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Abstract—This paper discusses why and how security re-
quirements engineering must be adapted to the model-driven
approach usually adopted to design and develop embedded
systems. In particular, we discuss to what extent the elicitation of
security requirements and the Y-chart partitioning approach, a
central design methodology in embedded systems, can mutually
enrich each other. We also show how SysML, which is already
commonly used to engineer requirements in embedded systems,
can also represent security requirements, assets, and threats with
only a few extensions and thus support a more comprehensive
requirements engineering methodology. We illustrate the use of
our overall methodology and toolkit with examples from the
automotive embedded system field in order to demonstrate the
relevance of our approach.

Index Terms—Communication System Security; Computer
Security; Design methodology; System-level design; Component
Architectures; Embedded Systems; Security Requirements Engi-
neering

I. INTRODUCTION

Embedded systems are pervading our daily experience of
technology in all sorts of devices, appliances, or command
and control systems. Embedded systems are made of both
software and hardware electronic components that are tightly
coupled together to form the embedded system architecture.
The software part of those systems offers flexibility to products
after they are released to the market, for instance through
firmware updates - something impossible with plain hard-
ware. Many of those systems exhibit a heterogeneous and
distributed architecture, featuring multiple computational units
(microprocessors or micro-controllers) interconnected using
communication buses.

The security of embedded systems is becoming a tremen-
dous problem in our technology-powered environment. Many
security mechanisms have been developed for such systems,
but their use generally disregards functional and other non-
functional requirements expressed, and they are often intro-
duced late in the design cycle. Still, the already many security
requirements analysis methodologies do not integrate with the
usual workflow of embedded system architects. This paper
discusses why the model-driven engineering techniques used
to design and develop the embedded systems, and in particular
the way they capture the hardware/software partitioning and
security requirements engineering should go hand in hand. We

define a new SysML-based framework, called SysML-Sec, to
support the engineering of security requirements for embedded
systems. SysML is commonly used to capture embedded
system architectures and functional requirements. We explain
how both assets and complex sequences of attacks can also be
represented using only a very limited extension of SysML so
as to fit the model-driven design process of embedded systems.

II. MOTIVATION AND CONTRIBUTIONS

The security requirement and threat analysis is mostly
considered as a preamble to risk analysis in IT systems. This
process is generally meant to decide whether to introduce
security countermeasures into the system, which results in
additional costs. In the case of embedded systems, we contend
that the security analysis also has a strong impact on the design
of the system architecture. This is especially true in safety-
critical systems, where attacks may be devastating, but where
security functions overhead may also result in an absolutely
useless system. We also claim that the security analysis should
also play an important role with respect to convincing the
designer of increasingly complex embedded systems of the
consistency and exhaustivity of his security architecture, at
least with respect to the threats identified.

A. Security Attacks over Embedded Systems

Security issues have received too little attention in the
context of embedded systems, contrary to the situation in IT
systems. However, an increasing number of embedded systems
have become communicating artifacts, feature new interactions
with their immediate environment or with backend systems,
and are thus exposed to criminals. The following examples
illustrate typical attacks and security concerns:

Set-Top Boxes. The attack of Microsoft’s XBox [1] is a
famous case of a physical attack on an unprotected bus. Other
types of set-top boxes have also been targetted with application
software or protocol stack attacks, like for instance ADSL
routers [2].

Mobile Appliances. Mobile appliances, like typically mo-
bile phones, come with many security challenges with respect
to existing vulnerabilities. Attacks are getting increasingly
complex, e.g., hackers trying to achieve iOS jailbreaks, com-
monly involving the use of several vulnerabilities in chain [3].



Avionics. Modern aircrafts feature a handful of embedded
systems, each concerned with a specific mission. Airplane
internal networks are now interconnected with ground systems
as well as with passenger or attendant networks and thus raise
serious concerns that require the introduction of filtering mech-
anisms. Recent studies on navigation systems have repeatedly
reported the lack of any attention to security in their design as
well as the risks and means of possible exploitation of those
lacks [4], [5].

Automotive Systems. A modern automotive on-board net-
work interconnects a hundred of microcontrollers, termed
Electronic Control Units (ECUs) organized into application-
specific domains bridge by gateways. Attacks have been shown
to be quite feasible [6] by bypassing the filtering performed
between domains or by brute-forcing ECU cryptography-
based protection mechanisms. Such attacks may in practice
originate from the Internet connection increasingly available in
vehicles or even from the Bluetooth pairing of a compromised
mobile phone to the vehicle on-board network. Further attacks
are anticipated in upcoming Car2X applications, which will
feature vehicle-to-vehicle or vehicle-to-infrastructure commu-
nications.

B. Contributions

Our work first aims at introducing a security analysis
into design approaches currently used for embedded systems,
and to ensure that the design converges towards a workable
solution. This solution should notably mitigate relevant threats
with proper security mechanisms, yet ensure that those mech-
anisms do not prevent a correct operation of the system due
to insufficient communication resources (too much overhead
from security mechanisms, in particular cryptographic proto-
cols) and execution resources (too much overhead from secu-
rity computations under real-time assumptions, e.g. verifying
signatures of all messages between two microcontrollers). This
is inherently an iterative process that must be integrated into
existing design tools and methodologies. For instance, attacks
on the bus between a CPU and its memory can only be
identified once the existence of the bus and the messages
exchanged over it are decided by the system designer and
there should be a way for the security expert and the system
designer to communicate their respective concerns using a
unified framework.

Our work secondly aims at defining mechanisms to support
the modeling of threats and related counter-measures. That
modeling should be useful at the multiple levels of abstraction
that one has to consider in an embedded systems. For instance
one may describe attacks on sets of physically interconnected
hardware components or on sets of logical functions mapped
onto them (such zones might even be defined within a CPU).
Technologies like virtualization and trusted computing, best
illustrated by the Trusted Computing Group’s TPM or ARM’s
Trusted Zones, can prevent attackers from trespassing on
such a zone. Tamper-resistant hardware, like for instance a
smartcard, is also commonly used to protect either secrets or

computations. We know of no security methodology describing
such trusted perimeters and mapping threats to them.

We finally also intend to provide a framework to support
composition through documenting component vulnerabilities.
The reuse of components in a systems product line portfolio
pleads for the capitalization of such knowledge so as to better
assess potential risks when several software and hardware
components are combined together. The framework we pro-
pose in the rest of the paper also aims at supporting this
activity. However, we do not address risk assessment in the
scope of this paper. We consider that our proposal can be made
compatible with several existing proposals in this domain,
including the one we developed and used in the EVITA case
study [7], [8].

C. Use Cases

Throughout this paper, and without any loss of generality,
we will give examples of the use of our methodology, SysML-
Sec, with results from a study that we conducted in the
scope of the FP7 European research project EVITA. The
project, which included a major car manufacturer and tier-one
equipment suppliers, investigated the security of automotive
on-board networks. A prototype secure automotive on-board
network was designed and developed by the EVITA partners.

Two scenarios - out of around 20 - are particularly used to
illustrate our requirements engineering methodology. The first
one, Firmware Flashing, deals with maintenance operations
at the workshop. It notably addresses the need to update
the firmware of an ECU in a secure manner that should
protect both the intellectual property of the car maker or
equipment supplier and the integrity of the update process. The
second use case, Local Danger Warning, deals with preventing
attacks on safety-critical functions of the car for displaying
warnings from internal sensors or from nearby stakeholders
(road-side units or other vehicles). The architecture developed
should notably prevent the display of forged warnings, like for
instance a bogus notification about an accident.

III. EXTENDING EMBEDDED DESIGN METHODOLOGIES
WITH SECURITY REQUIREMENTS ENGINEERING

Safety-oriented Model-Driven Engineering methodologies
for embedded systems are now well established, since many
embedded systems are safety-critical, i.e., their malfunction
may harm their users. Yet, the assessment of the security of
embedded systems and of its impact on their safety is not.

A. MDE and Embedded Systems: Current Practice

OMG’s Model Driven Architecture defines two abstraction
levels, namely the Platform-Independent Model (PIM) and
Platform Specific Model (PSM): embedded systems are thus
clearly targeted by MDE. The SPT [9] and MARTE [10] pro-
files have also been defined by the OMG to more specifically
address embedded systems but none of them addresses require-
ments modeling. Conversely, the SysML OMG profile [11]
clearly takes into account requirements with explicit modeling



capabilities and diagrams, but addresses the partitioning phase
only to a very limited extend.

The existence and use of specific design practice in the
embedded system field make it compelling to develop an
adapted security requirements engineering methodology that
might be integrated to the designer’s toolbox. We decided
to rely on SysML for Model-Driven Engineering because
of its increasingly large adoption and of its large scope of
application. The MARTE approach could be used instead for
the partitioning.

B. The Importance of the Hardware / Software Partitioning

Software-centric systems are commonly designed with a V-
cycle, with building stages (requirements, analysis, design,
implementation) followed by verification stages (e.g., tests,
formal proof). In the case of embedded systems, the V-cycle
can obviously start only once functions have been partitioned
in software and hardware.

System partitioning is a process to analyze various function-
ally equivalent implementations of a system’s specification. It
usually relies on the Y-chart approach [12] depicted in Figure
1:

1) Applications are first described as abstract communi-
cating tasks: tasks combine several related functions.
Tasks and functions are defined independently from their
implementation.

2) Targeted architectures are independently described from
tasks. They are usually described with a set of abstract
execution nodes (e.g., CPU with operating systems
and middleware, hardware accelerators), communication
nodes (e.g., buses), and storage nodes (e.g., memories).

3) A mapping process defines how application tasks and
abstract communications between tasks are assigned
to computation and communication / storage devices,
respectively. For example, a task mapped on a hardware
accelerator is a hardware-implemented function whereas
a task mapped over a CPU is a software implemented
function.

Fig. 1. The Y-Chart Methodology

The result of this process shall be an optimal hardware /
software architecture with regards to criteria at stake for that
particular system (e.g., cost, area, power, performance, flexi-
bility, etc.). This partitioning process is of utmost importance.
Indeed, if critical high-level design choices are invalidated
afterwards because of late discovery of issues (performance,

power, etc.), then it may induce prohibitive re-engineering
costs and late market availability. Thus, we contend that
an exhaustive identification of security requirements and the
related threat analysis has to be iterated together with the
partitioning.

An example of function mapping is given in Figure 2, in
the scope of the Local Danger Warning use case. Two ECU
sub-domains are represented. The Chassis Safety Controller
on the left, and the Body Electronic Module on the right.
Each sub-domain has a main processor, a local flash memory,
a local main memory, a set of hardware accelerators, and a
bridge to the main system bus. Functions are mapped either on
processors (these functions are to be software-implemented)
or on hardware accelerators (functions are to be hardware-
coded). Communications between tasks are also to be mapped
over buses and memories, in order to highlight data transfers.

C. SysML-Sec: a Security-Aware Model-Driven Methodology

We introduce the SysML-Sec framework, which aims at
guiding and providing representations of security requirements
compatible with the MDE approach of practitioners that are
not security specialists. We in particular expect security experts
to collaborate with system engineers through this means.

Our methodology, part of the SysML-Sec framework, cap-
tures the design objectives described in the previous sections
flexibly with the evolution of the architecture specification. We
can summarize its different phases with the following iterative
process:

• Initial Architecture Mapping. One or several typical use
cases are selected as a starting point. The functionalities
of the system highlighted in these use cases are first
modeled as tasks. Communications between tasks are
modeled with information and event flows. Event-based
communications is also captured in order to control the
Information Flow. Tasks and communications can then
be mapped to a draft architecture of the system. The
designer’s experience plays a key role for determining
first draft architectures.

• System Assets Identification. System assets are identi-
fied among architectural elements (processors, pieces of
software, communication channel) and will first refer to
generic components, like for example: “all system buses”.
When the architecture gets more detailed, assets are more
likely to be refined into specific elements.

• Threats Identification and Assessment. Threats and
security vulnerabilities of the selected assets are docu-
mented using our extensions of SysML parametric dia-
grams. Threats should as much as possible describe the
capabilities that an attacker should meet or exceed, as
well as information about the origin of attacks (local, re-
mote, through a specific interface). We also implemented
automated checks of the threat coverage by security goals.
Based on a risk analysis (which is not addressed in this
paper), one should also identify and prioritize security
goals that are mapped to a threat. The most important
security requirements should be further refined. Other
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Fig. 2. Mapping of the Local Danger Warning Use Case (SysML-Sec)

requirements may be left aside or even abandoned at this
stage, yet are remembered in SysML diagrams, especially
in case an alternative analysis is required.

• Security Goals Identification. Security goals might be
identified (1) from the above use cases, for instance
because of imposed standards or of the properties ex-
pected from the system, or (2) from unaddressed threats
or attacks on assets, or (3) as the refinement of another
security objective when the process is iterated and the
level of detail of the architecture has changed. They
are represented using SysML requirement diagrams. In
further iterations, one may need to delete or adapt security
goals deprecated by modifications on the architecture.

• Architecture Refinement. The architecture, including
the specification of assets, is refined. This refinement will
result on the one hand in a more detailed description of
the architecture components as use cases or the architec-
ture are becoming more precise (e.g., new communication
channels, refinement of an execution environment into
OS/middleware/application layers, etc.). On the other
hand, it may also result in the linking of requirements to
system information flows. Finally, the ongoing process is
iterated to the identification of new security concerns.
The refinement phase may fail if the architecture and
security requirements are incompatible, for instance, if
the performance overhead of security mechanisms is too
high. Consistency checks should also be performed to
ensure that a security objective does not conflict with
another requirement expressed over the same asset. A
failure is the sign that the analysis should be backtracked
to the previous level of detail, and possibly that other
security solutions should be adopted. Such a backtrack
in the methodology might be supported by the versioning
of SysML-Sec diagrams.

D. SysML-Sec: Profiles and Tool Support

The aforementioned methodology has been implemented
with TTool [13]. TTool is an open-source toolkit that supports
several UML profiles, including DIPLODOCUS [14], and
AVATAR [15]. TTool includes diagramming facilities, formal
and non-formal code generators, model simulators, model-
checkers and analysis tools. The main strength of TTool is to
hide knowledge of the underlying simulation or formal proofs
techniques, thus offering a press-button approach to perform
safety or security proofs.
SysML-Sec relies on DIPLODOCUS for the partitioning
phase. In particular, security requirements and attacks strongly
related to hardware elements (e.g., bus probing, memory
dump, etc.) can be more easily identified, and sometimes eval-
uated. The impact of security mechanisms can also be tested
and formally verified, e.g., studying whether a given safety-
related deadline may be violated because of security functions.
SysML-Sec has been built over AVATAR for requirements elic-
itation, threats capture and security mechanisms design. Both
safety and security related properties can be captured, and
further proved. Our tool also provides some basic automation,
like the verification of the coverage of threats with appropriate
security requirements (or absence thereof), as depicted in
Figure 3.

IV. IDENTIFYING AND ANALYZING SECURITY
REQUIREMENTS BASED ON THE ARCHITECTURE

A. Security Goals and Requirements

Haley et al. [16] have shown that the meaning of a security
requirement significantly varies in the literature. As they point
out, security requirements must be precise enough and should
make it possible to describe what objects we need to protect
and why, and to describe how architectural vulnerabilities are
addressed. Haley et al. conclude that one should follow a



Fig. 3. Security Requirements Coverage Table for Automated Consistency Checks in TTool

goal-based approach together with the description of a context
which is strongly connected with the execution environment.
They distinguish between security goals and requirements
as follows: the latter “express the systems security goals
in operational terms, precise enough to be given to a de-
signer/architect” and provide “a specification”. Though we
mostly agree with this point of view, we do not draw such
a clear-cut line in the case of our representation. For example,
some precise security requirements can be exhibited at very
early stages of design because they are quite generic. In
contrast, some security goals cannot be elicited before the
architecture and its partitioning candidates have been refined
to a lower abstraction level. What we considered as seemingly
precise security requirements also sometimes became only
complex security goals during our case study. We therefore
describe security goals and requirements indistinctly as SysML
requirements, even though they may be explicitly stereotyped
as goals and requirements to distinguish their level of ab-
straction. The SysML requirement attribute Kind together the
number of dependencies relationships with other requirements
also help to precise their level of abstraction.

B. Security Assets

Haley et al. [16] further describe assets as a central notion
behind the definition of security goals. In particular, finding an
asset leads to envisioning threats to it, and choosing particular
security principles to apply to secure it. We agree with this
perspective, though we suggest to assess the type of security
asset considered, which will affect the nature of related se-
curity requirements in an embedded system. In particular, we
classify assets into three categories: (1) hardware components
(processors, memories, communication channels, clocks, ...),
including the data (and secrets) they contain; (2) software
assets (virtualization mechanisms, drivers, protocol stacks,
applications, ...); (3) information and event flows, which
capture communication: those flows reflect the composition
of the functions used to realize a particular service together
with communication functions to transfer their data and their
control events. Such a flow can typically be represented on

a SysML block diagram, where each block corresponds to a
system function and each link between two blocks corresponds
either to a event or data flow. Figure 4 illustrates for instance
a subset of the functional view - at the partitioning stage - of
the flow that would lead a car to receive or forward emergency
situations in the EVITA system. Relationships between those
elements (assets, attacks, and requirements) will be defined by
a model as we describe farther below.

C. Security Threats and the Architecture

Security threats define situations that may lead to a system
failure, that is, a successful attack, in the presence of a
malicious behavior. We are interested in describing which
assets must be compromised by an attacker in order to perform
a successful attack. The identification of a security threat
not covered by any security goal over the targeted security
assets clearly points at an incomplete elicitation of security
requirements. The designer typically has to either reconsider
the mapping of the security goal to assets, as described further
below, or to identify missing or incomplete security goals. On
the other hand, while the identification of threats is worthwhile
for validating security goals, we do not expect them to be
exhaustively identified. Security requirements might simply
arise from the need to be interoperable with a certain security
standard or even out of the certification of the system against
a protection profile, as defined for instance in the Common
Criteria scheme.

Attacks consist of a list of actions over assets (read a
message on a bus, etc.). Threats on embedded systems now
commonly consist in the exploitation of, not just one, but
a series of vulnerabilities of system components as well as
errors in the design of the system. Threats are frequently
modeled with a wide variety of attack trees. We represent
a similar concept in a SysML-Sec model that maps the
attack phases of a given threat to architectural constructs.
Figure 5 depicts how this mapping is achieved thanks to
a simple extension of the SysML parametric diagram. In
particular, each block represents an asset onto which attacks
are mapped. Some methodologies aim at defining security
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Fig. 4. Information and Event Flow of the EVITA Local Danger Warning Use Case (SysML-Sec Block Diagram)
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Fig. 5. Attacks Mapped to the Architecture - EVITA Firmware Update Use Case (SysML-Sec Parametric Diagram Excerpt)

threats as a fine-grained refinement of the goals of an attacker,
like KAOS’ antigoals [17]. While it is fine to stepwise refine
threats and finally attack steps, we consider that this is not
enough to capture all architectural mappings. Plain refinement
is satisfactory for attacks that only address computational units
and communication channels which are seen as blocks in
the SysML parametric diagram. However, the data and event
flows featured by embedded systems are distributed over the
architecture. Attacks on these assets can be modeled as the
combination of attacks on the two previous types of assets: for
instance, communication between two ECUs might be threat-
ened by an attacker taking control of an intermediate gateway
- e.g., the bridge CSCU_to_CAN, see Figure 2 -, then dropping
all messages arriving on a channel. We therefore customized
SysML parametric diagram constraints to introduce the logical
operators like AND and OR, and temporal causality operators
like AFTER for representing attack sequences (see Figure 5).
Those new constraints are especially helpful to describe the
distributed attack scenarios encountered in embedded systems.

D. SysML for Capturing Security Goals

SysML natively supports the notion of requirements. Yet, we
have specialized in SysML-Sec the general-purpose SysML
requirements by adding a security kind (e.g., privacy, con-

fidentiality, authenticity, integrity, non-repudiation, controlled
access, availability, immunity, freshness) to further categorize
the security goals and requirements used in our models. The
SysML relationships between requirements - e.g., composi-
tion, derive requirement and copy - can be applied to security
requirements as well as to other requirements of the same kind.
For example, in Figure 6, ControlledAccessToFlashMemory is
composed of two sub requirements: ControlledAccessToFlash-
ingFunction and ControlledAccessToReadFromFlash. Seman-
tically speaking, R1 is composed of requirement R2 and R3

means that R1 is more abstract than R2 and R3 and that
the R2 and R3 must be satisfied for R1 to be satisfied.
Integrating security requirements together with other kinds of
requirements notably makes it possible to validate evolving
requirements through dependency relationships, which can be
quite important for safety requirements.

E. Mapping Security Requirements to the Architecture

Even with our extension of the SysML requirement con-
struct with additional semantics, requirements still remain
unrelated to assets. As explained before, assets in embedded
system are composed of functional and architectural elements
of the system, which lead us to map requirements to assets at
the partitioning phase. This additionally gives us the possibility
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Fig. 6. Security Requirements in the EVITA Firmware Update Use Case (SysML-Sec Requirement Diagram Excerpt)

to relate requirements and attacks, since attacks can only be
defined from assets.

The introduction of new assets may obviously lead to the
definition of new requirements. For example, introducing flash
memories at the partitioning phase (see Figure 2) may lead to
define requirements dedicated to the security of the software
code stored in these flash memories (as pointed, for example,
in Figure 6). Introducing flash memories however does not
mean that all of them are to store confidential software codes.
Those two examples demonstrate two important points: (1)
New requirements may be identified when studying candidate
architectures at the partitioning phase. (2) Requirements need
to be related to architectural elements so as to precise which
requirements apply to which architectural elements, and recip-
rocally.

SysML offers two main facilities to relate instances of
SysML constructs together, even if they originate from dif-
ferent views: the depend and allocate relationships. The first
one models an explicit dependence between a master element
and a slave element. The allocate relationship is rather used
to mention resources that are provided to an element, like for
instance a task allocated to a processor in the mapping phase.
Finally, relationships between requirements and architectural
elements are expressed with a dependency link.

V. EVOLVING THE ARCHITECTURE BASED ON SECURITY
REQUIREMENTS

A. From Security Requirements to Security Mechanisms

The security requirements expressed contribute to determine
the security mechanisms, like cryptography or access control
for instance, that will need to be implemented. However, it
is likely that these mechanisms cannot be entirely defined
until the end of the architecture specification. We argue that it
is still possible and desirable to introduce a description of
broad security functionalities into the architecture in order
to bridge the gap between the requirements analysis phase
and the architecture specification phase. In particular, it is
important to describe where code for implementing a security-
related algorithm will be run, and how resilient its execution
will be. The hypotheses made about implementation resilience
when defining requirements should be transferred to the
hardware/software partitioning model. By doing so, we also

associate a security requirement to an architectural asset, and
thus precise which threat its realization may be exposed to:
for instance, implementing the access control to the Head
Unit of the car with a hardware based implementation will,
for remote attackers, be enough to mitigate all attempts at
bypassing this control. We illustrate in Section VI to what
extent this mapping process can achieve a more complete and
accurate threat analyses. Finally, this mapping may even reveal
the impossibility of any satisfactory implementation.

Finding which assets are at risk also contributes to the
definition of the defense perimeter achieved by a related
security objective, and hence to the placement of the security
mechanisms that derive from this objective. Typically the
possibility of injecting fake traffic from the driver’s mobile
phone onto the vehicle backbone bus might suggest to filter
out mobile phone messages in the engine or chassis and safety
domains. This might in turn be implemented through either the
authentication of the sender using cryptography or through
access control at respective domain gateways based on the
origin of traffic.

Due to the communication-centric nature of the threats that
we focus on, the introduction of security functionalities will
also modify the purely functional information and event flows
of the embedded system. We introduce security through the
addition of security functions to existing entities, or through
the introduction of new entities. Those new entities would
typically feature specific security properties that should be
matched by the final implementation in the architecture: for
instance one such additional entity might reflect the need to use
of a tamper-resistant hardware module (and subsequent com-
munication with it) or a gateway defining a trusted domain.
Those additional security mappings to the architecture might
be introduced in sequence diagrams, or better, in deployment
diagrams.

B. Detecting Conflicting Classes of Requirements

Model-Driven Engineering clearly refers to levels of ab-
stractions, and suggests to rely on model transformation tech-
niques to handle the transition between two different levels.
The refinement of elements of the system (e.g., splitting a
function into two sub functions, splitting a computing hard-
ware domain into two sub domains) is likely to impact the
definition of requirements and attacks. Refining requirements



and attacks, or identifying new ones, may also impact the
definition of the system design itself. SysML offers the refine
operator to express such a refined design, even though no
specific refinement methodology is defined.

Security requirements may typically impact other classes of
requirements, especially non-functional ones like the interop-
erability, or more critically for an embedded system, safety.
This may result in conflicts. For instance, an excessively large
security payload may reduce the available bandwidth of a bus
and endanger the safety critical transmission of an emergency
braking notification between the brake sensor and the brake
actuator. Similarly, security may incur additional costs, like for
the verification of the signature of a message, that may entail
an an overly long latency for a low-cost ECU. Such conflicts
have to be detected.

We consider that, because it focuses on security assets which
are architecture-centric, our SysML-Sec methodology is com-
patible with other requirements engineering methodologies
in which the requirements can be linked to the architecture.
While we did not experiment with the integration of existing
engineering methodologies for other types of requirements, we
validated the satisfaction of a few safety requirements through
the generation of tests and simulations from our embedded
system model [18].

VI. LESSONS LEARNED

Full results of the case study we presented along the paper
can be found on the EVITA project web site1 and in [8]. We
extracted around 32 general requirements, i.e., requirements
that apply to all use cases. These requirements have been split
into four categories: availability (7 requirements), privacy
(7 requirements), fake commands (9), and environment-
related requirements (9). General requirements have been
progressively extracted from requirements specific to the
first analyzed use cases. They could probably constitute a
good foundation for defining security-oriented patterns. Then,
for each use case, we have defined specific requirements.
For example, for the firmware update use case, 9 additional
security requirements have been elicited: some of them are
displayed in Figure 6. Both general and specific requirements
are linked to assets and attacks. The iteration between
requirements, architecture, and attacks also led us to identify
much more attacks than when simply identifying them based
on our security expertise and on brainstorming sessions:
the number of identified attacks was multiplied by a factor
between 2 and 4, depending on use cases.

Achievements. One of our initial objectives was to achieve a
comprehensive and more systematic analysis of security issues
of an automotive on-board system. Our methodology has
significantly improved the elicitation of security requirements.
For instance, the adherence to a stepwise and iterative process
helped us a lot to resist the constant urge to jump directly to

1TTool models are available at the following link: http://www.evita-
project.org/Deliverables/evita_t2300_23.xml

the selection of particular security mechanisms for the system
design. This would have likely resulted in a less complete
insight into the threats to the vehicle, and in a poorer under-
standing of the dependencies between security requirements.
Similarly, the use of the architecture and function placement
helped us to understand the use cases, as well as to point
at some inconsistencies regarding security requirements they
expressed. For instance, there was no need to ask for the non
repudiation of a firmware update, while users were specifically
asking for the use of a digital signature in their use case.

The result of our analysis can also be compared with
the work of Bar-El [19] on automotive on-board networks.
The latter work captures a number of security requirements
only focusing on the cryptographic protocols to be deployed
in an onboard network. However, [19] fails to capture
hardware/software partitioning or the compatibility of
security mechanisms with safety requirements, that are so
important in vehicles, like for instance the delay required
to send and verify a message. In comparison, we relied on
the mapping of security requirements with assets and with
the information flows to later evaluate the satisfaction of
safety, realtime, or performance requirements through formal
validation [18], as well as through tests and simulations in
the same open-source toolbox [20]. We furthermore contend
that our analysis has also captured higher level security
requirements as it starts with security properties rather than
mechanisms and describes their dependencies.

Limitations. Our methodology does not bridge the imple-
mentation gap. In particular, we do not describe requirements
as to the effectiveness of the implementation of the security
mechanisms that realize the requirements described. Most
notably, secure programming issues, like buffer overflows,
are plaguing all kinds of software produced, yet they are
not the result of a poor design of the architecture as we
can describe it in SysML and UML. Similarly, hardware
based implementations can be poorly done, and for instance
be vulnerable to timing or power attacks. We believe that
addressing such issues is not an architecture design issue
per se, and can be achieved by the systematic application of
software or hardware security hardening engineering recipes.
Nor our methodology nor the tools we developed can provide
support for these tasks (though they might document such
weaknesses for COTS).

VII. RELATED WORK

There has been a quite remarkable progress in the area
of security requirements engineering in the past decade. In
[21], Nhlabatsi et al. classify security requirements engi-
neering work in software systems according to four dimen-
sions, namely: (1) goal-based approaches, (2) model-based
approaches, (3) problem-oriented approaches, (4) process-
oriented approaches.

Our own proposal essentially associates a goal-oriented
description of security objectives (loosely inspired by the
KAOS framework [17]), with a model-driven approach to



system design and in particular to the refinement of security
assets.

In particular, we benefit from the refinement and tracing
qualities of goal-based approaches that have been similarly
successful in other domains of requirement engineering. An-
other strength of goal-oriented approaches lies in their ability
to capture dependencies even between security requirements
with a high-level of abstraction.

We emphasize the importance of assets for setting goal-
based requirements, in accordance with the views expressed
in [22], [23]. In contrast however, we consider that an em-
bedded system features assets of a very different nature at
different levels of the architecture which we do not intend
to interconnect in a complete causal graph (though we have
introduced a few limited and local relationships on which we
perform consistency checks).

Models on the other hand are extremely good at capturing
architecture details and have been shown an excellent fit
for describing security requirements regarding cryptographic
protocols. For instance, methodologies like UMLSec [24]
focus on the mapping of security mechanisms to the software
architecture. To our knowledge, no such approach has however
addressed hardware and co-design issues. In our framework,
security requirements and functions can be progressively re-
fined until a formal verification step integrated in our toolkit
[15]. TTool implements model transformation techniques in
order to translate refined and formally expressed security
requirements and designs into a pi-calculus specification taken
as input by ProVerif, a Dolev-Yao based security proof toolkit
[25].

As mentioned before, our approach aims at achieving a
viable design. Other proposals have also hinted at the need to
determine the right tradeoff satisfying security requirements
as well as functional or other non-functional requirements
[26], [27], [28], [29]. Our methodology that introduces security
requirements into the SysML framework further enriches these
contributions through the determination of quantitative eval-
uation of the satisfaction of this tradeoff with the support of
model-driven tools. For instance, we simulated the CAN bus to
evaluate the impact of a cryptographic envelope implementing
our authentication requirements [20]. We also evaluated the
braking latency in the EVITA emergency braking use case
by automatically generating software for a virtual prototyping
environment from AVATAR models [30]. Some of these vali-
dations can be described even at the goal level description of
security requirements through the use of SysML testcases.

It is worth mentioning that the model-driven engineering
of requirements has long been supported by researchers in
the field of embedded systems [31], [32], [33]. However, only
Peraldi et al. [34] advocate the need to link the model driven
engineering of the system architecture and a goal-oriented
expression of requirements that we follow in our approach.
To our knowledge, none of these proposals has addressed the
expression of security requirements.

Our methodological proposals also share quite some simi-
larities with the TwinPeaks approach advocated by Nuseibeh

[35], although the latter only deals with software systems.
Instead of a simple spiral alternating between the requirements
and the architecture as TwinPeaks suggests, we alternate
between the Y-Chart modelling of software and its mapping to
hardware components, the identification of assets and threats
to them, and the identification of security requirements. In
particular, we also deal with the three management concerns
that TwinPeaks aims at addressing: (1) exploring the solution
space (in our case, both the embedded system architecture and
attacks that may result out of this design) early makes it possi-
ble to incrementally provide feedback about requirements; (2)
the designer has to rely on commercial off-the-shelf software
(as for TwinPeaks), or available electronic components, or
standard cryptographic algorithms and requirements (security
requirements in our proposal) help narrow down their proper
selection; (3) rapid change, which is also very much linked
with refining the architecture in our case.

VIII. CONCLUSION

We have introduced SysML-Sec, an environment to support
the security requirement engineering process in an embed-
ded system and an open-source tool (TTool) to support this
process. We conducted an experiment on an automotive on-
board system under definition, which helped us assess the
adequacy of our approach. Out of this experience, our main
claim is that a security requirements engineering methodology
should capture the relationship between security concerns
and the system architecture. Security requirements should be
mapped onto this architecture and in turn, influence the system
architecture through an iterative refinement design process
extending the classical Y-chart approach used in embedded
systems.

We also believe that our adoption of a SysML supported
model-driven refinement of security assets might be used
right from the early definition of security requirements to
link the security expert’s goal-oriented point of view with the
model-centric perspective of the embedded system designer
and enable their collaboration before any of them commits to
an inappropriate solution.

We plan to further investigate the question of the vali-
dation of requirements. We have already experimented with
assessing how safety is possibly impacted by the security
mechanisms introduced after security requirements, like for
instance, assessing the added latency for performing a braking
operation with secure communication. We also plan to intro-
duce security-oriented reasoning capabilities into our modeling
environment.
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