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Abstract—Cognitive Networks have been proposed to oppor-
tunistically discover and exploit (temporarily) unused licensed
spectrum bands. With the exception of TV white spaces, sec-
ondary users (SUs) can access the medium only intermittently, due
to deferring to primary user (PU) transmissions and scanning for
new channels. This raises the following questions: (i) what sort
of delays can an SU expect on a channel given the PU utilization
of this channel? (ii) how do specific characteristics of the PU
activity patterns (e.g. burstiness) further affect performance?
These questions are of key importance for the design of efficient
algorithms for scheduling, spectrum handoff, etc. In this paper,
we propose a queueing analytical model to answer them. We
model the PU activity pattern as an ON-OFF alternating renewal
process with generic ON and OFF durations, and derive a closed
form expression for packet delays by solving a variant of the
M/G/1 queue. Contrary to the common belief that low utilization
channels are good channels, we show that the expected SU delay
on a channel, and thus the best channel to use, is a subtle
interplay between the ON and OFF duration distributions of the
primary users, and the SU traffic load. We validate our analysis
against simulations for different PU activity profiles.

Keywords-Cognitive networks, Queueing, Renewals.

I. INTRODUCTION

Measurements of the utilization of licensed wireless spec-

trum have (somewhat counter-intuitively) revealed that the

available spectrum is rather under-utilized, exhibiting high

variability across space, frequency, and time [1]. Yet, the

current lack of flexibility in dynamically assigning spectrum to

match demand over time and space further limits the service

levels offered, in addition to rapidly increasing demand [2].

Cognitive radios and networks have been proposed to

address this problem. Cognitive users (also referred to as

“Secondary Users (SU)”) can sense a range of licensed or un-

licensed bands and, if found idle, opportunistically use one or

more of them to meet the user/application demands. However,

most of these channels are only temporarily available, when

the licensed user (also referred to as “Primary User (PU)”)

is not transmitting or receiving on them (one exception are

TV white spaces [3], which can be known in advance and

available for very long periods of time).

Such interruptions make media access by SUs intermittent,

especially in densely utilized parts of the spectrum. When
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the SU cannot transmit anymore on the current channel(s), it

will (in the simplest case) either have to wait for the channel

to become available again or switch its radio to scanning

mode (assuming a single radio) to discover other available

channels. This can delay ongoing or new SU transmissions.

The probability and duration of such delays depends on the

PU’s activity characteristics (percentage of time being idle,

duration of idle periods, duration of traffic bursts, etc.). These

characteristics can be highly variant, since the (PU) channels

might belong to different primary wireless systems, be used

to carry different types of traffic (e.g. voice, file transfer, web

browsing, video streaming, etc.), and be governed by different

protocols managing the access to this channel.

These observations lead to some important questions: (i)

What is the level of performance (e.g. delay) that a secondary

user should expect on a channel, given the PU activity char-

acteristics on this channel? (ii) Does the average “amount” of

PU activity (e.g. being active for 40% of the time) suffice to

predict SU performance, or can differences between PU activ-

ity profiles (e.g. distribution of active periods) further affect

SU performance and to what extent? These questions have

implications for the design of efficient spectrum scheduling,

scanning, and handoff strategies, among other things.

To this end, in this paper we propose a queueing analytic

model for the performance of secondary user transmissions for

general PU activity patterns. The novelty of our model consists

in that it can capture a larger number of channel activity

patterns than existing work. Additionally, it allows the SU

to be able to measure and evaluate the predicted performance

of a channel, without the need to know anything about the

number and arrival pattern of PUs multiplexed on a channel,

the protocols used, and PU job statisitics. In this context, our

main contribution is a closed form result for the expected delay

for SU traffic (that could also be used as a better channel

quality metric). This result reveals that the SU delay is in fact

a subtle interplay between PU activity statistics (the mean and

some higher moments of the random durations of PU active

and idle periods), and the secondary user traffic load. As one

simple example, contrary to the common belief that a channel

with lower average PU activity is usually a better channel [4],

if one considers applications with low traffic intensity (e.g.

machine-to-machine communications [5]), choosing a channel

with considerably lower PU utilization could lead to higher



delays (in fact, arbitrarily worse in theory).

Our model and analysis are presented in detail in Section II.

Then, in Section III we validate our theory using simulations of

different PU activity profiles including some realistic models,

recently proposed [6], [7]. Related work is given in Section IV.

We conclude our work in Section V.

II. PERFORMANCE MODELING

Primary User Model: Consider a single channel used by

one or more primary users. We assume that the state of this

channel can be either active (“ON”), i.e. a primary packet

is transmitted (it is indifferent to the SU whether this is

data, signaling, uplink or downlink traffic) or idle (“OFF”),

as depicted in Fig. 1. The exact duration of ON and OFF

periods depends first on user behavior (e.g. arrival process of

PU traffic flows) [6]. Furthermore, it depends on the type of

traffic (e.g. short VoIP packets vs. long file transfer packets),

system details (e.g. number of independent users multiplexed

on the channel) and intricate protocol interactions (e.g. MAC

layer carrier sense, TCP mechanisms etc.). Such details cannot

be known or inferred by the secondary user.

In order to allow for the maximum amount of generality,

while maintaining analytical tractability, we thus model the

ON-OFF activity pattern of PUs as an alternating renewal

process [8]: (T
(n)
ON , T

(n)
OFF ), n ≥ 1, where n denotes the num-

ber of ON −OFF cycles elapsed until time t. The duration

of any ON period, T
(n)
ON (OFF period T

(n)
OFF , respectively), is

a random variable distributed according to some probability

density function fON (fOFF ), and independently of other ON

or OFF periods. This model for PU activity is significantly

more flexible in capturing different types of PUs than simple

memoryless or “half-memoryless” models used in related

work [9], [10] (we elaborate on this, in Section IV).

Secondary User Model: In this paper, we will assume that

SUs can only access a channel at times where there is no PU

activity (i.e. during OFF periods). While our model could be

extended in other directions, we defer this to future work.

The success of an SU packet transmission depends on the

duration of that packet and the (remaining) duration of the

OFF period. We assume that if a PU starts transmitting before

the SU packet is completely sent, the SU transmission is

considered lost (collision), and has to be retransmitted in the

next idle (OFF) period. We also assume that the spectrum

sensing ability of cognitive users is perfect. This means that

there are no missdetections or false alarms. Such events

however are orthogonal to our model and analysis, and could

be captured in the PU ON-OFF process, if needed.

In practice, a cognitive (SU) user can have access to multiple

channels. A number of architectures and protocols have been

proposed [1] to discover and access such channels. To avoid

including fine architectural details that could make our analysis

intractable and reduce the generality of our results, we choose

to maintain the abstraction of a single stochastic ON-OFF

process. When the state of the process is ON, it means that

the SU cannot transmit any new or queued traffic. This ON

period might correspond, among other things, to: (i) the SU

Fig. 1. The acivity pattern of the primary user

waiting on a busy channel until it becomes available again,

in situations where spectrum mobility is expensive or unlikely

to yield better results; (ii) a scanning period during which the

SU tries to gain or regain one (or more) idle channel(s).

A. Arrival and Service Processes for SU Traffic

Our goal is to use a queueing model to derive the expected

delay SU packets will experience, depending on the type of

PU channel activity they “compete” with. We will assume

that packets are generated at the cognitive user according to

a Poisson process with rate λ. This will allow us to focus on

the effect of PU activity on the service process, and get exact

expressions for queueing delays. Without loss of generality,

we also assume that packet sizes are fixed and equal to ∆
(size normalized for transmission rate). A generic packet size

distribution can be easily integrated in our derivations.

The service time that an SU packet experiences depends

on the packet size, but also on the state of the PU (ON or

OFF) when the packet arrives. While this points to an M/G/1

system [8], this is not the appropriate model. In fact, there are

two service time distributions, S’ and S”, depending on the

(SU) queue length at the time of arrival:

Service S’: Consider SU packets arriving to find the queue

empty (no SU packets in queue or being transmitted). Then,

(i) if the PU is ON, the packet will have to wait until the

next OFF cycle;

(ii) if the PU is OFF, it can immediately start transmission.

The success of this (first) transmission attempt depends on the

duration (case (i)) or the remaining duration (case (ii)) of this

OFF cycle. In case of failure (PU restarts too soon), the SU

packet will have to wait and retry in the next OFF period(s).

Service S”: Consider an SU packet that finds the SU system

busy. This packet will have to queue until all packets in front

of it are successfully transmitted. However, it is guaranteed

that its “service” will start in an OFF period, since the packet

in front of it just finished transmitting (successfully)1.

The next two Lemmas derive the expected service times

E[S′] and E[S′′], as a function of the PU activity profile (ON-

OFF statistics). Theorem 3 then combines the two service time

distributions to derive the total system delay for arriving SU

packets, including both queueing and service time. We assume

throughout unlimited queue size and FCFS (First Come First

Served) service order and consider only a single SU node pair.

1We remind the reader that the term “system time” is typically used for
the total delay (queueing + service) of a packet, while “service” begins when
the packet arrives at the front of the SU queue and lasts until the packet is
successfully transmitted.



Before we proceed, we summarize in Table I a number of

variables and useful (shorthand) notations that we will use in

our results and derivations.

TABLE I
VARIABLES AND SHORTHAND NOTATION

Variable Definition/Description

TON Duration of ON periods

TOFF Duration of OFF periods

T
(f)
OFF

TOFF |TOFF < ∆: OFF period with duration smaller than ∆

T
(e)
OFF

Excess OFF period

f
(e)
OFF

(x)
1−FOFF (x)
E[TOFF ]

λ Average packet arrival rate at SU

p1
∫

∞

0 e−λtoff fTOFF
(toff )dtoff

p2
∫

∞

0 e−λtonfTON
(ton)dton

P
∫

∞

0 e−λtoff,efToff,e
(toff,e)dtoff,e

p Prob.of transmission success in an OFF period: p = P [TOFF > ∆]

N Number of (extra) ON-OFF cycles until successful transmission

T1 Duration of (extra) ON-OFF cycles (for packet arriving in ON period)

T2 Duration of (extra) ON-OFF cycles (for packet arriving in OFF period)

Lemma 1. The mean service time of non-queued packets

E[S′] is given by

E[S′] = ∆ +
P

1− p1p2

(

∆ · p2 +
(

eλ∆ − 1
)

(

∆+ E[T1]−
1

λ

))

+
P

1− p1p2

(

E[TON ] +

(

E[T2]−
1

λ

)

(1− p2)

)

. (1)

Proof: The delay of an S′ packet (finding no other SU

packets queueing or in transmission) depends on its arrival

time, relative to the PU state during and after that time. The

key to deriving this delay is to notice the following: If we con-

sidered a single, isolated packet, we could use the inspection

paradox to derive the expected delay [8]; e.g. renewal theory

tells us that the stationary probability of arriving during an ON

period is E[TON ]
E[TON ]+E[TOFF ]

. However, this is only the limiting

case, when the SU traffic arrival rate λ goes to 0 (i.e. SU

traffic is very sporadic). In fact, the time until the arrival of the

next S′ packet starts counting from the point the last queued

packet got transmitted, which can only occur during an OFF

period. The situation is depicted in Fig. 1. A higher λ implies

a higher probability for the (next) packet to arrive in the same

OFF period.

To account for this effect, we assume a given real-

ization (“sample path”) of the ON-OFF process, repre-

sented by a vector ts of ON and OFF durations: ts =
{tOFF,e

1 , tON
1 , tOFF

2 , tON
2 , . . . }, where index 1 corresponds to

the (OFF) cycle when the last packet of the previous busy

period got successfully transmitted. Note that for the first OFF

cycle we consider the remaining (“excess”) time tOFF,e
1 right

after the end of the last packet transmission (that ended a

“busy” cycle). The delay S′ on this sample path can then be

expressed as follows (we will later take the expectation over

all sample paths):

S′ = I1OFFS
′

OFF + I1ONS
′

ON + I2OFFS
′

OFF + I2ONS
′

ON + . . . , (2)

where IiOFF and IiON are indicator random variables, which

have value 1, only if the S′ packet arrival happens in that OFF

(ON) period. Clearly, only one such term can be non-zero for

a given sample path. We separate this sum into two terms

YOFF =
∞
∑

i=1

I
(i)
OFF

S′

OFF and YON =
∞
∑

i=1

I
(i)
ON

S′

ON . (3)

For this sample path, delay S′ will depend on the time until

the next SU packet arrival, which is exponential with rate λ.

The expectation of terms in YOFF is then

E[I
(i)
OFF

S
′

OFF ] =

∫ Bi

Ai

∆λe−λ·xdx

+

∫ Bi

Bi−∆
(Bi − x+ T1)λe

−λ·xdx, (4)

where A1 = 0, A2 = t
OFF,e
1 + tON

1 , A3 = t
OFF,e
1 + tON

1 + tOFF
2 +

tON
2 , . . . and B1 = t

OFF,e
1 , B2 = t

OFF,e
1 + tON

1 + tOFF
2 , . . . , as

depicted in Fig. 1.

The first integral is the case when the OFF period the packet

arrives in is long enough for the packet to be transmitted

immediately (i.e. delay S′ = ∆). The second integral is the

case when the (remaining) OFF period is smaller than the

packet size: then, transmission fails, a delay equal to that

remaining time is “paid” (note that this delay is between

0 and ∆, otherwise transmission would be successful), and

additional ON-OFF periods must be experienced before suc-

cessfull transmission. The number of such periods is a random

variable, denoted by N . The total duration of these periods is

thus T1 =
∑N

i=1 T
(i)
ON

+
∑N−1

i=1 T
(f)(i)
OFF

. N is a stopping time, so

the expectation E[T1] can be found using Wald’s equation [8]:

E[T1] =
1

p
E[TON ] +

(

1

p
− 1

)

E[TOFF | TOFF < ∆], (5)

For the conditional expectation that appears in Eq.(5) we have

E [TOFF | TOFF < ∆] =
∫∆
0

x·fOFF (x)
FOFF (∆)

dx. Since the duration of

OFF cycles is independent and distributed as FOFF (x), N
is geometrically distributed with probability p = P [TOFF >
∆] = 1−FOFF (∆). Calculating the integrals in Eq.(4) yields

E[I
(i)
OFF

S
′

OFF ] = ∆e−λAi +
(

eλ∆ − 1
)

e−λBi

(

∆+E[T1]−
1

λ

)

.

(6)

Summing over all the OFF terms of YOFF in Eq.(3),

E [YOFF | ts] = ∆
∑

i

e
−λAi +

(

e
λ∆

− 1
)

(

∆ + E[T1] −
1

λ

)

∑

i

e
−λBi

This is the expectation of YOFF , conditional on the ON-

OFF sample path ts. Finally, we take the expectation over all

possible sample paths

E [YOFF ] =

∫

∞

0

E [YOFF | ts] fts

(

x
OFF,e
1 , x

ON
1 , . . .

)

dx
OFF,e
1 dx

ON
1 . . .

(7)

Since ON and OFF periods are independent and identically

distributed (IID), we can split this integral into a product of

expectations, and after some calculus we get

E
[

YOFF
]

= ∆



1 + Pp2

∑

i

(p1p2)
i



+
(

e
λ∆

− 1
)

(

∆ + E[T1] −
1

λ

)

P
∑

i

(p1p2)
i
,

where P =
∫∞

0 e−λtoff,efToff,e
(toff,e)dtoff,e. Calculating

the geometric sums we have

E [YOFF ] = ∆ +
P

1− p1p2

(

∆p2 +
(

eλ∆ − 1
)

(

∆+ E[T1]−
1

λ

))

.

(8)



Using similar steps, we can calculate the term YON of

Eq.(3), related to packets S′ arriving during an ON period

E[I
(i)
ON

S
′

ON ] =

∫ Ci

Bi

(Ci − x+ T2)λe
−λ·xdx, (9)

where Ci ∈
{

tON
1 + t

OFF,e
1 , tON

1 + t
OFF,e
1 + tOFF

2 + tON
2 , . . .

}

. Ci

are also shown in Fig. 1. T2 is the additional delay caused by

unsuccessful packet transmissions, after the first excess ON

period T2 =
∑N−1

i=1

(

T
(i)
ON

+ T
(f)(i)
OFF

)

+∆. Hence,

E[T2] =

(

1

p
− 1

)

(E[TON ] + E[TOFF | TOFF < ∆]) +∆. (10)

After similar operations, as before, we get for the ON terms

E [YON ] =
P

1− p1p2

(

E[TON ] +

(

E[T2]−
1

λ

)

(1− p2)

)

. (11)

Finally, by summing Eq.(11) with Eq.(8) we have Eq.(1).

Some details of the derivation were omitted due to space

limitations. The interested reader can find them in [11].

As mentioned previously, if the arriving packet finds other

packets in the system, it has to be queued and wait until its

turn. A type 2 packet can start its service only during an OFF

period. The following Lemma gives the average service time

of a type 2 packet. The logic of the proof is similar to that of

Lemma 1, so we do not present it here.

Lemma 2. The mean service time of queued packets E[S′′] is

given by

E[S
′′

] = ∆ +

∫ ∆

0
xf

(e)
OFF

(x)dx

+
1

p
(E[TON ] + E [TOFF | TOFF < ∆])

∫ ∆

0
f
(e)
OFF

(x)dx.(12)

The system described here has two different service times,

depending on whether the arriving customer finds or not other

customers in the system. As a result, we cannot simply use

the Pollaczek-Khinchin (P-K) formula to derive the queueing

delay for our system [8]. Nevertheless, we can still follow the

“tagged-user” approach to find this delay.

Theorem 3. Let an SU access a channel with generic PU

activity, such that it experiences two service time distributions

S′ and S′′ with known first and second moments. Then, the

total system delay for SU packets is equal to

E[T ] =
E[S

′

]

1 + λ
(

E[S′ ] − E[S′′ ]
)+

λE[S′′2]

2(1 − λE[S′′])
+

λ
(

E[S′2] − E[S′′2]
)

2 + 2λ
(

E[S′ ] − E[S′′ ]
)

(13)

Proof: The system delay of an SU packet consists of

its queueing delay E[TQ] and it’s service time E[S]. We first

consider the service time. An arriving packet will find the

system busy with probability ρ, which is the utilization of the

system, and idle with probability 1 − ρ. So, the service time

can be given as E [S] = (1− ρ)E[S
′

]+ρE[S
′′

]. Applying Little’s

Law on the service part of the system, we get that ρ = λE [S].

Substituting this above equation and solving for E[S], we have

E [S] =
E[S

′

]

1 + λ
(

E
[

S
′
]

− E
[

S
′′
]) . (14)

Fig. 2. Renewal cycle

We now consider the queueing delay (incurred with prob-

ability ρ). A packet arriving in the queue finds a packet in

service, and it will have to wait for the remaining (i.e. excess)

service time Se of that packet. Assume further that it finds

additional NQ packets in front of it in the queue. Then, the

expected queueing time for that packet is

E
[

TQ

]

= E
[

NQ

]

E
[

S′′
]

+E [Se] .

Using Little’s law E
[

NQ

]

= λE
[

TQ

]

, and rearranging we get

E
[

TQ

]

=
E [Se]

1− λE
[

S
′′
] . (15)

The mean excess time E [Se] differs from that of an M/G/1.

We will find it using renewal-reward theory [8]. A renewal

starts whenever a packet arrives and finds the system empty.

The busy period (B) ends when all the packets that were

generated in the meantime get transmitted and the system

becomes idle again. The period until a next busy cycle begins

is the idle period (I). So, in our case a cycle consists of a busy

and an idle period. From renewal-reward theory we know that

the mean excess time is equal to the ratio between the mean

reward during a cycle and the mean duration of the cycle

E [Se] =
E[R]
E[X]

. The reward is defined as the remaining service

during an arrival, similarly to the M/G/1 case (this is illustrated

in Fig. 2).

From Fig. 2 we can infer that the excess time is

E [Se] =
E[ 1

2
S′2] +ME[ 1

2
S′′2]

E[B] + E[I]
. (16)

In Eq.(16), M is the average number of arrivals finding the

server busy during a renewal cycle, and is

M = λE [B] . (17)

In a long run, the utilization of the system is ρ = E[B]
E[B]+E[I] .

The average idle period is E[I] = 1
λ

. Then, for the average

busy period we have

E [B] =
E [S′]

1− λE [S′′]
. (18)

Replacing Eq.(18) into Eq.(17) and Eq.(16), as well as

Eq.(17) into Eq.(16), we have

E[Se] =
λE[S′′2]

2
+

λ
(

E[S′2]−E[S′′2]
)

2 + 2λ
(

E[S′ ]− E[S′′ ]
)

(

1− λE[S′′]
)

. (19)

Now, replacing Eq.(19) into Eq.(15) gives us

E[TQ] =
λE[S′′2]

2(1 − λE[S′′])
+

λ
(

E[S′2]− E[S′′2]
)

2 + 2λ
(

E[S′ ]−E[S′′ ]
) (20)

Finally, by replacing Eq.(14) and Eq.(20) into E[T ] = E[S] +

E[TQ], we obtain Eq.(13).

We also need the 2nd moments for S′ and S′′ in Eq.(13).

These calculations are somewhat lengthy and without further

technical interest, so we refer the interested reader to [11].



Our analytical results suggest that the exact SU performance

has an intricate dependence on PU characteristics that goes

beyond channel utilization. At the same time, the key addi-

tional statistics needed are the second (and in congested cases)

the third moments of PU active and idle periods (the success

probabilities could be approximated using second moments

through Chebyshev’s inequality). This implies that by collect-

ing such statistics for different channels, an SU can use our

result to evaluate each channel’s predicted performance, and

choose according to application needs.

III. PERFORMANCE ANALYSIS

The traditional metric for characterizing the PU activity

is the duty cycle. It is defined as
E[TON ]

E[TON ]+E[TOFF ] . Unless

otherwise stated, in all the scenarios below the packet size is

taken to be 0.25, although other values of ∆ lead to the same

conclusions. To validate our theory against simulations we take

combinations of exponentially (Exp) and Bounded Pareto (BP)

distributed ON-OFF periods (as an example of “heavy-tailed”

distributions). For the Bounded Pareto distribution, we take

the lower bound L = 0.215, upper bound H = 400, and the

shape parameter α = 1.2.

Fig. 3 shows the average packet delay in a cognitive network

for two different primary user activity scenarios for exponen-

tially distributed OFF periods. The arrival rate is λ = 0.1. For

the exp-exp distributions a low primary user activity (duty

cycle of 0.2) gives a utilization of 0.05. When the duty cycle

is 0.8, the utilization is 0.29. For the BP ON periods, lower

relative primary user activity of 0.2 corresponds to a utilization

of 0.09, and higher relative licensed user activity of 0.8 to

a server utilization of 0.41. Different values of duty cycle

give different levels of utilization, since the mean service time

depends on the values of E[TON ] and E[TOFF ]. i.e. of duty

cycle. The first thing to observe is a good match between

theory and simulations. Furthermore, we can also observe

that higher duty cycle implies higher delays. This is expected

because when the duty cycle is higher the primary user is

more active, and there is less time for the cognitive user to

operate.We can also see that for the same average ON and

OFF durations (the same duty cycle), the delays are higher

when the primary user has busy periods with higher variability

(higher variance of the ON period durations). This is the first

interesting conclusion that comes out of our model. Despite

the two channels looking similar, from the point of view

of average PU activity, variability can further affect delays.

This is reminiscent of the inspection paradox [8], albeit the

dynamics of Equations (1) and (12) are in fact more complex.

Fig. 4 shows the packet delays for Bounded Pareto dis-

tributed OFF periods. The arrival rate is low (0.01). This arrival

rate corresponds to sparse traffic. As we can observe from

Fig. 4, there is a good match between theory and simulations

for the generic distributed OFF periods, also.

So far, we have considered some standard distributions for

the general ON and OFF periods, to see the effect of high or

low variance. We are also interested to see how our model

can predict performance under more “realistic” PU patterns.

To this end, we consider two recently proposed models for

PU activity, one for cellular channels [6] and one for WiFi

channels [7]. We have tried to implement the proposed models

according to the respective descriptions, although some details

are not specified there.

Fig. 5 shows the packet delay incurred by a WLAN network.

The distributions for this simulation are taken from [7]. The

ON periods are deterministic, while OFF periods have bimodal

distributions. The arrival rate is 0.01. As we can see our theory

provides a very good match with simulations.

Fig. 6 shows the packet delay in a cellular network. The

model description from [6] is being used. The ON periods

underly a multimodal distribution, while the OFF periods are

exponentially distributed. The packet size is 0.01. The arrival

rate is λ = 0.1. For a duty cycle of 0.8, this arrival rate

corresponds to an (maximum) utilization of 0.74. More details

about the two models can be found in [6] and [7].

We have established so far that (i) our analytical model

correctly predicts performance in all generic PU channels

considered, and under various levels of congestion (we note

here that we have performed a large number of other scenarios,

with similar conclusions), and (ii) that even if two channels

have similar average PU activity, variability (e.g. PU traffic

burstiness) can further degrade performance. We now go a

step further and consider a channel A with high average PU

activity (duty cycle of 0.6) and exponentially distributed ON

(activity) durations with cV (coefficient of variation) equal

to 1. We put it “against” a channel B with much lower

PU activity (duty cycle 0.3), but lognormally distributed ON

periods (which have a heavier tail than exponential). Keeping

the mean of the ON period unchanged, and increasing the

coefficient of variation cV of the lognormal distribution, gives

us an interesting insight into the effect of both PU average

activity and variability on cognitive user performance.

Table II displays the ratio of
SU delay on channel B
SU delay on channel A

.

TABLE II
THE RATIO OF DELAYS FOR TWO DIFFERENT CHANNELS

cV for CH B 1 3.16 4.47 5.47 6.32 7.07 7.75

Ratio of Delays 0.5 1.2 1.8 2.3 2.6 3 3.2

We can observe from Table II that for similar variance,

channel B, which is less busy, is better. However, by increasing

the cV of ON periods for channel B, the ratio keeps growing

and exceeds 3 for a cV around 7. In fact, in theory, this

difference can become arbitrarily high (i.e. for real heavy-

tailed distributions, like Pareto with parameter < 2). We note

that the cV values considered for the ON periods are realistic,

since measurements [6] show that the primary user activity

underlies a heavy-tailed distribution (where cV can potentially

diverge). Furthermore, the actual cV needed to observe this

effect depends on the utilization of the two channels: a smaller

cV for channel B would suffice for a smaller utilization

difference. Hence, the impact of the variability of the channel

busy durations can be much more important than the duty
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Fig. 6. Cellular primary user

cycle itself, when looking for “good” spectrum holes for

cognitive users. This could be key for example in delay-

sensitive, but low throughput applications like M2M.

IV. RELATED WORK

Some interesting works also model the PU user with a

stochastic ON-OFF process, but assume a 2-state Markov

Chain for it [12], [13]. Service times are derived from their 2-

state Markov chain, and system times using an M/GY /1 sys-

tem with bulk departures. While the exponential assumption

is more convenient for analysis, it turns out to be inaccurate

for both cellular [14], and WiFi systems [7]. As our analysis

suggests, it can also lead to (arbitrarily) inaccurate predictions.

In a recent work [15], a simple approximate model is used

for delay prediction of an SU packet, assuming generic OFF

periods, but this model also suffers from large inaccuracies,

when the OFF periods are not exponential.

In order to depart from the strong exponential assump-

tion, some recent works [16], [9], [17] have capitalized on

the measurement-based study of [13], in which the Poisson

approximation seems to be decent for call arrivals, but call

duration is generically distributed. These works model SUs

together with PUs, as an M/G/1 system with priorities and

preemption. M/G/1 systems with priorities have been long

analyzed (see e.g. [8]). Nevertheless, there are some important

caveats in the above models. First, the system is preemptive-

resume, that is, SU packets when preempted by a PU transmis-

sion can resume transmission from the point they stopped. In

practice, SU packets will “collide” when a PU is detected, and

have to restart in the next available cycle (possibly colliding

again). Hence, this model is only approximately accurate for

small packets (or long OFF periods). Second, while PU call

arrivals might be approximated by a Poisson distribution, this

does not mean that OFF periods are exponentially distributed,

nor that the SU can directly infer the ON and OFF duration

distributions. These depend on a number of system specifics

and protocol interactions across the stack.

V. CONCLUSION

In this paper, we have proposed a queueing analytical model

for the performance of cognitive users under generic ON-OFF

primary channel models, and we have validated it against both

synthetic and realistic PU channel models. We have shown

that variability of primary user activity is very important, and

often more important than the utilization itself. This is the

key for the protocol design. The actual delay is a complex

interplay between secondary traffic characteristics (intensity

and packet sizes) and channel characteristics (1st and 2nd

moments of idle and available durations of PU). In future

work, we intend to extend our model to multihop networks,

and also use our results to design better spectrum management,

resource allocation and scheduling algorithms.
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