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Abstract—In this paper, two new power policies (PPs), namely
the Rate Maximization Policy (RMP) and the Rate-Bound Max-
imization Policy (RBMP), for Cognitive Radio (CR) systems are
developed based on an expected rate maximization criterion.
Both policies are designed such as to satisfy a constraint re-
lated to the average interference caused by the CR network
to primary communication. The key novelty here is that the
proposed PPs take into account the existence of limited (hybrid)
channel feedback, where the direct secondary channel is known
instantaneously while the interference caused by the primary
transmission to the secondary receiver is only known statistically.
The optimal policy (RMP) is characterized, and a low complexity
algorithm is presented that allows for its efficient and accurate
implementation. The two policies are compared and RMP is
shown to lead to substantial energy consumption savings at equal
rate performance.
Index Terms—Underlay Cognitive Radio, power policy, ergodic

rate maximization, average interference constraint.

I. INTRODUCTION

Underlay CR-Spectrum Sharing networks [1] are considered

a promising solution to the spectrum scarcity problem. Such

networks are mostly limited by Quality of Service (QoS)

requirements for primary communication, which are usually

translated to constraints on the average and/or peak inter-

ference (PI) caused by the transmission of the secondary

transmitter (STx) to the primary receiver (PRx) [2]. The design

of rate optimal PPs for underlay CR schemes subject to

such primary communication QoS constraints has been studied

by several researchers. In [3], considering an average STx-

PRx interference constraint, the expected CR rate maximizing

policy is derived, while in [4], this policy is compared with

CR PPs that are based on PI constraints. Recently, in [5],

rate maximizing PPs under peak or average transmit power

constraints and imperfect channel-state information (CSI) at

STx were studied. For the derivation of these PPs several

interference related constraints have been considered. The

techniques presented in [3]-[5] are applicable to the so-called

“Z” channel model, that neglects the interference caused by

the primary transmitter (PTx) to the secondary receiver (SRx).

Such a channel model arises in cases that either the PTx causes

no interference to the SRx or when the PTx-SRx interference

is strong enough so that the SRx can decode and cancel this

interference fully [6].

In this paper, we consider a more general scenario where

interference caused by the primary transmitter cannot be

neglected due to typical propagation effects or cancelled due

to complexity limitation at the receiver side. In this case,

the policies presented in [3]-[5] are inappropriate. For such

scenarios, the rate optimal policy subject to average STx-

PRx interference and average PRx transmit power constraints

has been examined in [7], [8], but with the assumption that

exact instantaneous CSI knowledge for the PTx-SRx link is

available at the secondary transmitter which would necessitate

an accurate SRx-STx feedback link and may not always be

feasible.

Instead, we focus on CR networks limited by both noise,

PTx-SRx interference, and its feedback capabilities. Unlike

[7] and [8], a limited feedback scenario is studied, where SRx

provides as feedback to STx only the statistics of the PTx-SRx

link, and PPs are derived aiming to maximize cognitive com-

munication expected rate. Specifically, the key contributions

of the paper can be summarized as follows: a) The optimal

(with respect to an expected rate maximization criterion)

PP, namely RMP, for CR networks operating based on an

average STx-PRx interference constraint is derived. Unlike

most previously derived policies, this novel PP takes into

account both noise and the statistics of PTx-SRx interference.

b) A low complexity algorithm is suggested that provides

highly accurate, sharp approximations to the optimal PP. c) A

suboptimum PP, namely RBMP, is derived by properly tuning

the PP presented in [3] such as to also account for the PTx-

SRx interference. d) The two policies are compared in terms of

achievable rates and energy efficiency for a Rayleigh fading

channel scenario and it is shown that both policies achieve

similar performance in terms of expected rate. Nevertheless,

the optimal PP is proven to be superior in terms of energy

efficiency.

The paper is structured as follows. In Section II, the system

model is presented. In Section III, the optimal power policy

determination problem for this system is posed and solved.

Section IV presents a low complexity approximation to the

optimal PP, i.e. RMP, that is based on deriving a simple

method for approximating the inverse of a function. Section

V presents the derivation of the suboptimal PP, i.e., RBMP.

Section VI illustrates the application of both RMP and RBMP

in a Rayleigh fading scenario. In Section VII simulations

results obtained by applying these new PPs are presented.

Finally, Section VIII concludes the paper.



Fig. 1. The presumed Cognitive Radio system model

Notation: We use exp(·) and E1(·) to denote the exponential
and exponential integral [9, eq. (5.1.1)] respectively. ln and

log2 represent natural and base-2 logarithms, and (·)+ stands

for max {·, 0}. The probability density function (PDF) of a

random variable (RV) u is denoted by fu(u), while E [·] is
the expectation operator. The complex circularly symmetric

Gaussian distribution with mean µ and variance σ2 is denoted

as CN
(
µ, σ2

)
and ∼ denotes equality in terms of distribution.

II. SYSTEM MODEL

The system model shown in Fig. 1 is considered where com-

munication between STx and SRx takes place in the presence

of a primary users pair (PTx and PRx) that communicate with

each other. Unlike the “Z” channel model, we assume that

secondary communication is subject to interference caused by

the primary users communication. Hence, the signals yp, ys
reaching PRx and SRx respectively, are written as

yp = hpp

√
Pxp + hsp

√
Pxs + np

ys = hss

√
Pxs + hps

√
Pxp + ns

(1)

where xp and xs are the signals transmitted by PTx and STx

respectively, hpp, hsp are the PTx-PRx and STx-PRx fading

channels, hss, hps are the STx-SRx and PTx-SRx channels

and np, ns ∼ CN (0, N0) denote the complex additive white

Gaussian Noise (AWGN) at PRx and SRx respectively with

noise density N0 assumed to be common for both receivers.

Moreover, P denotes the fixed transmit power of PTx, known

to STx, while P denotes the instantaneous power used by

STx for its transmissions. We assume that P is not fixed and

depends on the specific channel realizations. In what follows,

we make no assumption for the statistics of fading channels

hpp, hsp, hss other than the fact that they are independent.

Nevertheless we will assume that hps follows a Rayleigh fad-

ing channel model, i.e. hps ∼ CN (0, σ2
ps), and is independent

of the rest of the fading channels of the system. The average

power gain σ2
ps of this channel is also assumed to be known

at STx.

Regarding the transmitted signals, it is assumed that Gaus-

sian codebooks are used, i.e., xp, xs ∼ CN (0, 1). By treating

interference as noise, the instantaneous rate on the STx-SRx

link, measured in bits/sec/Hz is then expressed as

Cinst,s (P ) = log2

(

1 +
gP (g, η, w)

N0 + w

)

, (2)

where for the ease of presentation we have introduced the

RVs g = |hss|2, w = |hps|2P , η = |hsp|2. In (2), P (g, η, w)
stands for the applied PP. Based on (2), and assuming exact

instantaneous CSI regarding g, η, and w, STx can design

the rate optimal PP subject to average and/or peak STx-PRx

interference constraints as a function of this CSI as in [7],

[8]. The demand for exact knowledge of g and η at STx can

be satisfied by means of feedback mechanisms or channel

reciprocity as described in [7]. Nevertheless, the need for

exact knowledge of w introduces further complexity, inter-

network coordination and feedback requirements. Hence, in

our analysis we assume that STx has only statistical knowledge

regarding the PTx-SRx link (i.e. knowledge of σ2
ps) as well

as exact and statistical knowledge of g and η. With this

assumption, STx cannot calculate the instantaneous rate in (2)

nor adjust its PP to instantaneous values of w. Nevertheless, by
taking into account the fact that hps follows a Rayleigh fading

model, and dropping the dependence of the PP on w, STx can
calculate the expected, with respect to the interference, rate

for the STx-SRx link as

Cs(P, g, η) =
1

w̄

∫
∞

0

log2

(

1 +
gP (g, η)

N0 + w

)

exp
(

−w

w̄

)

dw.

(3)

Using [10, eq. (4.337.1)] and [11, eq. 3.1.3], (3) is written as

Cs(P, g, η) =
ln
(

1 + gP (g,η)
N0

)

+ U (gP (g, η))− U(0)

ln 2
(4)

where U(x) = exp

(
N0 + x

w̄

)

E1

(
N0 + x

w̄

)

, x ≥ 0. (5)

We are interested on the design of the optimal STx PP P ⋆(g, η)
based on the criterion of the maximization of the expected

rate E[Cs(P, g, η)], subject to (s.t.) a constraint on the av-

erage STx-PRx interference. This problem is mathematically

formulated and solved in the following section.

III. DERIVATION OF THE OPTIMAL POWER POLICY

Using (4), the problem of finding the optimal PP that

maximizes E[Cs(P, g, η)] s.t. a constraint on the average STx-
PRx interference can be mathematically formulated as1

maximize:

∫
∞

0

∫
∞

0

Cs(P, g, η)fg(g)fη(η)dgdη (6a)

s.t.: E [ηP ] ≤ Q, and P ≥ 0. (6b)

where Cs(P, g, η) is concave. Optimization problem (6) is

then equivalent to the following optimization problem

minimize:

−
∫

∞

0

∫
∞

0

(

U (gP ) + ln

(

1 +
gP

N0

))

fg(g)fη(η)

︸ ︷︷ ︸

W (P )

dgdη

s.t. E [ηP ] ≤ Q, and P ≥ 0.
(7)

1For the ease of presentation, in the remaining equations the dependence
of P on g and η is not written explicitly. The readers should keep in mind
though that P varies as a function of g and η.



The partial Lagrangian for this problem is expressed as

L(P, λ) =−
∫

∞

0

∫
∞

0

W (P )dgdη

+ λ

∫
∞

0

∫
∞

0

ηPfg(g)fη(η)dgdη.

(8)

Applying dual decomposition as in [12], the initial problem

then reduces to solving the following series of sub-problems,

one for each channel state (g, η)

minimize:−
(

U (gP ) + ln

(

1 +
gP

N0

))

+ ληP s.t. P ≥ 0.

(9)

The above problem can be solved by introducing a Lagrange

Multiplier µ(g, η) for the non negative transmit power con-

straint and applying KKT conditions. The resulting power

policy is then found to be given as

P ⋆ =

{

0, if u > U(0)
λw̄

1
g
V (λ⋆uw̄) , otherwise

(10)

where u = η/g, V (y) is defined as the inverse of U(x),
i.e., V (y = U(x)) = x and λ⋆ is the optimal value of the

multiplier λ, i.e., it is chosen such that the constraint (6b) is

active, i.e., E[ηP ] = Q, or equivalently, by using (10), and

the definition of RV u, such that

∫ U(0)
λ⋆w̄

0

uV (λ⋆w̄u)fu(u)du

︸ ︷︷ ︸

Iopt(λ⋆)

= Q. (11)

By inspecting (11) and exploiting the fact that U(·) is a strictly
decreasing function, it is easy to see that Iopt (λ) is strictly
decreasing with respect to λ. Therefore, the unique λ⋆ that

satisfies (11) can be found by using iterative root finding

methods along with a numerical method, e.g. the trapezoidal

rule, for the calculation of the integral Iopt(·). Moreover,

since λ⋆ depends only on channel statistics, its calculation

can be performed offline for different values of the channel

parameters so as to create a lookup table that will be used in

practice. Due to the fact that this policy achieves the maximum

rate for a given constraint Q, for the rest of the paper we will
refer to this policy as the Rate Maximization Policy (RMP).

Going back to (10), the evaluation of V (y) can be done by
using any iterative root finding algorithm to solve the equation

y = U(x) (12)

with respect to x. Nevertheless, since the argument of V (·)
depends on instantaneous CSI, the use of such an iterative

root finding algorithm would lead to substantially increased

computational complexity. To cope with this complexity, in

the following section a sharp approximation to V (y) is derived
which is then used for providing a low complexity, accurate

approximation to RMP.

IV. ACCURATE LOW COMPLEXITY APPROXIMATION FOR

THE OPTIMAL POWER POLICY

In order to derive an approximation to P ⋆, one needs to

approximate V (y), the inverse of U(x), or equivalently, derive
a close estimate to the solution of (12) for any given y. The
starting point for deriving such an approximate solution to

(12) is the remark that U(x) is strictly monotonic and more

specifically, strictly decreasing. In what follows, we present

a novel framework for approximating the inverse of such

functions. This framework is then applied to our problem.

A. A novel method for the approximate inversion of composite

functions

Given lower and upper bounds Ulow(x) and Uup(x) for any
strictly decreasing U(x), it is easy to prove that if xlow and

xup are such that

Ulow(xlow) = y, and Uup(xup) = y (13)

then xlow ≤ xup, and the root x of (12) is bounded in the

interval [xlow, xup]. Thus, provided that interval [xlow, xup] is
tight enough, one can approximate the inverse of U(·), i.e.
the solution of (12), by substituting U(x) in (12) by its first

order Taylor series approximation around the midpoint x0 =
(xlow + xup)/2

2 and solving the resulting linear equation. In

the sequel, this generic approach is further illustrated for the

U(x) under investigation.

B. Inversion of U(x) in (5)

Focusing on the specific U(x) defined in (5), one can use

[9, eq. (5.1.20)], to construct the following upper and lower

bounds for U(x)

1

2
ln

(

1 +
2w̄

N0 + x

)

︸ ︷︷ ︸

Ulow(x)

< U(x) < ln

(

1 +
w̄

N0 + x

)

︸ ︷︷ ︸

Uup(x)

. (14)

Based on (14), the solution x of (12) is bounded in the interval

[xlow, xup], where

xlow =
2w̄

exp(2y)− 1
−N0, and xup =

w̄

exp(y)− 1
−N0.

(15)

Therefore, by defining x0 = ((xup + xlow) /2)
+
and follow-

ing the previous described method, the inverse of U(x) is

approximated by solving the equation

U(x0) +
dU(x)

dx

∣
∣
∣
∣
x0

(x− x0) = y (16)

with respect to x, to obtain

x = Ṽ (y) = x0 +
y − U(x0)
dU(x)
dx

∣
∣
x0

≈ V (y) , (17)

2In case that U(x) is defined solely for x ≥ 0, instead of the midpoint,

the point x0 =
(

xlow+xup

2

)+

can be used.



where the derivative of U(·) in (17) can be calculated as [9,

eq. (5.1.27)]

dU(x)

dx
=

U(x)

w̄
− 1

N0 + x
. (18)

Using (17) the RMP can then be approximated by substituting

V (·) by Ṽ (·) in (10). Instead of (17), one could also consider
the inversion method developed in [13] for the evaluation of

the spectral-efficiency energy-efficiency trade-off for commu-

nication over Rayleigh fading channels. Note however that the

method in [13] is derived based on a different, interesting, but

computationally expensive approach that involves complicated

functions such as the Lambert W function.

V. DERIVATION OF A SUBOPTIMUM POWER POLICY

A suboptimum PP can be derived by substituting

Cs (P, g, η) in (6) by a different function that is easier to

manipulate. Such a function can be found by noticing that

(2) is convex with respect to w. Thus, by applying Jensen’s

inequality, [14], Cs (P, g, η) in (3) can be lower bounded by

Clow,s (P ) = log2

(

1 +
gP (g, η, w)

N0 + w̄

)

≤ Cs(P, g, η). (19)

Therefore, by substituting Cs(P, g, η) by Clow,s (P ) in (6),

and following the analysis presented in [3], the following

suboptimum policy can be derived:

P 0(g, η) =

(
1

λ0η
− N0 + w̄

g

)+

(20)

that is a simple extension of the method presented in [3].

Parameter λ0 in (20) can be found by solving the average

interference constraint equation, i.e.

∫
∞

0

(
1

λ0
− (N0 + w̄)u

)+

fu(u)du = Q. (21)

In what follows, we will refer to this policy as the Rate Bound

Maximization Policy (RBMP). Unlike RMP, the derived

suboptimal policy does not require the calculation of any

complicated function such as V (·). Nevertheless, as it will

become evident later on, the derived, simple estimate Ṽ (·)
is very tight, thus allowing for the calculation of a sharp,

low complexity approximation to V (·). This fact effectively
reduces the benefits offered by RBMP. In the following

section, both the optimum and suboptimum PPs are further

exemplified for the case of Rayleigh fading channels. Specific

focus is given on the calculation of parameters λ⋆ and λ0.

VI. THE RAYLEIGH FADING CASE

Assuming Rayleigh fading for the STx-SRx and STx-PRx

links, i.e., assuming that hsp ∼ CN (0, σ2
sp) and hss ∼

CN (0, σ2
ss), it is easy to show that RVs η and g are expo-

nentially distributed. Thus, assuming independent fading, the

PDF of u is expressed as [15, eq. (7.44)]

fu(u) =
ρ

(1 + ρu)2
(22)
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Fig. 2. Comparison of the exact V (y) and its approximation Ṽ (y).

where ρ = σ2
ss/σ

2
sp. By employing (22), the calculation of

the parameter λ⋆ can be performed using the methodology

described in Section III. Moreover, by substituting (22) in (21)

it is straightforward to show that λ0 is the solution of

1

λ0
− N0 + w̄

ρ
ln

(

1 +
ρ

λ0(N0 + w̄)

)

= Q. (23)

VII. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results related to the proposed PPs

and their application to the Rayleigh fading channel model

described in the previous section are shown. As a starting

point, in Fig. 2 the approximate inverse Ṽ (·) of U(·) is plotted
along with V (·) for different values of w̄ = E[w] for a

fixed value N0 = 0dB. The calculation of the exact V (y)
has been done by numerically solving (12) with a relative

error tolerance of 10−5. The curves of Ṽ (y) and V (y) almost
coincide, thus establishing that Ṽ (y) is a sharp approximation
to V (y). Similar curves have been obtained for smaller values
of w̄, illustrating that Ṽ (y) is a valid approximation for V (y)
for most values of practical interest.

To deal with the fact that both PPs can result in arbitrarily

large peak powers, for Figs. 3 and 4, we have modified the

PPs by adding a maximum peak power constraint Pmax in

the initial problem to ensure that both PPs are characterized

by finite means. This results in truncating the PP values in

(10), (20) to Pmax when this is exceeded. Then, the values of

λ⋆, λ0 that satisfy E[ηP ] = Q, need also to be recalculated

while equations (11), (21) are not applicable. Provided that

Pmax is high enough, such a value of λ (or λ0) can be found.

Alternatively λ (or λ0) should be set to zero. Due to space

limitations, no further details are given for this straightforward

procedure. Nevertheless, we should mention that this modifi-

cation enables a comparison of the two PPs also in terms

of power consumption. In Fig. 3, Monte Carlo simulations

results are shown for the expected rate, i.e., the expectation

E [Cinst,s(P, g, η)] with Cinst,s(·, ·, ·) defined as in (2), as a

function of the average interference constraint Q for different

values of w̄ for the two policies. Regarding the RMP policy,

due to the high accuracy of approximation Ṽ (·) given in (17),
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that was also shown in Fig. 2, we have adopted Ṽ (·) for

its calculation. The depicted results were obtained by setting

N0 = 0dB. The ratio ρ = σ2
ss/σ

2
sp was set equal to ρ = 3dB

with σ2
sp = N0. The maximum allowable peak transmit power

Pmax was set such that Pmax/N0 = 30dB. Both policies

achieve similar results with RMP being slightly superior as the

average PTx-SRx interference w̄ increases and/or the average

STx-PRx interference constraint Q decreases.

While Fig. 3 illustrates the equivalence of the two developed

policies in terms of achievable rate, it fails to capture the per-

formance of the two methods in terms of energy consumption.

Therefore, in Fig. 4 we compare RMP and RBMP by means

of the percent energy savings achieved by RMP, defined as

ε = 100
E[P 0(g, η)]− E[P ⋆ (g, η)]

E[P 0(g, η)]
(%), (24)

for different values of the average interference constraint Q.
The results concern four different cases for the value of w̄
while again we consider that N0 = 0dB and ρ = 3dB with

σ2
sp = N0. By inspecting these results, it can be seen that RMP

achieves higher energy efficiency, since in all cases, the energy

consumption is less for RMP than for RBMP. We can thus

deduce that on the high PTx-SRx interference and/or low STx-

PRx interference regime, RMP achieves particularly notable

energy savings for the same rate performance as RBMP.

VIII. CONCLUSION

An optimal in terms of expected rate maximization PP has

been presented for underlay CR networks operating under

an average STx-PRx interference constraint and an algorithm

allowing for the efficient evaluation of this policy was de-

veloped. In addition, a second, suboptimum power policy

has been introduced. Both PPs investigate a limited (hybrid)

feedback scenario never studied before, where STx is assumed

to have knowledge of the PTx-SRx interference statistics. By

means of simulations, it is shown that both policies achieve

similar performance with the optimal PP exhibiting better

energy consumption characteristics.
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