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Abstract

The performance of a content based retrieval system is
limited mainly because of the unavailability of sufficient an-
notated examples, descriptor noise and the semantic gap
that is the representation difference between the high level
concept and the low level feature. Finding the optimal pa-
rameters of the learner for each concept adds to the diffi-
culty of this task. We argue that grouping certain concepts
together can affect the performance of the learning task. We
explore the similarity between different semantic concepts
and group associated concepts together to learn a few more
classifiers improving the performance of video concept de-
tection. It is further investigated if grouping of concepts
in that clever way exploiting the similarity is better or if
random grouping does the job. We also compare with the
RAKEL framework for video concept detection. With exper-
imentation on the TRECVID 2010 dataset and show that the
clever group based classifiers outperforms random group-
ing of concepts and the multi-label RAKEL algorithm. We
further analyze the improvements different grouping tech-
niques bring when fused with individual concept learning
for video concept detection.

1. Introduction

Understanding the content in videos is a problem of
growing interest with the explosive increase in the amount
of video content being generated and uploaded over the in-
ternet. Though a very hard problem due to the uncountable
variations a concept could be presented in a video the re-
sults reported from scientific community are reassuring and
encourage further research.

Typical image and video datasets are multi-label in na-
ture in that the classes are not mutually exclusive. The vi-
sual content is very rich and usually comprises multiple ob-
jects or concepts, in a broader sense, in a single image or a
video frame. A city skyline picture, for example, contains

many objects and any video is typically tagged with more
than one semantic concepts.

Based on such commonalities we argue that different
concept categories can complement each other for concept
detection performance if they are considered together for
training. Considering them together means that if they are
very similar they should be trained together to augment
training resources and simultaneously they should be clas-
sified against each other in order to highlight their differ-
ences. An example could be to merge the examples of Car
and Road together to train them as a strong group classi-
fier and at the same time arrange for at least one of those
to fall into another group so that they can be distinguished
against each other for the cases when the car is in the garage
for example or the road is empty or is crowded by busses.
The idea may seem somewhat similar to learning visual at-
tributes [2, 1, 4] where e.g. all the examples of Bus, Car,
Bicycle etc. are trained together to learn the attribute Wheel
but we highlight the differences in the literature review in
detail.

Learning all possible label combinations is an insur-
mountable task and practically the label sets that actually
exists are very sparse [10, 11]. This sparseness thus helps
greatly to reduce the classifiers to be learned. Methods to
find label sets to be learned can be divided into data or label
dependent and data independent approaches[10]. Data inde-
pendent approaches randomly select label sets like RAKEL
[11] while we propose a data dependent approach that ex-
ploits visual correlation between labels or concepts to find
good label sets.

Our goal is to learn from multiple labels and minimize
the number of multi-label classifiers. We try to find intelli-
gently the sets of labels to be trained together for learning,
to minimize the number of multi-label classifiers or group
classifiers as we call them. We propose to use the visual
similarity between concepts to partition the label space into
multiple overlapping groups and then learn classifiers for
those groups. Thus we achieve multi-label classification
through group based classification. The groups learned are



effectively binary classifiers that combine annotations from
different concepts and learn a 1-vs-all classifier on the new
set of annotations. Individual concept labels are then in-
ferred from the multi-label group predictions. The labels
predicted are always the same and are defined at the time of
making groups. The number of concepts belonging to one
group is not similar.

We explore a quick way of grouping visually close con-
cepts together which outperforms a method of randomly
grouping labels and state of the art multi-label classifier
RAKEL for different group sizes. We surpass significantly
the concept detection performance over the baseline with
fusing information from as little as 10 group classifiers for
a total of 50 concepts on the TRECVID 2010 dataset.

2 Related Work

[2, 1] introduced attributes that describe visual objects.
Attributes can be physical for example visual parts like leg
and wheel, or descriptive like blue colored and striped or a
property that some object might have and other do not. In
image and video retrieval a concept or more specifically an
object is composed of a set of attributes.

Lampert et al. [4] present two methods for attribute
based classification and perform learning for disjoint train-
ing and test datasets for object detection. Use of attributes
in large scale video retrieval or classification is rare, how-
ever [14] describes a video concept sparsely from a set of
around 6000 weak attributes such as classifiers scores on
low level visual features and classemes, image distance to
some randomly selected images based on the visual features
and some discriminative attributes. Weak attributes for a
query concept are found through a semi-supervised graph-
ical model using correlation between the concepts and the
attributes labels.

Group based classification is different from attributes in
that a concept is defined by a set of multiple attributes while
a group contains multiple concepts. Looking at it in an-
other way an attribute also contains many concepts, or more
specifically it is present in many concepts, but the number
of attributes to be learned is far greater than the expected
number of groups to be learned. Furthermore each concept
is identified by a unique combination of the groups. We are
trying to improve video concept detection performance with
using a small number of classifiers to be learned. Definition
of attributes is very specific to the type of dataset and the
task at hand. The number of object specific attributes in-
creases rapidly with the addition of more diverse content.
Also the attributes are usually named in advance but the
groups of concepts or labels are not fixed or pre-defined.

Closely related to attributes is hashing which tries to dis-
tinguish examples by assigning binary representations to in-
dividual images. Spherical hashing [3] divides the feature

space into hyperspheres such that each image is assigned a
binary code. Rastegari et al. [6] combine attribute learn-
ing with generating binary codes and jointly learn all the
attributes (binary codes) together for all the training data.

In hashing techniques two examples of the same con-
cept have very similar binary codes [3, 6], or two (visually)
close examples have very similar binary codes. Contrar-
ily in our grouping approach codes are assigned at concept
level. Thus two examples of the same concept have the ex-
act same binary codes as they belong to the similar set of
groups while two concepts that are closely related to each
other may have very similar binary code.

RAKEL is a multi-label classification algorithm that
works on Label Powersets (LP) and considers each distinct
combination of labels that exist in the training set as a dif-
ferent class value of a single-label classification task [11].
Subsets of labels of fixed size k are generated randomly
and single label classifiers are learned for all the label com-
binations in the powerset of this subset. These single label
classifiers may take into account label correlations if ade-
quate number of examples are present. In the end each LP
classifier predicts values for the k labels.

3 Group Based Classification

Similarity of concepts can be judged in many differ-
ent ways, including web semantics information, ontology
rules or relationships between concepts provided with some
video databases like for example TRECVID 2010 [9]. Ex-
ample of such rules are Anchorperson is Adult and News
Studio contains Anchorperson. To quantitatively express
the similarity of concepts, intersection of common anno-
tations can be used to find a similarity index between two
concepts. Also feature vectors belonging to shots contain-
ing concepts can be used to find distance between two con-
cepts. The criterion for clever grouping of concepts we do
uses feature vectors for finding similarity between concepts
to group them together.

After the concepts are grouped together into different
groups, each concept is assigned to a number of different
groups. The idea is that each concept is uniquely identified
by a combination of outputs of certain groups. Thus if the
concepts Car and Road appear in the same group, one of
them should belong to at least one of the other groups to
differentiate it from the other. In other words each concept
is represented by a unique bit string with length equal to
the number of total groups. Each bit of the bit string rep-
resents a group and the value of the bit is 1 if the concept
belongs to the specified group. Figure 1 shows our intu-
ition of the group based classification scheme. Ideally for
C concepts log2 C group classifiers are enough for learning
as each concept can be identified with a unique bit string.
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Figure 1. Grouping of concepts into non mutually exclusive partitions: a) A simplified space is shown
with some labeled (and multi-labeled examples. b) Grouping of concepts. Concepts may appear in
multiple groups. c) Each concept is a unique bit string and no group is empty.

3.1 Clever Grouping

We use average feature vector for each concept to find
the alikeness between concepts. Average feature vectors for
each concept c ∈ C are obtained by averaging all the feature
vectors for images containing the concept from our training
set. The feature vectors are Bag of Words histograms [8]
as described later in the experiments section. The clever
grouping criterion we use is based only on visual similarity
between concepts i.e. we use the similarity or the inverse of
the distance between the average features as the closeness.

Suppose we want to generate D groups based on this cri-
terion. First we consider the scenario where where the num-
ber of groups is less than the number of concepts D < C.
The C average vectors are first clustered into D centers us-
ing k-means clustering with random initial centers. After
clustering we generate a list for each average feature vector
containing top n closest centers, like soft assignment [12].
The list is sorted with the closest center at the first rank and
so on. D groups are generated corresponding to the D clus-
ter centers. Each concept is always assigned to the closest
group. Next the concept is assigned randomly to the next
closest center with decreasing probability. The decrease in
probability is proportional to the increase in the distance to
the next closest center. Clustering is done so that the out-
liers (concepts whose average features are far from others)
are considered for grouping as well when D < C.

The case where the number of groups is greater than the

number of concepts, i.e. D > C, we drop the clustering
mechanism. To create the first group we start with randomly
selecting an average feature vector of a concept and drawing
a number n randomly. Then n closest concepts with min-
imum distance to the selected concept are assigned to the
first group along with the randomly selected concept mak-
ing the first group. This process is repeated until D groups
are generated. The n closest concepts are first sorted with
the concept with the minimum distance ranked at first po-
sition and are assigned to the group with decreasing proba-
bility. This decrease in the probability of assignment is pro-
portional to the increase in distance of the selected concept
to the next closest concept.

The concepts are assigned sequentially that is the bit
strings are generated sequentially. In case of a conflict be-
tween the assignment of two concepts, i.e. when two bit
string are exactly the same, the two concerned bit strings are
regenerated until the conflict is resolved. In this way each
concept is uniquely identified by a different combination of
groups. The case where D > C there is rarely a conflict but
if there is, the grouping is regenerated. The maximum value
of n is fixed as 12 in our experiments with C = 50.

We then determine the labels of the members of the
groups. All the examples belonging to those labels be-
come part of that group. More specifically two examples
that are visually very close do not necessarily end up in the
same group unless their respective average feature vectors
are close. Unlike attributes these groups are complex enti-



ties or complex attributes as they combine annotations from
many objects (concepts).

We compare clever grouping of concepts with random
grouping where for each group n concepts are selected and
then bit strings are acquired for each concept. The pro-
cess is repeated if there is a conflict between the bit strings
of any two concepts. For both grouping criteria an exam-
ple is considered positive if any of the participating labels
(concepts) is positive for that example. Each group is then
trained in a 1-vs-all fashion giving scores for each test frame
s(f |g) which is the score of the test frame f for the group g.
Concept score is then calculated on the normalized groups
scores as:

sg(f |c) =
∑
c∈g

s(f |g)

giving the score of the frame f for concept c. We do not
subtract the scores of negative groups i.e. the groups which
do not contain c as we found experimentally that using this
information worsens the results.

4 Experiments and Results

We present here experiments carried out on the
TRECVID 2010 datasets.

4.1 Experimental Setup

Dataset and Features: We have used the TRECVID
2010 IACC [9] dataset containing 11644 internet videos.
This comprehensive dataset is divided into the training part
with 3200 videos of 200 hours with a total of 119,685
keyframes. Rest of the approximately 8000 videos of 200
hours containing 146,788 keyframes are used for testing
purposes. For testing the performance of various multi-
label or group classification based systems on video con-
cept detection we have used the list of 50 concepts from the
TRECVID 2011 Light Semantic Indexing task.

We use 128 dimensional SIFT features [5] to describe
local patches extracted using a Dense grid of points on the
video keyframes [7]. The points on the grid are distanced
8-pixels apart. All the SIFT descriptors from the training
set are then used to build a 500 word visual dictionary us-
ing k-means. For classification we have used linear SVM
to learn from a suitable feature map (homogeneous kernel
map) built by the histogram intersection kernel [13].

We have used Average Precision (AP) to measure con-
cept detection performance as used in TRECVID semantic
indexing benchmark [9]. For the overall performance we
use Mean Average Precision (MAP) of 50 concepts.

RAKEL: For RAKEL we fix the value of k = 3
which is also known to give the best results [11]. We

adapt the RAKEL algorithm for Average Precision in
that we generate score for each shot so that a sorted
list can be generated for each concept. Each LP clas-
sifier is a multi-label classifier that gives classification
scores for the k concepts. We call a k-labelset a group
with k concepts and each group predicts scores for each
of the k concepts. In the end to obtain the score for
each concept, scores from all the LP (group) classifiers,
of which that concept is a part of, are added and normalized.

Late Fusion: We have also used late fusion to com-
bine the baseline results with the 3 group based approaches.
Weighted linear fusion is used in order to obtain a single
output score for each concept s(f |c) that is used to rank the
video frame f for the concept c:

s(f |c) = wsss(f |c) + wgsg(f |c)

where ss(f |c) and sg(f |c) are the concept scores acquired
from the single label classification (baseline) and the group
based approach respectively. The scores are rescaled ac-
cording to one another using min-max normalization. The
weights ws and wg are optimized over the development set.

As all the three approaches include some randomness we
have repeated each experiment 5 times. We show the mean
and standard deviation for the scores.

4.2 Results

The Semantic indexing results for various approaches
on TRECVID 2010 test dataset for the 50 concepts of
TRECVID 2011 light semantic indexing task are presented
in figure 2 containing: i) single label classification which is
also the baseline, ii) random grouping, iii) fusion of base-
line with random grouping, iv) clever grouping, v) fusion
of baseline with clever grouping, vi) RAKEL, vii) fusion of
baseline with RAKEL. For baseline each concept is treated
as a separate label.

Performance of various grouping approaches increases
almost linearly with the increase in the number of groups
with random grouping of concepts performing better than
RAKEL for almost every group size. Intelligent grouping
significantly outperforms the other two techniques and ap-
proaches single label classification performance for training
around 80 intelligently formed groups. Further increasing
the number of groups increases marginally the performance
over the baseline.

Figure 2 also present the results of fusing various group
based techniques with the baseline. Fusion with RAKEL
improves concept detection performance over baseline
and increases linearly with the increase in the number of
groups. The best performance is acquired using 100 groups
with 10% overall increase in the indexing performance over
the baseline. Clever grouping when fused with single label
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Figure 2. Mean Average Precision for 50 concepts for different grouping criteria and their fusion with
the baseline.

classification provided best improvement for a very few
number fo groups trained. This is observable in the upper
left part of the figure 2 as fusing concept scores from only
10 clever groups with the baseline improves MAP score
from 0.0527 to 0.0592 with 12% increase in performance.
Using 20 intelligent groups the improvement is 15%. The
fusion performance is good with clever grouping till the
number of groups is 40 and after that the MAP decreases
linearly, when the number of groups equals or is greater
than the number of concepts. With random grouping the
trend is somewhat similar to RAKEL as the fusion perfor-
mance increases with the increase in the number of groups.
Although the MAP here is better than that of RAKEL
for every grouping. Fusion results with random grouping
lingers close to the fusion results with intelligent grouping.
The performance is slightly inferior to intelligent grouping
for up to 50 groups and then outperforms intelligent group-
ing as the number of groups increases further. Best MAP
score is 0.0612 which is a 16% increase over the baseline
observed with 100 random groups used (upper right corner).

Analysis of Fusion Weights: Although intelligent
grouping outperforms random grouping for concept de-
tection for all group sizes this does not stay the same
when the group based scores are fused with single label
classification scores. To further analyze this we look closer
at the fusion and investigate the fusion weights assigned
to the concepts for different number of groups. Figure
3 plots the evolution of the fusion weights for the three
multi-label approaches for different group sizes derived
from the training data. The figure shows the average of the
weights assigned to each concept score derived from the
group based approaches compared to concept scores from

individual concept learning in the linear fusion. The fusion
weights increase with the number of groups for the three
approaches as more groups means better classification at
concept level except when there is overfitting or when the
group based approach performs worse than the baseline for
a certain concept. For clever grouping the average weight
quickly reaches the level where both the group based and
the single label approaches contribute almost equally to
the final score. Thus when the number of groups equals
50 both approaches contribute exactly equally for the final
performance and as the number of groups increases more
weight is assigned to clever grouping on average. In figure
2 we see that the clever grouping approaches single label
classification with the increase in the number of groups.
Thus adding more and more groups with concepts grouped
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on visual similarity will always converge to single label
concept wise classification and fusing those two together
will only results in marginal improvement.

Note that this is not the case for random grouping
technique as the maximum weight assigned on average is
around 46%. In other words random grouping contributes
around 46% to the fusion even with 100 groups. Thus as
the performance of random grouping is always inferior to
baseline in figure 2, fusing it with baseline always brings in
complimentary information and improves performance with
the increase in number of groups. However clever grouping
does bring more useful information in fusion than random
grouping if number of groups is kept inferior to the num-
ber of concepts. Thus we are able to improve 12% and 15%
over the baseline with only 10 and 20 new classifiers trained
respectively in addition to 50 single-label classifiers.

One explanation for the not so good performance of
RAKEL is that the label set in the TRECVID dataset we
used is very sparse i.e. only a few combinations of labels are
possible. In the RAKEL mechanism each group has k = 3
and thus up to 8 single label classifiers are trained for each
group. For good classification results the number of posi-
tive examples for each combination of labels should be ad-
equate [11]. We have found that in the Label Powersets the
number of examples for the label set {0, 0, 0} where all the
3 concepts are negative dominates the number of examples
for other label sets. This complicates things as the label sets
like {1, 0, 0} or {1, 0, 1}, where one concept is truly distin-
guished against others have very few positive examples for
training. The final score for each concept in the end is thus
dominated by the negative score of the classifier trained on
examples from the label set {0, 0, 0}. From the TRECVID
2010 training data and our setting of the RAKEL algorithm
we have on average 6188 positive training examples for the
label set {0, 0, 0} for every LP classifier compared to only
168 positive examples for other label sets. Thus an LP clas-
sifier lacks the examples for the truly discriminative label
combinations owing to the relatively poor performance.

5 Conclusions

We have devised a quick way of grouping concepts to-
gether based on their visual similarity to train them together
for concept detection in internet videos. The group making
criterion is intuitive, very fast and each concept is repre-
sented by a unique combination of groups.

With the introduction of a little useful even random in-
formation we are able to improve concept detection perfor-
mance on the TRECVID 2010 datasets for the list of 50
concepts. We improve 12% and 15% over the baseline with
only 10 and 20 new group classifiers formed on the clever
criterion. Using random grouping we further improve but
at a cost of training a total of twice as many classifiers as

compared to the intelligent criterion.
We feel that this group based classification can help ul-

timately reduce the number of classifiers to be trained if ef-
fective combination techniques can be found. So far for the
grouping of concepts we have only used visual similarity
while there are other options that may be fruitful to explore.
Grouping only on visual similarity results in overfitting as
the number of groups increases. We would also like to add
diverse information in the group or create groups from neg-
ative information. This may be acheived with using mutual
information principles on negative and positive annotations
for concepts. This information is inherently provided with
TRECVID style multi-label datasets.

For RAKEL the complication lies in finding the ade-
quate number of examples for each possible label set in the
TRECVID dataset. We feel that there is a need to find a
better way to combine and train single label classifiers for
making one multi-label LP classifier.
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