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Abstract—The two-user Multiple-Input Multiple-Output
(MIMO) broadcast channel (BC) with arbitrary antenna
configuration is considered, in which the transmitter obtains (i)
delayed channel state information (CSI) from a latency-prone
feedback channel as well as (ii) imperfect current CSI, e.g., from
prediction based on these past channel samples. The degrees of
freedom (DoF) region under such a setting is fully characterized
as a function of a prediction quality exponent. This work
extends prior work, previously limited to MISO, to fully general
antenna settings. An intriguing by-product of our results is to
reveal the benefits of dealing with an asymmetric multi-user
MIMO configuration (i.e., one in which terminals do not have
the same number of antennas) in the case of non-perfect CSIT
(e.g., caused by feedback delays or limited preciseness). 1

I. INTRODUCTION

The capacity region of the two-user Multiple-Input Multiple-
Output (MIMO) broadcast channel (BC) with perfect channel
state information at the transmitter (CSIT) was established
in [1], which suggests that the sum degrees of freedom (DoF)
can be as many as the rank of the overall channel with both
receivers considered. On the other extreme, in the absence
of CSIT, the DoF region largely collapses and is constrained
by the number of antennas at either receiver [2], [3]. The
large gap between perfect instantaneous CSIT and no CSIT
cases indicates the importance of the quality of CSI both in
terms of preciseness and timeliness. In practice, however, the
acquisition of perfect and instantaneous CSI at the transmitter
is difficult, if not impossible, especially for fast fading channels.
While the preciseness of CSIT has been widely investigated [4],
[5] (and references therein), the timeliness of available CSIT
was relatively less exposed. The feedback delay renders the
available CSIT possibly uncorrelated with the current true
channel if it exceeds the channel coherence time. It would
seem intuitively that the benefits of such feedback information
(referred to as “delayed CSIT”) are not exploitable.

Recently, this commonly accepted viewpoint was challenged
by an interesting work [6], in which a novel scheme (termed
here as “MAT”) was proposed for the MISO BC to demonstrate
even the completely outdated channel feedback is still useful.
By establishing the usefulness of even completely outdated CSI,
strictly better DoF than what is obtained without any CSIT

1This work has been performed in the framework of the European research
projects SHARING and HIATUS (FET-Open grant number: 265578), as well
as the French ANR project FIREFLIES (ANR-10-INTB-0302).

are achieved. Most recently, generalizations to the MIMO
BC [7] settings, among others, were also addressed, where
the DoF region is fully characterized with arbitrary antenna
configurations, again establishing DoF strictly beyond the
ones obtained without CSIT. Note that other recent interesting
lines of work combining instantaneous and delayed forms of
feedback were reported in [8], [9].

Although fascinating from a conceptual point of view, these
works made a pessimistic assumption that the channel is
independent and identically distributed (i.i.d.) across time,
where the delayed CSIT bears no correlation with the current
channel realization. On the contrary, during the coherence
time, the past channel realizations are somehow temporally
correlated to the current one, and hence can provide some
information about current CSIT, albeit imperfect. Together
with the delayed CSIT, the benefit of such imperfect current
CSIT was first exploited in [10] for the MISO BC whereby a
novel transmission scheme achieves a strictly larger DoF than
the i.i.d. delayed CSIT case in [6]. The full characterization
of the optimal DoF was later reported in [11], [12]. The key
idea behind the schemes (referred to as “α-MAT”) in [10]–[12]
relies on a combination of MAT alignment together with the use
of approximate zero-forcing (ZF) precoders, and the forwarding
of the residual interferences in a compressed fashion.

However, the generalization to the case of multiple receive
antennas is unfortunately not a trivial step. The main challenge
lies in two aspects: (a) the additional spatial dimension at the
receiver side enables to cancel a certain amount of residual
interference (generated by the impreciseness of transmit precod-
ing) and thus intuitively is expected to enhance the achievable
DoF, whereas it also increases the probability to generate more
interferences at unintended receiver, and (b) the asymmetry of
receive antenna configurations, which results in the discrepancy
of common-message-decoding capability at different receivers.
In particular, the total number of streams that can be delivered
as common messages to both receivers is inevitably limited by
the weaker one (i.e., with fewer antennas). Such a constraint
prevents the system from achieving the optimal DoF of the
asymmetric case by simply extending the previous schemes
we found in [13].

To counter this challenge, in this paper, we develop new
strategies balancing the discrepancy of common-message-
decoding capability at two receivers. We hereby fully charac-
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terize the DoF region of MIMO BC, by a unified framework
under the concept of block-Markov encoding. This concept was
first introduced in [14] for the relay channels, and later revisited
in multiple access channels [15], and recently in MISO BC
with “mixed” CSIT of asymmetric current CSIT qualities [16].
Generally speaking, in the block-Markov encoding process, the
symbols sent in each block are functions of a new message
in the current block as well as the past messages in previous
blocks.

More specifically, we obtain the following key results:
• We establish outer bounds on the DoF region for the

two-user MIMO BC under this setting, as a function of
the current CSIT quality exponent. In addition to the
genie-aided bounding techniques and the application of
the extremal inequality in [11], we develop a set of upper
and lower bounds of ergodic capacity for MIMO channels,
which is essential for the MIMO case but not extendable
from MISO.

• We propose a unified framework with a set of multi-slot
transmission protocols which achieves the key vertices of
the outer bound region. The proposed schemes still rely
on a combination of MAT alignment and the approximate
ZF precoding. This principle is a building stone in several
previous works [10]–[12], however, here this idea is
complemented with block-Markov encoding and backward
decoding that is made necessarily by the configuration
asymmetry.

It is worth noting that our results embrace the previously
reported particular cases: the perfect CSIT setting [1], the pure
delayed CSIT setting [7], and the special MISO case [10]–[12],
[16].

II. SYSTEM MODEL AND MAIN RESULT

For a two-user (M,N1, N2) MIMO broadcast channel with
M antennas at the transmitter (Tx) and N1, N2 antennas at two
receivers (Rxs), respectively, the discrete time signal model is

y(t) = H(t)x(t) + e(t), (2)
z(t) = G(t)x(t) + b(t) (3)

for any time instant t, where H(t) ∈ CN1×M and G(t) ∈
CN2×M are the channel matrices for two Rxs; e(t), b(t) ∼
NC (0, I) are the normalized noise vectors at the respective
Rxs and are independent of channel matrices and transmitted
signals; the coded input signal x(t) ∈ CM×1 is subject to the
power constraint E

(
‖x(t)‖2

)
≤ P , ∀ t.

Define S(t) ,
[
H(t)
G(t)

]
as the overall channel matrices. The

element of channel matrix is assumed to be drawn from a

stationary and ergodic random process. At each time instant t,
we assume Tx knows perfectly the delayed CSI with unit delay,
i.e., St−1, and obtains an imperfect estimate of the current
CSI Ŝ(t). This current CSIT estimate can be modeled as [11]

H(t) = Ĥ(t) + H̃(t), (4)

G(t) = Ĝ(t) + G̃(t) (5)

where the estimate Ĥ(t) (resp. Ĝ(t)) and estimation error
H̃(t) (resp. G̃(t)) are independent, and H̃(t) (resp. G̃(t))
is independent and identically distributed (i.i.d.) with each
entry being assumed to be a zero-mean Gaussian variable with
variance σ2 (0 ≤ σ2 ≤ 1). Further, we assume the following
Markov chain

(St−1, Ŝt−1)→ Ŝt → St, ∀t, (6)

which means St is independent of (St−1, Ŝt−1) conditionally
on Ŝt. At the receiver side, both Rxs are assumed to have
access to S(t) and Ŝ(t) at each slot t.

As it was established in previous works [10], [11], the
imperfect current CSIT has beneficial value (in terms of
improving the DoF) only if the CSIT error decays at least
exponentially with the SNR or faster. Thus it is reasonable
to study the regime by which the CSIT quality can be
parameterized by an indicator α such that:

α , − lim
P→∞

log σ2

logP
. (7)

with α ≥ 0. This α indicates the quality of current CSIT at
high SNR. While α = 0 reflects the case with no current
CSIT, α→∞ corresponds to that with perfect instantaneous
CSIT. Here, we focus on the case α ∈ [0, 1] since the quality
of the imperfect current CSIT is sufficient to avoid the DoF
loss when α ≥ 1. The connections between the above model
and the linear prediction over existing temporally-correlated
channel models with prescribed user mobility are highlighted
in [10], [11].

The capacity region C is defined as the set of all achievable
rate pairs and the DoF region is defined as the set of
all pairs of achievable DoF (d1, d2) ∈ R2

+, where di =
lim supP→∞ sup(R1,R2)∈C

Ri
logP .

Our main result is given by the following theorem.

Theorem 1. For the two-user (M,N1, N2) MIMO BC
with delayed and current imperfect CSIT, the DoF region
{(d1, d2)|(d1, d2) ∈ R2

+} is characterized by eq-(1), where
α ∈ [0, 1] indicates the current CSIT quality exponent.

Proof: See Appendix for a sketch of the converse proof,
the next section for toy examples of achievability proof, and
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Fig. 1: The DoF region for the two-user MIMO BC.

[13], [17] for full details on the more general settings of MIMO
BC with arbitrary antenna configurations.

Example 1. The DoF regions of some special examples are
provided in Fig. 1 together with those with pure perfect delayed
CSIT, and with perfect and instantaneous CSIT.

A. Benefits of Asymmetric MIMO Settings

The above results suggest some interesting benefits arising
from asymmetry across the number of antennas at the terminal
side. From these results, it follows that the asymmetric antenna
configuration achieves larger sum DoF than its symmetric
counterpart. More specifically, when M ≥ N1 + N2, given
total N receive antennas, there is a non-negligible gain to
concentrate N − 1 antennas to one receiver especially when
the imperfect current channel quality α is poor. The reason
why an asymmetric multi-user configuration is preferable to
a symmetric one is due to the fact that asymmetry draws the
multi-user network closer to a single-user one (in terms of
how the DoF are split across the users, with the many-antenna
user carrying most of the data rate). Since single-user MIMO
systems are insensitive to CSIT quality from a DoF point of
view, an asymmetric multi-user network also exhibits a greater
robustness with respect to feedback quality.

III. ACHIEVABILITY

Due to the page limit, we take (3, 2, 1) MIMO BC for the
example, and describe the achievability of the corner point(
12+2α

7 , 3+α7
)

alone in detail. For other cases, please refer to
[17] for details. Before proceeding further, we define

V (t) ∈ R{Ĥ(t)} ∈ C3×2, V ⊥(t) ∈ N{Ĥ(t)} ∈ C3×1

U(t) ∈ R{Ĝ(t)} ∈ C3×1, U⊥(t) ∈ N{Ĝ(t)} ∈ C3×2

where for example E
(
‖H(t)V ⊥(t)‖2

)
∼ P−α. Note that

R{·} and N{·} are defined as the range and null spaces spanned
by column vectors. Let gH denote G ∈ C1×2 for conciseness.
We reserve u(t) = [u1(t) u2(t) u3(t)]T and v(t) [or v(t)]
to denote the private messages intended to Rx-1 and Rx-2,
respectively. We also denote for example the last two elements
of u(t) by u[2:3](t).

With pure delayed CSIT, it takes 7 time slots to achieve
DoF pair ( 12

7 ,
3
7 ) [7]. Together with imperfect current CSIT,

we propose a novel scheme to achieve DoF pair
(
12+2α

7 , 3+α7
)
,

with expanded number of time slots from 7 to 7B, where B

is defined as a large enough positive integer. The transmission
protocol consists of three phases and is detailed as follows.

Phase-1: This phase includes B time slots. Specifically, in
Slot-t (1 ≤ t ≤ B), we transmit

x(t) =
[
U(t) U⊥(t)

]
u(t) +

[
V (t) V ⊥(t)

]
v(t) (8)

where u(t),v(t) ∈ C3×1 and thus receive

y(t) = H(t)
[
U(t) U⊥(t)

]
u(t) +H(t)

[
V (t) V ⊥(t)

]
v(t)︸ ︷︷ ︸

η
[1]
1 (t)∼P1−α

z(t) = gH(t)
[
U(t) U⊥(t)

]
u(t)︸ ︷︷ ︸

η
[1]
2 (t)∼P1−α

+gH(t)
[
V (t) V ⊥(t)

]
v(t)

where η
[1]
1 (t) ∈ C2×1 and η

[1]
2 (t) are overheard interfer-

ence by Rx-1 and Rx-2, respectively. With power allo-
cation E

(
|u1(t)|2

)
= P 1−α, E

(
‖v[1:2](t)‖2

)
= 2P 1−α,

E
(
‖u[2:3](t)‖2

)
= P , E

(
|v3(t)|2

)
= P , and rate Ru1(t) =

(1 − α) logP , Rv[1:2](t) = 2(1 − α) logP , Ru[2:3](t) =
2 logP , Rv3(t) = logP , we have the power of interferences
E
(
‖η[1]

1 (t)‖2
)
∼ P 1−α and E

(
|η[1]2 (t)|2

)
∼ P 1−α, and the

efficient transmission rates (3−α) logP and (3−2α) logP for
Rx-1 and Rx-2, respectively. Such a power allocation reduces
the interference power and makes it possible to “compress”
them into (1− α) logP bits for each element, expecting less
channel resource consumed during the retransmission. Instead
of forwarding the interference directly as MAT alignment
always did, we first quantize them into (1 − α) logP bits
each using scalar quantization with negligible quantization
error, encode the digitalized interference with Gaussian channel
codes, and then transmit to both Rxs with reduced rate. With a
slight abuse of notation, we use η̂ (or η̂) to denote the channel
coded version of the compress indices, not the compressed
version of the interference itself. For description brevity, we
omit this procedure of source and channel coding, and the
details can be found in our previous paper [11].

Phase-2: This phase consists of three subphases, each of
which includes (B + 1) time slots. The transmitted signal in
Slot-1, as the initialization, of subphase-k (k = 2, 3, 4) can be
given by (with subphase indies omitted for conciseness)

x(1) =
[
U(1) U⊥(1)

]
u(1) + V ⊥(1)v(1) (9)

where u(1) ∈ C3×1 with power allocation E
(
|u1(1)|2

)
=

P 1−α, E
(
‖u[2:3](1)‖2

)
= P and rate Ru1(1) = (1−α) logP ,



Ru[2:3](1) = 2 logP , and v(1) is a scalar with power allocation
E
(
|v(1)|2

)
= Pα and rate Rv(1) = α logP . It gives the

received signals as (with the terms at noise level omitted)

y(1) = H(1)
[
U(1) U⊥(1)

]
u(1)

z(1) = gH(1)
[
U(1) U⊥(1)

]
u(1)︸ ︷︷ ︸

η
[k]
2 (1)∼P1−α

+ gH(1)V ⊥(1)v(1)︸ ︷︷ ︸
Pα

.

Note that the efficient transmission rates of both Rxs are (3−
α) logP and α logP , respectively. Similarly, we quantize the
overheard interference, and forward them as common messages
with power P in a digital fashion in the next slot.

In Slot-t (2 ≤ t ≤ B), the objective of transmission is to
retransmit the quantized interference as a common message,
together with which we deliver some more private messages
to fully utilize the channel. To this end, we transmit

x(t) = w(t)η̂
[k]
2 (t− 1) +

[
U(t) U⊥(t)

]
u(t) + V ⊥(t)v(t)

(10)

with R
η̂
[k]
2 (t−1) = (1 − α) logP , Ru1(t) = (1 − α) logP ,

Ru[2:3](t) = 2 logP , Rv(t) = α logP and power al-

location E
(
|η̂[k]2 (t− 1)|2

)
= P , E

(
|u1(t)|2

)
= P 1−α,

E
(
‖u[2:3](t)‖2

)
= P , E

(
|v(t)|2

)
= Pα. It gives the received

signal as

y(t) = H(t)w(t)η̂
[k]
2 (t− 1) +H(t)

[
U(t) U⊥(t)

]
u(t)

z(t) = gH(t)w(t)η̂
[k]
2 (t− 1)︸ ︷︷ ︸

P

+ gH(t)
[
U(t) U⊥(t)

]
u(t)︸ ︷︷ ︸

η
[k]
2 (t)∼P1−α

+ gH(t)V ⊥(t)v(t)︸ ︷︷ ︸
Pα

.

Let us imagine: if given η̂[k]2 (t) (in turn η[k]2 (t) with negligible
quantization error), Rx-2 can recover η̂

[k]
2 (t − 1) as the

common message and v(t) as the private message by successive
decoding, while Rx-1 requires another one equation to recover
4 unknowns u(t) and η̂[k]2 (t− 1) from y(t) and η[k]2 (t).

The above procedure lasts for a certain time requiring the
knowledge of the new generated interference [cf. η[k]2 (t)] until
the Slot-(B+1). In Slot-(B+1), as a terminating step, we lower
down the transmission rate of the private message u(B+1), in
order not to cause any additional overheard interference to the
unintended Rx and to guarantee the retransmission of η̂[k]2 (B)
can be decoded here. To this end, we transmit

x(B + 1) = w(B + 1)η̂
[k]
2 (B) +U⊥(B + 1)u[2:3](B + 1)

+ V ⊥(B + 1)v(B + 1) (11)

with each private symbol being of rate α logP and power
Pα. Similarly to the MISO case [11], by successive decoding,
both the common message η̂[k]2 (B) and private messages are
recoverable at interested Rxs.

Going back to Slot-B, Rx-2 can recover η̂[k]2 (B − 1) and
also the private message v(B) by successive decoding, given
the knowledge of η̂[k]2 (B). Then, go back further and further,
recursively. By such a recursive procedure, Rx-2 will have
access to {η̂[k]2 (t), t = B, · · · , 1} and recover all its private

messages, while this recursive procedure is interrupted in Slot-
B at Rx-1, who requires another one equation that can be
provided by retransmitting η̂

[k]
2 (B − 1). In other words, in

Slot-t, if η̂[k]2 (t− 1) is also provided to Rx-1, which will be
done in the next phase, then the recursive and joint decoding
(or backward decoding) will continue.

Phase-3: This phase consists of 3 subphases, in each of
which B time slots are consumed with two interference terms
being forwarded to two Rxs in each slot. Before transmission,
we concatenate the digitalized interference terms η̂[1]

1 (t) and
{η̂[k]2 (t), k = 1, 2, 3, 4}, t = 1, · · · , B as

η̄1(t) =

[
η̂
[1]
11 (t)

η̂
[2]
2 (t)

]
, η̄2(t) =

[
η̂
[1]
12 (t)

η̂
[3]
2 (t)

]
, η̄3(t) =

[
η̂
[1]
2 (t)

η̂
[4]
2 (t)

]

where {η̂[k]2 (t), k = 2, 3, 4} are already known by Rx-2
according to Phase-2. In each slot, we transmit in Slot-t
(1 ≤ t ≤ B) of subphase-k (k = 5, 6, 7)

x(t) = ΦΦΦ(t)η̄k−4(t) +U⊥(t)u[2:3](t) + V ⊥(t)v(t), (12)

where u[2:3](t) ∈ C2×1, v(t) are with power Pα and rate
α logP for each element. By successive decoding, Rx-1 can
recover η̄k−4(t) (k = 5, 6, 7) and u[2:3](t) with two receive
antennas whereas Rx-2 can recover η̄k−4(t) and v(t) with only
one receive antenna since η̂[k]2 (t), k = 2, 3, 4 is already known.
Hence, both Rxs recover the interested private messages, from
which obtain extra 6Bα and 3Bα DoF, respectively.

Going back to Phase-2, with side information η̂[k]2 (t−1), k =
2, 3, 4, Rx-1 formulates virtual MIMO channels to recover u(t)
recursively. Similarly, going back to Phase-1, both Rxs can
recover the desired messages with the knowledge of η̂[1]2 (t)

and η̂[1]
1 (t). Thus, to sum up, we achieve asymptotically the

following DoF pair

d1 =
B(3− α) + 3[B(3− α) + 2α] + 6Bα

7B

B→∞
=

12 + 2α

7

d2 =
B(3− 2α) + 3Bα+ 3Bα

7B

B→∞
=

3 + 4α

7
.

IV. CONCLUSION

The optimal DoF region of the two-user time-correlated
MIMO BC with arbitrary antenna configuration has been
characterized in the presence of perfect delayed and imperfect
current CSIT. The results further highlight the benefits from the
exploitation of the channel time correlation, and also reveal that
asymmetric antenna deployments are preferable to enhance the
robustness for multi-user channels towards channel uncertainty.
Interesting extensions should include the taking into account
of training/feedback overhead in the performance enhancement
as was recently done for the pure MAT setting [18].

APPENDIX

To obtain the outer bounds, we adopt a genie-aided model
reminisced in [7], by assuming that (i) both Rxs know the CSI
S(t) perfectly and instantaneously as well as the imperfect



1

p

n∑
t=1

h(y(t),z(t)|U(t),S(t))− 1

q

n∑
t=1

h(z(t)|U(t),S(t)) (13)

≤ max
C�0,

tr(C)≤P

max
p(U(t)),

p(x(t)|U(t))
K(t)�C

(
1

p
h(y(t),z(t)|U(t),S(t))− 1

q
h(z(t)|U(t),S(t))

)
(14)

≤ EŜ(t) max
C�0,

tr(C)≤P

max
p(Ŝ(t))
K∗(t)�C

ES̃(t)

1

pq

(
q log det(I + S(t)K∗(t)S

H(t))− p log det(I +G(t)K∗(t)G
H(t))

)
(15)

≤ min{M,N1 +N2} −min{M,N2}
min{M,N1 +N2}

α logP +O(1) (16)

current CSI Ŝ(t), and (ii) the Rx-1 has the instantaneous
knowledge of the Rx-2’s received signal z(t).

With the above genie-aided model, we formulate a degraded
BC Xn → (Y n,Zn) → Zn, and therefore bound the
achievable rates as stated in the following lemma:

Lemma 1 ( [13], [17]). We have

n(R1 − εn) ≤
n∑
t=1

h(y(t),z(t)|U(t),S(t))

n(R2 − εn) ≤ nN2 logP −
n∑
t=1

h(z(t)|U(t),S(t)) + n · o(logP )

where U(t) satisfies the Markov chain S(t)→ U(t)→ x(t).

To determine the weighted sum rate of two users, by letting
p = min{M,N1 +N2} and q = min{M,N2}, we have

n

(
R1

p
+
R2

q
− 2εn

)
≤ N2

q
n logP + n · o(logP )

+ n

(
1

p

n∑
t=1

h(y(t),z(t)|U(t),S(t))− 1

q

n∑
t=1

h(z(t)|U(t),S(t))

)
.

We further bound the weighted difference of two differential
entropies, as shown on the top of this page. Note that (15)
is obtained because (i) Gaussian distribution maximizes the
weighted difference of two differential entropies over all
conditional distribution of x(t) with the same covariance matrix
constraint, where K∗(t) = maxp(U(t))K(t) if p ≥ q [11], [19]
where K(t) , E{x(t)xH(t)|U(t)}, and (ii) z(t) is a degraded
version of (y(t), z(t)); the last inequality is obtained by the
following lemma, where L = N1 +N2 and N = N2 and the
details are provided in [13], [17].

Lemma 2. For two random matrices S = Ŝ+S̃ ∈ CL×M and
H = Ĥ + H̃ ∈ CN×M with L ≥ N and H̃ ∼ NC(0, σ2I),
where S̃, H̃ are respectively independent of Ŝ, Ĥ , given any
K � 0 , we have

1

min{M,L}ES̃ log det(I + SKSH)

− 1

min{M,N}EH̃ log det(I +HKHH)

≤ −min{M,L} −min{M,N}
min{M,L} log(σ2) +O(1) (17)

as σ2 goes to 0.
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