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Abstract

With the continuous and exponential increase of the number of users and
the size of their data, data deduplication becomes more and more a necessity
for cloud storage providers. By storing a unique copy of duplicate data, cloud
providers greatly reduce their storage and data transfer costs. The advantages
of deduplication unfortunately come with a high cost in terms of new security
and privacy challenges. We propose ClouDedup, a secure and efficient stor-
age service which assures block-level deduplication and data confidentiality
at the same time. Although based on convergent encryption, ClouDedup
remains secure thanks to the definition of a component that implements an
additional encryption operation and an access control mechanism. Further-
more, as the requirement for deduplication at block-level raises an issue with
respect to key management, we suggest to include a new component in order
to implement the key management for each block together with the actual
deduplication operation. We show that the overhead introduced by these new
components is minimal and does not impact the overall storage and compu-
tational costs.





1 Introduction

With the potentially infinite storage space offered by cloud providers, users
tend to use as much space as they can and vendors constantly look for techniques
aimed to minimize redundant data and maximize space savings. A technique which
has been widely adopted is cross-user deduplication. The simple idea behind dedu-
plication is to store duplicate data (either files or blocks) only once. Therefore, if
a user wants to upload a file (block) which is already stored, the cloud provider
will add the user to the owner list of that file (block). Deduplication has proved to
achieve high space and cost savings and many cloud storage providers are currently
adopting it. Deduplication can reduce storage needs by up to 90-95% for backup
applications [11] and up to 68% in standard file systems [23].

Along with low ownership costs and flexibility, users require the protection
of their data and confidentiality guarantees through encryption. Unfortunately,
deduplication and encryption are two conflicting technologies. While the aim of
deduplication is to detect identical data segments and store them only once, the
result of encryption is to make two identical data segments indistinguishable af-
ter being encrypted. This means that if data are encrypted by users in a standard
way, the cloud storage provider cannot apply deduplication since two identical data
segments will be different after encryption. On the other hand, if data are not en-
crypted by users, confidentiality cannot be guaranteed and data are not protected
against curious cloud storage providers.

A technique which has been proposed to meet these two conflicting require-
ments is convergent encryption [18, 25, 26] whereby the encryption key is usually
the result of the hash of the data segment. Although convergent encryption seems
to be a good candidate to achieve confidentiality and deduplication at the same
time, it unfortunately suffers from various well-known weaknesses [15,24] includ-
ing dictionary attacks: an attacker who is able to guess or predict a file can easily
derive the potential encryption key and verify whether the file is already stored at
the cloud storage provider or not.

In this paper, we cope with the inherent security exposures of convergent en-
cryption and propose ClouDedup, which preserves the combined advantages of
deduplication and convergent encryption. The security of ClouDedup relies on its
new architecture whereby in addition to the basic storage provider, a metadata man-
ager and an additional server are defined: the server adds an additional encryption
layer to prevent well-known attacks against convergent encryption and thus pro-
tect the confidentiality of the data; on the other hand, the metadata manager is re-
sponsible of the key management task since block-level deduplication requires the
memorization of a huge number of keys. Therefore, the underlying deduplication
is performed at block-level and we define an efficient key management mechanism
to avoid users to store one key per block. To summarize our contributions:

• ClouDedup assures block-level deduplication and data confidentiality while
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coping with weaknesses raised by convergent encryption. Block-level dedu-
plication renders the system more flexible and efficient;

• ClouDedup preserves confidentiality and privacy even against potentially
malicious cloud storage providers thanks to an additional layer of encryp-
tion;

• ClouDedup offers an efficient key management solution through the meta-
data manager;

• The new architecture defines several different components and a single com-
ponent cannot compromise the whole system without colluding with other
components;

• ClouDedup works transparently with existing cloud storage providers. As
a consequence, ClouDedup is fully compatible with standard storage APIs
and any cloud storage provider can be easily integrated in our architecture.

Section 2 explains what deduplication and convergent encryption are and why con-
vergent encryption is not a secure solution for cloud storage. Section 3 provides
an overview on the related work. Sections 4, 5 and 6 describe ClouDedup’s ar-
chitecture and the role of each component. Section 7 analyzes the computational
and storage overhead introduced by ClouDedup and evaluates its resilience against
potential attacks. Finally, Section 8 presents our conclusions and planned future
work.

2 Background

2.1 Deduplication

According to the data granularity, deduplication strategies can be categorized
into two main categories: file-level deduplication [29] and block-level deduplica-
tion [17], which is nowadays the most common strategy. In block-based dedupli-
cation, the block size can either be fixed or variable [27]. Another categorization
criteria is the location at which deduplication is performed: if data are deduplicated
at the client, then it is called source-based deduplication, otherwise target-based.
In source-based deduplication, the client first hashes each data segment he wishes
to upload and sends these results to the storage provider to check whether such
data are already stored: thus only ”undeduplicated” data segments will be actually
uploaded by the user. While deduplication at the client side can achieve band-
width savings, it unfortunately can make the system vulnerable to side-channel
attacks [19] whereby attackers can immediately discover whether a certain data is
stored or not. On the other hand, by deduplicating data at the storage provider, the
system is protected against side-channel attacks but such solution does not decrease
the communication overhead.
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2.2 Convergent Encryption

The basic idea of convergent encryption (CE) is to derive the encryption key
from the hash of the plaintext. The simplest implementation of convergent encryp-
tion can be defined as follows: Alice derives the encryption key from her message
M such that K = H(M), where H is a cryptographic hash function; she can en-
crypt the message with this key, hence: C = E(K,M) = E(H(M),M), where
E is a block cipher. By applying this technique, two users with two identical plain-
texts will obtain two identical ciphertexts since the encryption key is the same;
hence the cloud storage provider will be able to perform deduplication on such ci-
phertexts. Furthermore, encryption keys are generated, retained and protected by
users. As the encryption key is deterministically generated from the plaintext, users
do not have to interact with each other for establishing an agreement on the key to
encrypt a given plaintext. Therefore, convergent encryption seems to be a good
candidate for the adoption of encryption and deduplication in the cloud storage
domain.

2.3 Weaknesses of Convergent Encryption

Convergent encryption suffers from some weaknesses which have been widely
discussed in the literature [9, 15, 24]. As the encryption key depends on the value
of the plaintext, an attacker who has gained access to the storage can perpetrate
the so called ”dictionary attacks” by comparing the ciphertexts resulting from the
encryption of well-known plaintext values from a dictionary with the stored ci-
phertexts. Indeed, even if encryption keys are encrypted with users’ private keys
and stored somewhere else, the potentially malicious cloud provider, who has no
access to the encryption key but has access to the encrypted chunks (blocks), can
easily perform offline dictionary attacks and discover predictable files. This issue
arises in [28] where chunks are stored at the storage provider after being encrypted
with convergent encryption.

As shown in [24], the two following attacks are possible against convergent en-
cryption: confirmation of a file (COF) and learn-the-remaining-information (LRI).
These attacks exploit the deterministic relationship between the plaintext and the
encryption key in order to check if a given plaintext has already been stored or not.
In COF, an attacker who already knows the full plaintext of a file, can check if a
copy of that file has already been stored. If the attacker is the cloud provider or
an insider, he might also learn which users are the owners of that file. Depending
on the content of the file, this type of information leakage can be dangerous. For
instance, while some users could not be worried about leaking such information, it
is worth pointing out that by performing this attack, it is possible to find out if a
user has illegally stored a movie or a song.

While COF might be considered as a non-critical problem, LRI can disclose
highly sensitive information: in LRI, the attacker already knows a big part of a file
and tries to guess the unknown parts by checking if the result of the encryption
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matches the observed ciphertext. This is the case of those documents that have a
predefined template and a small part of variable content. For instance, if users store
letters from a bank, which contain bank account numbers and passwords, then an
attacker who knows the template might be able to learn the account number and
password of selected users. The same mechanism can be used to guess passwords
and other sensitive information contained in files such as configuration files, web
browser cookies, etc. In general, the more the attacker knows about the victim’s
data, the more the attack can be effective and dangerous. Hence, a strategy is
needed to achieve a higher security degree while preserving combined advantages
of both convergent encryption and deduplication.

3 Related Work

Many systems have been developed to provide secure storage but traditional
encryption techniques are not suitable for deduplication purposes. Deterministic
encryption, in particular convergent encryption, is a good candidate to achieve both
confidentiality and deduplication [22, 30] but it suffers from well-known weak-
nesses which do not ensure protection of predictable files against dictionary at-
tacks [12, 18]. In order to overcome this issue, Warner and Pertula [24] have pro-
posed to add a secret value S to the encryption key. Deduplication will thus be
applied only to the files of those users that share the secret. The new definition of
the encryption key is K = H(S|M) where | denotes an operation between S and
M . However, this solution overcomes the weaknesses of convergent encryption
at the cost of dramatically limiting deduplication effectiveness. Most importantly,
learning the secret compromises the security of the system. Our approach pro-
vides data confidentiality without impacting deduplication effectiveness. Indeed,
ClouDedup is totally independent from the underlying deduplication technique.

An alternative approach [21], which makes use of proxy re-encryption, has
been proposed but information on performance and overhead were not provided.
To the best of our knowledge, the most recent work on this topic is [14], which
provides an algorithm to deterministically generate a key without disclosing any
information on the plaintext. Keys are generated through a key server which re-
tains a secret. If an attacker learns the secret, the whole system is compromised
and the confidentiality of unpredictable files is no longer guaranteed. Also, this
technique is limited to file-level deduplication and is not scalable in the case of
block-level deduplication, which achieves higher space savings [23]. Moreover, it
does not address either side-channel attacks [19] or attacks based on the observa-
tion of access patterns, which can leak confidential information and compromise
users’ privacy. We propose ClouDedup, which does not rely on the security of
one single component and manages block-level deduplication in an efficient man-
ner. Furthermore, thanks to its architecture, ClouDedup can address side-channel
attacks and preserve users’ privacy.
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4 ClouDedup

The scheme proposed in this paper aims at deduplication at the level of blocks
of encrypted files while coping with the inherent security exposures of convergent
encryption. The scheme consists of two basic components: a server that is in
charge of access control and that achieves the main protection against COF and
LRI attacks; another component, named as metadata manager (MM), is in charge
of the actual deduplication and key management operations.

Figure 1: High-level view of ClouDedup

4.1 The Server

A simple solution to prevent the attacks against convergent encryption (CE)
consists of encrypting the ciphertexts resulting from CE with another encryption
algorithm using the same keying material for all input. This solution is compatible
with the deduplication requirement since identical ciphertexts resulting from CE
would yield identical outputs even after the additional encryption operation. Yet,
this solution will not suffer anymore from the attacks targeting CE such as COF
and LRI.

We suggest to combine the access control function with the mechanism that
achieves the protection against CE through an additional encryption operation. In-
deed, access control is an inherent function of any storage system with reasonable
security assurance. Enhancing the trusted component of the storage system, that
implements access control, with the new mechanism against COF and LRI attacks,
seems to be the most straightforward approach. The core component of ClouD-
edup is thus a server that implements the additional encryption operation to cope
with the weaknesses of CE, together with a user authentication and an access con-
trol mechanism embedded in the data protection mechanism. Each data segment
is thus encrypted by the server in addition to the convergent encryption operation
performed by the user. As to the data access control, each encrypted data segment
is linked with a signature generated by its owner and verified upon data retrieval
requests. The server relies on the signature of each segment to properly identify
the recipient.
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4.2 Block-level Deduplication and Key Management

Even though the mechanisms of the server cope with the security weaknesses
of CE, the requirement for deduplication at block-level further raises an issue with
respect to key management. As an inherent feature of CE, the fact that encryption
keys are derived from the data itself does not eliminate the need for the user to
memorize the value of the key for each encrypted data segment. Unlike file-level
deduplication, in case of block-level deduplication, the requirement to memorize
and retrieve CE keys for each block in a secure way, calls for a fully-fledged key
management solution. We thus suggest to include a new component, the meta-
data manager (MM), in the new ClouDedup system in order to implement the key
management for each block together with the actual deduplication operation.

4.3 Threat Model

The goal of the system is to guarantee data confidentiality without losing the
advantage of deduplication. Confidentiality must be guaranteed for all files, in-
cluding the predictable ones. The security of the whole system should not rely
on the security of a single component (single point of failure), and the security
level should not collapse when a single component is compromised. We consider
the server as a trusted component with respect to user authentication, access control
and additional encryption. The server is not trusted with respect to the confidential-
ity of data stored at the cloud storage provider. Therefore, the server is not able to
perform offline dictionary attacks. Anyone who has access to the storage is consid-
ered as a potential attacker, including employees at the cloud storage provider and
the cloud storage provider itself. In our threat model, the cloud storage provider is
honest but curious, meaning that it carries out its tasks but might attempt to decrypt
data stored by users. We do not take into account cloud storage providers that can
choose to delete or modify files. Our scheme might be extended with additional
features such as data integrity [16] and proofs of retrievability [20]. Among the
potential threats, we identify also external attackers. An external attacker does not
have access to the storage and operates outside the system. This type of attacker
attempts to compromise the system by intercepting messages between different
components or compromising a user’s account. External attackers have a limited
access to the system and can be effectively neutralized by putting in place strong
authentication mechanisms and secure communication channels.

4.4 Security

In the proposed scheme, only one component, that is the server, is trusted with
respect to a limited set of operations, therefore we call it semi-trusted. Once the
server has applied the additional encryption, data are no longer vulnerable to CE
weaknesses. Indeed, without possessing the keying material used for the addi-
tional encryption, no component can perform dictionary attacks on data stored at
the cloud storage provider. The server is a simple semi-trusted component that
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is deployed on the user’s premises and is in charge of performing user authenti-
cation, access control and additional symmetric encryption. The primary role of
the server is to securely retain the secret key used for the additional encryption.
In a real scenario, this goal can be effectively accomplished by using a hardware
security module (HSM) [10]. When data are retrieved by a user, the server plays
another important role. Before sending data to a given recipient, the server must
verify if block signatures correspond to the public key of that recipient. The meta-
data manager (MM) and the cloud storage provider are not trusted with respect to
data confidentiality, indeed, they are not able to decrypt data stored at the cloud
storage provider. We do not take into account components that can spontaneously
misbehave and do not accomplish the tasks they have been assigned.

5 Components

In this section we describe the role of each component.

5.1 User

The role of the user is limited to splitting files into blocks, encrypting them with
the convergent encryption technique, signing the resulting encrypted blocks and
creating the storage request. In addition, the user also encrypts each key derived
from the corresponding block with the previous one and his secret key in order to
outsource the keying material as well and thus only store the key derived from the
first block and the file identifier. For each file, this key will be used to decrypt and
re-build the file when it will be retrieved. Instead, the file identifier is necessary to
univocally identify a file over the whole system. Finally, the user also signs each
block with a special signature scheme. During the storage phase, the user computes
the signature of the hash of the first block: S0 = σPKu(H(B0)). In order not to
apply costly signature operations for all blocks of the file, for all the following
blocks, a hash is computed over the hash of the previous block and the block itself:
Si = H(Bi|Si−1). The main architecture is illustrated in Fig. 1.

5.2 Server

The server has three main roles: authenticating users during the storage/retrieval
request, performing access control by verifying block signatures embedded in the
data, encrypting/decrypting data traveling from users to the cloud and viceversa.
The server takes care of adding an additional layer of encryption to the data (blocks,
keys and signatures) uploaded by users. Before being forwarded to MM, data are
further encrypted in order to prevent MM and any other component from perform-
ing dictionary attacks and exploiting the well-known weaknesses of convergent
encryption. During file retrieval, blocks are decrypted and the server verifies the
signature of each block with the user’s public key. If the verification process fails,
blocks are not delivered to the requesting user.
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5.3 Metadata Manager (MM)

MM is the component responsible for storing metadata, which include en-
crypted keys and block signatures, and handling deduplication. Indeed, MM main-
tains a linked list and a small database in order to keep track of file ownerships, file
composition and avoid the storage of multiple copies of the same data segments.
The tables used for this purpose are file, pointer and signature tables. The linked
list is structured as follows:

• Each node in the linked list represents a data block. The identifier of each
node is obtained by hashing the encrypted data block received from the
server.

• If there is a link between two nodes X and Y, it means that X is the predeces-
sor of Y in a given file. A link between two nodes X and Y corresponds to
the file identifier and the encryption of the key to decrypt the data block Y.

The tables used by MM are structured as follows:

• File table. The file table contains the file id, file name, user id and the id of
the first data block.

• Pointer table. The pointer table contains the block id and the id of the block
stored at the cloud storage provider.

• Signature table. The signature table contains the block id, the file id and the
signature.

In addition to the access control mechanism performed by the server, when users
ask to retrieve a file, MM further checks if the requesting user is authorized to re-
trieve that file. This way, MM makes sure that the user is not trying to access some-
one else’s data. This operation can be considered as an additional access control
mechanism, since an access control mechanism already takes place at the server.
Another important role of MM is to communicate with cloud storage provider (SP)
in order to actually store and retrieve the data blocks and get a pointer to the actual
location of each data block.

5.4 Cloud Storage Provider (SP)

SP is the most simple component of the system. The only role of SP is to
physically store data blocks. SP is not aware of the deduplication and ignores any
existing relation between two or more blocks. Indeed, SP does not know which
file(s) a block is part of or if two blocks are part of the same file. This means that
even if SP is curious, it has no way to infer the original content of a data block
to rebuild the files uploaded by the users. It is worth pointing out that any cloud
storage provider would be able to operate as SP. Indeed, ClouDedup is completely
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transparent from SP’s perspective, which does not collaborate with MM for dedu-
plication. The only role of SP is to store data blocks coming from MM, which
can be considered as files of small size. Therefore, it is possible to make use of
well-known cloud storage providers such as Google Drive [7], Amazon S3 [3] and
Dropbox [6].

5.5 A realistic example of ClouDedup

Figure 2: A realistic example of ClouDedup

In this section we show that our proposed solution can be easily deployed with
existing and widespread technologies. In the scenario we analyze, a group of users
belonging to the same organization want to store their data, save as much storage
space as possible and keep their data confidential. As shown in Fig. 2, the Server
can be implemented using a Luna SA HSM [10] deployed on the users’ premises.
As documented in [8], in order to make the system resilient against single-point-of-
failure issues, it is possible to build a high availability array by using multiple Luna
SA HSMs. This way, in the case the main HSM crashes, it can be immediately re-
placed by an equivalent HSM without losing the secret key or getting worse perfor-
mance.
In order to guarantee data confidentiality even in the case the server is compro-
mised, an additional HSM can be deployed between MM and SP. Deploying MM
and the additional HSM in the same location, such as AWS [4], helps to minimize
network latency and increase performance. This solution achieves higher security
(it is very unlikely to compromise both HSMs at the same time) without signifi-
cantly increasing the costs. MM can be hosted in a virtual machine on Amazon
EC2 [1] and make use of a database to store metadata and encrypted keys. The ad-
ditional HSM can be implemented by taking advantage of Amazon CloudHSM [5]
which provides secure, durable, reliable, replicable and tamper-resistant key stor-
age. Finally, very popular cloud storage solutions such as Dropbox [6], Ama-
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zon S3 [3], Amazon Glacier [2] and Google Drive [7] could be used as storage
providers.

6 Protocol

In this section we describe the two main operations of ClouDedup: storage and
retrieval. The description of other operations such as removal, modification and
search are out of the scope of this paper.

Notation
EK encryption function with key K
H hash function
Bi ith block of a file
B′

i ith block of a file after convergent encryption
B′′

i ith block of a file after encryption
at the server

Ki key generated from the ith block of a file
K ′

i Ki after encryption at the server
KA secret key of server
KUj secret key of user j
PKUj

private key of the certificate of user j
Si signature of ith block of a file with PKUj

6.1 Storage

During the storage procedure, a user uploads a file to the system. As an exam-
ple, we describe a scenario in which a user Uj wants to upload the file F1.

Figure 3: Storage Protocol

USER User Uj splits F1 into several blocks. For each block Bi, Uj generates
a key by hashing the block and uses this key to encrypt the block itself. Therefore
B′i = EKi(Bi) where Ki = H(Bi). Uj stores K1 and encrypts each following
key with the key corresponding to the previous block: EKi−1(Ki). Uj further
encrypts each key (except K1) with his own secret key KUj : EKUj

(EKi−1(Ki)).
Uj computes the block signatures as described in 5.1. Uj sends a request to the
server in order to upload file F1. The request is composed by:

• Uj’s id : IDUj ;

• the encrypted file name;
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• file identifier : Fid1;

• first data block : EK1(B1);

• for each following data block Bi (i ≥ 2): key to decrypt block Bi, that
is EKUj

(EKi−1(Ki)); signature of block Bi, that is Si; data block B′i :
EKi(Bi);

In order to improve the level of privacy and reveal as little information as possible,
Uj encrypts the file name with his own secret key. File identifiers are generated by
hashing the concatenation of user ID and file name H(user ID | file name).

SERVER The server receives a request from user Uj and runs SSL in order
to authenticate Uj and securely communicate. Each key, signature and block
are encrypted under KA (server’s secret key): B′′i = EKA

(EKi(Bi)), K ′i =
EKA

(EKUj
(EKi−1(Ki))), S′i = EKA

(Si). The only parts of the request which
are not encrypted are user’s id, the file name and the file identifier. The server
forwards the new encrypted request to MM.

MM MM receives the request from the server and for each blockB′′i contained
in the request, MM checks if that block has already been stored by computing its
hash value and comparing it to the ones already stored. If the block has not been
stored in the past, MM creates a new node in the linked list, the identifier of the
node is equal to H(B′′i ). MM updates the data structure by linking each node
(block) of file F1 to its successor. A link from block B′′i−1 to block B′′i contains the
following information: {Fid1, EKA

(EKUj
(EKi−1(Ki)))}. It is worth pointing out

that each key is encrypted with the key of the previous block and users retain the
key of the first block, which is required to start the decryption process. This way, a
chaining mechanism is put in place and the key retained by the user is the starting
point to decrypt all the keys. Moreover, MM stores the signature of each block in
the signature table, which associates each block of each user to one signature. For
each block B′′i not already stored, MM sends a storage request to SP which will
store the block and return a pointer. Pointers are stored in the pointer table, which
associates one pointer to each block identifier.

SP SP receives a request to store a block. After storing it, SP returns the pointer
to the block.

MM MM receives the pointer from SP and stores it in the pointer table.

6.2 Retrieval

During the retrieval procedure, a user asks to download a file from the system.
As an example, we describe a scenario in which a user Uj wants to download the
file F1.

USER User Uj sends a retrieval request to the server in order to retrieve file
F1. The request is composed by the user’s id IDUj , the file identifier Fid1 and his
certificate.

11



Figure 4: Retrieval Protocol

SERVER The server receives the request, authenticates Uj and if the authen-
tication does not fail, the server forwards the request to MM without performing
any encryption.

MM MM receives the request from the server and analyzes it in order to check
if Uj is authorized to access Fid1 (Uj is the owner of the file). If the user is autho-
rized, MM looks up the file identifier in the file table in order to get the pointer to
the first block of the file. Then, MM visits the linked list in order to retrieve all the
blocks that compose the file. For each of these blocks, MM retrieves the pointer
from the pointer table and sends a request to SP.

SP SP returns the content of the encrypted blocks to MM.B′′i = EKA
(EKi(Bi)).

MM MM builds a response which contains all the blocks, keys and signatures
of file F1. Signatures are retrieved from the signature table. The response is struc-
tured as follows:

• file identifier: Fid1;

• first data block : EKA
(EK1(B1));

• for each following data block Bi(i ≥ 2): key to decrypt block Bi, that
is EKA

(EKUj
(EKi−1(Ki))); signature of block Bi, that is EKA

(Si); data
block B′′i : EKA

(EKi(Bi));

MM sends the response to the server.
SERVER The server decrypts blocks, signatures and keys with KA. If the sig-

nature verification does not fail, the server sends a response to Uj . Each key-block
pair received by the user, will be structured as follows: {EKUj

(EKi−1(Ki)), EKi(Bi)}.
USER Uj can finally decrypt blocks and keys. Uj already knows the key cor-

responding to the block B1. For each data block Bi, Uj decrypts block B′i using
Ki and Ki+1 using KUj and Ki. Uj can finally rebuild the original file F1.
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7 Evaluation

In this section we evaluate the overhead introduced by our system in terms
of storage space and computational complexity. We also evaluate ClouDedup’s
resilience against potential attacks. In order to refer to a real scenario, we use the
same parameters of [23], but our calculations hold true for other scenarios.

7.1 Storage Space

Figure 5: Overhead of metadata management with encryption

We took into account a scenario in which there are 857 file systems. The mean
number of files per file system is 225K and the mean size of a file is 318K, resulting
in about 57T of data. In our design, we use SHA256 as hash function so the key
size of each block is 256 bits. Metadata storage space is estimated by taking into
account four main data structures:

• File table. The file table stores one record for each file and contains the file
id (256 bits), file name (256 bits), user id (32 bits) and the id of the first data
block (256 bits).

• Pointer table. The pointer table stores one record for each block and con-
tains the block id (256 bits) and the id of the actual block stored at the cloud
storage provider (64 bits).

• Signature table. The signature table stores one record for each block (non-
deduplicated) and contains the block id (256 bits), the file id (256 bits) and
the signature (2048 bits for the first block, 128 bits for the remaining blocks).
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• Linked list. The linked list contains one node (256 bits) and zero or more
links for each block. A link contains a pointer (64 bits) to a successor block
for a given file and stores additional information such as encrypted block
keys (256 bits) and file id (256 bits).

According to the results of [23], Rabin 8K (expected block size of 8K) has proved
to be the best chunking algorithm, achieving 68% of space savings. In Fig. 5 we
show that the overhead introduced by the MM component is minimal and does
not affect space savings of deduplication. In the best deduplication setup (Rabin
8K and deduplication rate of 68%) the total storage space required for metadata is
equal to 2.22% of the size of non-deduplicated data. These results prove that the
overhead for block-level deduplication is affordable even with encryption.

7.2 Computation

We analyze the computational complexity of the two most important opera-
tions: storage and retrieval. N is the mean number of blocks per file and M the
total number of blocks in the system.

Storage Retrieval
Encryption O(N) O(N)
Hash O(N) O(N)
Lookup in data structures O(N logM) O(N)
Other O(N) O(N)

7.2.1 Storage

The first step of the storage protocol requires the server to encrypt Bi, Ki and
Si. As the encryption is symmetric, the cost of each encryption can be considered
constant, so for N blocks the total cost is O(N). The second step of the protocol
requires the metadata manager to hash each block in order to compare it with the
ones already stored. As for symmetric encryption, the total cost is O(N). In order
to perform deduplication, MM has to check if a block has already been stored. In
order to do so, he searches (dichotomic search) for a given hash in a pre-ordered
table of hash values. The cost of this operation is O(logM) and it is performed
for each block. The cost of the update of the data structures can be considered
constant. The last (optional) step of the protocol is the encryption at the additional
HSM, which symmetrically encrypts at mostN blocks. The total cost of the storage
operation is linear for the encryption operations and almost linear for the lookup in
data structures, therefore the metadata management is scalable.

7.2.2 Retrieval

The first step of the retrieval protocol requires the metadata manager to com-
pute a hash of the concatenation of user id and file name. The cost of this operation
can be considered constant. Even the lookup in the file table, in order to get the
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pointer to the first block of the file, has a constant cost. Visiting the linked list,
searching in the tables and sending a request to the cloud storage provider, have
a constant cost and are repeated N times. Once again, the cost of the symmetric
decryptions is constant, hence the complexity remains linear. The signature ver-
ification process requires the server to verify one signature and compute N − 1
hashes, hence the cost of this operation is linear. The total cost of the retrieval
operation is linear, therefore the system is scalable for very large datasets.

7.3 Deduplication Rate

Our proposed solution aims to provide a robust security layer which provides
confidentiality and privacy without impacting the underlying deduplication tech-
nique. Each file is split into blocks by the client, who applies the best possible
chunking algorithm. When encrypted data blocks are received by MM, a hash
of each block is calculated in order to compare them to the ones already stored.
This task is completely independent from the chunking technique used by clients.
Also, all the encryptions performed in the system do not affect the deduplication
effectiveness since the encryption is deterministic. Therefore, ClouDedup provides
additional security properties without having an impact on the deduplication rate.

7.4 Security

We explained the main security benefits of our solution in section 4.4. We now
focus on potential attack scenarios and possible issues that might arise. As stated
in the threat model section, we assume that an attacker, like the malicious storage
provider, has full access to the storage. If the attacker has only access to the storage,
he cannot get any information. Indeed, files are split into blocks and each block is
first encrypted with convergent encryption and then further encrypted with one or
more secret keys. Moreover, no metadata are stored at the cloud storage provider.
Clearly, thanks to this setup, the attacker cannot perform any dictionary attack on
predictable files.
A worse scenario is the one in which the attacker manages to compromise the meta-
data manager and thus has access to data, metadata and encrypted keys. In this case,
confidentiality and privacy would still be guaranteed since block keys are encrypted
with users’ secret keys and the server’s secret key. The only information the at-
tacker can get are data similarity and relationships between files, users and blocks.
However, as file names are encrypted by users, these information would be of no
use for the attacker, unless he manages to find a correspondence with a predictable
file according to its size and popularity.
The system must guarantee confidentiality and privacy even in the unlikely event
where the server is compromised. The additional HSM proposed in section 5.5 and
located between the metadata manager and the storage provider will then enforce
data protection since it also offers another encryption layer; therefore confidential-
ity is still guaranteed and offline dictionary attacks are not possible. On the other
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hand, if the attacker compromises the server, only online attacks would be possible
since this component directly communicates with users. The effect of such a breach
is limited since data uploaded by users are encrypted with convergent encryption,
which achieves confidentiality for unpredictable files [15]. Furthermore, a rate lim-
iting strategy put in place by the metadata manager can limit online brute-force at-
tacks performed by the server.
In the worst scenario, the attacker manages to compromise both HSMs. In this case,
the attacker will be able to remove the two additional layers of encryption and per-
form offline dictionary attacks on predictable files. However, confidentiality for un-
predictable files is guaranteed.
Finally, we analyze the impact of an attacker who attempts to compromise users
and have no access to the storage. If an attacker compromises one or more users,
he can attempt to perform online dictionary attacks. As the server is not com-
promised, the attacker will only retrieve data belonging to the compromised user
(access control mechanism). Furthermore, the server can limit such attacks by
setting a maximum threshold for the rate with which users can send requests.

8 Conclusion and Future Work

We designed a system which achieves confidentiality and enables block-level
deduplication at the same time. Our system is built on top of convergent encryption.
We showed that it is worth performing block-level deduplication instead of file-
level deduplication since the gains in terms of storage space are not affected by
the overhead of metadata management, which is minimal. Additional layers of
encryption are added by the server and the optional HSM. Thanks to the features
of these components, secret keys can be generated in a hardware-dependent way by
the device itself and do not need to be shared with anyone else. As the additional
encryption is symmetric, the impact on performance is negligible. We also showed
that our design, in which no component is completely trusted, prevents any single
component from compromising the security of the whole system. Our solution
also prevents curious cloud storage providers from inferring the original content of
stored data by observing access patterns or accessing metadata. Furthermore, we
showed that our solution can be easily implemented with existing and widespread
technologies. Finally, our solution is fully compatible with standard storage APIs
and transparent for the cloud storage provider, which does not have to be aware
of the running deduplication system. Therefore, any potentially untrusted cloud
storage provider such as Amazon, Dropbox and Google Drive, can play the role of
storage provider.

As part of future work, ClouDedup may be extended with more security fea-
tures such as proofs of retrievability [20], data integrity checking [16] and search
over encrypted data [13]. In this paper we mainly focused on the definition of the
two most important operations in cloud storage, that are storage and retrieval. We
plan to define other typical operations such as edit and delete. After implementing
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a prototype of the system, we aim to provide a full performance analysis. Fur-
thermore, we will work on finding possible optimizations in terms of bandwidth,
storage space and computation.
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