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ABSTRACT
This paper considers the problem of interference control
in networks where base stations signals are coherently
combined (aka network MIMO). Building on an analogy
with so-called massive MIMO, we show how second-order
statistical properties of channels can be exploited when the
massive MIMO array corresponds in fact to many antennas
randomly spread over a two-dimensional network. Based
on the classical one-ring model, we characterize the low-
rankness of channel covariance matrices and show the rank
is related to the scattering radius. The application of the low-
rankness property to channel estimation’s denoising and low
complexity interference filtering is highlighted.

Index Terms—massive MIMO, distributed antennas, channel
estimation, interference mitigation, covariance matrix.

I. INTRODUCTION
Massive vs. Network MIMO. Interference control lies

at the core of modern physical-layer design in wireless
networks. The aggressive reuse of spectral resources is made
necessary by growing capacity demands. However this gives
rise to severe signal-to-interference ratio (SIR) limitations
especially at cell-edge. Interference impacts channel estima-
tion due to pilots’ lack of orthogonality [1], [2], as well as
data reception. Recently, approaches relying on the use of
additional spatial degrees of freedom (DoF) were proposed
to handle interference. Enhanced spatial DoFs are essentially
linked to the use of many coherently combined antennas
at the network side. The way such antennas are placed
in the network determines the nature of the algorithm and
gain. In a first approach, referred to as network-MIMO, the
many antenna elements are those deployed across many
(possibly single-antenna) base stations. In this case, some
inter-BS cooperation is enabled in the form of coherent
combining, allowing all BS antenna signals to be jointly
decoded/precoded at one virtual BS node [3], [4]. In the
second approach, commonly referred to as massive MIMO,
by contrast, many antenna elements are deployed at each of
(possibly fewer) BS [5], [6]. In this case, the law of large
numbers allows for orthogonality build-up between channels

linked to different users/cells, as the number of antennas M
grows to infinity. This property can in turn be exploited for
simple (matched- or MMSE-) filtering out of the interference
without much need for inter-BS cooperation [5]–[8].

Second-order statistics of massive arrays. Note that
in the case the cluster of jointly processed BSs spans the
entire service area, a network-MIMO system can be viewed
as a particular massive MIMO setup with antenna elements
scattered randomly across the network. Hence an interesting
question is whether some of the features of massive linear ar-
rays extend to non-collocated antenna topologies. Notably, a
low rank property for channel covariance matrices in uniform
linear arrays (ULA) was recently unveiled. In [9], [10] the
finite covariance rank is predicted from the angular spread
for arriving paths at massive ULAs. This property may lead
to powerful yet simple methods for pilot decontamination
[9] and multi-user interference filtering [10].

Contributions. In this paper we investigate the behavior
of channel covariance in network-MIMO based distributed
arrays. We study the regime of a large number of base
stations in a fixed network area (so-called dense network),
under the classical one-ring channel model. Our analysis
reveals a low-dimensional signal subspace behavior for dis-
tributed arrays in the large number of base station antenna
regime, even discounting path loss effects. We show the
richness of the covariance’s signal subspace is primarily
governed by the scattering radius around the user terminal.
We provide a closed form expression for an upper-bound of
the covariance rank and show by simulation how this bound
closely matches reality. Finally a simple MRC beamformer
is proposed, which exploits low-rank properties of channel
covariance and shows significant performance gain.

II. SIGNAL AND CHANNEL MODELS
We consider a large-scale antenna regime, often referred

to in the literature as distributed antenna systems. In such
a setting, a single virtual base station is deployed, having
its M antennas scattered throughout the network. We study
the uplink in which joint combining across all BS antennas
is assumed possible. Applications scenarios for this case
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include the ideal Cloud Radio Access Network (C-RAN)
with remote radio heads, or network MIMO/CoMP systems
with a large cluster of cells. The M base station antennas are
assumed uniformly and randomly located in a disk-shaped
network of fixed radius L, serving single-antenna users.

II-A. Distributed Array Channel Models
In order to facilitate the analysis, we adopt the classical

one-ring model [11] where users are surrounded by a ring
of P � 1 local scatterers (see Fig. 1) located r meters away
from the user. In the one-ring model, propagation from user
to base is assumed to follow P paths (hereafter referred to
as scattering paths), where each path p bounces once on the
p-th scatterer before reaching destinations. Hence, the path
length from user k to the m-th antenna via the p-th scatterer
is r + dkpm, where dkpm is the distance between the p-th
scatterer of the k-th user and the m-th BS antenna. The path
loss of the p-th scattering path is modeled by:

βkpm =
α

(dkpm + r)
γ , (1)

where α is a constant that can be computed based on desired
cell-edge SNR, and γ is the path loss exponent. We scale the
amplitude of each path by

√
P . The channel between user

k and all BS antennas is given by:

hk ,
1√
P

P∑
p=1

hkp, (2)

where hkp is the p-th scattering path vector channel between
user k and all base stations:

hkp ,


√
βkp1e

−j2π
dkp1+r

λ

...√
βkpMe

−j2π
dkpM+r

λ

 ejϕkp , (3)

where λ is the wavelength and ejϕkp denotes the random
common phase of that scattering path vector due to pos-
sible random perturbations of the user location around the
ring center. ϕkp is assumed i.i.d. and uniformly distributed
between 0 to 2π.

II-B. A Low Rank Model for Distributed Arrays
We are now interested in characterizing the rank of chan-

nel covariance for distributed antenna systems. In attacking
this problem it is important to distinguish the rank reduction
effect due to path loss from the intrinsic finite rank behavior
of the large antenna channel covariance in an equal path
loss regime. In fact, in an extended network (i.e. where some
base station antennas can be arbitrarily far from some users),
any given user will be received over only a limited number
of antennas in its vicinity, thereby effectively limiting the
channel rank to the size of this neighborhood. To circumvent
this problem, we consider below a (dense) network where
the path loss terms are set artificially to be all equal (to one)
and study finite rankness under such conditions.

MS 1

MS 2

r

Fig. 1. The distributed large-scale antenna setting.

Theorem 1. The rank of the channel covariance matrix for
a distributed antenna system satisfies:

rank(R) ≤ 4πr

λ
+ o(r). (4)

Proof: Can be found in [12].
In reality we show below that the right hand side of (4)
is a very close approximation of the actual rank. Theorem
1 shows a linear dependency of the rank on the size of
the scattering ring. When r increases, the richer scattering
environment expands the dimension of signal space. Fig. 2
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Fig. 2. Rank vs. r, M = 2000, λ = 0.15m, L = 500m.

shows the behavior of the covariance rank with respect to
the scattering radius r. We can see the rank scales linearly
with the slope 4π/λ. However because of the finite number
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of antennas the rank will finally saturate towards M when
r keeps increasing.

III. CHANNEL ESTIMATION AND
BEAMFORMING

In this section we will exploit the low-dimension property
for pilot contamination reduction and interference rejection.

III-A. Channel Estimation
It is well known that channel covariance information can

be exploited to improve channel estimation performance
[13], [14]. In the presence of pilot contamination, e.g., there
are K users sharing the same pilot sequence, a Bayesian (or
equivalently MMSE) estimator of the target channel vector
h1 is given by [7], [9]:

ĥ1 = R1

(
σ2
nIM + τ

K∑
k=1

Rk

)−1

S̄Hy, (5)

where Rk, k = 1, · · · ,K, is the channel covariance matrix
of user k. S̄, y, τ , and σ2

n are the training matrix, received
signal vector, pilot length, and noise power respectively [9].
The channel estimation performance of (5) is related to
how much structural information we can exploit from the
covariance matrices [9]. To this end, the low-rankness is
beneficial for channel estimation. Imagine an extreme case
when the covariances are close to an identity matrix, i.e.,
they have full rank, there is little information we can obtain
from the covariances. Under such condition the performance
of (5) is close to an Least Squares (LS) estimator. However if
the covariances have low rank as predicted in Theorem 1, the
Bayesian estimator is less affected by pilot contamination,
as will be shown in section IV.

III-B. Subspace-based Beamforming
In this section, we propose a simple beamforming strategy

building on the low dimensionality of the signal subspace,
which requires no accurate channel estimation. We consider
a K-user network with the first user being a target user and
all other users being interference users. Denote the sum of
interference covariances as RI = R2 + R3 + · · · + RK .
Consider the eigenvalue decomposition (EVD) of RI :

RI = UΣUH , (6)

where Σ is a M ×M diagonal matrix with the eigenvalues
of RI on its main diagonal. Suppose the eigenvalues are
in descending order and the first m eigenvalues are non-
negligible while the others can be neglected. We construct
the spatial filter at the BS side for user 1 as:

W1 = [um+1|um+2| . . . |uM ]
H
,

where um is the m-th column of U. We can assume
approximately that:

W1hk ≈ 0,∀k 6= 1,

W1Y ≈W1h1s
T + W1N, (7)

where N ∈ CM×τ is the spatially and temporally white
additive Gaussian noise, Y ∈ CM×τ is the received training
signal at the base station, and s ∈ Cτ×1 is the shared pilot
sequence by the K users.

Define the effective channel h1 , W1h1. Note that h1

has a reduced size, which is (M −m)× 1. An LS estimate
of h1 is:

ĥ1 = W1Ys∗(sT s∗)
−1
, (8)

The key idea is that channel estimate ĥ1 is coarse, yet
can be used as a modified MRC beamformer as it lies
in a subspace orthogonal to the interference and is also
aligned with the signal subspace of h1. During uplink data
transmission phase:

y = h1s
T
1 +

K∑
k=2

hks
T
k + n, (9)

where the lengths of transmitted signal sequence
s1, s2, · · · , sK are τu. y,n ∈ CM×τu are the received
signal and noise respectively.

The subspace-based MRC beamformer is ĥ
H

1 W1:

ĥ
H

1 W1y = ĥ
H

1 h1s
T
1 + ĥ

H

1 W1

K∑
k=2

hks
T
k︸ ︷︷ ︸+ĥ

H

1 W1n. (10)

≈ 0

In case there is no null space for RI , e.g., the number of
users is large or the interference users have rich scattering
environments, the subspace-based method can still avoid the
strong eigen modes of interference and therefore reject a
good amount of interference.

IV. NUMERICAL RESULTS
We examine both the channel estimation quality and the

sum-rate performance under the subspace-based modified
matched filter, based on covariance information. As one
performance metric, the Mean Squared Error (MSE) of
channel estimation for the k-th user is defined as:

MSEk , 10log10


∥∥∥ĥk − hk

∥∥∥2
‖hk‖2

 . (11)

In the simulation we average the channel estimation MSE
over different users and different channel realizations in
order to obtain the MSE curve. Another metric is the sum-
rate defined as follows:

sum-rate ,
K∑
k=1

log2(1 + SINRk), (12)

where SINRk is the uplink signal-to-noise-plus-interference
ratio (SINR) of the k-th user.
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We consider a random network with radius L = 500m,
with cell-edge signal-to-noise ratio (SNR) equal to 3dB. The
path loss exponent γ = 2.5. The number of scatterers is
50. The wavelength is λ = 0.15m (the carrier frequency
is 2GHz [15]). We obtain channel covariance matrix by
averaging hhH over the random locations of scatterers. We
first show the pilot decontamination reduction effect of the
MMSE estimator (5). Assume user 1 is located at the origin
while an interfering user is moving over the horizontal axis
at increasing distances from user 1. As we can observe in
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Fig. 3. Estimation MSE vs. user spacing, M = 2000, r =
15m.

Fig. 3, when the two users have identical pilot sequence,
an LS estimator is unable to separate the desired channel
and interference channel. By contrast, the channel estimation
error of MMSE estimator decreases almost linearly with
user spacing. One may also notice the constant performance
gap between LS and MMSE estimator in interference-free
scenario, which indicates that covariance information is still
helpful even in a highly distributed antenna system.

In the following we will show in Fig. 4 and Fig. 5
the performance of subspace-based MRC beamforming in a
network where two users share the same pilot. We compare
the subspace-based MRC beamformer and two traditional
MRC methods. In the figures “LS + MRC” denotes the
sum-rate performance of MRC beamforming using the LS
channel estimate; while “MMSE + MRC” is the performance
of MRC beamforming using the MMSE estimate (5). The
total number of distributed antennas is 500. The simulation in
Fig. 4 indicates the simple subspace-based method has a very
good performance. Due to pilot contamination, the MRC
beamformer using MMSE channel estimate is not as good
as subspace-based method. The reason is that R1 and R2

generally have overlapping signal subspaces in a distributed
antenna system.

In Fig. 5, we show the uplink sum-rate performance
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Fig. 4. Uplink sum-rate vs. user spacing, M = 500, r =
15m.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Radius of scattering ring [m]

S
u
m

−
ra

te
 [

b
it
s
/s

e
c
/H

z
]

 

 

LS + MRC

MMSE + MRC

Subspace MRC

Fig. 5. Uplink sum-rate vs. r, M = 500.

of subspace-based MRC beamforming as a function of
scattering radius r. The inter-user distance is 100m. The
subspace-based beamforming shows performance gains over
traditional methods especially when the radius of scattering
ring is smaller.

V. CONCLUSIONS
We investigate the low dimensional properties of covari-

ance signal spaces and extend previous results known in the
uniform linear array case to the case of arrays with randomly
scattered antennas over a 2D dense network. A correlation
model is derived which is exploited to gain insight on the
interference rejection capability of low complexity matched
filter-based receivers in distributed antenna settings.
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