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Abstract—The work considers the two-user MISO broadcast
channel with a gradual and delayed accumulation of channel
state information at the transmitter (CSIT), and addresses the
question of how much feedback is necessary, and when, in
order to achieve a certain degrees-of-freedom (DoF) performance.
Motivated by limited-capacity feedback links with delays, that
may not immediately convey perfect CSIT, and focusing on the
block fading scenario, we consider a gradual accumulation of
feedback bits that results in a progressively increasing CSIT
quality as time progresses across the coherence period (T channel
uses - current CSIT), or at any time after (delayed CSIT).

Specifically, for any set {↵t}Tt=1

of feedback quality exponents
describing the high-SNR rates-of-decay of the mean square error
of the current CSIT estimates at time t  T (0  ↵

1

 · · · 
↵T  1), given an average ↵̄ =

PT
t=1

↵t/T , and given perfect
delayed CSIT (received at any time t > T ), the work here
derives the optimal DoF region to be the polygon with corner
points {(0, 0), (0, 1), (↵̄, 1), ( 2+↵̄

3

, 2+↵̄
3

), (1, ↵̄), (1, 0)}. Aiming to
now reduce the overall number of feedback bits, we also prove
that the above optimal region holds even with imperfect delayed
CSIT for any (delayed-CSIT) quality exponent � � 1+2↵̄

3

.
The results are supported by novel multi-phase precoding

schemes that utilize gradually improving CSIT. The approach
here incorporates different settings such as the delayed CSIT
setting of Maddah-Ali and Tse (� = 1,↵t = 0, 8t  T ), the
imperfect current CSIT setting of Yang et al. and of Gou and
Jafar (� = 1,↵

1

= · · · = ↵T > 0), and the not-so-delayed CSIT
setting of Lee and Heath (� = 1,↵

1

= · · · = ↵⌧ = 0 for some
⌧ < T ).

I. INTRODUCTION

A. Channel model

We consider the multiple-input single-output broadcast
channel (MISO BC) with an M -transmit antenna (M � 2)
transmitter communicating to two receiving users with a single
receive antenna each. Within the block fading setting, we
consider a coherence period of T channel uses, during which
the channel remains the same. For h` and g` denoting this
channel during the `th coherence block for the first and second
user respectively, and for x`,t denoting the transmitted vector
during timeslot t of this `th block, the corresponding received
signals at the first and second user take the form

y(1)`,t = h

T

`x`,t + z(1)`,t (1)

y(2)`,t = g

T
`x`,t + z(2)`,t (2)

(t = 1, 2, · · · , T ), where z(1)`,t , z
(2)

`,t denote the unit power
AWGN noise at the receivers. The above transmit vectors

accept a power constraint E[||x`,t||2]  P , for some power
P which also here takes the role of the signal-to-noise ratio
(SNR). The fading coefficients are assumed to be independent
and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and unit variance, and are assumed
to remain fixed during a coherence block, and to change
independently from block to block.

B. Delay-and-quality effects of feedback

As in many multiuser wireless communications scenarios,
the performance of the broadcast channel depends on the
timeliness and quality of channel state information at the
transmitter (CSIT). This timeliness and quality though may
be reduced by limited-capacity feedback links, which may
offer consistently low feedback quality, or may offer good
quality feedback which though comes late in the communi-
cation process and can thus be used for only a fraction of
the communication duration. The corresponding performance
degradation, as compared to the case of having perfect feed-
back without delay, forces the delay-and-quality question of
how much feedback is necessary, and when, in order to achieve
a certain performance.

These delay-and-quality effects of feedback, naturally fall
between the two extreme cases of no CSIT and of full CSIT
(immediately available and perfect CSIT), with full CSIT
allowing for the optimal 1 degrees-of-freedom (DoF) per user
(cf., [1])1, while the absence of any CSIT reduces this to just
1/2 DoF per user (cf., [2], [3]).

A valuable tool towards bridging this gap and further
understanding the delay-and-quality effects of feedback, came
with [4] showing that arbitrarily delayed feedback can still
allow for performance improvement over the no-CSIT case.
In a setting that differentiated between current and delayed
CSIT - delayed CSIT being that which is available after the
channel elapses, while current CSIT corresponded to feedback
received during the channel’s coherence period - the work in
[4] showed that perfect delayed CSIT, even without any current
CSIT, allows for an improved 2/3 DoF per user.

Within the same context of delayed vs. current CSIT, the
work in [5]–[8] introduced feedback quality considerations,

1We remind the reader that for an achievable rate pair (R
1

, R
2

), the
corresponding DoF pair (d

1

, d
2

) is given by di = limP!1
Ri

logP , i = 1, 2.
The corresponding DoF region is then the set of all achievable DoF pairs.



and managed to quantify the usefulness of combining perfect
delayed CSIT with immediately available imperfect CSIT of a
certain quality that remained unchanged throughout the entire
coherence period. In this setting the above work showed a
further bridging of the gap from 2/3 to 1 DoF, as a function
of this current CSIT quality.

Further progress came with the work in [9] which, in
addition to exploring the effects of the quality of current
CSIT, also considered the effects of the quality of delayed
CSIT, thus allowing for consideration of the possibility that the
overall number of feedback bits (corresponding to delayed plus
current CSIT) may be reduced. Focusing again on the specific
setting where the current CSIT quality remained unchanged
for the entirety of the coherence period, this work revealed
among other things that imperfect delayed CSIT can achieve
the same optimality that was previously attributed to perfect
delayed CSIT, thus equivalently showing how the amount of
delayed feedback required, is proportional to the amount of
current feedback.

A useful generalization of the delayed vs. current CSIT
paradigm, came with the work in [10] which deviated from
the assumption of having invariant CSIT quality throughout the
coherence period, and allowed for the possibility that current
CSIT may be available only after some delay, and specifically
only after a certain fraction of the coherence period. Under
these assumptions, in the presence of more than two users,
and in the presence of perfect delayed CSIT, the above work
showed that for up to a certain delay, one can achieve the
optimal performance corresponding to full (and immediate)
CSIT.

The above settings2 addressed different instances of the
more general problem of communicating in the presence of
feedback with different delay-and-quality properties, with each
of these settings being motivated by the fact that perfect
CSIT may be generally hard and time-consuming to obtain,
that CSIT precision may be improved over time3, and that
feedback delays and imperfections generally cost in terms
of performance. The generalization here to the setting of
time-evolving CSIT, incorporates the above considerations and
motivations, and allows for insight on pertinent questions such
as:

• How much CSIT feedback, and when, must one send to
achieve a certain target DoF performance?

• How much current CSIT quality is necessary to achieve
a certain performance?

• How much delayed CSIT quality is necessary to achieve
the best possible performance?

• Can imperfect delayed CSIT achieve the same optimality
that was previously attributed to perfect delayed CSIT?

2In describing existing work, we focused only on immediately related work,
thus neglecting other results in the context of delayed CSIT, such as those in
( [11]–[15]) and in many other publications.

3Such gradual improvement could be sought in FDD settings with limited-
capacity feedback links that can be used more than once during the coherence
period to progressively refine CSIT, as well as in TDD settings that use
reciprocity-based prediction that improves over time.

• When is delayed feedback unnecessary?

C. Structure of paper, notation and conventions

Section I-D describes the quantification of evolving CSIT
quality. Then Section II provides the main results, i.e., the
optimal DoF regions for the different cases of evolving CSIT.
In addition to the theorems, we also provide corollaries and
examples that are meant to offer insight. The achievability and
DoF outer bound proofs are shown in the journal version of
this work [16], due to the lack of space here.

Throughout this paper, (•)T denotes the transpose, while
|| • || denotes the Euclidean norm. Finally we adhere to
the common convention (see [4], [6], [7], [17]) of assuming
perfect and global knowledge of channel state information at
the receivers (perfect global CSIR), where the receivers know
all channel states and all estimates.

D. Quantification of evolving CSIT quality

In terms of current CSIT, i.e., in terms of CSIT correspond-
ing to feedback received during the coherence period of the
channel in question, we consider the case where at time t of
the `th coherence block, the transmitter has estimates ˆ

h`,t, ˆg`,t

of h` and g` respectively, with estimation errors

˜

h`,t = h` � ˆ

h`,t, ˜

g`,t = g` � ˆ

g`,t (3)

respectively having i.i.d. circularly symmetric complex Gaus-
sian entries with zero mean and power

1

M
E[k˜h`,tk2] =

1

M
E[k˜g`,tk2] = P�↵t (4)

for some non-negative parameter ↵t describing the quality
of the estimates at any given time t = 1, 2, · · · , T during
the channel’s coherence period4. In this setting, a possibly
increasing ↵t implies an improving CSIT quality, with ↵t = 0

implying very little current CSIT knowledge up to time t, and
with ↵t = 1 - and for all DoF-related purposes, ↵t = 1 (
[18]) - implying that starting at a given time t, the transmitter
has access to perfect CSIT.

In terms of delayed CSIT, and again focusing on the afore-
mentioned channels h`, g` appearing during the `th coherence
block, we consider the case where at any time after the end
of the `th block, the transmitter has delayed estimates ˇ

h`, ˇg`

with estimation errors

¨

h` = h` � ˇ

h`, ¨

g` = g` � ˇ

g` (5)

again having i.i.d. Gaussian entries, but this time with power
1

M
E[k¨h`k2] =

1

M
E[k¨g`k2] = P��

for some non-negative parameter �.
We here adhere to the common convention (see [5]–[7]) of

assuming that all the estimates up to time t, are independent
of the current estimate errors ˜

ht and ˜

gt at time t 5.

4We clarify that the power of the error is averaged over channel realizations
and noise, and is naturally a function of t but not of `.

5It is noted that this assumption is valid in the block fading case where the
estimates of the channel occur in a progressively improving manner.



Remark 1: We here note that the choice of invariant (non
evolving) delayed CSIT, is meant to reflect the fact that - unlike
the case of evolving current CSIT - delayed CSIT can, without
loss of generality, be assumed to be received with any delay,
after which any further improvement of feedback-quality may
be unrealistic.

Remark 2: We also note that without loss of generality, in
the DoF setting of interest, we can restrict our attention to
the range 0  ↵

1

 ↵
2

 · · ·  ↵T  1 and 0  �  1,
as well as to the case where ↵T  � since delayed CSIT
with � < ↵T can be readily improved to delayed CSIT with
� = ↵T , simply by recalling current CSIT estimates at a later
time. As a result, we will consider the general setting where

0  ↵
1

 ↵
2

 · · ·  ↵T  �  1,

where � = 1 corresponds to having perfect delayed CSIT, and
where ↵

1

= 1 corresponds to the optimal case of perfect and
immediately available CSIT.

We can now see how the evolving CSIT generalization
naturally incorporates different settings such as the perfect-
delayed CSIT setting in [4] (� = 1,↵t = 0, 8t  T ), the
perfect-delayed and imperfect current CSIT setting in [5]–
[7] (� = 1,↵

1

= · · · = ↵T < 1), the bounded-overall-
feedback setting with imperfect current and imperfect delayed
CSIT [9] (� < 1,↵

1

= · · · = ↵T < 1), as well as the
‘not-so-delayed’ CSIT setting in [10] corresponding to having
� = 1,↵

1

= · · · = ↵⌧ = 0,↵⌧+1

= · · · = ↵T = 1 for some
integer ⌧ < T .

II. MAIN RESULTS

We proceed with the main results. As stated, the corre-
sponding schemes and corresponding outer bound proof can
be found in [16].

A. Evolving current CSIT and perfect delayed CSIT

We here consider the case of evolving current CSIT with
perfect delayed CSIT. For notational convenience, we define

↵̄, 1

T

TX

t=1

↵t (6)

to be the average (current) CSIT quality exponent.
Theorem 1: The optimal DoF region for the two-user MISO

BC with symmetrically evolving current CSIT and perfect
delayed CSIT, takes the form

d
1

 1, d
2

 1 (7)
2d

1

+ d
2

 2 + ↵̄ (8)
2d

2

+ d
1

 2 + ↵̄ (9)

and corresponds to the polygon with corner points

{(0, 0), (0, 1), (↵̄, 1), (2 + ↵̄

3

,
2 + ↵̄

3

), (1, ↵̄), (1, 0)}.

This is depicted in Fig. 1.
Drawing from the above, the following corollary is partially

motivated by the possibility of having imperfect feedback
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Fig. 1. Optimal DoF region of two-user MISO BC with evolving current
CSIT and perfect delayed CSIT.

and/or having feedback with delays. The use of the term
symmetric DoF is meant to correspond to the case where the
two users have equal DoF.

Corollary 1a: In the setting of the two-user MISO BC, the
optimal symmetric DoF d0 = 1 (DoF pair (d0, d0) = (1, 1))
requires ↵̄ = 1, i.e., requires perfect and immediately available
CSIT.

The above applies to settings such as that in [10] which
considers delays in receiving current CSIT, thus corresponding
to having ↵

1

= · · ·↵⌧ = 0 for some ⌧ > 0, and thus having
↵̄ < 1. The corollary shows that, unlike in the (M + 1)-user
case in [10] where the optimal sum DoF is achieved even in
the presence of the aforementioned (current feedback) delays,
in the two-user case here, any delay or imperfection in the
current CSIT, will result in suboptimal DoF performance.

The following examples provides insight.
Example 1: Let us consider a setting where we seek to

achieve a certain symmetric target DoF d0 = 7/9. Noting
directly from the theorem that this requires ↵̄ � 3d0�2 = 1/3,
we identify possible sets of quality exponents to include:
• (↵t = 0 for t  2T/3, ↵t = 1 for t > 2T/3) which allows
for maximal current-feedback delay that is equal to two thirds
of the coherence block, and which asks for perfect feedback
at the beginning of the last third of the block
• (↵t = 0 for t  T/3, ↵t = 4/9 for t 2 (T/3, 2T/3], ↵t =

5/9 for t > 2T/3) which allows for some feedback delay and
a gradual evolution of CSIT quality
• (↵t = 1/3 for all t 2 (0, T ]) which asks for immediate
feedback, but of lesser quality with fewer feedback bits.

Example 2: In the setting of the previous example and the
aforementioned three options, let us assume for the sake of
simplicity that channel quantization is simple scalar quantiza-
tion, in which case a quantization rate of logP bits allows for
(essentially) perfect feedback, and where ↵ logP bits allow
for a quality exponent ↵ 2 [0, 1] ( [19]). In this simplified
quantization setting we observe the following.
• The first option is direct: send no feedback during the
first two-thirds of the coherence block, and then send logP
feedback bits right after that (no need for further delayed



TABLE I
SOME FEEDBACK OPTIONS ACHIEVING SYMMETRIC DOF d

0
=

7

9

.

↵
1

↵T
3

+1

↵
2T
3

+1

feedback feedback extra bits
to to to delay bits in after
↵T

3

↵
2T
3

↵T period 1 ! T t = T

1/3 1/3 1/3 0 1/3 · logP 2/3 · logP
0 4/9 5/9 T/3 5/9 · logP 4/9 · logP
0 0 1 2T/3 logP 0

feedback).
• To get the second option, we allow for feedback delay equal
to a third of the coherence block, at the end of which we send
4

9

logP bits of feedback to get ↵t = 4/9, t 2 (T/3, 2T/3],
and then at the beginning of the last third of the coherence
block, send an additional 1

9

logP bits to increase the number
of accumulated feedback bits to 5

9

logP bits and to get
↵t = 5/9, t 2 (2T/3, T ]. Sending, at any point after the
end of the coherence block, an additional 4

9

logP bits of
delayed feedback, would complement the existing 5

9

logP bits
of feedback accumulated during the coherence block, would
bring the total number of accumulated feedback bits to logP
bits, and would allow for perfect delayed CSIT corresponding
to � = 1.
• To get the third option, we immediately send 1

3

logP bits
of feedback at the beginning of the coherence block in order
to get ↵t = 1/3, t 2 [1, T ]. Sending an extra 2

3

logP bits
of delayed feedback at any point t > T after the end of the
coherence block, would result in perfect delayed CSIT.

These are summarized in Table II where the second-to-last
column describes the total number of feedback bits sent during
the coherence block, and where the last column describes the
number of extra (delayed) feedback bits required to refine the
current CSIT estimates to the point of perfect delayed CSIT.

B. Evolving current CSIT with imperfect delayed CSIT

We now proceed to the more general case where, in addition
to imperfections in the current CSIT, imperfections can be
found in delayed CSIT estimates as well (0  ↵

1

 · · · 
↵T  �  1). Having �  1 could reflect a limitation in the
feedback link quality or a limitation in the total number of
(current plus delayed) feedback bits.

Theorem 2: The optimal DoF region takes the form

d
1

 1, d
2

 1, 2d
1

+ d
2

 2 + ↵̄, 2d
2

+ d
1

 2 + ↵̄

when � � 1+2↵̄
3

, while when � < 1+2↵̄
3

this region is inner
bounded by the achievable region

d
1

 1, d
2

 1 (10)
2d

1

+ d
2

 2 + ↵̄ (11)
2d

2

+ d
1

 2 + ↵̄ (12)
d
2

+ d
1

 1 + � (13)

which takes the form of a polygon with corner points
{(0, 0), (0, 1), (↵̄, 1), (2� � ↵̄, 1 + ↵̄ � �), (1 + ↵̄ � �, 2� �
↵̄), (1, ↵̄), (1, 0)}.

The following corollaries provide further insight and con-
clusions that hold in the same DoF context.

Corollary 2a: Having delayed-CSIT quality � � 1+2↵̄
3

is equivalent to having perfect delayed CSIT. Consequently
whenever ↵T � 1+2↵̄

3

, there is no need for any delayed CSIT,
i.e., there is no utility in sending feedback after the end of the
coherence block.

The above is direct from the theorem and simply considers
that current CSIT estimates can be recalled at a later point in
time. It applies towards answering the question of how many
(delayed) feedback bits must be gathered after the channel
changes in order to achieve the best possible performance.

Furthermore we have the following, which gives insight on
how many feedback bits to send, and when, in order to achieve
a certain performance d0. The proof is again direct.

Corollary 2b: To achieve a symmetric target DoF d0, it is
sufficient to have ↵̄ � 3d0 � 2 with � � 2d0 � 1 or to have
↵̄ � 3d0�2 with ↵T � 2d0�1 (and no extra delayed feedback).

In addition, the following corollary describes feedback
delays that allow for a given target symmetric DoF d0 in the
presence of constraints on current and delayed CSIT qualities.
We will be specifically interested in the allowable fractional
delay of feedback

�, argmax

�0
{↵�0T = 0} (14)

i.e., the fraction �  1 for which ↵
1

= · · · = ↵�T =

0,↵�T+1

> 0. A constraint ↵t  ↵
max

on the current
quality exponents, is meant to reflect a constraint on the total
number of feedback bits sent during the coherence period,
while bounding � corresponds to having a limited total number
of (current plus delayed) feedback bits per coherence period6.

Corollary 2c: Under a current CSIT quality constraint ↵t 
↵
max

, a symmetric target DoF d0 can be achieved with any
fractional delay �  1� 3d0�2

↵
max

, by setting ↵
1

= · · · = ↵�T =

0,↵�T+1

= · · · = ↵T = ↵
max

= 2d0 � 1 = �. Furthermore
under a delayed CSIT quality constraint �  �

max

, a target
DoF d0 can be achieved with any �  1 � 3d0�2

�
max

, by setting
↵
1

= · · · = ↵�T = 0,↵�T+1

= · · · = ↵T = �
max

= 2d0 � 1.
Finally under no specific constraint on CSIT quality, the target
DoF d0 can be achieved with any �  3(1�d0), using perfect
(but delayed) feedback (↵

1

= · · · = ↵�T = 0,↵�T+1

=

· · ·↵T = � = 1).
The following bounds the quality of current and of delayed

CSIT needed to achieve a certain target symmetric DoF d0.
Corollary 2d: Having ↵

max

= 3d0 � 2 and � = 2d0 � 1, is
sufficient to achieve a symmetric DoF d0.

The proof of this is straightforward; the corresponding qual-
ity exponents can be ↵

1

= · · · = ↵T = 3d0 � 2,� = 2d0 � 1.
We proceed with some simple examples.

Example 3: Consider a symmetric target DoF d0 = 7

9

. In
the absence of any specific constraint on the quality of current

6Our ignoring integer rounding considerations is an abuse of notation that
is only done for the sake of clarity, and it carries no real effect.



TABLE II
SOME FEEDBACK OPTIONS ACHIEVING SYMMETRIC DOF d

0
=

7

9

.

↵
1

↵T
3

+1

↵
2T
3

+1

feedback extra bits
to to to � delay after
↵T

3

↵
2T
3

↵T t = T

1/3 1/3 1/3 5/9 0 2/9 · logP
0 4/9 5/9 5/9 T/3 0

0 0 1 1 2T/3 0

and delayed CSIT, d0 can be achieved with ↵
1

= · · ·↵
2T/3 =

0, ↵t = � = 1, t 2 (2T/3, T ], corresponding to fractional
feedback delay � = 3(1 � d0) = 2/3 (Corollary 2c), and
corresponding to sending perfect feedback at the beginning of
the last third of the coherence period. If on the other hand,
the feedback link only allows for ↵t  ↵

max

= 1/2, then
the desired d0 = 7/9 can be achieved with feedback delay
� = 1 � (3d0 � 2)/↵

max

= 1/3, allowing for ↵t = 0 for t 2
[1, T/3] and then ↵t = 1/2 for t > T/3, and � � 1+2↵̄

3

=

2d0 � 1 = 5/9.
Example 4: If in the setting of the previous example, we

loosened slightly the constraint, from ↵t  1/2 to ↵t  5/9,
we could allow for an increase in the fractional delay, from
� = 1/3 to � = 1� ↵̄

� = 1� 3d0�2

2d0�1

= 1� 1/3
5/9 = 2/5 allowing

for ↵t = 0 for t  2T/5 and then ↵t = 2d0 � 1 = 5/9 =

� for t > 2T/5.
Example 5: If feedback delay is not a priority, then we can

substantially reduce the number of current feedback bits and
achieve d0 = 7

9

with ↵
1

= · · · = ↵T = ↵̄ = 3d0 � 2 = 1/3
(� =

1+2↵̄
3

= 2d0 � 1 = 5/9).
Example 6: If feedback can only be sent every third of the

coherence period, then possible feedback options for d0 = 7/9
would include:
• (↵t = 0 for t  2T/3, ↵t = 1 = � for t > 2T/3) which
allows for increased feedback delay
• (↵t = 0 for t  T/3, ↵t = 4/9 for t 2 (T/3, 2T/3], ↵t =

5/9 = � for t > 2T/3) which combines feedback delay and
a reduced total amount of feedback bits
• (↵t = 1/3 for all t < T,� = 5/9) which allows for reduced
feedback within the duration of the coherence block.

These options are summarized in Table II, again correspond-
ing to the simple aforementioned quantization setting. The last
column describes the number of delayed feedback bits, sent at
any point after the end of coherence block, to refine current
CSIT estimates to the desired quality of delayed CSIT.

III. CONCLUSIONS

This work considered the two user MISO BC setting with
gradually accumulated feedback that incrementally improves
CSIT quality. This was done for the cases of perfect and
imperfect delayed CSIT. The many corollaries and examples
aimed to offer insight on many questions relating to the delay-
and-quality effects of feedback.
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