
A Team Decisional Beamforming Approach for
Underlay Cognitive Radio Networks

Miltiades C. Filippou, George A. Ropokis and David Gesbert

Mobile Communications Department, EURECOM, Sophia Antipolis, France
e-mail:{filippou,ropokis,gesbert}@eurecom.fr

Abstract—In this paper, the problem of the coexistence of two
multiple-antenna wireless links is addressed in a cognitive radio
scenario. The novelty brought by our setup is three-fold: First we
consider a more realistic rate target constraint at the primary
receiver instead of the less meaningful maximum interference
temperature, second we propose a limited channel state infor-
mation (CSI) structure whereby transmitters only have access to
partly instantaneous feedback (i.e., about the direct channels) and
partly statistical feedback (i.e., about the interference channels).
Third, we formulate a distributed decision making scenario,
by which channel information is not shared among primary
and secondary transmitters. Instead, a transmitter must make
a precoding decision based on local CSI only. The problem is
recast as a team decision theoretic problem and the optimal
precoders are obtained by solving semidefinite programs (SDPs).
A distributed algorithm is derived and compared with classical
precoding solutions and gains are illustrated over a range of
scenarios.

Index Terms—transmit beamforming, cognitive radio, semidef-
inite programming, team decision theory, distributed CSIT.

I. INTRODUCTION

The problem of optimizing the coexistence of spectrum
sharing devices in radio networks is emerging as an important
one in view of improving the efficiency of future mobile
communications systems. In the classical underlay cognitive
radio context, a primary service provider allows the reuse of
its spectral resource by a newcoming secondary system under
a maximum tolerated interference level generated by the sec-
ondary transmitter [1] [2]. Under this setup, several approaches
have been considered to optimize a beamforming (BF) vector
at the transmitter side so as to strike a balance between maxi-
mizing the SNR at the served users and reducing the generated
interference from the secondary transmitter [3]–[7]. In this
paper, we take on the problem of optimizing multiple antenna
combining at the transmitters in the downlink of an underlay
cognitive radio network (CRN), however we make substantial
proposals for revisions on the classical underlay model so far
adopted in much of the literature. First, we propose to use a
quality of service (QoS) constraint at the primary terminal in
the form of a minimum data rate target. This is an alternative
to the traditional interference power constraint which has the
drawback of neglecting the strength of the primary link, hence
oversimplifying the actual impact that the secondary link has
over the primary system’s performance. Secondly, we place the
emphasis on more realistic channel state information scenarios
at the transmitter (CSIT), whereby only a hybrid form of CSIT

is available at the primary and secondary transmitters. More
precisely, one assumes that direct channels between a serving
transmitter to a served terminal are known in instantaneous
form, while other channels are only known through second
order statistics (covariance) information. Under this scenario,
we consider the problem of BF design at both the primary
and secondary transmitters so as to maximize secondary rate
performance under a QoS target on the primary terminal.
Thirdly, we are emphasizing distributed techniques where each
transmitter makes a BF decision under its local available CSIT
together with channel covariance information. We highlight the
connection with team decision theory, i.e., distributed multi-
agent decision making [8]. More concretely, our contributions
are the following:

• We derive a closed-form expression for the users’ ex-
pected rates, conditioned on the knowledge of the instan-
taneous direct channels as well as a simple approximation
of this expression by focusing on interference-limited sys-
tems, i.e., systems in which interference is the dominant
factor of signal degradation, compared to noise.

• We formulate the problem of optimal distributed transmit
BF, with respect to a multiple-input single-output (MISO)
CRN with distributed CSIT. We show an algorithm in-
spired from team decision methods. The BF solutions
are reached by solving SDPs. We numerically evaluate
its performance by making a comparison with known
precoding solutions.

Throughout the paper, the following notations are adopted:
all boldface letters indicate vectors (lower case) or matrices
(upper case). Superscript (·)H stands for Hermitian transpose
and E{·} stands for the expectation operator. For a random
variable X , X ∼ CN (µ, σ2) denotes that X follows the
circularly symmetric complex Gaussian distribution with mean
µ and variance σ2. The identity matrix of dimension n × n
is denoted by In. Operator tr(·) stands for the trace of a
matrix and A ≽ 0 means A is a positive semidefinite matrix.
Moreover, ∥·∥ is the Euclidean norm, and E1(·) stands for the
exponential integral function, defined as in [9, 5.1.1]. Finally,
x ⊥ uA(1) denotes a unit norm vector x perpendicular to the
eigenvector corresponding to the largest eigenvalue of matrix
A.



II. SYSTEM MODEL - DERIVATION OF THE CONDITIONAL
EXPECTED RATES

The system under investigation is shown in Fig.1. It consists
of a primary base station (BS), BS1, that communicates with
a primary user (PU), U1, in the presence of a secondary BS,
BS2 that communicates with a secondary user (SU), U2. As-
suming an underlay scenario, both BS1 and BS2 are sharing
the same frequency resources while they are both equipped
with M antennas, whereas the two users use single antenna
terminals. For such a system, a distributed CSIT architecture
is examined with emphasis on downlink communication. The
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Fig. 1. System model.

signal received at user Ui can be expressed as

yi = hH
iiwisi + hH

jiwjsj + ni, i, j = {1, 2}, j ̸= i (1)

where hii, i = {1, 2} is the direct M × 1 MISO Rayleigh
fading channel between BSi and Ui, hji, j ̸= i is the M ×
1 interfering Rayleigh fading channel between BSj and Ui,
whereas w1 and w2 are the M×1 complex transmit BF vectors
at BS1 and BS2, respectively, with ∥w1∥2 = Pmax,1 and
∥w2∥2 ≤ Pmax,2, Pmax,1 and Pmax,2 being the maximum
available power levels at BS1 and BS2. Additionally, ni ∼
CN (0, N0) is the additive Gaussian noise at the receiver side1

and si, sj are the information symbols, for the transmission of
which, Gaussian codebooks are used, i.e., si ∼ CN (0, 1), i =
{1, 2}.

Correlated Rayleigh fading is assumed for both direct and
interfering channels. As a result, the channel vector hji, i, j ∈
{1, 2} can be expressed as

hji = R
1/2
ji h

(w)
ji (2)

where R
1/2
ji is the symmetric square root of the covariance

matrix Rji of vector hji, and h
(w)
ji ∼ CN (0, IM ). It should

be noted that the covariance matrix includes the parameters
determining the SNR, such as the average received power.
By analyzing (1), one can easily show that the achievable
instantaneous rate for communication between BSi and Ui

is defined as2

Ri = log

(
1 +

|ηi|2

1 + |ζi|2

)
(3)

1For the rest of our analysis and without any loss of generality, we will
assume that noise density, N0, is equal to one.

2Throughout the paper, information rates will be measured in nats/sec/Hz.

where ηi = hH
iiwi and ζi = hH

jiwj , j ̸= i. A realistic
assumption that can be made is that BSi collects instan-
taneous CSI for its direct channel hii, i = 1, 2, as well
as statistical CSI for all links i.e., the covariance matrices
Rji, i, j = {1, 2}3. Assuming that BF vectors w1,w2 are
functions of this information, given any pair of such BF
vectors, one can calculate the expected rates conditioned on
the instantaneous direct channels, i.e., expectation is taken
over the interference terms, in closed form for the two cells.
Specifically, by following the steps of [10, Theorem 1], it is
easy to prove that the expected rate of Ui, hereby denoted as
E|hii

{Ri}, i = {1, 2}, conditioned on the instantaneous direct
channel is expressed as

E|hii
{Ri} = log(αi)+e

αi
σ2
ζi E1

(
αi

σ2
ζi

)
−e

1

σ2
ζi E1

(
1

σ2
ζi

)
(4)

where αi = 1+|ηi|2 and σ2
ζi

= ∥wH
j R

1
2
ji∥

2

, j ̸= i. Moreover,
for interference dominated systems in which σ2

ζi
≫ N0 = 1,

following an approach similar to [10, Proposition 1], it can be
shown that (4) can be effectively approximated as

E|hii
{Ri} = log(

αi

σ2
ζi

) + e

αi
σ2
ζi E1

(
αi

σ2
ζi

)
+ γ (5)

where γ ≈ 0.5772 is the Euler-Mascheroni constant [9,
5.1.12]. In the following section, by taking into account
expression (5), the problem of joint optimal design of transmit
BF vectors with limited CSIT, for both primary and secondary
communication is presented and a distributed method for solv-
ing this problem is developed. The proposed design is based on
the maximization of SU’s transmission rate E|h22

{R2} while
satisfying a QoS constraint for the PU rate E|h11

{R1}.

III. OPTIMAL TRANSMIT BF - DISTRIBUTED CSIT CASE

With the assumption that BSs are allowed to exchange avail-
able CSIT, the problem of maximizing SU’s rate E|h22

{R2}
subject to a QoS constraint for the PU rate E|h11

{R1} would
be mathematically formulated as

maximize
w1,w2∈CM

E|h22
{R2}

subject to E|h11
{R1} ≥ T

∥w1∥2 = Pmax,1, ∥w2∥2 ≤ Pmax,2

(6)

where T stands for the QoS threshold at U1 and the expected
rates are obtained from (5). Examining an interference domi-
nated scenario, i.e., employing expression (5) and the fact that
the function f(x) = log(x)+exE1 (x)+γ, is a monotonically
increasing function of x, it is easy to show that (6) is equivalent

3Note that this assumption slightly extends the hybrid CSI scenario pre-
sented in [10] by also considering knowledge of covariance information
regarding direct channels.



to the following problem

maximize
w1,w2∈CM

1 +wH
2 h22h

H
22w2

wH
1 R12w1

subject to
1 +wH

1 h11h
H
11w1

wH
2 R21w2

≥ τ

∥w1∥2 = Pmax,1, ∥w2∥2 ≤ Pmax,2

(7)

where τ is the solution to the equation T = f(τ). However, in
our analysis we consider a distributed architecture where we
assume that no CSI exchange is allowed between BSs. Thus,
each BS tries to solve the BF problem by exploiting only its
own CSIT by applying the approach presented in the following
section.

A. Distributed information structure and BF

Since the two BSs have different views (instantaneous
or statistical) of the same global downlink channel, the
optimal transmit BF problem can be examined within the
framework of team decision theory [8], [11], [12]. Follow-
ing a team decisional approach, we can then define the
distributed BF design problem by means of the following
components [8]: a) The observations (available CSIT) at BS1

and BS2, denoted as z1 = [h11,R11,R12,R21,R22] and
z2 = [h22,R22,R12,R21,R11], respectively. b) A transmis-
sion strategy gi(·), i = {1, 2} available at BSi that is used in
order to calculate the BF wi = gi(zi). c) An estimated model
g
(p)
i (·), i = {1, 2} of strategy gi(·), i = {1, 2} available at
BSj , j ̸= i. In our case this model is based on a weighted
linear combination of Maximal Ratio Combining (MRC) and
statistical zero-forcing (SZF) BF4. The reasoning for using
such a model is based on the fact that in [13] it was shown
that for the two-user case, any point of the Pareto boundary of
the achievable rate region of the MISO interference channel
corresponds to BF vectors that are linear combinations of the
zero-forcing (ZF) and MRC BFs. Thus, since the interference
channels are statistically known at each BS, one could argue
that a linear combination of MRC and SZF is a meaningful
approximation to strategies corresponding to the Pareto bound-
ary. d) A utility criterion for the problem, which, in our case,
is the expected rate of SU, E{R2}.

Given the above components, the target of the team deci-
sional BF approach is to maximize the utility criterion subject
to a QoS constraint for the PU as well as power constraints
for the two BFs. To this end, our proposed team decisional
approach is based on an iterative procedure applied at each
BS, where at each iteration, BSi redefines its strategy as well
as the model for the strategy of BSj , j ̸= i based solely on its
own CSI. The key principle of the iterative procedure applied
by BSi, i = 1, 2 can be summarized as follows.

• Initialization: Set the iteration counter n to 1 and initialize
model g(p)j (zj) for the strategy followed by BSj , j ̸= i.

• Step 1: Given the model w(p)
j (n− 1) = g

(p)
j (zj) for the

strategy followed by BSj , j ̸= i, estimate the optimum

4In the case of SZF, we assume that the selected BF vector is perpendicular
to the dominant eigenvector of the interfering channel’s covariance matrix.

wi(n) = gi(zi) that maximizes an “analogous” to the
utility criterion based on the available CSIT at BSi.

• Step 2: Using the derived wi(n), formulate a new model
g
(p)
j (zj) for the BF strategy applied by BSj , based again

on the utility maximization criterion and the available
CSIT.

• Step 3: Increase the iteration counter n by one and if n ≤
Nmax, where Nmax is a predefined maximum number of
iterations, go back to Step 1, otherwise stop.

This generic procedure is applied as follows by the two BSs.
1) Transmit BF design at BS1: Following the developed

team decisional approach, BS1 tries to find optimal values
for w1 and for w

(p)
2 = g

(p)
2 (z2). To this end, in the n-th

iteration, BS1 uses the estimated model from step n− 1 i.e.,
w

(p)
2 (n − 1) =

√
Pmax,2

w̃
(p)
2 (n−1)

∥w̃(p)
2 (n−1)∥

with w̃
(p)
2 (n − 1) =

α(n− 1)v+ (1−α(n− 1))h̃22
5, where v ⊥ uR21(1), h̃22 =

h22

∥h22∥ and α(n) ∈ [0, 1] in order to find an optimum w1(n)
that exploits the available CSI to solve the problem

maximize
w1∈CM

1 + E|z1{w
(p)H
2 (n− 1)h22h

H
22w

(p)
2 (n− 1)}

wH
1 R12w1

subject to
1 +wH

1 h11h
H
11w1

E|z1{w
(p)H
2 (n− 1)R21w

(p)
2 (n− 1)}

≥ τ

∥w1∥2 = Pmax,1.

(8)

One can show that the following optimization problem is
formed

minimize
w1∈CM

wH
1 R12w1

subject to wH
1 H11w1 ≥ τK(n− 1)− 1

∥w1∥2 = Pmax,1

(9)

where H11 = h11h
H
11 is a rank-one positive semidefinite ma-

trix and K(n−1) = E|z1
{w(p)H

2 (n−1)R21w
(p)
2 (n−1)} can

be numerically approximated via Monte Carlo (MC) iterations
exploting knowledge of R21 and R22. Problem (9) is a non-
convex quadratically constrained quadratic problem (QCQP),
which by introducing W1 = w1w

H
1 can be expressed as

follows

minimize
W1∈CM×M

tr(R12W1)

subject to tr(H11W1) ≥ τK(n− 1)− 1

tr(W1) = Pmax,1, W1 ≽ 0

rank(W1) = 1.

(10)

Solving (10) with the rank-one restriction, proves to be cum-
bersome. To overcome this problem, the rank-one constraint
can be dropped by applying semidefinite relaxation (SDR)
[14]. The resulting problem is

minimize
W1∈CM×M

tr(R12W1)

subject to tr(H11W1) ≥ τK(n− 1)− 1

tr(W1) = Pmax,1, W1 ≽ 0

(11)

5Recall that BSi assumes that BSj uses a BF that is a linear combination
of MRC and SZF BF.



that can be solved by using well known optimization packages
such as CVX [15]. The optimal BF vector w1(n) can then
be approximated by the eigenvector corresponding to the
dominant eigenvalue of the solution obtained from (11).

Having calculated w1(n), BS1 then produces a new model
w

(p)
2 (n) that can be seen as the optimum “response” to the

selection of w1(n). This is achieved by setting α(n) to be the
solution of the following problem6

max
α∈R

E|z1

{
log

(
1 +

|w(p)H
2 h22|

2

1 +wH
1 (n)h12hH

12w1(n)

)}
subject to E|z1{∥w

(p)H
2 R

1
2
21∥

2

} ≤ 1

τ
(wH

1 (n)H11w1(n) + 1)

0 ≤ α ≤ 1
(12)

where w
(p)
2 is a function of α. It is easy to observe that the

objective function in (12) is increasing as α decreases. Thus,
one can solve problem (12) simply by finding the minimum
possible value of α that satisfies the QoS-related inequality
constraint in (12). The expectations involved in (12), can be
computed by means of MC simulations. The value α that
is calculated through this procedure at the n-th iteration is
selected to be the value α(n) that updates the model w(p)

2 (n)
that should be used in iteration n+ 1.

A case that requires special treatment appears when problem
(11) is infeasible. Such an event can occur due to strict primary
communication QoS constraints and/or deep fades for primary
communication. In this case, in an attempt to protect the PU,
a minimal information exchange is allowed between the BSs.
Specifically, BS1 reports the infeasibility to BS2. BS2 then
decides upon using SZF, i.e., employs a BF vector orthogonal
to the dominant eigenvector of R21 such as to minimize the
interference caused to the PU, while at the same time BS1

decides upon using MRC such as to maximize its SNR.
2) Transmit BF design at BS2: In a similar fashion with

BS1, BS2 starts its n-th iteration using an estimate w
(p)
1 (n−

1) =
√
Pmax,1

w̃
(p)
1 (n−1)

∥w̃(p)
1 (n−1)∥

with w̃
(p)
1 (n− 1) = β(n− 1)u+

(1 − β(n − 1))h̃11, where u ⊥ uR12
(1), h̃11 = h11

∥h11∥ and
β(n) ∈ [0, 1], and given its set of observations z2, it forms
the following optimization problem

maximize
w2∈CM

1 +wH
2 H22w2

E|z2{w
(p)H
1 (n− 1)R12w

(p)
1 (n− 1)}

subject to
1 + E|z2{w

(p)H
1 (n− 1)h11h

H
11w

(p)
1 (n− 1)}

wH
2 R21w2

≥ τ

∥w2∥2 ≤ Pmax,2

(13)
where H22 = h22h

H
22, H22 ≽ 0. Problem (13) is equivalent

to
maximize
w2∈CM

wH
2 H22w2

subject to wH
2 R21w2 ≤ 1

τ
(L(n− 1) + 1)

∥w2∥2 ≤ Pmax,2

(14)

6Given that different CSIT is availabe at BS1 and BS2, one can see this
problem as the “analogous” to the problem that BS2 is trying to solve.

where L(n − 1) = E|z2
{w(p)H

1 (n − 1)h11h
H
11w

(p)
1 (n − 1)}

can be numerically evaluated, since BS2 has knowledge of
covariance matrices R12 and R11. Following the same steps as
in the previous subsection, the optimization problem becomes

maximize
W2∈CM×M

tr(H22W2)

subject to tr(R21W2) ≤
1

τ
(L(n− 1) + 1)

tr(W2) ≤ Pmax,2, W2 ≽ 0

(15)

where W2 = w2w
H
2 . This optimization problem can be also

efficiently solved by using the CVX package. Having obtained
an optimal w2(n) for a given β(n − 1), BS2 reestimates
the strategy followed by BS1, by exploiting its available
observations z2 and finding an optimal β(n) for the obtained
w2(n). Thus, the problem to be solved is the following

max
β∈R

E|z2

{
log

(
1 +

wH
2 (n)H22w2(n)

1 + |w(p)H
1 h12|

2

)}
subject to E|z2{|w

(p)H
1 h11|

2
} ≥ τwH

2 (n)R21w2(n)− 1

0 ≤ β ≤ 1
(16)

where w
(p)
1 is a function of β.7 The resulting approximate

solution of (16) that can be reached by discretizing the search
space for β is the new estimate β(n) that should be used
to determine the model w

(p)
1 (n) for iteration n + 1, leading

towards an iterative process of solving problems (15) and (16).

IV. NUMERICAL RESULTS

With the aim of evaluating the performance of the proposed
BF scheme, extensive MC simulations have been performed
for the studied system model. A CRN scenario is considered,
in which the two BS coverage areas (CAs) overlap with each
other by a factor of 50%. We assume that Pmax,1 = Pmax,2

and that both CAs have the same radius. The covariance
matrices are computed as a function of angle spread, antenna
spacing and wavelength, according to [16]. In Table I, further
simulation parameters are provided.

TABLE I
BASIC SIMULATION PARAMETERS

BS CA radius 1 km
Number of BS antennas 2
Path loss exponent 3
Carrier frequency 2 GHz
Antenna spacing λ/2
AOA distribution Gaussian
Multipath angle spread 20 degrees

In Fig. 2 the expected rate of the SU is depicted as a function
of the prescribed average SNR at the CA edge for a QoS level,
T = 1 nat/sec/Hz, for the PU. We choose to compare our
novel method (Nmax = 2) with other distributed BF methods
exploiting the same hybrid CSIT available here. Specifically,
we compare our proposed BF solution with BFs based on

7In problems (12) and (16), one could instead use the averaged version
of the objective function of problem (7).
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MRC and SZF BF. The four reference schemes are then given
by MRC-MRC, MRC-SZF, SZF-MRC and SZF-SZF, where
the first (resp. second) acronym in each pair denotes the BF
solution implemented at BS1 (resp. BS2). The BF solutions
obtained by applying our iterative method are such that a clear
rate gain appears, compared with the classical BF solutions.
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In Fig. 3, the system’s outage probability is depicted for all
the abovementioned BF design approaches, as a function of
the QoS threshold, T , posed at the PU, for an SNR at the CA
edge equal to 20dB. An outage event is declared when the
initial QoS constraint in (6) is not satisfied for the PU. It is
evident that as the value of T increases, the probability of the
system being in outage will increase for all the examined BF
approaches. Also, only the MRC-SZF BF method outperforms
our method, since it is mostly focused on protecting the PU. It
is worth mentioning that with a QoS value, T = 1 nat/sec/Hz
for the PU, and for an SNR value of 20dB at the CA edge,
the new BF scheme gives 41% rate increase over SZF-SZF
BF and 38% outage probability decrease over the same BF
method.

V. CONCLUSIONS

In this paper, an optimal MISO BF method is proposed,
with respect to an underlay CRN setup, when the available
CSIT is both instantaneous and statistical. First, expressions
for the conditional expected rates of the users are derived,
and then the problem of optimal MISO BF is described
and solved in the presence of distributed CSIT at each BS,
leading to the solution of a team decision problem. Substantial
gains are depicted in comparison with other known distributed
precoding solutions.
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