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Abstract—Channel State Information at the Transmitter
(CSIT) is of utmost importance in multi-user wireless networks,
in which transmission rates at high SNR are characterized by
Degrees of Freedom (DoF, the rate prelog). In recent years, a
number of ingenious techniques have been proposed to deal
with delayed and imperfect CSIT. However, we show that the
precise impact of these techniques in these scenarios depends
heavily on the channel model. We introduce the use of lin-
ear Finite Rate of Information (FRoI) signals to model time-
selective channel coefficients, a model which turns out to be
well matched to DoF analysis. Both the block fading model and
the stationary bandlimited channel model are special cases of
the FRoI channel model (CM). However, the fact that FRoI
CMs model stationary channel evolutions allows to exploit one
more dimension: arbitrary time shifts. In this way, the FroI
CM allows to maintain the DoF unaffected in the presence of
CSIT feedback (FB) delay, by increasing the FB rate. We call
this Foresighted Channel Feedback (FCFB). We then consider
netDoF, by accounting also for the DoF consumed in training
overhead and feedback. We work out the details for the MISO
broadcast channel (BC), including optimization of the number
of users, and exhibit unmatched netDoF performance compared
to existing approaches.

I. INTRODUCTION

In this paper, Tx and Rx denote transmit/transmitter/ trans-

mitting/transmission and receive/receiver/receiving/reception.

Interference is undoubtedly the main limiting factor in multi-

user wireless communication systems. Tx side or Rx side

zero-forcing (ZF) beamforming (BF) or joint Tx/Rx ZF BF

(signal space interference alignment (IA)) allow to obtain

significant Degrees of Freedom (DoFs) (= multiplexing factor,

or rate prelog). These technique require very good Channel

State Information at TX and Rx (CSIT/CSIR). Especially

CSIT is problematic since it requires feedback (FB) which

involves delay, which may be substantial if FB Tx is slot

based. It therefore came as a surprise that with totally outdated

delayed CSIT, the MAT scheme [1] is still able to produce

significant DoF gains for multi-antenna transmission. Using

a sophisticated variation of the MAT scheme, [2] was able

to propose an improved scheme for the case where the FB
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delay is less than the channel coherence time. It was generally

believed that any delay in the feedback necessarily causes

a DoF loss. However, Lee and Heath in [3] proposed a

scheme that achieves Nt (sum) DoF in the block fading

underdetermined MISO BC with Nt transmit antennas and

K = Nt + 1 users if the feedback delay is small enough

(≤ Tc

K
). We introduce FRoI channel models and exploit their

approximately stationary character to propose a simple ZF

scheme based on Foresighted Channel FB (FCFB). The DoF

of FCFB ZF are also insensitive to FB delay. We then analyze

the netDoF of these and other recent schemes.

II. SOME CHANNEL MODEL STATE OF THE ART

One category of popular channel models is the (first-order)

autoregressive (Gauss-Markov) channel model, see e.g. [4].

However, these models (at finite and especially low order)

do not allow perfect prediction and hence do not lead to

interesting DoF results. These models are called regular in

[5]. The two classical (nonregular) channel models that allow

permanent perfect CSIT for Doppler rate perfect channel

feedback are block fading and bandlimited (BL) stationary

channels. The block fading model dates back to the time

of GSM where it was quite an appropriate model for the

case of frequency hopping. However, though this model is

very convenient for very tractable analysis (e.g. for sinngle-

user MIMO [6]), it is inappropriate for DoF analysis which

works at infinite SNR and requires exact channel models. Now,

whereas exact channel models do not exist, channel models for

DoF analysis should at least be good approximations. Indeed,

mobile speeds and Doppler shifts are finite. This leads to a

strictly BL Jakes Doppler spectrum. However, in the Jakes

model, the mobile terminal has a certain speed without ever

moving (attenuation, directions of arrival, path delays, speed

vector etc. are all constant forever). In reality, the channel

evolution constantly evolves from one temporarily BL Doppler

spectrum to another, leading to a possibly overall stationary

process but that is not BL.

Another aspect is that there is a difference between channel

modeling for CSIR only and for CSIT. In the CSIR case,

causality is not much of an issue and channel estimation can

be done in a non-causal fashion. Hence block processing and



Fig. 1. A bandlimited (BL) Doppler spectrum and its noisy version.

associated channel models as in [4] and references therein are

acceptable. In the CSIT case however, the CSI needs to be

fed back for adaptation of the Tx. Due to the feedback delay,

the channel estimation in the CSIT scenario is necessarily

causal (case of prediction). Hence different channel models

are required.

III. THE BANDLIMITED (BL) DOPPLER SPECTRUM CASE

In an optimal approach, all channel coefficients (in the chan-

nel impulse response) need to be treated jointly. However, if no

deterministic relations exist between the channel coefficients,

then for the purpose of DoF analysis, we may consider the

case of i.i.d. channel coefficients. In what follows we consider

one such generic channel coefficient h. Its temporal evolution

is a stationary discrete-time process, at the sampling rate

(channel uses) of the communications channel. We assume

this sampling rate to be normalized to 1. We assume the

Doppler spectrum Sh(f), the spectrum of the process h, to

be bandlimited to Fc, which is the total Doppler Bandwidth

(as the channel coefficients are complex, the position of the

Doppler spectrum w.r.t. the carrier frequency is less crucial,

so we can assume the Doppler support to be [0, Fc] as in

Fig. 1; also, Sh(f) is periodic in frequency f with period

1). We denote the coherence time as Tc = 1/Fc. Due to the

(deterministic) estimation of the channel in the downlink, and

its imperfect feedback to the Tx, the Tx has a noisy version h′

with additive estimation noise h′′ (note that the use of a prior

channel distribution in a Bayesian approach can be postponed

until the prediction operation to follow). The noisy spectrum

is Sh′(f) = Sh(f) + Sh′′(f) = Sh(f) + σ2
h′′ assuming

independent white noise h′′. Let Tfb be the delay with which

the channel estimate h′ arrives at the Tx for (instantaneous)

adaptation of the transmitter. That means that the Tx has to

perform channel prediction over a horizon of Tfb. Assuming a

Gaussian channel and estimation noise, linear minimum mean

squared error (LMMSE) prediction is optimal (if MMSE is the

optimality criterion). Prediction over a horizon of Tfb samples

will become prediction by one sample if we downsample the

channel estimate signal by a factor Tfb. Downsampling in the

time domain leads to a expansion of the spectrum support by a

factor Tfb (of course, prediction from a subsampled version is

of a degraded quality in the noisy case). Considering Fig. 1, as

long as FcTfb < 1 (or Tfb < Tc), the downsampled channel

signal remains bandlimited. Let S(f) denote the downsampled

version of Sh′(f). Then we get for the (infinite order) one

sample ahead prediction MSE

σ2
h̃′

= e
∫ 1
0
lnS(f) df ∼ σ

2(1−FcTfb)
h′′ . (1)

A similar behavior is obtained for the Tfb ahead prediction

error from the original unsubsampled process. The prediction

error h̃′ considered in (1) is actually the error in estimating

h′ from its past. However, what we are really interested in is

estimating h from the past of h′, with prediction error h̃. Now,

since h′′ is white noise, we get in fact σ2
h̃
= σ2

h̃′
−σ2

h′′ . When

Tfb > 0, the dominating term at high SNR is still σ2
h̃′

though.

Let P (f) = 1 −
∑∞

n=1 pne
−j2πfn be the (one sample

ahead) prediction error filter for h′. The pk are the prediction

coefficients, both for h′ or h. As infinite order prediction

succeeds in whitening the prediction error, we have that

Sh′(f) =
σ2
h̃′

|P (f)|2
(2)

which is the Kolmogorov representation, an infinite order au-

toregressive (AR(∞)) model. Since |P (f)| is a scaled version

of 1/
√

Sh′(f), it can easily be seen that P (f) is a high-pass

filter, and converges to an ideal high-pass filter as the SNR

increases [7]. This has led a number of researchers (see [7]

and references therein) to construct predictors for bandlimited

signals simply by approximating ideal high-pass filters. These

FIR filters are typically chosen to be linear phase and are made

monic (p0 = 1) by dividing the filter by its first coefficient.

However, the prediction error filter P (f) is not only monic

but also minimum-phase.

A. The Noiseless BL Case: two-time scale model

Now consider the noiseless case, σ2
h′′ = 0. Then clearly

the prediction errors become zero, σ2
h̃
= σ2

h̃′
= 0. Hence the

signal can be perfectly predicted from its past. For simplicity

let Tc be an integer. Let hk denote the channel coefficient

at discrete time k and consider one sample ahead prediction,

then hk =
∑∞

n=1 pn hk−n. Note that the prediction error filter

P (f), which is an ideal high-pass filter, can be chosen to be

independent of the actual Doppler spectrum Sh(f) within its

support, and can be chosen to be only a function of the Doppler

spread Fc = 1
Tc

. Let us denote this spectrum independent

prediction error filter as PTc
(f). As we have perfect prediction,

we can repeat the one sample ahead prediction recursively

to perfectly predict multiple samples ahead. Can this be

repeated indefinitely? No because when we hit prediction

horizon Tc, Tc-ahead prediction being here (in terms of zero

prediction error) equivalent to 1-ahead prediction on a Tc times

downsampled signal, downsampling (and hence stretching its

support) Sh(f) by a factor Tc makes it non-singular at all

frequencies (non bandlimited). Note also that due to the

perfect predictibility over the horizon {1, . . . , Tc − 1}, linear

estimation in terms of the complete past is equivalent to

linear estimation in terms of a Tc times downsampled version

of the past, since the samples in between can be filled up

causally from a downsampled version. At prediction horizon

Tc now, from a Tc times downsampled past, we are dealing

with standard 1-ahead linear prediction of a non bandlimited

stationary process, which under some regularity conditions can

be considered as an AR(∞) process (Kolmogorov model).

Let the infinite order prediction error filter for the Tc times



downsampled process be A(f). The reasoning above allows

us to formulate the following theorem.

Theorem 1: Two-Time Scale BL Model The prediction

error filter for a stationary process hk bandlimited to 1/Tc

(Tc integer) can be modeled as

P (f) = PTc
(f)A(Tcf) (3)

where PTc
(f) is the prediction error filter for a BL process

with flat Doppler spectrum and A(f) is the prediction error

filter for the downsampled hkTc
.

Let G(f) = 1/PTc
(f) =

∑∞

n=0 gn e
−j2πfn which is like

PTc
(f) again a minimum-phase monic causal filter. Note that

G(f) behaves like an ideal low-pass filter with bandwith

1/Tc, hence the Tc times downsampled version of its impulse

response is a delta function: gnTc
= g0 δn0. Then the stationary

BL process hk can be generated as

hk = gk ∗ h↓↑

k (4)

where h↓↑

k is the Tc times downsampled and then Tc times

upsampled (inserting Tc − 1 zeros between consecutive sam-

ples) version of hk and ∗ denotes convolution. The block

fading model is similar to (4) with gk now a rectangle:

gk = 1, k = 0, 1, . . . , Tc − 1 and zeros elsewhere. With this

similarity, the block fading and BL stationary case have in

common that for every consecutive coherence period Tc, if

the first sample (and the past) is known, then the remaining

Tc−1 samples of the current coherence period are known [8].

B. Back to the Noisy BL Case

The prediction of a BL process is not a stable operation [9]

as can be seen from (1) where σ2
h̃′

grows more rapidly than

linear in σ2
h′′ (assuming σ2

h′′ is small). This is related to the

fact that the (noiseless) prediction coefficients pk are of infinite

length and are not rapidly decaying. In [10], it was shown (for

CSIR purposes) that the stationary BL model and the block

fading model become equivalent as Fc → 0. Such equivalence

in the limit will also result for CSIT purposes here. But we

want to go beyond the limit of very small Doppler spread.

In [2], the behavior of (1) is exploited to show the resulting

DoF of the 2 user MISO BC. However, what is not mentioned

there is that these results correspond to a channel model that

needs to be in a range between two extreme models. The one

extreme model is block fading over blocks of length Tfb, with

stationary Fc-BL evolution of the value of the blocks, and

channel feedback every Tfb. The other extreme is a genuine

Fc-BL stationary channel model, but then the channel needs to

be fed back every sample! In [8], it was shown that the DoFs

of [2] can be reproduced very simply in the case of a block

fading model, by the MAT-ZF scheme, a simple combination

of MAT (during Tfb, while waiting for the channel FB) and ZF

for the rest of the coherence period. In [11] it was shown in an

alternative fashion that the channel FB rate could be reduced

w.r.t. [2] by a factor Tc/Tfb (equivalent to FB every Tc instead

of every Tfb). To reproduce these results for the stationary BL

case is not easy though, and the scheme of [2] is quite intricate,

involving, as in MAT, FB of (residual) interference (now

necessarily digital, with superposition coding and sequential

decoding). The models we introduce next allow to retain the

simplicity of block fading models and even go beyond them.

IV. LINEAR FINITE RATE OF INNOVATION (FROI)

CHANNEL MODELS (CM)

FRoI signal models were introduced in [12]. Innovation

here could be a somewhat misleading term since historically

(in Kalman filter parlance) the term ”innovations” has been

used to refer to the infinite order prediction errors. In [12]

and here, the rate of innovation could be considered to be

the DoF of signals (i.e. the source coding rate prelog). FRoI

represents the time series case of sparse modeling. The FRoI

signal models that have been considered in [12] could be in

general non-linear. In other words, the FRoI represents the

average number of parameters per time unit needed to describe

the signal class and these parameters could enter the signal

model in an arbitrary fashion. For instance, the signal could

be a linear superposition of basis functions of which also the

positions (delays, and in the channel modeling case e.g. also

Doppler shifts) are parameterized. For the purpose of channel

modeling and FB, with essentially stationary signals that need

to be processed in a causal fashion, it would appear reasonable

to stick to linear FRoI models, in which the parameters are

just the linear combination coefficients of fixed, periodically

appearing basis functions, commensurate with the Doppler

bandwith. In the case of a single basis function, the FRoI

channel model is similar to (4):

hk = gk ∗ a↑k (5)

where a↑k is a Tc times upsampled discrete-time signal of

which the non-zero samples (parameters) appear once every

Tc sampling periods, and the basis function gk is a causal

FIR approximation to an ideal lowpass filter with bandwidth

Fc. The length of the basis function gk is intended to span

several Tc. Again, the block fading model (with gk of length

Tc) is a special case. By making the filter longer however, a

bandlimited characteristic can be better approximated. Obvi-

ously, the BL model (4) can be obtained by letting the filter

length become infinite. Starting from a stationary sequence

ak, the process hk generated by (5) is cyclostationary. By

letting gk better approximate a lowpass (or bandpass) filter,

the cyclostationary process gets closer to stationary. In any

case, at the start of each new coherence period Tc, knowing

the past, the estimation of the sample hk allows the estimation

of the new parameter a↑k involved. And this in turn allows to

determine the evolution of hk for the next Tc − 1 samples.

In the presence of noise, it is clearly desirable to have a first

coefficient g0 that is large (though any non-zero coefficient is

sufficient for DoF analysis purposes). Due to the finite length

and energy of the filter gk, the effect of noise is limited and the

prediction error variance over the coherence period will remain

of the order of σ2
h′′ , the noise level in the channel FB. We

leave the subject of the optimization of the basis function pk
for further research, but an FIR predictor (for an ideal lowpass

spectrum) is clearly a good candidate. As the sampling rate



(and hence FB frequency) of BL signals increases, the horizon

of perfect prediction increases proportionally, and becomes

infinite as the continuous-time past signal becomes available

[9]. Of course, for all real-world signals for which a BL model

seems plausible (e.g. the speech signal), this does not work

because real-world signals are only approximately stationary

and bandlimited over a limited time horizon. From this point of

view, linear FRoI models which are approximately bandlimited

but with a finite memory might be better approximations. A lot

of work on estimating FRoI signals has focussed on non-causal

approaches [13]. However, what is needed for the application

of FRoI to channel feedback is a design with prediction in

mind.

For a number of applications (handling of multiple users

with different Tfb or different Tc, see further also), the use of

FRoI models with multiple basis functions might be desirable.

In this case the FRoI model becomes

hk =

M
∑

m=1

g
(m)
k ∗ a

↑ (m)
k (6)

where the a
↑ (m)
k are M sequences of parameters that are now

MTc times upsampled, to preserve a RoI of Fc. As the g
(m)
k

represent M different basis functions that are essentially ban-

dlimited and also time limited, there might be some connection

with prolate spheroidal wave functions [4], [9]. However, to

limit FB delay, the first M coefficients of these basis functions

play a particularly important role.

V. DOF OBTAINED WITH FROI CHANNEL MODELS (CMS)

As mentioned above, DoF obtained with block fading CMs

can immediately be extended to FRoI CMs. Hence the DoF of

the MAT-ZF scheme of [8], obtained in [8] for block fading,

also apply for FRoI. This allows to reproduce the DoF of [2]

for the 2-user MISO BC, and furthermore extend these DoF

results to any MIMO single-hop multi-user network (Interfer-

ing Broadcast Channel, MAC, etc.) by simply combining the

DoF of MAT and ZF for such networks (when known):

DoFMAT−ZF =
Tfb

Tc

DoFMAT + (1−
Tfb

Tc

)DoFZF . (7)

These DoF can furthermore be improved by switching to

FRoI models with M > 1 basis functions. As the RoI in

these models is unchanged, the (average) feedback rate is

unchanged. However, with M > 1, feedback needs to occur

only once every MTc, and hence FB delay is suffered only

once every MTc. Hence the weight of the MAT portion in the

DoFMAT−ZF is reduced to
Tfb

MTc
, bringing the DoFMAT−ZF

closer to DoFZF . In theory M could be made arbitrarily large,

but not in practice.

The main characteristic of FRoI CMs though is that they

closely approximate stationary (BL) signals. This means that

if a FRoI CM is a good model, so is an arbitrary time shift

of the FRoI model. This can be exploited to overcome the

FB delay as explained in Fig. 2. Consider FRoI CM with

M = 1 basis function. While the current coherence period is

running, as the Channel FB (CFB) is going to take a delay

Fig. 2. Foresighted Channel Feedback (FCFB).

of Tfb, instead of waiting for the end of the current Tc, we

start the next coherence period Tfb samples early. This means

jumping from the subsampling grid of the FRoI model to the

shifted subsampling grid of another instance of the same FRoI

model. This involves recalculating the (finite number of past)

FRoI parameters a↑k for the new grid from the past channel

evolution on the old grid, plus a new channel estimate at the

start of the Tc on the new grid. In this way the FB (sampling)

”rate” increase from 1
Tc

to 1
Tc−Tfb

. But the CSIT is available

at the Tx all the time, with an SNR proportional to the general

SNR.

By increasing M , the number of basis functions, this

approach continues to work for any Tfb < M Tc, and hence

for any Tfb.

VI. ATTAINABLE (SUM) NETDOF OF MISO BC WITH

FROI CMS

In order to evaluate the performances that can be expected

in actual systems we now account for training overhead as well

as the DoF consumption due to the feedback on the reverse

link. For the K Rxs to estimate their channel, a common

training of length Tct ≥ Nt is needed as explained in [14].

To maximize the DoF we take Tct = Nt. According to [15],

an additional dedicated training of 1 pilot is required when

coherent reception is needed resulting in Nt+1 symbol periods

per block devoted to training in order to perform ZF.

Since we are interested in the DoF consumed by the FB,

which is the scaling of the FB rate with log2(P ) as P → ∞,

the noise in the fed back channel estimate can be ignored

in the case of analog FB or of digital FB of equivalent rate.

The FB can be considered accurate, suffering only from the

delay Tfb. We consider analog output FB, the Rxs directly

feed back the training signal they receive and the Tx performs

the (downlink) channel estimation. The FB of Nt symbols per

user consumes KNt channel uses on the reverse link.

1) ZFFCFB: With FB every Tc − Tfb, the netDoF by

performing ZF precoding is then

netDoF(ZFNt
) = K

(

1−
2Nt + 1

Tc − Tfb

)

(8)

since with full CSIT, the full DoF can be achieved with ZF

[16]. For sake of comparison we concisely review the netDoF

yielded by other schemes in the MISO BC with delayed CSIT.

When FB is done only every Tc, there are always two parts

in each block, a first part with outdated CSIT a second part

with current CSIT.



2) Classic ZF: Performing ZF only when CSIT is available,

the netDoF is

netDoF(ZFNt
) = Nt

(

1−
Tfb

Tc

−
2Nt + 1

Tc

)

. (9)

3) TDMA-ZF: TDMA-ZF is a direct extension of ZF. The

only difference being that while the transmitter is waiting

for the CSI, and not sending training symbols it performs

TDMA transmission since this does not require any CSIT,

thus yielding

netDoF(TDMA-ZFNt
) = netDoF(ZFNt

) +
Tfb

Tc

(10)

4) MAT: The MAT scheme was proposed in [1]. The

authors describe an original approach that yields a DoF NtD
Q

with no current CSIT at all. Here {D,Q} ∈ N
2 are such

that 1
1+ 1

2 ···
1

Nt

= D
Q

, where D is the least common multiple

of {1, 2, · · · , Nt} and Q = DHNt
with HNt

=
∑Nt

m=1
1
m

.

This scheme allows the transmission of D symbols in Q time

slots for each user as noted in [17]. To perform this scheme

the Rxs not only need to know their channel but also that of

some other Rxs (a different subset in each block), resulting in

the need for a CSIR distribution.

In [18], FB and training overheads as well as the cost of

the CSIR distribution are determined. Assuming K = Nt, we

get

netDoF(MATNt
) =

Nt(Tc −Nt)−
∑K

j=1
1
j
(K − j)(Nt − j + 1)

HKTc +
((

K−1
K

∑K

j=1
(K−j)(Nt−j+1)

j

)

+Hk −K
) (11)

5) MAT-ZF: The idea behind the MAT-ZF scheme is es-

sentially to perform ZF and superpose MAT only during the

dead times of ZF. For that purpose we consider Q blocks of

Tc symbol periods and split each block into two parts. The

first part, the dead times of ZF, spans Tfb symbol periods

and the second part, the Tc −Tfb remaining symbols. We use

the first part of each block to perform the MAT scheme Tfb

times in parallel. During the second part of each block, ZF is

performed.

The sum DoF for the MAT-ZFK scheme without accounting

for the overhead is

DoF(MAT-ZFNt
) = Nt

(

1−
(Q−D)Tfb

QTc

)

.

Indeed, per user, in QTc channel uses, the ZF portion transmits

Q(Tc − Tfb) symbols, whereas the MAT scheme transmits

DTfb symbols.

The net DoFs yielded by this scheme is determined in [18],

netDoF(MAT-ZFNt
) = netDoF(ZFNt

) +
Tfb

Tc

Nt

(HNt
+ δ)

(12)

where δ =
K−1
K

∑K
j=1

D(K−j)(Nt−j+1)
j

)

DTfb
i.e., the netDoF of ZF

plus an additional term, the DoF brought about by MAT but

decreased by a factor due to the CSIR distribution.

6) ST-ZF: Lee and Heath [3] proposed a scheme to achieve

Nt DoF in the MISO BC with K = Nt + 1 users when γ =
Tfb

Tc
≤ 1

K
. For γ < 1

K
Nt DoF can also be reached by doing

ZF the remaining time. We refer to this scheme as ST-ZF since

it is a space-time (ST) precoding, which is combined with ZF

for γ < 1
K

.

In [18] the net DoF yielded by the ST-ZF scheme is

determined. Actually two values are proposed depending on

how some data needed at the receiver is transmitted. The two

variants, ST-ZF and ST-ZF2 being adapted for different values

of the feedback delay. The net multiplexing gain of the first

variant is

netDoF(ST-ZFNt
) = Nt

(

1−
3(Nt + 1)

Tc

)

(13)

as long as
Tfb+1

Tc−2(Nt+1) ≤
1
K

⇔ Tc ≥ K(Tfb+3) since ST-ZF

needs a part with CSIT that is K − 1 = Nt times longer than

the no current CSIT part. With the second variant the netDoF

is

netDoF(ST-ZF2Nt
) =

Nt

(

1− 2(Nt+1)
Tc

)

+ netDoF(ZFNt
) KNt

Tfb+1

1 + KNt

Tfb+1

(14)

as long as
Tfb+1

Tc−(Nt+1) ≤
1
K

.
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Fig. 3. NetDoF of ZFFCFB , ZF, MAT, TDMA-ZF, MAT-ZF, ST-ZF and
TDMA for Nt = 4, Tfb = 3 as a function of Tc.

VII. NUMERICAL RESULTS

In Fig. 3 we plot the netDoF provided by ZFFCFB , ZF,

MAT, TDMA-ZF, MAT-ZF, TDMA and ST-ZF for Nt = 4,

Tfb = 3 as a function of Tc using (8) for ZFFCFB , (9) for ZF,

(11) for MAT, (10) for TDMA-ZF, (12) for MAT-ZF, (13) for

ST-ZF and (14) for ST-ZF 2. A discussion regarding all the

schemes except ZFFCFB is already conducted in [18], here we

observe that as soon as Tc > 15 ZFFCFB outperforms all the

other schemes. We also note that for Tc < 15 all schemes yield

less than 1 net DoF meaning that simple TDMA transmission
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TDMA and their optimized variants for Nt = 8, Tfb = 3 as a fn of Tc.

would actually be better under these conditions. In Fig. 4 the

same curves are plotted for Tfb = 10, a similar behavior is

observed and the gap between ZFFCFB and the other schemes

is wider.

A. Optimization of K, the number of users

As it was noticed in [19] the number of users K (and

hence active antennas Nt) needs to be optimized to find

the right channel learning/using compromise because serving

more users means a larger DoF but also larger overhead.

All the net DoF of the schemes we reviewed reach a single

maximum as a function of the number of antennas. For the

scheme we proposed, ZFFCFB , the net DoF are a simple

quadratic function in Nt

f(Nt) = −
2

Tc − Tfb

N2
t + (

Tc − Tfb − 1

Tc − Tfb

)Nt

which is maximized for Nt =
Tc−Tfb−1

4 . So in Fig. 3

for Tc = 16 better performances could be achieved with

Nt =
16−3−1

4 = 3. To each scheme we associate its optimized

version, in which the number of active antennas is optimized,

either analytically or empirically to assure the maximum net

DoF. In Fig. 5 we observe the net DoF of all considered

schemes and of their optimized version for K = 8, Tfb = 3
as a function of Tc. We notice that if the optimization of

the number antennas results in a gain for all schemes it also

confirms that ZFFCFB outperforms all the other schemes soon

after having only one active antenna and one served user

(simple TDMA) is not optimal anymore.
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