’est pas entièrement conforme X86, ne supporte
pas les caractéristiques du CPU, a besoin d’une architecture logicielle
particulière à divulguer sa puissance et ne prend pas en charge le mé-
canisme de verrouillage de la mémoire. En raison de ces contraintes,
l’approche de simulation entièrement GPU est peu étudiée. Dans le
même contexte, nous proposons une preuve de concept, noté Cunetsim
qui utilise le GPU comme un environnement de simulation principal et
le CPU comme contrôleur. Cunetsim est une plate-forme de simulation
expérimentale permettant la validation et l’expérimentation de nouvelles
approches. Contrairement aux travaux précédents, Cunetsim est concu
pour fournir un environnement exécu-tion parallèle indépendant pour
chaque noeud simulé. Noeuds communiquent par envoi de messages basé
sur l’échange de tampon. Ainsi, le cadre permet d’éviter l’utilisation de
la connaissance mondiale et augmente le niveau de parallélisme. Il est
basé sur le modèle maître / travailleur pour une co-simulation CPU-GPU
et fournit le modèle de synchronisation hybride qui maximise l’efficacité
et garantit l’exactitude de la simulation. La simulation exploite le grand
nombre de cours de calcul du GPU pour exécuter nouds en parallèle et
l’accès à la mémoire à grande vitesse pour réduire noeud de communi-
cation de latence.

144 Appendix B. Résumé Étendue

Cunetsim: Une platforme d’experimentation à la decou-
verte du potentiel du parallel
Simulateurs de réseau au niveau des paquets sont généralement basées sur
un paradigme à événements discrets où le système simulé est le modèle en
utilisant une séquence d’événements . Chaque événement a un horodatage
discrets qui définissent un ordre strict de l’exécution . Dans la simulation
à événements discrets , chaque événement est représenté par un descripteur
qui inclut l’horodatage et des paramètres d’exécution (soit un rappel) . Un
cadre simulation comprend un planificateur d’événement qui gère l’événement
descripteur et définit l’ ordre d’exécution des événements . En général , ces
événements représentent mobilité , la connectivité , la modélisation moyenne
(filaire ou sans fil) et dans / sur le traitement des paquets . La complexité
du temps et de la mémoire utilisée d’une simulation donnée sont proportion-
nelles au nombre d’ événements . Néanmoins, le nombre d’événements gen -
survoltage augmente de faÃ§on exponentielle en fonction à la fois du nombre
total de noeuds et la charge de trafic . En conséquence , la gestion de cas de-
vient le principal goulot d’étranglement lors du ciblage de simulation à grande
échelle . Il y a aussi un compromis entre la précision des modèles , modèles
en particulier air - moyennes (propagation des ondes) , et de la complexité
de temps qui doit être pris en compte lors du ciblage de simulation à grande
échelle .
En conséquence , l’exécution parallèle et distribuée apparaît un candidat triv-
ial car il fournit plus de puissance de calcul et de mémoire. Cependant , une
telle approche présente de nouveaux défis dans le niveau de gestion . Dans
la littérature re- vues , nous identifions que la communication entre les dif-
férents disques de simulation est particulièrement coûteux [48] . En outre,
nous notons que la majorité des cadres existants sont basés sur une approche
distribuée qui ignorent les nouvelles fonctionnalités matérielles , malgré le fait
que l’accélération potentielle de la simulation parallèle est clairement identi-
fié et prouvé dans plusieurs publications pionnières . Travaux de recherche
d’enquête qui attirent la limitation de la simulation parallèle dans un con -
texte , identifier la programmation de l’événement comme un obstacle majeur
qui ne peut être évité . En effet, même s’il est possible d’exécuter simultané-
ment plusieurs événements , le processus de programmation reste centralisée
qui génère le goulot d’étranglement de simulation parallèle . Plusieurs travaux
d’optimisation proposent des approches innovantes.
Cependant, les obstacles inhérents au concept de DES nécessite le passage à
travers un chemin d’accès central pour tous les événements . Contrairement
aux approches existantes , nous proposons (1) pour générer des événements
parallèles plutôt que de détecter leur éventuelle exécution simultanée et (
2) pour planifier des événements parallèles clonés qu’une seule fois. Ces
deux modifications conceptuelles sont la principale contribution de ce chapitre

145

. La seconde innovation que nous vous présentons est de savoir comment
nous prévoyons de mettre en oeuvre ces concepts . En fait , nous proposons
d’utiliser le GPU comme le support de simulation principale tandis que le
CPU agit comme le maître de la simulation . Nous visons à utiliser les GPU
NVIDIA CUDA basé sur le riche écosystème de développement autour . Nous
définissons le modèle de simulation selon quatre points:

• Le composant unitaire de la simulation est le noeud , toute entité simulée
est obligatoire par rapport à un noeud donné .

• Le générateur d’événement génère le même événement pour tous les
noeuds . Cela signifie qu’à un moment donné , tous les n?uds seront
exécutés le même événement .

• Chaque noeud sera exécuté dans un GPU de base indépendante . Ainsi
, nous garantissons une exécution simultanée .

• Le descripteur d’événement n’est pas par rapport à un noeud , mais à
tous les noeuds . En conséquence , le planificateur d’événements manip-
uler une entrée .

Nous nous attendons à ce que ce modèle permettra de surmonter les limites
de DES par rapport à la programmation traditionnelle . Comme une preuve
de concept , nous proposons un nouveau cadre CPU - GPU de co-simulation
notée Cunetsim , CUDA Network Simulator . Cunetsim est une plate-forme
de simulation expérimentale permettant la validation et l’évaluation rapide .
Contrairement aux travaux précédents , Cunetsim est concu pour fournir un
environnement d’exécution parallèle indépendant pour chaque noeud simulé.
Noeuds communiquent à travers le passage de message basé sur l’échange
de tampon . Ainsi , le cadre permet d’éviter l’utilisation de la connaissance
mondiale et augmente le niveau de parallélisme . Il est basé sur le modèle
maître / travailleur pour une co-simulation CPU - GPU et fournit le modèle
de synchronisation hybride qui maximise l’efficacité et garantit l’exactitude
de la simulation .
Concepts fondamentaux
Le but de cunetsim est de réaliser une simulation à grande échelle aussi vite que
possible . L’idée de l’exécution de la simulation sur le GPU semble prometteur
, mais l’utilisation d’une telle puissance de calcul reste délicate en raison de
la conception du logiciel requis qui diffère du code x86 traditionnelle . Pour
harmoniser les GPU exi-gences avec une spécificité de simulation de réseau ,
cadre cunetsim s’articule autour de trois concepts fondamentaux : la piscine
des travailleurs , la séparation entre l’événement et le descripteur d’événement
et le massif génération des événements parallèles .
Le groupe de travailleurs Dans le modèle maître / travailleur un
travailleur est assimilé à être un LP qui gère une partie de la simulation .

146 Appendix B. Résumé Étendue

En général, le travailleur est toujours dans la même machine au cours de l’
exécution . Dans le GPU , il est impossible d’affecter un processus à chaque
noyau de calcul et le nourrir par les événements. Ainsi, nous considérons que
le travailleur représente une entité simulée primaire (définie par des données
+ + processus FSM) . Les travailleurs mettent modèles le nombre total d’
entités simulées et de partager des ressources disponibles .
La séparation entre l’événement et sa description
En DES programmation de l’événement parallèle est un défi permanent qui
est largement adressé dans les revues de la littérature [45 , 83 , 128] .
Sous des conditions de grande envergure de la programmation de l’événement
devient l’un des principaux goulets d’étranglement . De plus , la détection
d’événements indépendance afin de les programmer en parallèle nécessite des
algorithmes sophistiquées . Néanmoins , quel que soit l’algorithme utilisé pour
réaliser la programmation de l’événement, son coût reste proportionnelle au
nombre d’évènements . En conséquence , nous avons eu l’idée de dissocier
le cas de l’événement de- scripteur , comme le planificateur d’événements
gère descripteurs uniques . L’avantage principal de cette approche est la
dissociation entre le nombre de cas et de la complexité de la programmation
. En fait , si nous réussissons à surcharger le descripteur d’événement afin
de représenter plusieurs événements plutôt qu’un seul , alors nous pouvons
contourner le goulot d’étranglement de la programmation .
Génération d’événements massivement parallèles
Le concept de parallélisme massif est un modèle de logiciel adapté pour SIMD
hardware et en particulier pour la programmation de GPU . L’idée principale
consiste à générer fils clonés , dont chacun effectue la même opération sur
un ensemble de données indépendantes . Ce concept est dérivé du logiciel de
traitement graphique , dans lequel chaque pixel ou d’un polygone sont traitées
de facon indépendante et en parallèle par le même algorithme . Nous vous pro-
posons de générer des événements clones plutôt que la détection d’événements
qui peuvent potentiellement être exécutées en parallèle . Notre compréhension
de ce concept est le suivant: les entités simulées identiques peuvent générer le
même événement pour être exécuté dans le même horodatage. Chaque événe-
ment est relatif à une entité et sera exécuté sur les données correspondantes,
les attributs et la mémoire. Cependant, avec la représentation adéquate des
données, il est possible de représenter ces événements avec une entrée sur le
système d’ordonnancement. Ainsi, le planificateur d’événements gère une en-
trée tandis que les ressources d’exécution exécutent plusieurs événements (tel
que défini par le générateur).

147

Scheduler hybride Evénements
Simulation à événements discrets (DES) est largement utilisé pour modéliser
, analyser et évaluer des systèmes complexes , où l’analyse formelle est diffi-
cile ou non - déterministe . Cependant , l’évolutivité de DES reste difficile
en raison du système et la complexité croissantes de modèle , d’une part ,
et les caractéristiques phénoménales inter- connectivité des systèmes ré- cent
, d’autre part . En outre, une limitation fondamentale du courant DES est
l’absence d’une politique de gestion de l’événement dédié qui estime les capac-
ités de calcul hétérogènes . Dans ce contexte , la planification de l’événement
est identifié comme un goulot d’étranglement inhérent de DES. En particulier,
la programmation de l’exécution d’événements à venir , tout en maintenant
une charge en continu dans des conditions de grande envergure augmente le
coût de la programmation, jusqu’à ce qu’il devienne le goulot d’étranglement
[47] . La plupart des approches de programmation recherchées reposent sur
un modèle d’ordonnancement d’événements centralisé optimisé principalement
pour l’architecture du noeud de calcul homogène . Un tel modèle reste limitée
et ne pas exploiter le plein potentiel du matériel moderne . Par conséquent,
les approches de planification parallèles et distribués réapparaissent comme
un facteur important pour augmenter l’évolutivité sur les architectures infor-
matiques hétérogènes [136] . L’objectif est d’exploiter une mul -titude de
processeurs parallèles et interactives unifiées au niveau de l’événement plan-
ificateur de coopérer les uns avec les autres. Les exemples incluent les pro-
cesseurs multi -core , multi- GPU , système - sur - puce multi - processeur et
l’unité de traitement accéléré . En ce qui concerne cette nouvelle exigence ,
nous soulignons la nécessité d’un cadre de planification garantie qui combine
abstraction matérielle avec une gestion simplifiée .
La plupart de ces architectures semblent prometteuses , mais leurs écosystèmes
dans certains cas, soit ne sont pas pleinement développés ou contradictoires
[21] . Avantages de supercomput -teurs de GPU ont été mis en évidence
dans [109] , où les auteurs suggèrent de revoir et d’élargir la vision du DES
. Néanmoins , la plupart des tentatives récentes supposent la compatibilité
ascendante avec le concept d’ordonnancement séquentiel [100 , 140] . Cette
méthodologie présente une faiblesse conceptuelle car il considère un noud de
calcul multi-core comme une simple extension d’un mono -core un . En outre
, pour rester en arrière compat - ible , le gain attendu sera considérablement
réduite par rapport à une conception de logiciel dédié qui exploite les capac-
ités de calcul parallèle du matériel en cours ainsi que le temps de latence de
communication [4] .
Dans ce travail , nous introduisons un nouveau planificateur d’événement par-
allèle pour les architectures de com - puting hétérogènes , désigné comme pro-
grammateur hybride (H -scheduler) . Le H - programmateur est concu pour
allouer dynamiquement des événements de ressources de calcul disponibles

148 Appendix B. Résumé Étendue

tout en gardant un taux d’événements stable . Ceci est réalisé comme le
planificateur est conscient du tas.
de processeurs et de leurs capacités et dispose d’un accès permanent à leurs
charges instantanées et le temps d’exécution à travers un mécanisme de
rétroaction. L’ordonnanceur fonctionne sur toutes les ressources informa-
tiques disponibles dans le même espace d’ adressage mémoire. Pour augmenter
l’efficacité de l’ordonnanceur , chaque événement est associé à un descripteur
spécifique qui sera stocké dans le 3 - D de la structure de données un en-
semble de données en 3 dimensions d’Al- bas du cadre pour faire face aux
entrées consécutives (D 1) , presque parallèle les entrées (D 2) et les entrées
clonés (D 3) . Puisque l’objectif de ce travail est de maximiser l’ efficacité de
la simulation , la première tentative a été d’utiliser des stratégies de plani-
fication opportunistes . Cependant , nous décidons d’utiliser la politique de
planification prudente pour éviter la sur- charge générée par le mécanisme
de récupération et le vecteur d’état lors de l’examen politique optimiste dans
les milieux parallèles et hétérogènes. Le H -scheduler est composé de quatre
principaux processus : Répartiteur d’événement , événement d’injection -teur
, GPU - programmateur, et CPU -scheduler , où les événements sont fluides.

• Le répartiteur a extrait les événements nouvellement générés à partir
de différentes files d’attente et les ajoute à une position correspondante
dans une structure en 3 dimensions données optimisé pour l’ exécution
en parallèle .

• L’injecteur dirige un groupe d’événements parallèles à la sous- ordon-
nanceur plus adéquate (CPU ou GPU) en fonction des informations de
retour recues .

• Le GPU - ordonnanceur assure l’exécution des entrées groupés sur le
GPU dédié .

• Le CPU - ordonnanceur assure l’exécution de toute inscription en marche
la CPU dédiée .

Chaque sous- ordonnanceur est optimisée pour un matériel spécifique , afin
de maximiser le débit des ressources de calcul correspondant à l’activité .
Plusieurs optimisations sont proposées pour accélérer la décision de planifi-
cation comme le goulot d’étranglement peut changer au fil du temps . Le
mécanisme H -scheduler repose sur trois stratégies pour le répartiteur et les
processus d’injection : rapides , avancées et hybrides . La politique rapide a
pour but de minimiser le coût d’ une prise alors que la pointe a pour but d’
optimiser la cible d’exécution selon la charge matérielle . La politique hybride
utilise des méthodes avancées à la fois rapides et à maximiser la stabilité du
système . Les évaluations comparatives ont démontré que le gain de perfor-

149

mance peut être augmentée par un facteur de 2 par rapport à des planificateurs
centralisés et conservateurs.

Bibliography

[1] http://disco.ethz.ch/projects/sinalgo/. 48

[2] http://www.nsnam.org/. 48

[3] http://www.pgroup.com/resources/unifiedbinary.htm/. 48

[4] Brandon G Aaby, Kalyan S Perumalla, and Sudip K Seal. Efficient
simulation of agent-based models on multi-gpu and multi-core clusters.
In Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques, page 29. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2010. 35, 59,
79, 102

[5] A.F. Abdelrazek, M. Kaschub, C. Blankenhorn, and M.C. Necker. A
novel architecture using nvidia cuda to speed up simulation of multi-
path fast fading channels. In Vehicular Technology Conference, 2009.
VTC Spring 2009. IEEE 69th, pages 1–5. IEEE, 2009. 36, 103

[6] Jeff Ahrenholz, Claudiu Danilov, Thomas R Henderson, and Jae H Kim.
Core: A real-time network emulator. In Military Communications Con-
ference, 2008. MILCOM 2008. IEEE, pages 1–7. IEEE, 2008. 13

[7] P. Andelfinger, J. Mittag, and H. Hartenstein. Gpu-based architectures
and their benefit for accurate and efficient wireless network simulations.
In MASCOTS, 2011 IEEE 19th International Symposium on, pages 421–
424. IEEE, 2011. 32

[8] J. April, F. Glover, J.P. Kelly, and M. Laguna. Practical introduction to
simulation optimization. In Simulation Conference, 2003. Proceedings
of the 2003 Winter, volume 1, pages 71–78. IEEE, 2003. 36, 102

[9] Manish Arora. The architecture and evolution of cpu-gpu systems for
general purpose computing. By University of California, San Diago. 27

[10] S. Bai and D.M. Nicol. Acceleration of wireless channel simulation using
gpus. In Wireless Conference (EW), 2010 European, pages 841–848.
IEEE, 2010. 32, 36, 103

[11] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer
Rexford. In vini veritas: realistic and controlled network experimenta-
tion. In ACM SIGCOMM Computer Communication Review, volume 36,
pages 3–14. ACM, 2006. 12

152 Bibliography

[12] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for
cuda. GPU Computing Gems, pages 359–371, 2011. 67

[13] Bilel Ben Romdhanne, Mohamed Said Mosli Bouksiaa, Navid Nikaein,
and Christian Bonnet. Hybrid scheduling for event-driven simulation
over heterogeneous computers. In Proceedings of the 2013 ACM SIGSIM
conference on Principles of advanced discrete simulation, pages 47–56.
ACM, 2013. 85

[14] Claude Berrou and Alain Glavieux. Near optimum error correcting cod-
ing and decoding: Turbo-codes. Communications, IEEE Transactions
on, 44(10):1261–1271, 1996. 21

[15] B.R. Bilel and N. Navid. Cunetsim: A gpu based simulation testbed
for large scale mobile networks. In Communications and Information
Technology (ICCIT), 2012 International Conference on, pages 374–378.
IEEE, 2012. 35, 46, 102

[16] B.R. Bilel, N. Navid, and M.S.M. Bouksiaa. Hybrid cpu-gpu distributed
framework for large scale mobile networks simulation. In Distributed
Simulation and Real Time Applications (DS-RT), 2012 IEEE/ACM
16th International Symposium on, pages 44–53. IEEE, 2012. 67, 68,
93

[17] B.R. Bilel, N. Navid, and Bonnet C. Coordinator-master-worker model
for efficient large scale network simulation. In 6th International ICST
Conference on Simulation Tools and Techniques, 2013. 67, 80, 93, 95,
103

[18] B.R. Bilel, N. Navid, K. R., and B. C. Openairinterface large-scale
wireless emulation platform and methodology. In MSWIM. ACM, 2011.
13, 36, 44, 103, 125

[19] K.C. Borries, G. Judd, D.D. Stancil, and P. Steenkiste. Fpga-based chan-
nel simulator for a wireless network emulator. In Vehicular Technology
Conference, 2009. VTC Spring 2009. IEEE 69th, pages 1–5. IEEE, 2009.
13, 36, 102

[20] A. Branover, D. Foley, and M. Steinman. Amd fusion apu: Llano. Micro,
IEEE, 32(2):28–37, 2012. 27

[21] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, et al. A
comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. Journal of
Parallel and Distributed computing, 61(6):810–837, 2001. 59

Bibliography 153

[22] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heide-
mann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varad-
han, Ya Xu, et al. Advances in network simulation. Computer, 33(5):59–
67, 2000. 13

[23] H. Breu and D.G. Kirkpatrick. Unit disk graph recognition is np-hard.
Computational Geometry, 9(1):3–24, 1998. 45

[24] Mark Carson and Darrin Santay. Nist net: a linux-based network
emulation tool. ACM SIGCOMM Computer Communication Review,
33(3):111–126, 2003. 13

[25] Franðcois E Cellier and Ernesto Kofman. Continuous system simulation.
Springer, 2006. 14

[26] L. Chen, J. Huang, and J. Zhang. A latency-hiding algorithm for abms
on parallel/distributed computing environment. In Principles of Ad-
vanced and Distributed Simulation (PADS), 2012 ACM/IEEE/SCS 26th
Workshop on, pages 187–189. IEEE, 2012. 35, 80, 102

[27] Li-li Chen, Ya-shuai Lu, Yi-ping Yao, Shao-liang Peng, et al. A well-
balanced time warp system on multi-core environments. In Principles
of Advanced and Distributed Simulation (PADS), 2011 IEEE Workshop
on, pages 1–9. IEEE, 2011. 34, 74, 75

[28] Matthew Chidester and Alan George. Parallel simulation of chip-
multiprocessor architectures. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS), 12(3):176–200, 2002. 83

[29] NM Chowdhury and Raouf Boutaba. A survey of network virtualization.
Computer Networks, 54(5):862–876, 2010. 13

[30] E.S. Chung, E. Nurvitadhi, J.C. Hoe, B. Falsafi, and K. Mai. Protoflex:
Fpga-accelerated hybrid functional simulator. In IPDPS 2007. IEEE
International, pages 1–6. IEEE, 2007. 32

[31] Teodor Gabriel Crainic and Michel Toulouse. Parallel strategies for
meta-heuristics. Springer, 2003. 56

[32] Tim Cramer, Dirk Schmidl, Michael Klemm, and Dieter an Mey.
Openmp programming on intel r xeon phi tm coprocessors: An early
performance comparison. 2012. 36, 103

[33] R. Curry, C. Kiddle, R. Simmonds, and B. Unger. Sequential perfor-
mance of asynchronous conservative pdes algorithms. In Proceedings of
the 19th Workshop on Principles of Advanced and Distributed Simula-
tion, pages 217–226. IEEE Computer Society, 2005. 33, 74

154 Bibliography

[34] Teresa A Dahlberg, Asis Nasipuri, and Craig Taylor. Explorebots: a mo-
bile network experimentation testbed. In Proceedings of the 2005 ACM
SIGCOMM workshop on Experimental approaches to wireless network
design and analysis, pages 76–81. ACM, 2005. 12

[35] Judith S Dahmann. High level architecture for simulation. In Distributed
Interactive Simulation and Real Time Applications, 1997., First Inter-
national Workshop on, pages 9–14. IEEE, 1997. 14

[36] Gabriele D’Angelo and Michele Bracuto. Distributed simulation of large-
scale and detailed models. International Journal of Simulation and Pro-
cess Modelling, 5(2):120–131, 2009. 34, 75

[37] Peter J. Dennin. Is computer science science? Commun ACM, 48(4):27
– 31, 2005. 123

[38] K. Dragicevic and D. Bauer. A survey of concurrent priority queue
algorithms. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–6. IEEE, 2008. 33, 74

[39] EA. Electronic arts, 2013. 94

[40] Serge Fdida, Timur Friedman, and Sophia MacKeith. Onelab: Develop-
ing future internet testbeds. In Towards a Service-Based Internet, pages
199–200. Springer, 2010. 13

[41] Sally Floyd and Van Jacobson. Random early detection gateways
for congestion avoidance. Networking, IEEE/ACM Transactions on,
1(4):397–413, 1993. 75

[42] Richard M Fujimoto. Parallel discrete event simulation. Communica-
tions of the ACM, 33(10):30–53, 1990. 21

[43] Richard M Fujimoto. Exploiting temporal uncertainty in parallel and
distributed simulations. In Proceedings of the thirteenth workshop on
Parallel and distributed simulation, pages 46–53. IEEE Computer Soci-
ety, 1999. 82

[44] Richard M Fujimoto. Parallel and distributed simulation. In Simulation
Conference Proceedings, 1999 Winter, volume 1, pages 122–131. IEEE,
1999. 21

[45] Richard M Fujimoto. Parallel simulation: parallel and distributed sim-
ulation systems. In Proceedings of the 33nd conference on Winter sim-
ulation, pages 147–157. IEEE Computer Society, 2001. 43

[46] R.M. Fujimoto. Lookahead in parallel discrete event simulation. Tech-
nical report, DTIC Document, 1988. 34, 35, 75, 101

Bibliography 155

[47] R.M. Fujimoto, K. Perumalla, A. Park, H. Wu, M.H. Ammar, and G.F.
Riley. Large-scale network simulation: how big? how fast? In Model-
ing, Analysis and Simulation of Computer Telecommunications Systems,
2003. MASCOTS 2003. 11th IEEE/ACM International Symposium on,
pages 116–123. IEEE, 2003. 21, 35, 59, 79, 101

[48] R.M. Fujimoto, K. Perumalla, A. Park, H. Wu, M.H. Ammar, and G.F.
Riley. Large-scale network simulation: how big? how fast? In 11th
IEEE/ACM MASCOTS 2003., pages 116 – 123, oct. 2003. 41, 79

[49] Stephen Bo Furber. ARM system-on-chip architecture. pearson Educa-
tion, 2000. 27

[50] Erek Göktürk. A stance on emulation and testbeds, and a survey of
network emulators and testbeds. Proceedings of ECMS, 2007. 13

[51] Andreas Grau, Steffen Maier, Klaus Herrmann, and Kurt Rothermel.
Time jails: A hybrid approach to scalable network emulation. In Prin-
ciples of Advanced and Distributed Simulation, 2008. PADS’08. 22nd
Workshop on, pages 7–14. IEEE, 2008. 14

[52] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C Snoeren,
Amin Vahdat, and Geoffrey M Voelker. To infinity and beyond: time
warped network emulation. In Proceedings of the twentieth ACM sym-
posium on Operating systems principles, pages 1–2. ACM, 2005. 13

[53] Shashi Guruprasad, Robert Ricci, and Jay Lepreau. Integrated net-
work experimentation using simulation and emulation. In Testbeds and
Research Infrastructures for the Development of Networks and Commu-
nities, 2005. Tridentcom 2005. First International Conference on, pages
204–212. IEEE, 2005. 15

[54] Jens Gustedt, Emmanuel Jeannot, and Martin Quinson. Experimental
methodologies for large-scale systems: a survey. Parallel Processing
Letters, 19(03):399–418, 2009. 124

[55] Linley Gwennap. Sandy bridge spans generations. Microprocessor Re-
port, 9(27):10–01, 2010. 27

[56] IS Hammoodi, BG Stewart, A Kocian, and SG McMeekin. A compre-
hensive performance study of opnet modeler for zigbee wireless sensor
networks. In Next Generation Mobile Applications, Services and Tech-
nologies, 2009. NGMAST’09. Third International Conference on, pages
357–362. IEEE, 2009. 14

156 Bibliography

[57] J. Harri, F. Filali, and C. Bonnet. Mobility models for vehicular ad
hoc networks: a survey and taxonomy. Communications Surveys &
Tutorials, IEEE, 11(4):19–41, 2009. 45

[58] Alexander Heinecke, K Vaidyanathan, M Smelyanskiy, A Kobotov,
R Dubtsov, G Henry, AG Shet, G Chrysos, and P Dubey. Design and
implementation of the linpack benchmark for single and multi-node sys-
tems based on intel (r) xeon phi (tm) coprocessor. In 27th IEEE Inter-
national Parallel & Distributed Processing Symposium (IPDPS 2013),
2013. 36, 103

[59] Stephen Hemminger et al. Network emulation with netem. In Linux
Conf Au, pages 18–23. Citeseer, 2005. 13

[60] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and
JB Kopena. Network simulations with the ns-3 simulator. SIGCOMM
demonstration, 2008. 14

[61] Thomas R Henderson, Sumit Roy, Sally Floyd, and George F Riley. ns-3
project goals. In Proceeding from the 2006 workshop on ns-2: the IP
network simulator, page 13. ACM, 2006. 106

[62] M. Hybinette and R.M. Fujimoto. Cloning parallel simulations.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
11(4):378–407, 2001. 33, 74

[63] Natalie Ivanic, Brian Rivera, and Brian Adamson. Mobile ad hoc net-
work emulation environment. In Military Communications Conference,
2009. MILCOM 2009. IEEE, pages 1–6. IEEE, 2009. 13

[64] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High
Performance Programming. Newnes, 2013. 36, 103

[65] David B Johnson. Validation of wireless and mobile network models and
simulation. In DARPA/NIST network simulation validation workshop,
1999. 13

[66] Glenn Judd and Peter Steenkiste. Using emulation to understand
and improve wireless networks and applications. In Proceedings of
the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 203–216. USENIX Association, 2005.
13

[67] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998. 81

Bibliography 157

[68] William Kasch, J Ward, and Julia Andrusenko. Wireless network model-
ing and simulation tools for designers and developers. Communications
magazine, IEEE, 47(3):120–127, 2009. 13

[69] Charles Peri Ken Renard and Jerry Clarke. A performance and scal-
ability evaluation of the ns-3 distributed scheduler. The Workshop on
ns-3 (WNS3)), 2012. 31, 32, 127

[70] Stratos Keranidis, Dimitris Giatsios, Thanasis Korakis, Iordanis Kout-
sopoulos, Leandros Tassiulas, Thierry Rakotoarivelo, and Thierry Par-
mentelat. Experimentation in heterogeneous european testbeds through
the onelab facility: The case of planetlab federation with the wireless
nitos testbed. In Testbeds and Research Infrastructure. Development of
Networks and Communities, pages 338–354. Springer, 2012. 13

[71] Wolfgang Kiess and Martin Mauve. A survey on real-world implementa-
tions of mobile ad-hoc networks. Ad Hoc Networks, 5(3):324–339, 2007.
12

[72] Israel Koffman and Vincentzio Roman. Broadband wireless access solu-
tions based on ofdm access in ieee 802.16. Communications Magazine,
IEEE, 40(4):96–103, 2002. 21

[73] Georg Kunz, Olaf Landsiedel, Stefan Gotz, Klaus Wehrle, James Gross,
and Farshad Naghibi. Expanding the event horizon in parallelized
network simulations. In Modeling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2010 IEEE Inter-
national Symposium on, pages 172–181. IEEE, 2010. 106

[74] Georg Kunz, Mirko Stoffers, James Gross, and Klaus Wehrle. Runtime
efficient event scheduling in multi-threaded network simulation. In Pro-
ceedings of the 4th International ICST Conference on Simulation Tools
and Techniques, pages 359–366. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2011. 106

[75] Mathieu Lacage. Experimentation with ns-3. Trilogy Summer School,
2009. 14

[76] Mathieu Lacage. Experimentation tools for networking research. PhD
thesis, Ph. D. dissertation, Ecole doctorale Stic, Université de Nice
Sophia Antipolis, 2010. 37, 103

[77] Mathieu Lacage, Martin Ferrari, Mads Hansen, Thierry Turletti, and
Walid Dabbous. Nepi: using independent simulators, emulators, and
testbeds for easy experimentation. ACM SIGOPS Operating Systems
Review, 43(4):60–65, 2010. 15

158 Bibliography

[78] Mathieu Lacage and Thomas R Henderson. Yet another network sim-
ulator. In Proceeding from the 2006 workshop on ns-2: the IP network
simulator, page 12. ACM, 2006. 90

[79] Chang Kil Lee and David Strang. The international diffusion of public-
sector downsizing: Network emulation and theory-driven learning. In-
ternational Organization, 60(4):883, 2006. 13

[80] Lawrence M Leemis and Stephen Keith Park. Discrete-event simulation:
A first course. Pearson Prentice Hall Upper Saddle River, NJ, 2006. 19

[81] Olga Lesnova and Eugene Kalishenko. Ns-3 performance analysis and
development of effective load balancing algorithms. 106

[82] Benyuan Liu, Yang Guo, James F Kurose, Donald F Towsley, and Weibo
Gong. Fluid simulation of large scale networks: Issues and tradeoffs. In
PDPTA, volume 99, pages 2136–2142, 1999. 43

[83] J. Liu. Parallel Discrete-Event Simulation. Wiley Online Library, 2009.
35, 101

[84] Jason Liu and Rong Rong. Hierarchical composite synchronization.
In Principles of Advanced and Distributed Simulation (PADS), 2012
ACM/IEEE/SCS 26th Workshop on, pages 3–12. IEEE, 2012. 34, 75

[85] Q. Liu and G. Wainer. Multicore acceleration of discrete event system
specification systems. Simulation, 88(7):801–831, 2012. 35, 102

[86] Qi Liu. Algorithms for parallel simulation of large-scale DEVS and Cell-
DEVS models. PhD thesis, Citeseer, 2010. 21

[87] Henrik Lundgren, David Lundberg, Johan Nielsen, Erik Nordstrom, and
Christian Tschudin. A large-scale testbed for reproducible ad hoc pro-
tocol evaluations. In Wireless Communications and Networking Confer-
ence, 2002. WCNC2002. 2002 IEEE, volume 1, pages 412–418. IEEE,
2002. 14

[88] Huiwei Lv, Yuan Cheng, Lu Bai, Mingyu Chen, Dongrui Fan, and
Ninghui Sun. P-gas: Parallelizing a cycle-accurate event-driven many-
core processor simulator using parallel discrete event simulation. In
Principles of Advanced and Distributed Simulation (PADS), 2010 IEEE
Workshop on, pages 1–8. IEEE, 2010. 34, 75

[89] Steffen Maier, Daniel Herrscher, and Kurt Rothermel. Experiences with
node virtualization for scalable network emulation. Computer Commu-
nications, 30(5):943–956, 2007. 13

Bibliography 159

[90] Michele Migliore, C Cannia, William W Lytton, Henry Markram, and
Michael L Hines. Parallel network simulations with neuron. Journal of
computational neuroscience, 21(2):119–129, 2006. 83

[91] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40–53, 2008. 53

[92] David M Nicol. Principles of conservative parallel simulation. In Pro-
ceedings of the 28th conference on Winter simulation, pages 128–135.
IEEE Computer Society, 1996. 87

[93] Brian D Noble, Mahadev Satyanarayanan, Giao T Nguyen, and Randy H
Katz. Trace-based mobile network emulation. ACM SIGCOMM Com-
puter Communication Review, 27(4):51–61, 1997. 13

[94] C. Nvidia. Compute unified device architecture programming guide.
NVIDIA: Santa Clara, CA, 2011. 32

[95] A. Park and R.M. Fujimoto. Efficient master/worker parallel discrete
event simulation. In Principles of Advanced and Distributed Simulation,
2009. PADS’09. ACM/IEEE/SCS 23rd Workshop on, pages 145–152.
IEEE, 2009. 35, 102

[96] Alfred Park and Ric Fujimoto. Efficient master/worker parallel discrete
event simulation. 2009 ACMIEEESCS 23rd Workshop on Principles of
Advanced and Distributed Simulation, pages 145–152, 2009. 32, 44

[97] Alfred Park and Richard M. Fujimoto. Parallel discrete event simulation
on desktop grid computing infrastructures. International Journal of
Simulation and Process Modelling, 5(2):157 – 171, 2009. 31

[98] Alfred J. Park and Richard M. Fujimoto. Efficient master/worker par-
allel discrete event simulation on metacomputing systems. IEEE Trans-
actions on Parallel and Distributed Systems, 23:873–880, 2012. 79

[99] H. Park and P.A. Fishwick. A gpu-based application framework support-
ing fast discrete-event simulation. Simulation, 86(10):613–628, 2010. 34,
59, 75

[100] H. Park and P.A. Fishwick. An analysis of queuing network simulation
using gpu-based hardware acceleration. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 21(3):18, 2011. 34, 69, 74, 75

[101] Hyungwook Park and Paul A. Fishwick. An analysis of queuing network
simulation using gpu-based hardware acceleration. ACM Trans. Model.
Comput. Simul., 21(3), February 2011. 32

160 Bibliography

[102] J. Parker and J.M. Epstein. A distributed platform for global-scale
agent-based models of disease transmission. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS), 22(1):2, 2011. 34, 75

[103] Sudeep Pasricha and Nikil Dutt. On-chip communication architectures:
system on chip interconnect. Morgan Kaufmann, 2010. 27

[104] David Patterson. The top 10 innovations in the new nvidia fermi ar-
chitecture, and the top 3 next challenges. NVIDIA Whitepaper, 2009.
47

[105] J. Pelkey and G. Riley. Distributed simulation with mpi in ns-3. In Pro-
ceedings of the 4th International ICST Conference on Simulation Tools
and Techniques, pages 410–414. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2011. 69

[106] SJ Pennycook, SD Hammond, SA Jarvis, and GR Mudalige. Perfor-
mance analysis of a hybrid mpi/cuda implementation of the naslu bench-
mark. ACM SIGMETRICS Performance Evaluation Review, 38(4):23–
29, 2011. 35, 102

[107] K. Perumalla, R. Fujimoto, T. McLean, and G. Riley. Experiences
applying parallel and interoperable network simulation techniques in
on-line simulations of military networks. pages 97–104, 2002. 31

[108] Kalyan S Perumalla. Switching to high gear: Opportunities for grand-
scale real-time parallel simulations. In Proceedings of the 2009 13th
IEEE/ACM International Symposium on Distributed Simulation and
Real Time Applications, pages 3–10. IEEE Computer Society, 2009. 36,
59, 103

[109] K.S. Perumalla. Discrete-event execution alternatives on general pur-
pose graphical processing units (gpgpus). In Proceedings of the 20th
Workshop on Principles of Advanced and Distributed Simulation, pages
74–81. IEEE Computer Society, 2006. 32

[110] K.S. Perumalla. Parallel and distributed simulation: traditional tech-
niques and recent advances. In Proceedings of the 38th conference on
Winter simulation, pages 84–95. Winter Simulation Conference, 2006.
21, 33, 35, 74, 101

[111] P. Peschlow, M. Geuer, and P. Martini. Logical process based sequential
simulation cloning. In Simulation Symposium, 2008. ANSS 2008. 41st
Annual, pages 237–244. IEEE, 2008. 33, 74

[112] Larry Peterson, Andy Bavier, Marc E Fiuczynski, and Steve Muir. Ex-
periences building planetlab. In Proceedings of the 7th symposium on

Bibliography 161

Operating systems design and implementation, pages 351–366. USENIX
Association, 2006. 13

[113] Larry Peterson and Timothy Roscoe. The design principles of planetlab.
ACM SIGOPS Operating Systems Review, 40(1):11–16, 2006. 14

[114] Francesco Quaglia and Vittorio Cortellessa. Grain sensitive event
scheduling in time warp parallel discrete event simulation. In Proceed-
ings of the fourteenth workshop on Parallel and distributed simulation,
pages 173–180. IEEE Computer Society, 2000. 82

[115] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan
Seskar. Omf: a control and management framework for networking
testbeds. ACM SIGOPS Operating Systems Review, 43(4):54–59, 2010.
12

[116] Dipankar Raychaudhuri, Ivan Seskar, Max Ott, Sachin Ganu, Kishore
Ramachandran, Haris Kremo, Robert Siracusa, Hang Liu, and Manpreet
Singh. Overview of the orbit radio grid testbed for evaluation of next-
generation wireless network protocols. In Wireless Communications and
Networking Conference, 2005 IEEE, volume 3, pages 1664–1669. IEEE,
2005. 12

[117] Shafqat Rehman, Thierry Turletti, Walid Dabbous, et al. A roadmap
for benchmarking in wireless networks. 2011. 4

[118] George F Riley. Simulation of large scale networks ii: large-scale network
simulations with gtnets. In Proceedings of the 35th conference on Win-
ter simulation: driving innovation, pages 676–684. Winter Simulation
Conference, 2003. 31

[119] George F Riley, Mostafa H Ammar, Richard M Fujimoto, Alfred Park,
Kalyan Perumalla, and Donghua Xu. A federated approach to dis-
tributed network simulation. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS), 14(2):116–148, 2004. 81

[120] Stewart Robinson. Simulation: the practice of model development and
use. Wiley. com, 2004. 19

[121] Bilel Ben Romdhanne, Diego Dujovne, Thierry Turletti, Walid Dabbous,
et al. Efficient and scalable merging algorithms for wireless traces. 2009.
4

[122] R. Rönngren and R. Ayani. A comparative study of parallel and se-
quential priority queue algorithms. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 7(2):157–209, 1997. 33, 34, 74

162 Bibliography

[123] N. Satish, C. Kim, J. Chhugani, A.D. Nguyen, V.W. Lee, D. Kim, and
P. Dubey. Fast sort on cpus, gpus and intel mic architectures. Technical
report, Technical report, Intel, 2010. 35, 102

[124] Erik Saule, Kamer Kaya, and Umit V Catalyurek. Performance evalu-
ation of sparse matrix multiplication kernels on intel xeon phi. arXiv
preprint arXiv:1302.1078, 2013. 36, 103

[125] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and
dynamic multi-constraint graph partitioning. Concurrency and Compu-
tation: Practice and Experience, 14(3):219–240, 2002. 56

[126] Guillaume Seguin. Multi-core parallelism for ns-3 simulator. INRIA
Sophia-Antipolis, Tech. Rep, 2009. 106, 110

[127] Jafer Shafagh. Parallel Simulation Techniques for Large-scale Discrete-
event Models. PhD thesis, Carleton University, 2011. 21, 43

[128] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin
Casado, Nick McKeown, and Guru M Parulkar. Can the production
network be the testbed? In OSDI, volume 10, pages 1–14, 2010. 12

[129] Edi Shmueli and Dror G Feitelson. Backfilling with lookahead to op-
timize the packing of parallel jobs. Journal of Parallel and Distributed
Computing, 65(9):1090–1107, 2005. 88

[130] John A Sokolowski and Catherine M Banks. Principles of modeling and
simulation: a multidisciplinary approach. Wiley. com, 2011. 14

[131] Tapas K Som and Robert G Sargent. A probabilistic event scheduling
policy for optimistic parallel discrete event simulation. In Parallel and
Distributed Simulation, 1998. PADS 98. Proceedings. Twelfth Workshop
on, pages 56–63. IEEE, 1998. 82

[132] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel pro-
gramming standard for heterogeneous computing systems. Computing
in science & engineering, 12(3):66, 2010. 26, 27

[133] Cristian Tala, Luciano Ahumada, Diego Dujovne, Shafqat-Ur Rehman,
Thierry Turletti, and Walid Dabbous. Guidelines for the accurate de-
sign of empirical studies in wireless networks. In Testbeds and Research
Infrastructure. Development of Networks and Communities, pages 208–
222. Springer, 2012. 4

[134] W.T. Tang, R.S.M. Goh, and I.L.J. Thng. Ladder queue: An o (1) prior-
ity queue structure for large-scale discrete event simulation. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 15(3):175–
204, 2005. 33, 74

Bibliography 163

[135] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and
Distributed Systems, IEEE Transactions on, 13(3):260–274, 2002. 59

[136] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan
Kostić, Jeff Chase, and David Becker. Scalability and accuracy in a
large-scale network emulator. ACM SIGOPS Operating Systems Re-
view, 36(SI):271–284, 2002. 14

[137] András Varga and Rudolf Hornig. An overview of the omnet++ simu-
lation environment. In Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and
systems & workshops, page 60. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008. 14

[138] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Towards
symmetric multi-threaded optimistic simulation kernels. In Principles of
Advanced and Distributed Simulation (PADS), 2012 ACM/IEEE/SCS
26th Workshop on, pages 211–220. IEEE, 2012. 34, 75

[139] S.Y. Wang, C.C. Lin, Y.S. Tzeng, W.G. Huang, and T.W. Ho. Ex-
ploiting event-level parallelism for parallel network simulation on multi-
core systems. Parallel and Distributed Systems, IEEE Transactions on,
23(4):659–667, 2012. 34, 59, 75

[140] Philippe Wauteleta and Pierre Kestenera. Parallel io performance and
scalability study on the prace curie supercomputer. White paper, Prace,
2011. 115

[141] Kirk Webb, Mike Hibler, Robert Ricci, Austin Clements, and Jay
Lepreau. Implementing the emulab-planetlab portal: Experience and
lessons learned. In Proc. WORLDS, 2004. 127

[142] Klaus Wehrle, Mesut Gèuneðs, and James Gross. Modeling and tools
for network simulation. Springer, 2010. 19

[143] E. Weingartner, H. Vom Lehn, and K. Wehrle. A performance compar-
ison of recent network simulators. In Communications, 2009. ICC’09.
IEEE International Conference on, pages 1–5. Ieee, 2009. 48, 50, 106

[144] T. Wenjie, Y. Yiping, and Z. Feng. A hierarchical parallel discrete event
simulation kernel for multicore platform. Cluster Computing, pages 1–9,
2012. 35, 82, 102

[145] Matthew Wolf, Zhongtang Cai, Weiyun Huang, and Karsten Schwan.
Smartpointers: personalized scientific data portals in your hand. In Su-
percomputing, ACM/IEEE 2002 Conference, pages 20–20. IEEE, 2002.
90

164 Bibliography

[146] M. Wolfe. Implementing the pgi accelerator model. In Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing
Units, pages 43–50. ACM, 2010. 67

[147] E. Wynters. Parallel processing on nvidia graphics processing units using
cuda. Journal of Computing Sciences in Colleges, 26(3):58–66, 2011. 26

[148] Joshua J Yi and David J Lilja. Simulation of computer architectures:
Simulators, benchmarks, methodologies, and recommendations. Com-
puters, IEEE Transactions on, 55(3):268–280, 2006. 14

[149] Srikanth B Yoginath, Kalyan S Perumalla, and Brian J Henz. Runtime
performance and virtual network control alternatives in vm-based high-
fidelity network simulations. In Proceedings of the Winter Simulation
Conference, page 247. Winter Simulation, 2012. 15, 37, 103

[150] Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika
Kurts. A fully integrated multi-cpu, gpu and memory controller 32nm
processor. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 264–266. IEEE, 2011. 27

[151] Xu Zhang, Bowei Wang, and Chenyao Geng. Gpu-based background
generation method. In Wireless Mobile and Computing (CCWMC
2011), IET International Communication Conference on, pages 117–
120. IET, 2011. 27

	bilel_BENROMDHANNE - copie
	Thesis
	Introduction
	Motivation and Objectives
	Contributions Storyline
	Thesis Structure
	Publications
	Project Deliverables

	I Background
	Network Experimentation
	Introduction
	Network Experimentation Tools
	Real world Field Trial
	Real world Testbed
	Emulation Testbed
	Simulation Testbed
	Hybrid Testbed

	Network Experimentation Aspects

	Discrete Event Simulation
	Introduction
	Discrete-Event Simulation
	Terminology and Components
	The Principle

	Parallel Discrete Event Simulation
	 Discrete Event Simulation Limits
	Principles of Parallel Discrete Event Simulation
	Parallel Simulation Model and Algorithms

	Hardware Trends
	Introduction
	Evolution of Computing Chips
	CPU: Historical Evolution and Trends
	GPU: Historical Evolution and Trends
	Emerging Solutions
	Multi-Core accelerator

	Parallel Programming: Models and API
	Pthreads
	OpenMP
	MPI
	CUDA
	OpenCL

	Related Work
	Introduction
	Large Scale Simulation
	PDES Issues
	Data Representation
	Event Scheduling

	Considerations Heterogeneous Computing Considerations

	II Contributions
	Cunetsim: An Experimentation Framework to Discover Scalability Horizons
	Introduction
	Fundamental Concepts
	The Worker Pool
	Separation Between an Event and Its Description
	Massive Parallel Event Generation

	Cunetsim Software Architectures
	The Worker Design
	The Master Design
	Legacy Architecture for Multi-Core CPU

	Comparative Performances Results
	Simulation Runtime

	Technical Challenges of GPU-based Simulation
	Synchronization Challenge
	Memory Management Challenge
	Precision Issue

	Configuration Issues of GPU-Oriented Simulation
	Space Representation and partitioning
	Tuning Parameters: Block Size as a Study Case

	Conclusion

	Hybrid Events Scheduler
	Introduction
	The Hybrid Scheduler
	Model and Components
	Scheduling Algorithms

	Performance Evaluation
	Scenario & Setup
	Comparative Evaluation
	Performance Analysis

	Related Work
	Discussion
	Conclusion

	General Purpose Coordinator-Master-Worker Model
	Introduction
	The General Purpose Coordinator-Master-Worker Model
	Events Management: Description, Scheduling and Execution
	The Synchronization Mechanism of the GP-CMW Model
	GP-CMW Communication Model

	Comparative Evaluation
	Comparative Performance Evaluation
	Inherent Performance Evaluation

	Related Work
	Conclusion

	Study Case of PADS Methodology Deployment: NS-3
	Introduction
	Overview
	Events scheduling on NS-3
	NS-3 Events scheduler extensions
	The Explicit CPU Parallelism
	The Implicit CPU Parallelism
	The GPU Offloading
	The Co-scheduler Approach

	Comparative evaluation
	Medium Load
	High Load

	Conclusion

	III Conclusion
	Conclusion
	Experimentation Methodology
	Introduction
	Scientific Experimentation
	OpenAirInterface Experimentation methodology
	OpenAirInterface Formal Experimentation Methodology
	Methodology Implementation

	Conclusion

	Résumé Étendue
	Bibliography

