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Abstract—Machine-to-machine (M2M) or Machine-type Com-
munication (MTC) is expected to significantly increase in fu-
ture wireless networks. It exhibits considerably different traf-
fic patterns than human-type communication, thus, claims for
new traffic models and simulation scenarios. The challenge in
designing such models is not only to accurately capture the
behavior of single MTC devices but also to handle their enormous
amount (e.g., up to 30 000 devices per cell) and their coordinated
behavior. Source traffic models (i.e., each device is modeled as
autonomous entity) are generally desirable for their precision
and flexibility. However, their complexity is in general growing
quadratically with the number of devices. Aggregated traffic
models (i.e., all device are summarized to one stream) are far
less precise but their complexity is mainly independent of the
number of devices. In this work we propose an approach which is
combining the advantages of both modeling paradigms, namely,
the Coupled Markov Modulated Poisson Processes (CMMPP)
framework. It demonstrates the feasibility of source traffic
modeling for MTC, being enabled by only linearly growing
complexity. Compared to aggregated MTC traffic models, such
as proposed by 3GPP TR 37.868, CMMPP allows for enhanced
accuracy and flexibility at the cost of moderate computational
complexity.

I. INTRODUCTION

In contrast to traditional Human-type Communication

(HTC) which 3G wireless networks are currently designed

for, Machine-type Communication (MTC) or Machine-to-

Machine Communication (M2M) is regarded as a form of

data communication that does not require human interaction

[1]. MTC promises huge market growth with expected 50

billion connected devices by 2020 [2]. The support for such

a massive number of MTC devices has deep implications on

the end-to-end network architecture. Lowering both the power

consumption and the deployment cost are among the primary

requirements. This calls for a migration from high data rate

networks to MTC-optimized low cost networks.

A. Why do we need M2M Traffic Models?

To prepare mobile networks for future requirements, stan-

dardization organizations currently investigate shortcomings

of present networks by simulation of future scenarios. First

studies on MTC services shine a light on such scenarios [3],

the amount of deployed devices however is still far below the

expected numbers, cf. [4]. Hence, a faithful definition of traffic

models and reference scenarios is required, in order to validate

application scenarios on current and future networks.

Conventional traffic (i.e., HTC) and MTC traffic have two

major differences: (i) HTC traffic is heterogeneous whereas

MTC traffic is highly homogeneous (all machines running

the same application behave similar) and, further, (ii) HTC

is uncoordinated on small timescales (up to minutes), while

MTC may be coordinated, namely, many machines react on

global events in a synchronized fashion. Thus, well known

traffic models designed for HTC require adaptations for their

application to MTC.

A fundamental question is whether it is feasible to model

the traffic of a large amount of autonomous machines simul-

taneously. This approach is called source traffic modeling. It

is in general more accurate than its counterpart, aggregated

traffic modeling (i.e., treating the accumulated data from all

MTC devices as single stream). Comparing both approaches

in the context of MTC is an open issue.

B. Contributions of this Work

We give an overview of the M2M traffic models and

deployment scenarios developed in literature. The divergence

between different approaches is highlighted, which yields

certain results incomparable. We review the 3GPP model in

detail, since it is the model most commonly used at present.

It models MTC as aggregated traffic.

Furthermore, we propose Coupled Markov Modulated Pois-

son Processes (CMMPP) as a candidate to accurately model

MTC traffic sources on a per-device basis. To capture the

fact that many devices behave in a synchronized fashion we

incorporate couplings to the well known MMPP framework,

yielding convergence between the 3GPP and CMMPP ap-

proaches. A complexity evaluation shows that the emulation of

hundreds of thousands of machines on device level is feasible.

However, the complexity is significantly higher compared to

the 3GPP approach.

C. State of the Art MTC Traffic Models

Traffic modeling means to design stochastic processes such

that they match the behavior of physical quantities of measured

data traffic, cf. [5]. Traffic models are classified as source

traffic models (e.g., video, data, voice) and aggregated traffic

models (e.g., backbone networks, Internet, high-speed links).

MTC traffic fits into the second class, since the typical use case

includes numerous simple machines assigned to one server

or medium. This can be modeled as simple Poisson process,

however, due to coordination (synchronizations) in MTC traf-

fic, the respective arrival rate λ may be changing over time,

λ(t) (i.e., temporal modulation, [6, 7]). The more complex

the single MTC devices behave (e.g., video surveillance), the

more questionable becomes the approach of modeling them as

aggregated traffic. The global data stream may exhibit high-

order statistical properties which are difficult to capture [8]. We



further expect this effect to be enhanced by the synchronization

of sources. In such a case, traffic modeling in terms of source

traffic is preferable. Source traffic models which can capture

the coordinated nature of MTC traffic are available, cf. [9].

However, they are designed for a low amount of sources, thus,

are too complex for MTC traffic (e.g., for N devices a N×N

matrix-vector multiplication is required in each time slot).

Mobile networks have to adopt certain key features in order

to allow MTC devices to access the air interface [10]. For

example, (i) mass device transmission, (ii) uplink-only data

traffic and (iii) small burst transmissions. Future networks shall

support up to 30 000 MTC devices in one cell, which is orders

of magnitude more than today’s requirements [11]. Nowadays

networks suffer serious Quality of Service (QoS) degradation

if confronted with (i) simultaneous access attempts from many

devices [4] or (ii) continuous serving of multiple devices with

very low transmission duty cycle [12]. Those topics are the

main focus of the research [7, 13, 14] at present.

For multiple access and capacity evaluations, aggregated

traffic models such as homogeneous [13, 14] or inhomoge-

neous [7] Poisson processes, are a satisfactory description of

reality and therefore largely deployed. Respective setups are

defined in by 3GPP [4] and further discussed in Sec. II. For the

simulation of strongly scalable multiple access schemes in fu-

ture networks (e.g., priority access, delay tolerant devices, QoS

demands), mixed source traffic models have been adopted [15–

17]. In those studies the case of synchronized MTC devices

has not been considered [15, 16] or only for a limited number

of MTC devices [17].

Concluding, we observe a divergence between traffic models

deployed within different studies. On the one hand higher

accuracy requires source traffic models, on the other hand

reduced complexity claims for aggregated traffic models. This

motivates the search for refined traffic models which combine

the benefits of both worlds, in order to guarantee comparability

of future studies by the deployment of common models.

II. THE 3GPP MODEL

Because of its popularity and its relation to the approach

presented in Sec. III, we first provide an overview of the 3GPP

model developed in [4].

The 3GPP model consists of two scenarios called Model 1

and Model 2. The first one treats uncoordinated traffic and the

second one synchronous traffic. Both scenarios are defined

by a distribution of packet arrivals (or, equivalently, access

trials) over a given time period T , cf. Tab. I. This is shown in

Fig. 1 (left), where the Probability Density Functions (PDFs)

of both distributions are depicted, being equivalent to the

TABLE I
3GPP MTC TRAFFIC MODEL: DIFFERENT SCENARIOS

Characteristic Model 1 Model 2

Number of devices N 1 000, 3 000, 5 000, 10 000, 30 000
Distribution f(t) over [0, 1] uniform beta(3,4)

Period T 60 s 10 s
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Fig. 1. 3GPP MTC traffic model. Left: expected arrival rate over time. Right:
interpretation as modulated Poisson process (sequential approach).

expected number of arrivals. The distributions f(t) are both

defined on the interval [0, 1], which has to be rescaled to the

time interval [0, T ] to yield fT (t). In order to simulate arrivals,

it is sufficient to draw N samples from the given distribution

and order them in time, where N is the expected number

of MTC devices, cf. Tab. I. This number may reach up to

30 000, which is the maximum amount of smart meter devices

expected to be served by one cell in a densely populated urban

area [4].

In general it is undesired for simulations to generate the full

traffic pattern for T beforehand. In the present case this may

not be an issue, however, basic problems such as undefined

run length T or large amounts of generated data, may require

a sequential drawing of samples. This issue is discussed in

[7], where it is pointed out that the 3GPP model is equivalent

to a modulated Poisson process. Thereby, the modulation is

achieved by the (deterministic) PDF of the arrival distribution

fT (t). This is depicted in Fig. 1 (right), where the mean arrival

rate λ(t) of a Poisson process is modulated in each time bin

∆t by a beta distribution. For infinitesimal ∆t both curves

coincide. Consequently, sequential sampling is performed by

the generation of a Poisson distributed number of arrivals in

each time bin ∆t with mean arrival rate λ(t). In order to obtain

an expected outcome of N samples within the period T (i.e.,

one sample per machine), the arrival rate has to be normalized

according to λ(t) = fT (t) ·
∆t
T
·N . The two different sampling

strategies are summarized in Fig. 3 (a–b).

The 3GPP model reaches its limits for further requirements

such as: (i) the amount of machines becomes lower, so that

a data source has to be associated with a fixed location, (ii)

multiple packets (bursts) shall come from the same machine,

(iii) the synchronous traffic (Model 2) influences the regular

traffic (Model 1) and (iv) the network has an influence on the

traffic patterns (e.g., the devices are forced to suppress delay

tolerant traffic).

III. THE CMMPP SOURCE MODELING APPROACH

In order to circumvent the limitations of the 3GPP model,

we have to adopt a source modeling approach. This means that

each MTC device is represented by a separate entity. Thereby,

we have to find a trade-off between mutual couplings among

data sources (synchronization) and a tolerable complexity for

large amounts of devices. Generic traffic models introduce

couplings by bidirectional links between devices (cf. Sec. I-C)
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Fig. 2. The MMPP model: each MTC device n is represented by a Markov
chain with states sn, which inherit the parameter λi. This is the mean arrival
rate, modulating the respective Poisson process.

which would be too complex for the present purpose. Instead,

we propose one background process acting as master which

modulates all MTC device entities.

In the following Markov Modulated Poisson Process

(MMPP) are presented as models for single MTC devices. Due

to their simplicity the operation of large amounts of device

models in parallel is computationally feasible. Further, the

coupling to a master process with low complexity is possible.

A. MMPP Basics

Markov models and Markov modulated Poisson processes

are common in traffic modeling and queueing theory, since

they allow for analytically tractable results for a broad spec-

trum of use cases [6, 18]. MMPP models consist of a Poisson

process modulated by the rate λi[t], which is determined by

the state of a Markov chain sn[t]. This principle is depicted in

Fig. 2, where pi,j are the transition probabilities between the

states of the chain. In the present source modeling approach

each MTC device n out of N is represented by a Markov

chain and a corresponding Poisson process. The state transition

probabilities are condensed into the state transition matrix P

and the state probabilities πi into the state probability vector

π according to

P =







p1,1 p1,2 · · ·
p2,1 p2,2

...
. . .






π =







π1

π2

...






. (1)

In the stationary case both are related by the balance equation

π = πP, which yields π an eigenvector of P to the eigenvalue

of 1. Further, the global rate of the MMPP calculates to λg =
∑I

i=1
λiπi, where I is the total number of states. A basic

example for an MTC device modeled by a MMPP would be

a two state MMPP with the first state representing regular

operation, the second alarm. This is analogous to the 3GPP

model presented in Sec. II.

B. Coupling Multiple MMPP

It remains to determine the state transition matrix P, such

that each device model resides a dedicated amount of time in

the regular and alarm states. From the perspective of a single

device this may be an easy task; however, from the global

perspective, the devices in the 3GPP model do the transition

from the regular to the alarm state in a strongly correlated

manner, both in time and space. To achieve the same for

multiple MMPP models they must be coupled.

Coupled Markov chains, as introduced in the context of

pattern recognition [19, 20], are multiple chains which mutu-

ally influence their transition probability matrices Pn[t]. The
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Fig. 3. Flow diagrams for traffic generation by the three different models
presented in this work, ordered by computational complexity.

matrices are influenced by the respective multiplication of

weighting factors γn=i|m=j [t|t−1], which depend on the past

states sm[t−1] of other chains m.

For the present purpose we only consider unidirectional

influences from a background process (master) Θ to the

MTC device MMPP models. We name this approach Coupled

Markov Modulated Poisson Processes (CMMPP). To avoid the

separate tuning of each of the parameters γn=i|Θ=j [t|t−1] for

each machine, we set them into the following framework: Let

there be two transition matrices PC and PU globally valid for

all N MMPP models and a background process Θ producing

samples θ[t] within the interval [0, 1]. Further, a parameter

δn ∈ [0, 1], constant over time, is associated to each MTC

device n yielding

θn[t] = δn · θ[t]. (2)

Then the state transition matrix Pn[t] shall be calculated for

machine n at time t according to

Pn[t] = θn[t] ·PC + (1−θn[t]) ·PU . (3)

This form is a convex combination of both transition matrices,

yielding itself a valid transition matrix. The advantage is

that instead of tuning an enormous amount of parameters

γn=i|Θ=j [t|t−1], only one global parameter θ[t] has to be

generated and can be applied for all device models n. The

matrices PC and PU can be interpreted as transition matrices

for the case of perfectly coordinated devices and uncoordinated

devices, respectively. The parameter δn can be interpreted as

closeness (distance) to the epicenter. The closer θn[t] to zero,

the more uncoordinated the respective machine behaves; the

closer θn[t] approaches one, the stronger the coordination.

Further, Θ may have an infinite amount of states, yielding

θ[t] a continuous process. The global arrival rate λg equals

λg =

T
∑

t=0

N
∑

n=1

I
∑

i=1

λiπn,i[t], (4)

however, the calculation of this expression is rather involved,

since πn[t] changes for each time instant t and device n. Un-
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Fig. 4. Deployment of the 3GPP model with basic extensions: 1 000 MTC devices, 60 s runtime, regular operation with 17 pkt/s/km2, four different states:
startup, regular, alarm, silent. Left: startup phase, second 0–7. Center left: regular operation phase, second 16–23. Center right: alarm phase, second 26–33.
Right: silent phase, second 40–47, note the low activity in the center, since all devices which issued an alarm are silent at this phase.

like the transition probability matrix Pn[t] the state probability

vector is not a convex combination of πC and πU , but a

rational function in θn[t] with degree I−1.

The generation of arrivals according to the CMMPP model

is outlined in Fig. 3 (c). Two iteration loops are required, both

for the devices n and time instances t, respectively. In each

iteration the transition matrix Pn[t] is calculated anew accord-

ing to Eq. (3). This may appear expensive, however, since it

is a convex combination it can be computed efficiently. Then

the random state update from sn[t−1] to sn[t] is performed.

Afterwards, a number of arrivals and packet sizes are generated

appropriate to the actual state sn[t].

C. Deployment Example

To emphasize the convergence between the 3GPP model and

the CMMPP model, we assume a two-state model, with State 1
representing regular operation and State 2 alarm operation.

Thereby, λ1=0.0005 pkt/s/device and λ2=
1

∆t
pkt/s/device.

The global transition matrices were defined to

PU =

(

1 1
0 0

)

PC =

(

0 1
1 0

)

, (5)

where the focus for the uncoordinated case is to never trigger

an alarm and for the coordinated case to trigger one alarm

in one time slot and then to return to regular operation. The

function θ[t] was fixed to θ[t]=fT (t) ·
∆t
T

, namely, the PDF of

the beta distribution of Model 2 of the 3GPP model, scaled by

the number of time slots.This is convenient since for a high

amount of short intervals (∆t≪T ) the function θ[t] becomes

small (close to zero). Consequently, the state probability vector

π[t] can be approximated as linearly dependent on θ[t], instead

of considering a rational polynomial function, cf. Sec. III-B.

The probability of residing in the alarm state estimates to

π2[t] ≈ κ · θ[t]. By scaling the value λ2 (or θ[t] itself) ac-

cording to κ, it is easily achieved to trigger approximately one

alarm per machine during the whole simulation/emulation run.

Finally, the closeness function δn was fixed to the values of

Gaussian PDFs, scaled to one at the epicenter. The results of a

respective traffic emulation closely resembles the 3GPP model,

however, with superimposed uncoordinated traffic (Model 1)

and synchronous traffic (Model 2).

In a further example, we augment the CMMPP model for

two states, namely, State 3, representing the startup phase, and

State 4, representing an extended silent phase of the MTC de-

vice after having issued an alarm. In this simulation setup the

strengths of the CMMPP modeling approach become explicit.

Namely, multiple devices are able to pass state sequences

in a spatially/temporally coordinated fashion. For illustration,

snapshots at different time instances of a simulation run are

depicted in Fig. 4. Four different phases corresponding to the

four state of the CMMPP are clearly distinguishable: (i) during

the startup phase each device tries to transmit information, (ii)

in the regular phase sparse uncoordinated traffic is generated,

(iii) the alarm phase triggers affected devices to change their

state, whereas the others stay in regular operation, and (iv)

during the silence phase all devices which issued an alarm do

not transmit. This last phase can be distinguished from the

regular phase by the low activity in the central region of the

rightmost figure, compared to the activity in the respective area

of the center left figure. Such correlations between spatial and

temporal activities are far beyond the capabilities of the 3GPP

model.

IV. MODEL COMPARISON

Most advantages and drawbacks for both the 3GPP (non-

sequential and sequential) and the coupled MMPP models have

already been discussed in Sec. II and Sec. III, respectively. For

completeness a summary and comparison of the models is

given in Tab. II.

For comparing the computational complexity of both mod-

els, the basic example from Sec. III-C has been considered,

which is similar to the plain 3GPP model. The simulated

time was 60 s with a resolution of 10 ms. The three models

have been implemented in Matlab (available [21]) and the

respective simulation durations on a commodity desktop work-

station were recorded. The resulting absolute numbers for the

emulation of 30 000 devices are: 0.02 s, 1.1 s and 36 s for the

3GPP, 3GPP seq. and CMMPP model, respectively. The result

for CMMPP positively answers the general question of the

feasibility of source modeling approaches for large numbers

of sources. A comparable simulation with conventional source

traffic models (cf. Sec. I-C) would be unfeasible, since it

requires roughly 20 h for 30 000 devices. A visual comparison
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is provided in Fig. 5. In general the sequential approaches

perform slower than the non-sequential. Both 3GPP models

show a negligible raise in complexity with increasing number

of MTC devices, which is expected for accumulated traffic

models. The CMMPP approach exhibits a linear growing

complexity with the number of devices, since each device is

internally represented by a separate MMPP model. Conven-

tional source traffic models experience a quadratic grow.

V. CONCLUSION

Existing traffic models for MTC or M2M communications

are mostly aggregated traffic models, defining MTC traffic as

one stream from multiple devices (e.g., see 3GPP [4]). For a

more accurate traffic description, source models are required,

which model each MTC device on its own. Yet, M2M traffic

bears two fundamental problems to source modeling: (i) the

massive amount of devices to be modeled in parallel and

(ii) the strong spatial and temporal correlation between the

devices.

We proposed CMMPP models for MTC traffic to overcome

those problems. The generation of multiple MMPPs exhibits

low computational cost, such that their massive parallel de-

ployment is feasible. The coupling to a background process

is done by a convex combination of multiple state transition

matrices. This solution is inexpensive and allows for involved

correlation structures, exceeding the capabilities of the 3GPP

modeling approach. A complexity evaluation of the proposed

model emphasized its usefulness as it demonstrates the parallel

TABLE II
COMPARISON OF THE FOUR MODELS.

Model 3GPP 3GPP seq. CMMPP Generic
Type aggreg. aggreg. source source

Complexity low medium high unfeas.
Temporal coord. yes yes yes yes
Spatial coordination yes yes yes yes
Temp./Spatial coord. / / yes yes
QoS possible yes yes yes yes
Determ. sample path yes yes yes yes
Random sample path / yes yes yes
Random run time / yes yes yes
Fixed device location / / yes yes
Coupling traffic states / / yes yes
Reciprocal dev. coupl. / / / yes

deployment of 30 000 machines with reasonable effort. We

finally concluded that source traffic modeling is feasible for

MTC traffic. In elaborate scenarios and for a low or medium

number of devices CMMPP are preferable over aggregated

traffic models for the higher achievable accuracy.
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