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Blind Pilot Decontamination

Ralf R. Muller, Senior Member, IEEE and Laura Cottatellucci and Mikko Vehkapera

Abstract—A nonlinear channel estimation method based on though not required to be perfect, must have at least a nertai
a subspace projection is proposed. It is suitable for strony quality in order to utilize unlimited array gains. As a resul
asymmetric antenna array systems. It is shown that the so- gt jnterference from neighboring cells would limit the
called pilot contamination problemis an artefact of linear channel . . - .
estimation. It can be overcome in cellular systems with powe ability to obtain sufficiently accurate cha_nnel estimatesl a
controlled handoff if the channel estimation method proposd D€ the new bottleneck of the system. This effect, commonly
in this paper is used. An intuitive explanation for this finding referred to agilot contamination [4], was believed by many

is established by means of an isomorphism between a massiveresearchers, e.g. [3]-[8] to be a fundamental effect, tespe
MIMO system and a spread-spectrum system with unknown lack of a solid proof that it cannot be overcome.

signature sequences. The proposed method of channel estitiaza L . L .
is based on a spectral decomposition of the matrix of receide ~ X€C€Nt works have indicated that pilot contamination is

signal vectors collected over one coherence interval. It enalyzed Not as fundamental as it was thought to be: Using Bayesian
by means of random matrix and free probability theory. channel estimation, [9] found that pilot contamination can
Index Terms—Multiple antennas, multiple-input multiple- vanish under certain conditions on the channel covariance
output (MIMO) systems, massive MIMO, spread-spectrum, cha- matrix if some cooperation among cells is allowed. Using an
nel estimation, principal component analysis, random matices, eigenvalue decomposition of the sample covariance matrix o
free probability. the received signal, [10] found that for a wide range of syste
parameters, the channel can be estimated blindly with great
l. INTRODUCTION accuracy than with linear methods.

i .. In this paper, we show that pilot contamination is, in fact,
I N [1], a multiple antenna system was proposed that mimigs 5 fundamental effect, but a shortcoming of linear channe

the idea of spread-spectrum. Like a large processing 9ifimation. We show, that the array gain can easily be edliz
can be realized in a spread-spectrum system by massive {$5&so have the accuracy of channel estimation growing
of radio spectrum, a large array gain is realized by a massiyg,qyndedly with the number of antennas. Furthermore, we
use of antennas elements. This system design has attragigdy that this can be achieved with polynomial complexity in
considerable attention recently, see e.g. [2] for a sute$. he number of antenna elements. As in [10], our approach also
commonly referred to agnassive MIMO. lts advantage over giarts with an eigenvalue decomposition of the sample covar

the old spread-spectrum idea lies in the fact that antenngg.e marix (or equivalently a singular value decompasitio
can be manufactured in arbitrarily high numbers, while ®adi¢ (he received signal matrix). Unlike [10], it does not aien t

spectrum is limited. _ _ _ _subsequently estimate the channel matrix before perfaymin
Given perfect channel state mforma_ltlon, the signals v@cki yatq detection. It projects the received signal onto andsafjn
at all antenna elements can be combined coherently. The artge ference-free subspace where communication is gedern
gain grows unboundedly with the number of antenna elemes 5 non-linear compound channel that can be estimated.easil
at the access point. Therefore,. massive use of antennas €l&stilizing random matrix theory (RMT), we analyze for
ments can overcome both multiuser interference and theralicy, system parameters the subspace of the signal of ttere
noise for any given number of users and any given powers Qf,, pe igentified blindly. We find that power-controlled hand
the interfering users. o ) off protocols solve the blind identification problem for afiers
In [3], however, a pessimistic conclusion about the perfogycent for those that are close to cell boundaries. For those

mance of massive MIMO in cellular systems was reachegsers an exception handling is required and two methods for
Based on the explicit assumption of no coordination amoRg, e proposed.

gells-and on the imp!icit assumption of linear channel e§- In Section II, we introduce the system model. In Section Ill,
timation [3, Eq. (5)], it was concluded that the array gaifye propose the algorithm for nonlinear channel estimation
can be achieved only for data detection, but not for channglii,ing the array gain. In Sections IV and V, we investigat
estimation. The author argued that channel state infoomati the performance of this algorithm by analytic and simuativ
Manuscript submitted Sep 27, 2013. This paper was presentedrt at means, respectively. Finally, Section VI concludes theepap
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by means of orthogonal frequency division multiplexing oas R — oo, if the largest eigenvalue of the noise is negligible

related techniques. against the largest eigenvalue of the signal, i.e.
Let the frequency-flat, block-fading, narrowband channel R
. . m'ZZ'm
from T transmit antennas t? > T receive antennas be MAX —————
described by the matrix equation lim m___mm =0. (6)
R—o0 mHXX"H'm
Y=HX+ Z, 1) max mim

where X € CT*C s the transmitted data (eventually multi-Note that the limitz — oo implicitly implies C' — oo, since
plexed with pilot symbols)C' > R is the coherence time in C = R. Therefore, we assume in the sequel tiaand C'

multiples of the symbol intervalH € C2*T is the channel Scale in the same way.

matrix of unknown propagation CoefﬁcientK c CRXC is The limit condition (6) is not hard to fulfill. In faCt, it
the received signal, an@ € C*C is the total impairment. holds true for independent constant variance entriesZin

Furthermore, we assume that channel, data, and impairm&ht and X. To see this note that the largest eigenvalue

have zero mean, i.€ X = EH = E Z = 0. The impairment Of ZZ' scales linear withR, as the number of entries

includes both thermal noise and interference from othdsceln Z € C7*¢ grows quadratic, but the number of non-

and is, in general, neither white nor Gaussian. zero eigenvalues grows linear. At the same time the largest
Note that (1), can also be understood as a code-divisigigenvalue of HX X'H' grows quadratic withR, as the

multiple-access (CDMA) system with the columns Ef de- number of entries inH € C"*" grows linear, the number

noting the spreading sequences @hdenoting the processing©f entries in X € C"* grows linear, but the number of

gain. It is well-known that CDMA can be demodulated withouon-zero eigenvalues i§ and thus constant.

knowledge of the spreading sequences by means of blind

algorithms, see e.g. [11]. Many of those algorithms canlaéso B. Detailed Algorithm

applied in massive MIMO systems. In the following section

we introduce an algorithm, which we consider particularl

suited for cellular massive MIMO.

' Having found an algorithm for a single transmitter and white
Moise, we now apply this idea to multiple transmit antennas
and analyze its performance in colored noise. Consider the
singular value decomposition

Y =UxSV' 7)

IIl. PROPOSEDALGORITHM
A. General ldea

Before going into the details of the proposed algorithm, waith unitary matrices/ € C**# and V' € C“*¢ and the
start with the idea behind the proposed procedure. Considér< C' diagonal matrix3 with diagonal entriesr; > o2 >
the channel model (1) for a single active transmit antenna, = or sorted in non-increasing order. As shown in [10],
i.e. T = 1 and look for the matched filtem! such that the the columns ofU are highly correlated with the columns of
signal-to-noise ratio (SNR) at its output is maximum. In tehi H. Based on this observation [10], proposes two algorithms
noise, maximizing the SNR is equivalent to maximizing th&r improved nonlinear estimation of the channel matkix
total received power normalized by the power gain of therfilte In the sequel, we propose a strategy different from the one

Thus, the optimum filter is given by in [10]. We decompose the matrix of left singular vectors
o miJm U = [S|N] (8)
m° = argmax ———— (2)
m mim into the signal space bas#c C#*T and the null space basis
with T N e C®*(E=T) Now, we project the received signal onto the
J = X,E‘H {YY } . (3) signal subspace and ge~t
Yy =Sy, (9)

It is a well-known result of linear algebra that the vectaf

maximizing the right hand side of (2), commonly referredso arhe null space basisV is not required in the sequel. In
the Rayleigh quotient, is that eigenvectorbthat corresponds fact, there is no need to compute the full singular value
to the largest eigenvalue df. Since we do not know the matrixdecomposition (7). Only the basis of the signal subspace
J, we have to cope with the approximate solution S is needed and there are efficient algorithms available to
miYYim exclusively calculateS.
— (4)  Consider now the massive MIMO case, i.>> T: The
T-dimensional signal subspace is much smaller thanARhe
This approximation is tight for large number of antenngimensional full space, which the noise lives in. White pois
elements, i.e. we have the almost sure convergence of tee ing evenly distributed in all dimensions of the full spaceugh
product the influence of white noise onto the signal subspace becomes
[(m®;m*)[ = [[m?]] - |[m*]| (5) negligible askR — co. In other words: The considerations for

the largest eigenvalue in (6) and its corresponding eiggove
1The assumptiorC’ > R is made to simplify the exposition. In fact, all . g 9 ( ) P g eiget

the formulas presented in the following hold féf < R, as well, although in (5) are equally valid for thé" largest glge_n_values and their
their derivations might require modifications. corresponding eigenvectors, as long7ass finite.

m* = argmax
m mim
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Using the algorithm above, we can achieve an array gainFor practical systems with small, but nonzero load,(.e:
even without the need for estimating the channel coeffisienty < 1, a certain power margin is required between signals of
In fact, channel estimation can be delayed until the receivaterest and interfering signals. For most interferingrsisguch
signal has been projected onto the signal subspace and algower margin is created for free by shadowing and path loss.
dominant part of the white noise has already been suppresdddwever, there might be few users close to cell boundaries

In order to save complexity it is sensible not to estimat@ho lack such a power margin. As a kind of countermeasure, a
the channel matrid, at all. Instead, we directly consider thepower margin has to be engineered for them. There are various
subspace channel ways to do so. In the sequel, we will exemplarily list two such

Y=HX+2Z (10) potential methods.

_ One way to create an additional power margin is a smart
and estimate the much smaller subspace channel métrix choice of frequency or time re-use patterns. However, this
CT*T., Although the data dependent projection (9) implies thagquires coordination among cells. Another way to create an
the noiseZ = STZ € C7*C is not independent from the dataadditional power margin is to equip each user with at least
X, neglecting this dependence is an admissible approximatigvo transmit antennas. Then, the few users who suffer from
that becomes exact due to (5), as the number of receiwgufficient power margin can form beams that favor one of the
antennasik grows large. base stations or access points over othdrsis will noticeable

In addition to white noise, there is co-channel interfeeendéncrease their power margins. The majority of users will not
from L neighboring cells. For sake of notational conveniencgeeed to employ such methods and can use the two antennas
we assume that the number of transmit antennas is identif@l spatial multiplexing.
in all cells and equal t@". The interference from neighboring

ck:alls is- anything but white. It is the more colored, the serall IV. PERFORMANCEANALYSIS
the ratio .
T We have demonstrated above, that the proposed algorithm
a=5 (11)  works in principle in massive MIMO systems as the number

. . . . . . of receive antennas grows much larger than the product of
which will be cal!edload in the following. Any R-dimensional transmit antennas and neighboring cells. In practicalesyst
cr?ar;_ne_l vector is 0?299?}”% to anyd(?ther cﬂanhnel \;]ector tRe number of transmit and receive antennas is finite and the
the limit /& = oc. This holds regardiess whether the tW(?oEda can be made very small but not arbitrarily small as in

channel vectors correspond to transmitters in the same SRl classical massive MIMO setting. Then, in real systems

or in different cells. In the limit of zero load, i.ex — 0, the asymptotic properties are only approximated. A useful

we have an even strong_er result: ihe SUbSpaC.e spanned byam? insightful approach to understand the behavior of a real
co-channel interference is orthogonal to the signal sulespa

) . network consists in assuming that bdthand R grow large
That means that in the IimiR/T — oo, the (L + 1)T J J 9

| aul | f1h ived sianal matfib with a fixed ratioa. This setting can be studied effectively
argest singular values of the received signal matfioecome by RMT. In this section, we will adopt results from RMT to
identical to the Euclidean norms of th& + 1)T" channel

‘ i identi hich sinaul | answer the question, how large is large enough in practice.
vectors. If we can iden |fy which singular values corregpon Yve decompose the impairment process
to channel vectors from inside the cell as opposed to channe

vectors from transmitters in neighboring cells, we can reeno Z =W+ H1X; (12)

the interference from neighboring cells by subspace ptiojec
g g y P pro into white noiseW and interference fromL neighboring

cells where interfering dat&X; € CY7*E is transmitted in
C. ldentifying Signals of Interest neighboring cells and received in the cell of interest tigtou

RXLT ini
Note that for R — oo, the system has infinite diversitythe channelH; € C**%. Combining (1) and (12), we get

and the effect of short-term fading (Rayleigh fading) vaes Y=HX + H X+ W. (13)
Thus, the norm of a channel vector is solely determined by
path loss and long-term fading (shadowing). In a cellular Let the entries of the data sign&l be iid with zero mean
System Wlth perfect received power Contro| and a powe’ﬂnd varianceP. Let the entries of the channel matrild
controlled handoff strategy, the norm of channel vectoosnfr be also iid with zero mean, but have unit variance. Let the
neighboring cells can never be greater than the norm @ptries of the matrix of interfering signals; be iid with zero
channel vectors from the cell of interest. We conclude thEtean and variancé and let the entries of thé*" column
the identification of singular values belonging to transeng ©Of the matrix of interfering channel#l; be iid with zero
within the cell of interest is possible by means of orderin?;'lean and variancé;, /P such that the ratid,, /P accounts
them by magnitude in the limitR,a) — (c0,0), i.e. the for the relative attenuation between out-of-cell useand the
number of receive antennas grows large while the numberigtracell users. Let the empirical distribution ¢f converge
transmit antennas does not. to a limit distribution asL. T — oo which is denoted by (-).
Furthermore, we assume that the elements of the Adisare

°Note that the pairwise orthogonality of channel vectorsdador R —
oo, in general, and does not requite — 0. However, the orthogonality of ~ 3Note that such beam forming does not require channel stéigriation.
subspaces requires — 0 in addition to R — oo, as the accumulation of One can keep on forming random beams until a sufficient powangim is
T = «R vanishing pairwise correlations is not vanishing, in gaher reached.
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5 JOY/1001 1058, 100, (41100, T3, R300, C1000, P0.1, 170,026, W= decontamination to know which system parameters do lead

to bulk separation. The extremely good match between the
asymptotic distribution and the empirical distributiom fmite
matrices corroborate the usefulness to study the suppdtineof
asymptotic eigenvalue distribution 3fY " and the asymptotic
conditions of bulk separability.

N
2]

N

=
ul

A. Unilateral Approximation

The general result for the asymptotic eigenvalue distiglout
(15) is implicit and not very intuitive. In the following, we
develop an approximate analysis for small, but not vangshin

0 0 40 Veigemvang 0 10 loadsa. It is based upon the separate calculation of each bulk
and subsequent rescaling of the bulks due to pairwise loulk-t
Fig. 1. Asymptotic eigenvalue distribution of the matixy t /R in solid  bulk repulsion. We will see that it leads to explicit and itite
red line fora = Wlo’ K= %, P=-10dB, I, = % vk, W =0 dB. The design guidelines.

asymptotic eigenvalue distribution is compared to the eiogli eigenvalue iR ;
distribution for7T" = 3, R = 300, and C' = 1000 given by the histogram in In the Iarge antenna limift = C/’i — o, the smgular

[N

eigenvalues probability

0.5]

blue. values of W /«/CW follow the Marchenko-Pastur law, i.e.
Vi-@—1-1y
independent and identically distributed (iid) with zerean pw (z) = - (18)
and variancéV'. Finally, we define the normalized coherencg 1/\/F—1 <z < 1/\/i+1. In the worst case, tHe largest
time . . . .
C singular values of the noise affect the signal of interese T
=7 (14)  power of white noise being present 1i is thus at most
Let us denote the asymptotic eigenvalue distributioVdf ' RS ’
! X i TCW {1+ . (19)
as Py vy (x). In Appendix A, we show that this asymptotic VE
eigenvalue distribution obeys The total power of the signal of interest at the receiver is
sGyyt (s) +1= gRC’P and the signal-to-noise ratio i is lower bounded
_ PTCa(sGyyi (s) +1— k) Gyyi(s) Y P R
ak — PTC (sGyyi (8) + 1 — k) Gyyi(s) SNR > W L 2 (20)
- / 2LTCa (sGyyi (5) + 1 — k) Gyyi (s)dPs(2) ( T W)
ak — 2TC (sGyyi (8) + 1= K) Gyyi(s) The signal-to-noise ratio scales linearly with the numbkr o
WC (sGyyt (s) +1—K)Gyyi(s) 15 receive antenna® and can be made as large as desired by
N K (15) adding more and more receive antennas. The influence of the
with coherence tim€' > R onto the signal-to-noise ratio is at most
G [ dPyyi(x) 16) 2 factor of 4 and plays only a minor role.
vyi(s) = T —3 (16) In addition to white noise, there is co-channel interfeeenc

denoting its Stieltjes transform. By means of the Stieltjefgor.n nelghpormg cglls. The.co-chann.el interference is not
) . White but, like the signal of interest, highly concentraiad
inversion formula

certain subspaces. The empirical distribution of the seghar

p(z) = 1 lim SG(z + jy) (17) singular values of the normalized signal of interest, i.e.
T y—0+ H X /TR, is shown in Appendix B to converge, &— oo,

In Figure 1, the solid line in red shows the asymptotititerval
eigenvalue distribution oYYT/R obtained by (15)-(17). The wP W2+ r kP K2+
histogram in blue shows the empirical eigenvalue distiiut e 2P\/ o a + 2P\/ o
of YYT/R for T = 3, R = 300, andC' = 1000. We observe
that the distribution is decomposed into three disjunck&ul The empirical distribution of the squared singular valués o
A noise bulk to the far left, a bulk of the signal of interest téhe normalized co-channel interference, F&.X 1/ VT R, also
the right, and an interference bulk in between. The fact the@nverges to a limit distribution. Fa¥ < 1, it is supported
the bulks do not overlap enables us to blindly separate tifethe interval

signals of interest from interference and noise as disclisse 7 [ .2 I 2
f<;__2[ LKJ +/€;/€_+21 LF& + K
« « « o

Section 11I-C. =

The three bulks are not disjunct in general, but only for
certain values of the involved system parameters. It isethefor I, = IVk. We remark that the conditiod, = IVk
fore of utmost importance for practical design of blind pilois unrealistic, in practice. However, the general case is no

. (1)

(22)
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tractable by analytic means. We note, however, that settittge singular value distribution of the sum of the signal of
all interference powers to the maximum interference powaiterest and the interference convergeshas; oo, to a limit
among the users is a worst case scenario which is covereddistribution that is composed of two separate non-overtapp
(22). bulks [12]. Note that in the limitv — 0, the signal bulk always
When separately calculating the eigenvalue spectra of tbeparates from the interference bulk as longigd > 1.
signal-of-interest, the interference and the noise, tleei@cy Therefore, the signal subspace and the interference stibspa
of the results suffers from the eigenvalues in differenkbul can be identified blindly. The interference can be nulled out
repelling each other. In the following, we will correct fdris and pilot contamination doa®t happen.
effect up to first order. We decompose one bulk of eigenvalues
into single eigenvalues. Then, we introduce .correct.iomfzs;c B. Bilateral Approximation at High SNR
that account for the scaling of one of the single eigenvalues . o o .
due to the presence of one other bulk of eigenvalues. We will The previous approximation was intuitive, but its accuracy
then approximate the influence of several other bulks, elg.imited. In this subsection, we use perturbation theorysf
noise bulk and interference bulk, by multiplying the cotime MOre precise approximation for small load< 1 and I, =
factors. This procedure is an approximation, since we mﬂg'é’ where we account for the mutual |r_1teract|0_n between the
the fact that also the scaled bulk of eigenvalues repels tiéerference bulk and the bulk of the signal of interest.
scaling bulk and that the two scaling bulks repel each dther. L€t us denote byPy, and Zy, the eigenvalue bulks corre-
The presence of additive noise scales the eigenvaluesSBPNding to the signal subspace and the interference stémspa
both the signal of interest and the interference. As shown gSPectively, when the white noise variancélis Additionally,

Appendix C-A, the scale factors are given f8rs T’ by Ie_t us assume th_a? > [ as in systems of practical interest.
Finally, let us define
n <1+W><1+W) (23) 1
p= [ — «
PR PC = .
"= PIC ~ PRC (29)
and @ 1
t=——F=—+ 30
ny = <1 + K) (1 + K) : (24) ITC ~ IRC (30)
IR Ic C=WC. (31)

respectively. Note .thf'it.the two _scale factors converge to 1".'he following results are shown in Appendix D: In the high
the large system limit irrespective of the load if the noise SNR regime, i.e. fol/” — 0, the inverse of the Stieltjes trans-

po_\l/_vherW does notfspalefwﬂh the SyISteth'Ze.' | ff rm is well approximated by the rational function (32) shmow
e presence of Interference scales the eigenvalues o Ftop of the next page. The extremes of the function(G)

signal of interest and vice versa. As shown in Appendix C'%’re the solutiong?,, G, Gs, G4 to the quartic equation (33)
the scale factors for non-overlapping bulks are givenftos (0" 0 top of the next 7page @ fori— 1234 are

T by all real with G, < G < G < G4 and s (Gy) < s(D(G3)
i — <1 N éa_/;;;) (1 n BL_041> (25) then an approximation dP, andZ; is given by
! ! Po ~ [sV(G3), s (Gy)] (34)
" / Ty ~ [sV(Gh), sV (Ga)]
=1+ ) (1 ), (26) N intervals [V (Gy), s
L-1 L1 and the two intervals [s'V(G35),s(Gy)]  and

_ [s()(Gy), sV (Gy)] are disjoint.
respectlve_ly. Note, h(_)W_evgr, thaF these scale _factors _al;e O Different approximations oy andZ, can be obtained by
accurate ifP > I. This limits their usefulness in practice. approximatings(G) by the function

If the two supporting intervals do not overlap, i.e.

npipP NniiiZ = 0 (27) %0 “ 1 90(G) — po(G), elsewhere.
or equivalently whereG= andG<° are the instances of
L
P ngy 1+2\/al (1+1) qoo - Klrtt) +alt+ Lr)
7 , (28) —2k — 4o — 4L
1
PP 1 -2y /a(1+ ) VEE(r — )2 + 2ak(Lr? 4+ 2 — 3rt — 3Ltr) + o2(t + Lr)?
—2k —4a — 4L«

4To better understand this procedure consider a system with(isoise (36)

bulk), earth (interference bulk) and moon (bulk of signalimterest) which ) ) ) )
mutually affect each other by gravity. We decompose the matmsingle with minus and plus sign, respectlvely,
atoms. These atoms are too small to affect the path of tha.e0t we can

calculate the position of the moon atoms without accounforgthe force $0(G) = [(QQ(L +1)(k—1)+ k(K — 4))G2
the moon enacts onto the earth. Then, we apply the same pirecéat the 9
interaction between moon atoms and the sun and superimpesessults +r(at+Lr)+(k=2)(t+7)G+k T’t]

of the moon-earth and moon-sun interactions. The fact, shatand earth 2
influence each other is hereby ignored. [2G* (2 + (L + )a)G + k(t+ 1)),  (37)
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(L+1)(k—2)a—r)G%+ ((Lr + t)(k — V)a — k(r +1))G — krt

(@) = G((k+2(L+1)2)G2 + ((Lr + t)a + k(r + t))G + rrt)

(32)

(2(L 4+ 1)%(k — 2)a® + (L + 1)(k — 4)ka — *)G*
+ (2L + )L+ 1)(k = 1)a® + ((Lr + 1) (k = 1) = (L + 1)(t + 7))ok — (¢ +7)5%) G
+ ((Lr +t)*(k — 1)a® + (2 + Lr*)(k — 2)ka — (6(L + 1))rtka — ((t +7)? + 2rt)x*)G?
—2rte((Lr +t)a + (t +7)x)G — k*r*t* =0 (33)

pO (G) =K [fﬂ?(fi _ 4a(L + 1))G4 + QK(K/(t + ,r) 3)( 10*3 (1::1‘/100,K: 1IO/‘3, r=1/100, t‘:41100, T=3: R=300, C=‘1000, PZO.l‘, 1=0.025
= 3a(Lr + )G + (1 + 4rt + r?)r* T L) e 1R e |
_ _ _ 2 2\ 12 2.5 e : U !
2ak(Lr —t)(r —t) + o”(t + Lr)")G " D TR G0) R GIRG (G). R Gl
2hrt(k(t + 1) + alt + Lr))G + k222 A B P
Ss(G), s (G) [s(Gy), s (Gy)]

/ (2G* (264 (L + 1))G + k(t +1))) . (38)

1.5

This approximation of the inverse Stieltjes transform igazl

in Appendix D. The extremes of this function cannot b
derived in close form. Then, we approximate them by tt
zeros ofpe(G), G2, G, GY andG? . 1f GP <GP < 9
G < G and s$P(GP) < s{P(GY), we obtain the .
approximations 0 20 40 eg(eigenvalgg) 100 120 140

eigenvalues probability

;

o 1@ () ()@Y 2) (2)
Py ~ [S? )(G? ))7 S? )(Gz(; ))] = [¢O(G? ))’ ¢0(Gﬁ(l ))] (39) Fig. 2.  Bulk-support apprToximation of the asymptotic eigdne gis—
T 2 2 2 20\ 2 2 ) tribution of the matrix YY /R by (34) and (39) foraa = -,

0 [SO (Gl )’SO (G2 )] [¢0(G1 )’(bO(GQ )] k = 0 P = —10dB, I, = %Vk. A further approximle(ljt(ijon

3 K
; : - : : IR (), R (G UIR(sEP (G3)), R(s82) (G4))] s also shown.
which are motivated in Appendix D. The approximated Inteérhe 0histogram in %Iue is the emp?rical eigenvaI?Je distidoutfor 7' = 3,

vals in (34) and (39) obtained by application of perturbtior — 300, and ¢ = 1000 while the red line is the asymptotic eigenvalue
theory are a very good approximationBf andZ, as shown distribution.
in Figure 2. The approximation obtained by (39) contains the
support of the asymptotic eigenvalue distribution.
As well known, the quartic equations to determide and Wwhere
G(Q), i = 1,...4, admit solutions in closed form. However,

3

they are not insightful and handy because of their complexit,(2) ) — 2ak5(L +1) = 26(k —1) — 2a(L + 1)

Thus, in the following, we propose looser approximations of~ 2(((L+1) = )z — K(2t — 1))
the intervalsP, andZ, yielding handier conditions on bulk k((4 = 5K)t+ (k — 2)r + ot + Lr))z + k*t(r — 3t)
separation. Further approximations yield * 222((a(L + 1) — k)x — k(2L — 1))
(44)
2 2
Po C |s5°(GRo), sp (GP“)} (40) and Gz, and Gz, are obtained by selecting the instance of
where (45), shown on top of the next page, with plus and minus sign,
respectively. The derivation of the proposed approxinmetio
ey (2) = 2ak(L+1) —2a(L 4+ 1) + 2k(1 — k) for Py andZ, is detailed in Appendix D.
P 21+ L)a — )z + 2k(t — 2r) By enforcingGz, < Gp, we obtain a bound on the ratio

K(k(t —5r) + alt + Lr) + 4r — 2t)z + k?r(t — 3r) 2 as a decreasing function of the rafio= £ = £

222(((L+ L)a — )z + k(t — 21))

+

(41) o (1-BPLA+3(L+1)S+1-2(1+5)V3LE)

andGyp, andGp, equal the instances of (42), shown on top’ (LB = 1)(LF2 +6(L —1)8 — 1) + (L2 — 2L + 924662)
of the next page, which is obtained by selecting the plus angligyre 3 shows the region of paramete¥sand 3 where
minl_,|s sign, respectively. Similarly, for the bulk assoethto the pulks of the eigenvalues for the signals of interest &ed t
the interference subspace, one for interference do not overlap for various value oAs
@) @) expecte_d, the separgbility regio_n shrinks when the intenee
Iy C |s;'(Gz,), sy’ (Gz,) (43)  from adjacent cells increases, i.&.,increases.
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a® _ r(t - T)Ii(t —r)+alt+(L—-2)r)£2/ar(t —7)2 —a2r(t + (L —1)r) (42)
P (at + aLr — kt + kr)? + daLr(t — )
k(t —r)+a((2L — 1)t — Lr) £ 2\/axL(t — )2 + o2Lt((L — 1)t — Lr)
Gz = —kt(t—7) (45)
(at + aLr — kt + kr)? + daLr(t — )
Region of separability for signal and interference subspaces & 1¢30=1/100k= 10/3, r=1/100, t=4/100, T=3, R=300, C=1000, P=0.1, =0.025, W=1
---L=2
0-9l tj | 25 /é”(rz,»«é”(rz,,)] (2(Tp), <D (Tp)]
0.8j —H >
i £
0.74 g
] 8 1.5
0.6/% 3
; g
X 2
B 0.5 ?‘ © 1
)
0.4 Y 0.5]
t
SR ’ A
0.2 “‘ ,‘(\ ] % 20 20 sg(eigenvalég) 100 120 140
T
0l Sls.. 1
~l./:”':"*"‘h'/um!- Fig. 4. Eigenvalue pdf of a network witl = 3, L. = 2, R = 300, and
0 : e - W = 0 with approximation of its support boundaries
0 0.2 0.4 0.6 0.8 1 pp PP
/P

communication system as in Figure 1 but additionally imgxhir
by Gaussian noise with variance equal to 0dB. Beside the
histogram of the eigenvalues for a finite systems and the
C. Bilateral Approximation for General SNR asymptotic eigenvalue pdf drawn in solid line, we show the
- . i tervals[g@)(FI) (g )} and [g@)(rp) I (Tp )}
An approach similar to the one proposed for the high S 1L Ve L vl P v
regime in Appendix D can be applied fo > 0 to determine e vertical lines indicate thé approximation of the boufeta

approximated supports of the bullg, andZyy. We propose of the asymptotic pdf obtained by perturbation analysise Th
the conclusive results in the following while the derivaiso ag:;g)rommatmns based on the second order Taylor expansion

Fig. 3. Separability region obtained by (46) for= 2,4, and 7.

are detailed in Appendix E. Then, x) andg ( ) include the actual asymptotic support.
Pw C [gﬁ)(rm) (2)(F7> )} (47) V. NUMERICAL RESULTS

In this section, we provide simulation results for the un-
wheregg)(g:) is defined in (48) on the top of next page andoded bit error rate (BER) and compare the proposed SVD-
I'p, andI'p, equal the instances of (49), shown also on topased algorithm, with the conventional linear channel and
of the next page, which are obtained by selecting the plus ashata estimation scheme considered in [3]. For all cases we
minus sign, respectively. Similarly, for the bulk assoethto set P/W = 0.1 (SNR is —10 dB), that is, assume that

the interference subspace, the system operates in the low SNR region. Identical set of
(2) (2) orthogonal pilot sequences of lengthis adopted by all the
Iw C (Tz,), sz (I'z, )} (50) access points to facilitate channel estimation. We consici

the effect of increasing the number of receive antennasewhil

whereg(z)(m) is defined in (51) on the top of the next pagehe rest of the parameters are fixedZfo= 3, L = 2, and
andI'z, andI'z, are obtained by selecting the instance af' = 1000. As may be observed from Fig. 5, the proposed
(52), shown also on the top of the next page, with plus amdgorithm (SVD) widely outperforms the receiver based on
minus sign, respectively. linear channel estimation in [3] (conventional). Furtherm

Interestingly, the separability condition obtained byanf while the BER of the conventional receiver has an evidemtrerr
ing I'z, < I'p, yields to condition (46) as in the case offloor, the BER performance of the proposed receiver improves
absence of noise. This is not as surprising as it may look @iboundedly with a slope that increases as the rafi®
first sight, as it was already observed from (23) and (24) thé¢creases. This trend confirms that the pilot contamination
the noise does not affect the support in the large system linproblem is overcome, at least in principle.

The tightness of the proposed approximation is assessed he effect of relative interference strengthP? and number
by numerical simulations. In Figure 4 we consider the sanoé length4" pilot sequences is plotted in Fig. 6. Forr = 1
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g(g)(x) _ ak(L+1)—a(L+1)+ k(1 —k)+ (k= 1)(t—2r)
P (14 L)a—r+((t—2r)z+ x(t —2r)
K (6(t=5r) +alt+ Lr) +4r — 2t + (r(t — 3r))z + wr(t — 3r) (48)
22 (I+ L)a—r+¢(t—2r)x + (t —2r)
o) _ —kr(t—r) [Qr(t —r)+ Kt —r)+alt+(L—2)r)£2\/ar(t —r)2 —ar(t+ (L —1)r) 40
P (et — )¢+ (a— R)t+ (@l + 6)7)2 +4r¢((a + k)r2 — (a + 28)tr + Kt2) + dasLr(t — 1) (49)
(2 (2) = ar(L+1)—k(k—1)—a(L+1)— (k=1)(2t — r)C
= (a(L+1)—r—=C2t—7r))z —r(2t—71)
n k(4 —5K)t + (k= 2)r + at + Lr) — kCt(3t — 7))z + K*t(r — 3t) (51)

202((a(L+1) =k = C(2t — 7))z — k(2t — 1))

—kt(t —7) |kt — 1)+ a2L — 1)t — aLr + t(t — ) £ 2y/arL(t — )2 + a2Lt((L — 1)t — Lr)
Iz= (at + Lar —tk +re +t(t —r)0)2 +4(t — r)(t[(k + L — a)t — (oL + )r]¢ + axLr) (52)

conventional

BER

conventional

10~ -

SVD

50 100 150 200 250 300 350 400 450 500 10770 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. BER vs. number of receive antennas Vifite= 3, C' = 1000, L = 2,

and P/W = 0.1 (SNR is—10 dB). Fig. 6. BER vs. relative interference strength with = 3, R = 300,

C = 1000, L = 2, and P/W = 0.1 (SNR is —10 dB). The number of
length4" pilot blocks isT =1, 5, 10.

V1. SUMMARY AND CONCLUSIONS

the same orthogonal pilots are used for all access points. InVe proposed a practical algorithm with polynomial com-
the caser = 5,10, random pilot sequences and zero-forcinglexity to avoid pilot contamination in cellular systemsthwi
channel estimation is employed. The RMT thresholds for thwer controlled handoff. The dominant complexity of this
given parameters are/P = 0.61 andI/P = 0.78 according algorithm is a singular value decomposition of the received
to (28) and (46), respectively. The proposed algorithmex@s signal block. The algorithm was analyzed by means of random
significant performance gains below the RMT thresholds whematrix theory. The analysis shows that pilot contaminat®n
compared to linear channel estimation. For very strong-inteot a fundamental effect, but is overcome by means of the
ference, however, the conventional receiver outperformes tproposed algorithm.

subspace approach. The reason is because we always selethis paper has focussed solely on the reverse link channel.
only theT" strongest eigenvectors for projection, but for finité€-or the forward link channel, one can exploit channel reci-
system sizes and close to the RMT threshold this is suboptinpaocity in time-division duplex systems. Similar to the eese

and we lose a large amount of useful signal while projectidimk channel, knowledge of the full channel matrix is not
towards interference. This effect can be mitigated by sielgc required. Basic considerations of linear algebra show ithat
more thanT" eigenvectors for subspace projection whegh is sufficient to know the subspace which the channel vectors
is expected to be close to the threshold predicted by RMT.of interest span in order to solely require accurate channel
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estimates for the projected channel (10).

APPENDIXA
EIGENVALUE DISTRIBUTION
Consider the random matrix

K

D = Z akBka
k=-1

(53)

with a; € R, By € C"*™ and C}, € C™+*" being random

matrices with iid. zero-mean entries with varianicén; and

1/n, respectively. First, we will derive the asymptotic eigen-
value distribution of DD in terms of its Stieltjes transform

Gppi(s). Let Dy = B, C). From [13, Eq. (31)], we have

_S2GD DT( s)—s(pk — 1)G2Dsz (s) +SkaDkDL(S) = Pk
(54)
with
mi
pr=— (55)
n
With [12, Lemma 1], we get
—sGp, (s) = (pr — 1)CB, (s) + sprCGp,(s) = pr (56)

with Gp, (s) denoting the Stielties transform of the sym-

metrized singular value distribution dD,. The definition of
the R-transform [14] gives

~ LW
Rp, (w) = h (57)
and additive free convolution implies
K 2
Rp(w)= Y —E (58)
b1 Pk — akw

It follows straightforwardly from the definition of the R-

transform that

_ =-s+Rp (-G 59
Gp(s) S ThRp ( D(S)) (59)
and with [12, Lemma 1] that
1 -
———— = s+ s5Rp (~V5Gppi(s))  (60)
Gppi(s)
K 2
apes Gppi (s)
=—5— (61)
k:zl Pk — akSGQDDT( )
Next we consider the decomposition
E
D = { F } (62)

with E € C#"*", From [15, Theorem 14.10], we have

Regt(w) = Rppi (Bw).

In the Stieltjes domain, this R-transform relation tratesanto

(63)

BGEgi(s) = Gppt (5 + (64)

Thus, we find with (61)

L s — _Bs-1
BCrri(s)  BGpmi(s)
K aipk (s + BGﬁif(s)) BG g (5)
o=t (s siim) BCm ()
(65)
and
S + 5o ) G
sGggi(s) = fl—z P (S 5G T( ) Bpt(5)

h——1Pk — G (SJFW) B? GEEr( )
(66)

Now, we consider the matriY” in (13) as a special case of
E. This implies

K=1LT (67)
R 1
B c=x (68)
T «
=== 69
P—1 C - ( )
a’>, = PTC (70)
po — X (71)
ai =WcC (72)
1
pr=g5 k>0 (73)
ai =I;C Vk>0 (74)

and (15) is obtained in the limK — oo. Note that the entries
of BoC become iid. apg — c.

APPENDIX B
INTERVAL BOUNDARIES

It is shown in [13, Eq. (31)], that the asymptotic eigenvalue
distribution of X" HT H X /T R has a Stieltjes transfor((s)
fulfilling

2k2G3(5) + sk(a+ 1 — 2k)G?(s)+
(sa+ (k—1)(k —a))G(s) —a=0. (75)

The support of the distribution is given by the interia{; 2]
wherex; andz, are the two largest nonnegative solutions to
the equation [13, Eq. (37)]

10 |
4x3—(10m+10+7ﬁ—a—“———)x2+

(0% (0%
4 2 2 2 2 3 3
24 444 S 2B
« « « « «
1 2 1\°
—%—a——)x—i—a(ﬁ—l)Q(f—l) (1—— = 0.
(0% (0%
(76)
For o < 1, this can be approximated by
2
4x37(10n7m 71)—4*2(4[{ — k% — Kk — 8k
2 £ (ﬁ_1)2 _
—8K a)g—i— o3 (F& —4drka — 4k a)—O. (77)
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It can easily be verified that (77) has the following threetsoo

2
Ty Iy gt (78)
o o
2
gy = gy R (79)
o o
—1)2
R Gk ) S (80)
4o
This completes the derivation.
APPENDIXC

EIGENVALUE REPULSION

In order to find the support of the asymptotic eigenvalue

distributions we follow [16, Eq. (48)]. There it is shown tha

the boundaries of the support of the asymptotic eigenvakie d

tribution are extrema of the inverse of the Stieltjes tramnstf
For a particular example different from ours, the procedsire
explained in greater detail in [17, Chapter 7].

A. Noise Correction Factor

First, we address the eigenvalue shift due to presence
white noise.
Consider the random matrix

D= (\/FAB n \/WC) (\/]_DAB n \/WC)T

where A € CEXoR B ¢ CoRX~E andC € CoF*#R with
iid. zero-mean unit-variance entries. We have from (15j th
the limiting Stieltjes transform o D' obeys

a(saG+1—kK)G ((5aG+1—-r)G
rk — (saG+1— k)G

(81)

(82)

saG+ 1+
K

with » and ¢ defined in (29) and (31), respectively. Solving

for s, we find

a+ 228 4 r 4k +2G
S =
C((G + k)
\/ (@ =2k + 5 208 4 9Cr) + (K + Cr + Z)?
+ (83)
E(CG + H)
where only the negative root is sensible
Etrace(DD)T = limg_,0 s + & Must exist. Fory = 0, we
get
—k — (G + k(G
= 84
0T GG T R) (84)
(kK 1
= B — 85
k+(G G (85)
At the interval boundaries,
0sa  Z(G)
— = ——= 86
oG  N(G) (86)

with obvious definition of the enumerataf(G) and the
denominatorV (G), must vanish. We find that

lim Z(G) =0

a—0

10

has the following four solutions

k(1 + k)
T .
G = ) (89)
G3=0 (90)
—TKR
Gy i er (91)
Plugging into (85) gives
so(Gr) = _Hﬁ)z (92)
" 2
so(Ga) = U :\F) (93)

Clearly, so(G1) and so(G2) are the left and right boundaries
of the noise bulk. The solutiony(G3) is not sensible. The
point so(G4) marks the position of the signal of interest.
ofVithout noise, i.e.( = 0, the signal of interest would
be positioned afi /r. Thus, the presence of noise scales the

signals by a factor of
=(1+17() <1+ %) .

s0(Ga)
B. Interference Correction Factor

s0(Ga) ‘g =0
Next, we address the eigenvalue shift due to presence of
interference.
Consider the random matrix

E - (\/FAB + fICD) (\/]_DAB n \/1701))T

where A € CFxalR B ¢ Coixslk ¢ ¢ CRXBE andD ¢
CBExsR with jid. zero-mean unit-variance entries. We have

from (15) that the limiting Stieltjes transform dE' obeys
alsaG+1—-kr)G B(saG+1—-rK)G
rk — (saG+1— k)G tm—(saG—l—l—ﬁ)G(;

(96)

(97)

SaG+1+

8)
with r and¢ defined in (29) and (30), respectively.

since Solving for s, leads to a cubic equation and is a tedious

task. Nevertheless, Maple 16 can do it symbolically. &ot
0, we get

 Gr-2G+GB+ 1tk

2G?
\/52G2 + 208Gtk — 28G?k + K2(G + t)?
— e . (99)
At the interval boundaries,
0sa  Z(G)
S Sl 1
oG  N(G) (100)

with obvious definition of the enumerato?(G) and the
denominatotV(G), must vanish. Foex — 0, one of the bulks
will disappear. ThusN(G) and Z(G) will have a common
zero in the limita. — 0. This common zero corresponds to
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the position of the vanishing bulk. Instead of inspecting thThen, for smallx the zeros of the original numeratdf(s) =
zeros of Z(G) when searching for the interval boundary ofVy(s) + aN,(0) can be computed as a perturbed version of
the vanishing bulk, we can also look at the zeros\ofG)®. the zeros inNy(s) given by

We find that 1
lim N(G) =0 (101) 50,0 = — (111)
a—0 G
. . 1—k)G — kr
has the following four solutions sop = ,% (112)
-kt
Gl =——— 102 1—-kr)G — Kt
L= e BT (102) oz =LK (13)
—Kt
Gy = % (103) Letus observe that (111) corresponds to the Stieltjesftvams
(Vi = v/B) of a pdf p(x) = (z), i.e. the eigenvalue distribution of a
Gz =0 (104) ' matrix with all zero eigenvalues and we are interested in its
G — re(t —r) (105) perturbed version by the signal and interference subspaces
YTk —t) - B Then, we focus on the perturbation of this function to deter-

G, is the desired zero, since the other zeros do ngtine the inverse Stieltjes transform. This initial obséiom
’ will avoid further discussions on the selection of the npléi
zeros of N(s). Then, a first order Taylor expansion &f(s)

(106) in 50,0

Obviously,
depend on-. Plugging into (99) gives

(t—r+ )t —r+pr)

r(t—r)?

N ON(s)
Thus, the presence of interference scales the signal aksite N(s) = Np(s0,0) + Js
by factor of

s0(Ga) =

(s = s0,0) (114)

$=50,0

s0(Gla) B/x 3 yields a linear equation ir to determine the approximation
T <1 + ) (1 + > . (107) of the inverse Stieltjes transforat!) (G)

50(G4)‘B:0 B t/r—1 t/r—1 Nofs00)
50,0
The scale factor of the interference is obtained by exchngi s1(G) =500+ 7@1\/(1;)
the role of signal and interference. 95 |osoo
APPENDIXD presented in (32). Note that") (G)) maintains the pole iy =
THE NOISELESS SYSTEM 0 as the Stieltjes transform @f(x) = 6(z) but also presents

two additional poles in (36) as effect of the perturbatiam. |

In this section we analyze t_he behawogr of the n0|s_e|e|§§ ure 7 we show the exact inverse Stieltjes transform it sol
sy;tem when the number of interfering signals and smn%ﬁe lines and compare it with")(z), the approximation via
of interest are proportional and very small compared to ﬂﬂ)%rturbation theory, and = — L. In i:igure (7). the gaps of

numb(_er of receive antennas but not v_anlshlng, @€~ 0. the solid blue lines correspond to regions whei@) assumes
We still consider the random matrix in (97) but both the .

. . ) . complex conjugate values for real values(of The extremes
dimensions of the interference and signal subspace gr

: . ; Bf'the functions(G) determine the suppof®, U Z, of the
Fc);%pgcretl\?v?;tlgﬁ Iffs"ﬂ = al. Under these assumptions, (98)asymptotic eigenvalue distribution Y while the extremes
of s(V(@) are related to the estimatiga™ (G), s (G2)]U

aG(sG +1 - R)(r(t+ Lr) = (L+1)(sG+1— “)G)+ [s()(Gs), s (Gy)]. The presence of poles iff?)(G) is an
(rk = (sG +1=£K)G)(tk — (sG +1 - K)G) artefact of the first order Taylor expansion of the polyndmia
(sG+1)(tk — (sG+1—kK)G)(rk — (sG+1—-r)G) 0 N(s) and corresponds to the region where fkiés) has two
(re — (sG+1—-kr)G)(tk — (sG+1—k)G) ~ " complex conjugate solutions.
(108) In order to improve the approximation of the zerosNofs)

in the intervals where they are complex, we consider a second
forder Taylor expansion @V (s) arounds ¢ and we obtain the
guadratic function ins :

By simple inspection, we observe that the numerafds) of
the l.h.s. in (108) is a function obtained by perturbatiorao
cubic function ins

No(s) = (sG+1)(tk — (sG+1—r)G)(rk — (sG+1—k)G) N (s) = (=26 — (L + 1))G* = K(t +7)G%)s

(109) + ((K* + &(2(1 + L)a—4) — 2(1 + L)) G®
by a quadratic function i3 proportional toc F(r )2+ (t+ Lr)a—2t—2r)R) G+ K211G) 5
Np(s) = G(sG+1—k)(k(t+Lr)—(L+1)(sG+1—-k)G). + (K*(1 — (L + 1)) + 2k(a(L + 1) — 1)
(110) —a(L+1)G?+ (k2(r +t — (Lr + t)a)
5This procedure is necessary singéG) fills many pages even in the limit + (ot + Lr) —t — 7)&)G + K>rt (115)
of « — 0 and finding its zeros is intractable. Howevkin, o N(G) only o o )
fills several lines and Maple can find its zeros in closed form. which is a polynomial ins with two zeros

6Note that fort, 3 — oo with ¢ = ? (95) is recovered, as for infinite load 2)
the interference becomes white and has the same effect aghiteenoise. 55 (G) = ¢o £ po(G)
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0=1/100,k= 10/3, r=1/100,t=4/100, P=0.1, 1=0.025, W=0 L=2
200
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Fig. 7. Analysis of the inverse Stieltjes transfowf(7), its version without
perturbation, i.es = —4,
s (@). Eigenvalue pdf support of a noiseless system wiitk: 2, oo = 755,

K = Q P =0.1andI = £ and its approximation by the estimation
[8“)(@1) s (G2)]U[sM (Gs), s (Ga)].

1

a=1/100,k= 10/3, r=1/100, t=4/100, P=0.1, 1=0.025, W=0, L=2

s(G)

o ‘ ‘ ; ‘ ‘ i
-0.07 -0.06 -0.05 -0.04 —-0.03 -0.02 -0.01

Fig. 8. Comparison of the inverse Stieltjes transforfG) with its

approximationss(1) (G) and séQ) (G) for the case of a noiseless system with

L=2a=q15 k=12 P=01andl = £. The star markers show
the extremes of the functioa(!) (G). The triangle markers show the points
wheres(() (G) becomes complex for real values Gf The diamond markers

show the points where<2)(G) ands(z)(G) become complex for real values

of G, i.e. in ascending orde(f;zl, Gz,, Gp,, andGp,, .

)

where po(G) and ¢o(G) are defined in (38) and (37), re
spectively. The inverse of the Stieltjes transform, seléct.

as perturbation ofs = —2, is s((f)(G) as defined in (35).

Note that¢o(G) — po(G) cannot be the desired inverse in

the interval [G>°, G°] since it presents a pole 6/ =

—geinn e (G0, ) while ¢(G) + po(G) does not,
However,po(G)+ po(G)
interval [G>°, G%°] since it behaves lik&~2 in a surrounding S

of G =0 and likeG~! for G — +oo.

and its approximation via perturbation theory

is not the desired inverse outside thé&"

12

equations of degree seven. In order to acquire deeper insigh
on the problem, let us observe the behavioursé?f)(G)
shown in Figure 8. The match betweefG) and s{” (G) is
nearly perfect in the surroundings of the extremes. Figure 8
suggests to approximate the extremesé&*(G} by the points
where s((f)(G) becomes complex, i.e. the zeros pf(G).
This approximation implies again the solution of a polynami
equation of degree four yleldlng the zer(}§2) Gf), G§2),

and G? with ¢ < ¢ < ¢ < ¢, Although the
zerost), GéQ), G:(f), and G(Q) can be expressed in closed
form, their expression is too cumbersome to be insightful. |
order to obtain more practical and useful results we conside
the second order Taylor expansion M{s) in so» andsg z,
which yields

N(s)~ ((k — a(L+1))G* + k(2r — t)G?) s?

+ (26(a(L+1)+1—k) —2a(L +1))G®

+ ((t — 57)K% + k(4r — 2t + at + aLr))G?

+ k*r(t — 3r)G)s + (k*(—2 — Lo — a + k)

—a(L+1)+k2a(L +1) + k))G?

+ (K*(3kr — a(Lr +t) +t — 57) + k(2 — 1)

+ ak(t 4+ Lr))G + 3x*r(kr — r + K*t + %TQ)

(116)

N(s) =~ ((k — a(L +1)G* + k(2t — r)G?) s>

+ (=26 +2(1+ (1 4+ L))k — 2a(L + 1))G®

+ ((r = 5t)s% + ((t + Lr)a — 2r + 4t)k)G?

+ k2 (r = 3t)tG)s + (k* — (2+ (L + Do)

+ (1421 + L)a)k — (L + 1)a)G?

+ (33 + (r — (Lr + t)a — 5t)x% + ((t + Lr)a
353

31f)/£ + o

(117)

The zeros of (116) and (117) are relatively good approxi-
mations of the actual inverse Stieltjes transfof() in the
surrounding of the poles (36). Let us denote théﬁ?

and A(Q)(G), respectively. By using again as apprOX|mat|on
for the extremes of§<2) (G) and 3412)((2), the values ofGG
WhereA(Q)(G) ands 427)) ) become complex, i.e. the points
where the discrimlnants of (116) and (117) vanish, we can
_obtain simpler approximations of the extremes. In fact, the
_discriminants of (116) and (117) are again quartic polyraisni

in G but with two zeros inG = 0. The other two zeros
can be easily computed and are given by (42)3’5‘?

and by (45) fors{¥) (G). Then, observing that the |rrat|onal
components ofsy )(G) and s )(G) vanish inG = G(Q)
dG = G, respectively,s2(GY) = s&(G%)) and
42)(6‘(2)) (2)(0(2)) with 5(2)(G) and 5(2)(G) defined in
(41) and (44), respectively. The observation that the intsta

— 7+ 2t)K)G + 3K3% + t(r

In contrast to the analogous problem with the first order Ta@f G» and Gz with sign plus are not greater than the

lor approximations(*) (@), the computation of the extremescorresponding instances with sign minus, l@p) < Gp

of the functionng)(G) do not have a closed form solution
since their computation implies the solution of two polyriaim

(2)

and G(LZ) < G(IQH), yields the approximations (40) and (43).
By appealing to the previous results, in the following we
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derive condition (46) for bulk separability.
Under the assumptions of physical interest that N+ and
t>r >0, Gg) and G(IQ) are all negative real zerb#

for the second order expansion, all the results obtainethtor
noiseless system can be extended. The second order expansio
of N(s) in 5y yields a polynomial whose discriminant is
again a quartic equation i@. Similarly to the noiseless case,

t a | a ALk *37+5f +i%a to obtain approximations of practical use we consider the
> max | L+ 55+ 5, o T (L-D¢2 ; -
r " second order expansions of(s) in so» and sgz and we
approximate the extremes of the inverse Stieltjes transfyr
« « 4Lk . . .
=14+ —+ = — (118) the zeros of the corresponding discriminants. The expansio
2k 2K . . : - (2) 2 .
) in so,p yields the approximationd’s, and I';’ in (49)
or equivalently for the extremes of the inverse Stieltjes transform and the
o (t —r)2 ag:;g)rommatmn of the i mverse Stleltjes transform boils daw
0< e < rt+ (L—1)r) (119) F(2 andg ( r 2 ) WI'[h g ( ) defined in (48), when

evaluated |n1“(2) andF
approximation based on the second order expansicg, in

By simple inspection, it is easy to verify that; 2) < G(2
under the above mentioned conditions of phyS|caI mterest
However, it is interesting to determine under which coiodisi

the two interval§GYy, G%)] and[GY, G| do not intersect, 1]
ie. whenG(2 < G(2 It can be verified, for example usmg
Maple, that ‘this Iast condition is satisfied 4 and 3 = 7
satisfy (46). Additionally, condition (46) implies also19).

(2]

APPENDIXE
THE NOISY SYSTEM

The analysis of the system with noise follows along lineg4)
similar to the ones adopted in the previous section. The fixed
point equation for the Stieltjes transform of the eigenegidf [5]
in (15) can be rewritten as

(3]

SG+1+C(SG+1—/€)G
K (6]
a(sG+1- k)G L(sG+1—-r)G
rk — (sG+1— k)G tnf(sGJrlfn)G_O (120)

with r,# and¢ defined in (29), (30), and (31). 7

The inverse functiors(G) can be obtained as a zero of the
numerator of (120). As in the previous section, this is a cubi
function in s obtained as perturbation of the cubic function

No(s) = (G(k+(G)s + ¢(1 — k)G + k)
x (rk — (sG +1—=kK)G) (tk — (sG +1 - k)G)
(121)

(8]

El

by a quadratic function

Ny(s) = kG(sG+1—k)(k(t+Lr)—

[10]

(L+1)(sG+1—-k)G).

(122)
Simple inspection of (121) and (122) shows that the intredug !
tion of noise has the only effect of modifying o in (111)

into
C1-r)G+k
(k+ (GG

while, up to a scaling factor, it leaves unchanged the[13!
perturbationN, (s). The first order Taylor expansion ¥ (s)

in Sp,0 Yyields to an approximation of the inverse Stieltjefl4]
transform whose extremes computation requires the salofio [15]
a polynomial of degree six and it is not feasible in closedfor
Thus, we do not discuss further this case. On the contraig]

[12]

500 = — (123)

"These conditions are obtained by enforcing that the argtsnehthe (17]

square roots in (116) and (117) are nonnegative.

. Similar considerations hold for
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