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Abstract—This paper studies the Gaussian half duplex relay
channel, where the relay node can not transmit and receive at
the same time. The main contribution lies in showing that both
Partial-Decode-Forward and Compress-Forward achieve the Cut-
Set upper bound to within a constant gap regardless of the
channel parameters. This provides a closed form characterization
of the Generalized Degrees-of-Freedom (gDoF) of the channel,
which for certain channel parameters is strictly smaller than the
gDoF of the full duplex channel. Half duplex channels can convey
information through the random switch between the receive and
retransmit phases; this work shows numerically that random
switch achieves larger rates compared to deterministic switch,
which is usually considered in the literature.

I. INTRODUCTION

Cooperative transmission enhances the performance of wire-
less networks by increasing the data rate, enlarging the com-
munication range and reducing transmit power compared to
networks of point-to-point links. The Relay Channel (RC)
represents the simplest model of cooperation in which a source
transmits a message to a destination with the help of a Relay
Node (RN). The RN has no own data to send and its only
purpose is to assist the source in conveying data to the
destination. The RN can operate in two modes: Full-Duplex
(FD) and Half-Duplex (HD). The RN is said to operate in
FD mode if it can receive and transmit simultaneously over
the same time-frequency resource, and in HD mode otherwise.
HD can be achieved for example through time or frequency
division duplexing. This work assumes a Gaussian HD RC (G-
HD-RC) for practical reasons, such as the inability of the RN
to perfectly cancel its self-interference. A comprehension of
the fundamental limits of the G-HD-RC may help in designing
more efficient wireless networks in the future.

Related Work. The RC was introduced by van der
Meulen [1] who derived outer and inner bounds on its capacity.
These bounds were significantly improved upon by Cover
and ElGamal [2]: their cut-set bound and their combination
of Decode-Forward (DF) and Compress-Forward (CF) remain
the best known upper and lower bounds, respectively, known
to date on the capacity of the general memoryless RC. In
Gaussian noise and with a FD RN, the bounds of [2] are no
more than 1 bit apart for any set of channel parameters [3].

The G-HD-RC was considered in [4], [5] (an exhaustive list
of related publications is not given for sake of space). In [4]
an outer bound based on cut-set arguments and an inner bound
based on Partial-Decode-Forward (PDF) were derived (PDF

generalizes DF in that the RN only decodes a part of the source
message). In [5] a scheme based on CF was developed. In the
above mentioned works, the listen/transmit phases of the RN
are assumed to be fixed and no performance guarantee in terms
of constant gap between inner and outer bounds is given.

Kramer [6] showed that the HD constraint can be easily
incorporated within the general memoryless FD framework
and demonstrated that higher rates can be achieved by consid-
ering a random switch at the RN compared to deterministic
switch. In [7], the authors showed that a Quantize-Map-
Forward scheme based on lattice codes is optimal to within
5 bits, by also accounting for random switch in the outer
bound. In [8] we followed the approach of [6] and developed
a simple scheme that achieves the gDoF upper bound and the
capacity to within 3 bits. Our achievable scheme was inspired
by the analysis of the binary-valued linear deterministic ap-
proximation of the G-HD-RC at high SNR [3] and consisted
of a three-message superposition coding scheme with slot-
by-slot stripping decoding. In [8] we mentioned that more
complex achievable schemes, such as PDF or CF, should likely
reduce the 3 bits gap; the proof of this conjecture is the main
contribution of this paper.

Contributions. This work focuses on the G-HD-RC and
strengthens the results of [8] and [7]. The main novelty of
this work consists in showing that the capacity of the G-HD-
RC can be achieved to within 1 bit with PDF and to within
1.61 bits with CF. We first incorporate the HD constraint into
the general memoryless FD framework [6], thus avoiding to
develop a separate theory for HD RCs; then, we prove that
both PDF and CF achieve the gDoF of the channel; finally,
we show that they are to within a constant gap of the cut-set
upper bound, regardless of the channel parameters. The key
ingredients to show the reduced gap compared to [8] are more
complex achievable schemes and more careful bounding steps.
We conclude by numerically showing that a random switch at
the RN achieves higher rates compared to deterministic switch
traditionally considered in the literature.

Paper Organization. Section II describes the channel
model and defines the metrics that will be used. Section III
upper bounds the cut-set bound and Section IV lower bounds
the PDF and CF bounds. These bounds are used in Section V
to analytically derive the gDoF and characterize the capacity
to within a constant gap. Section VI concludes the paper.



II. SYSTEM MODEL AND BACKGROUND

Memoryless RC Model. A RC consists of two input
alphabets (Xs,Xr), two output alphabets (Yr,Yd) and a
memoryless transition probability PYr,Yd|Xs,Xr . The source
has a message W uniformly distributed on [1 : 2NR] for
the destination, where N denotes the codeword length and
R ≥ 0 the transmission rate measured in bits per channel
use (logarithms are in base 2). At time i, i ∈ [1 : N ], the
source maps the message W into a channel input symbol
Xs,i (W ), and the relay maps its past channel observations
into a channel input symbol Xr,i

(
Y i−1r

)
. At time N , the

destination makes an estimate of the message W based on
all its channel observations as Ŵ

(
Y Nd
)
. The capacity is the

largest rate R such that P[Ŵ 6=W ]→ 0 as N → +∞.
G-HD-RC Model. Inspired by [6] and with a slight abuse

of notation, let the channel input of the RN in the above
memoryless RC model be the pair (Xr,Mr), where Xr ∈ Xr
as before and Mr ∈ {0, 1} is the state random variable that
indicates whether the RN is in receive-mode (Mr = 0) or
in transmit-mode (Mr = 1). The single-antenna G-HD-RC is
described by the input/output relationship[
Yr
Yd

]
=

[
1−Mr 0

0 1

] [√
C ?√
S
√
Iejθ

] [
1 0
0 Mr

] [
Xs

Xr

]
+

[
Zr
Zd

]
,

where the inputs are subject to the average power con-
straints E

[
|Xi|2

]
≤ 1, i ∈ {s, r}, the channel parameters

(S,C, I, θ) ∈ R4
+ are constant and therefore known to all

terminals (here ? indicates the channel gain that does not affect
the capacity region because the RN can remove the contribu-
tion of its transmitted signal Xr from its received signal Yr;
then two of the remaining channel gains can be taken to be
real-valued because the nodes can compensate for the phase of
one channel gain), and the noises are proper-complex Gaussian
random variables with parameter Zi ∼ N (0, 1) , i ∈ {r, d}. In
the following we shall assume, not without loss of generality
though, that the noises are independent.

Performance metrics. The capacity of the G-HD-RC, in-
dicated with C(S, I, C), is unknown. Here we make progress
toward determining C(S, I, C) by first establishing the gDoF
of the G-HD-RC and then characterizing C(S, I, C) to within
a constant gap. The gDoF is defined as

d(α, β) := lim
S→+∞

C(S = S1, I = Sα, C = Sβ)

log(1 + S)
, (1)

where (α, β) ∈ R2
+ are constants. Note that d(α, β) ≥ 1 where

d = 1 is the gDoF of a point-to-point channel without a RN.
At finite S the capacity is said to be known to within

GAP bits if one can show rates R(in) and R(out) such that

R(in) ≤ C(S, I, C) ≤ R(out) ≤ R(in) + GAP log(2). (2)

III. OUTER BOUND

This section is devoted to the derivation of the upper bound
that we shall use in Section V to obtain the gDoF and the
capacity characterization to within a constant gap. From the
cut-set bound [9, Th. 16.1] we have:

Proposition 1 (Cut-Set Upper Bound [8].) The capacity of
the G-HD-RC is upper bounded as (3)-(5) at the top of the
next page where
• in (3): the distribution P ∗Xs,Xr,Mr

(unknown) is the one
that maximizes the cut-set upper bound;

• in (4): the maximization is over the set

γ := P[Mr = 0] : γ ∈ [0, 1], (12)
|α1| ≤ 1, (13)

(Ps,0, Ps,1, Pr,0, Pr,1) ∈ R4
+ :

γPu,0 + (1− γ)Pu,1 ≤ 1, u ∈ {s, r}, (14)

i.e., γ represents the fraction of time the RN listens and
H(γ) := −γ log(γ)− (1− γ) log(1− γ), and the mutual
information I1, . . . , I4 terms are defined as

I1 := log (1 + S Ps,0) , (15)

I2 :=log
(
1+SPs,1+IPr,1+2|α1|

√
SPs,1IPr,1

)
, (16)

I3 := log (1 + (C + S)Ps,0) , (17)

I4 := log
(
1 + (1− |α1|2)S Ps,1

)
; (18)

• in (5): the terms b1 and b2 are defined as

b1 :=
log
(
1 + (

√
I +
√
S)2
)

log (1 + S)
≥ 1, (19)

b2 :=
log (1 + C + S)

log (1 + S)
≥ 1. (20)

Proof: in order to obtain (4) from (3) we used the mutual
information chain rule and the following considerations: (a) for
a binary-valued random variable Mr, I(Mr;Yd) ≤ H(Mr) =
H(γ) for some γ := P[Mr = 0] ∈ [0, 1] and whereH(γ) is the
binary entropy function, and (b) by the ‘Gaussian maximizes
entropy’ principle [9, Appendix 16A], the mutual information
terms conditioned on Mr are maximized by jointly Gaussian
inputs with covariance matrix

Cov

[
Xs

Xr

]∣∣∣∣
Mr=`

=

[
Ps,` α`

√
Ps,`Pr,`

α∗`
√
Ps,`Pr,` Pr,`

]
: |α`|≤1,

for some (Ps,0, Ps,1, Pr,0, Pr,1) ∈ R4
+ satisfying the average

power constraint in (14).
In order to get (5) from (4) we write the average power
constraints in (14) as follows. Since the source transmits
in both phases we define Ps,0 = β

γ and Ps,1 = 1−β
1−γ for

some β ∈ [0, 1]. Since the RN transmission only affects the
destination output when Mr = 1, the RN must exploit all its
available power when Mr = 1; we therefore let Pr,0 = 0
and Pr,1 = 1

1−γ . Finally, by first upper-bounding each mutual
information term over (β, α0) for a fixed (γ, α1) and then by
equating the two expressions inside the min function in order
to get the optimum γ = b1−1

(b1−1)+(b2−1) , we get (5).

IV. LOWER BOUNDS

The largest achievable rate for the RC is the combination of
PDF and CF [2]. In this section we consider them separately.

From the PDF lower bound [9, Th. 16.3] we have:



C(S, I, C) ≤ max
PXs,Xr,Mr

min
{
I(Xs, Xr,Mr;Yd), I(Xs;Yr, Yd|Xr,Mr)

}
= min

{
I(Mr;Yd) + I(Xs, Xr;Yd|Mr), I(Xs;Yr, Yd|Xr,Mr)

}∣∣∣
(Xs,Xr,Mr)∼P∗Xs,Xr,Mr

(3)

≤ maxmin
{
H(γ) + γI1 + (1− γ)I2, γI3 + (1− γ)I4

}
=: r(CS) (4)

≤ 2 log(2) + log (1 + S)

(
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

)
, (5)

C(S, I, C) ≥ min
{
I(Xs, Xr,Mr;Yd),

I(U ;Yr|Xr,Mr) + I(Xs;Yd|Xr,Mr, U)
}∣∣∣

(Xs,Xr,Mr)∼P∗Xs,Xr,Mr and U = Xr or U = XrMr +Xs(1−Mr)
, (6)

≥ maxmin
{
I
(PDF)
0 + γI5 + (1− γ)I6, γI7 + (1− γ)I8

}
=: r(PDF) (7)

≥ log (1 + S)

(
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

)
, (8)

C(S, I, C) ≥ max
PQPMr|QPXs|QPXr|Mr,QPŶr|Xr,Yr,Mr,Q:|Q|≤2

min
{
I(Xs; Ŷr, Yd|Q,Mr, Xr),

I
(CF)
0 + I(Xs, Xr;Yd|Mr, Q)− I(Yr; Ŷr|Xs, Xr, Yd,Mr, Q)

}
, (9)

≥ maxmin
{
γI9 + (1− γ)I10, γI11 + (1− γ)I12

}
=: r(CF) (10)

≥ − log(2) + log (1 + S)

(
1 +

(c3 − 1)(c4 − 1)

(c3 − 1) + (c4 − 1)

)
, (11)

Proposition 2 (PDF Lower Bound.) The capacity of the G-
HD-RC is lower bounded as in (6)-(8) at the top of this page
• in (6): we fix the input PU,Xs,Xr,Mr

so that PXs,Xr,Mr

is the same distribution that maximizes the cut-set upper
bound in (3) and PU |Xs,Xr,Mr

is with either U = Xr or
U = XrMr +Xs(1−Mr);

• in (7): the maximization is over the set (12)-(14) as for
the cut-set upper bound in (4), the mutual information
terms I5, . . . , I8 are

I5 := I1 in (15), (21)
I6 := I2 in (16), (22)
I7 := log (1 + max{C, S}Ps,0) ≤ I3 in (17), (23)
I8 := I4 in (18), (24)

and I(PDF)
0 :=I(Mr;Yd) is computed from the density

fYd(t)=
γ

πv0
exp(−|t|2/v0)+

1−γ
πv1

exp(−|t|2/v1), (25)

with t ∈ C, v0 = exp(I5) and v1 = exp(I6);
• in (8): the terms c1 and c2 are

c1 :=
log (1 + I + S)

log (1 + S)
≥ 1, c1 ≤ b1, (26)

c2 :=
log (1 + max{C, S})

log (1 + S)
≥ 1, c2 ≤ b2. (27)

Proof: the proof follows the same type of steps used in the
proof of Proposition 1 with the difference that the bound in (8)
is obtained from the one in (7) with the possibly suboptimal
choice of β = γ.

From the CF lower bound [9, Th. 16.4] we have:

Proposition 3 (CF Lower Bound.) The capacity of the G-
HD-RC is lower bounded as in (9)-(11) at the top of this page
• in (9): Ŷr = Yr+Ẑr with Ẑr ∼ N

(
0, σ2

0

)
independent of

all other random variables and I(CF)
0 := I(Mr;Yd|Q);

• in (10): the mutual information terms I9, . . . , I12 are

I9 := log

(
1 + SPs,0 +

C

1 + σ2
0

Ps,0

)
, (28)

I10 := log (1 + SPs,1) , (29)

I11 := log (1 + SPs,0)− log

(
1 +

1

σ2
0

)
, (30)

I12 := log (1 + SPs,1 + IPr,1) , (31)

with the optimal σ2
0 := B+1

(1+A)
1
γ
−1−1

, with A :=
IPr,1

1+SPs,1

and B :=
CPs,0

1+SPs,0
, obtained by equating the two expres-

sions within the min in (10);
• in (11): the terms c3 and c4 are

c3 := c1 in (26), c3 ≤ b1, (32)

c4 :=
log
(
1 + C

1+σ2
0
+ S

)
log (1 + S)

≥ 1, c4 ≤ b2. (33)

Proof: the proof follows the same type of steps used in
the proof of Proposition 1 with the difference that the bound
in (10) is obtained from the one in (9) with Q =Mr, that is,
I
(CF)
0 := I(Mr;Yd|Q) = 0, and the bound in (11) is obtained



from (10) with the possibly suboptimal choices of β = γ and
σ2
0 = 1.

V. GDOF AND CAPACITY TO WITHIN A CONSTANT GAP

A. Analytical Results

The lower bound in (6) will be compared to the upper bound
in (3) to prove that PDF with random switch achieves capacity
to within 1 bit; the one in (7) with the one in (4) to prove
that PDF with deterministic switch also achieves capacity to
within 1 bit and for numerical evaluations; the one in (8) with
the one in (5) for analytical computations, i.e., evaluation of
the gDoF and gaps. Similarly, we will compare the CF lower
bounds in (9)-(11) with the cut-set upper bounds in (3)-(5).

From Propositions 1, 2 and 3 we have our first main result:

Theorem 1 (gDoF.) Both PDF and CF achieve the gDoF of
the G-HD-RC given by [8]

d(α, β) =

{
1 + (β−1)(α−1)

(β−1)+(α−1) for α > 1, β > 1

1 otherwise.
. (34)

Proof: The lower bound in (8) for PDF, and the one
in (11) for CF, in the gDoF definition in (1) give a gDoF lower
bound; the cut-set bound in (5) used in (1) gives a gDoF upper
bound (as already done in [8]); straightforward computations
show that all bounds equal the gDoF expression in (34).
Remark 1: the gDoF of the G-FD-RC is [3]

d(FD)(α, β) = max{1,min{α, β}} ≥ d(α, β)

with equality if and only if min{α, β} ≤ 1, that is, when
direct transmission from the source to the destination is gDoF-
optimal (in which case d(FD) = d = 1).

We next show that the upper and lower bounds used to
determine the gDoF in Theorem 1 are to within a constant
gap of one another for any value of (S,C, I). We consider
both the case of random switch (obtained by accounting for
I
(PDF)
0 and I

(CF)
0 ) and of deterministic switch (obtained by

setting I(PDF)
0 = I

(CF)
0 = 0).

Theorem 2 PDF with random switch is optimal to within
1 bit.

Proof: Consider the upper bound in (3) and the
lower bound in (6). Since the term I(Xs, Xr,Mr;Yd)
is the same in both bounds, the gap is given by
GAP ≤ I(Xs;Yr, Yd|Xr,Mr) − I(U ;Yr|Xr,Mr) −
I(Xs;Yd|Xr,Mr, U). Next we consider two different
choices for U , which might not necessarily be the ones that
minimize the gap:
• for C ≤ S let U = Xr, hence

GAP ≤ P[Mr = 0] I(Xs;
√
CXs + Zr|

√
SXs + Zd)

≤ P[Mr = 0] log(1 + C/(1 + S)) ≤ log(2);

• for C > S let U = XrMr +Xs(1−Mr), hence

GAP ≤ P[Mr = 0] I(Xs;
√
SXs + Zd|

√
CXs + Zr)

≤ P[Mr = 0] log(1 + S/(1 + C)) ≤ log(2),

as claimed.

Theorem 3 PDF with deterministic switch is optimal to
within 1 bit.

Proof: Consider the upper bound in (4) and the lower
bound in (7) with the trivial lower bound I(PDF)

0 = 0. Recall
that I1 = I5, I2 = I6, I3 ≥ I7 and I4 = I8, therefore

GAP ≤ max
{
H(γ), γ(I3 − I7)

}
≤ max

{
log(2), log

(
1 + 2max{C, S}Ps,0
1 + max{C, S}Ps,0

)}
≤ max

{
log(2), log(2)

}
= log(2),

as claimed
Remark 2: we notice that, in general, random switch

does not decrease the gap. This is due to the fact that,
if min{C, I} ≤ S, the information is not anymore routed
through the relay. Under these channel conditions, the relay
stays silent and so, using a random switch, does not lead to
any improvement.

Theorem 4 CF with deterministic switch is optimal to within
1.61 bits.

Proof: With the upper bound in (4) and the lower bound
in (10) we have

GAP ≤ max

{
H(γ) + (1− γ) log(2) + γ log

(
1 +

1

σ2
0

)
,

γ log

1 +

σ2
0

1+σ2
0
CPs,0

1 + SPs,0 +
1

1+σ2
0
CPs,0


≤ max

{
H(γ) + (1− γ) log(2) + γ log

(
1 +

1

σ2
0

)
,

γ log
(
1 + σ2

0

)}
≤ max γ log

(
1 + 2

H(γ)+(1−γ) log(2)
γ

)
≤ 1.6081 bits,

where we set σ2
0 = 2

H(γ)+(1−γ) log(2)
γ (so as to equate the two

terms in the max) and found that the resulting function of
γ ∈ [0, 1] has a maximum at γ = 0.3855 equal to 1.6081.

Theorem 5 CF with random switch is optimal to within
1.61 bits.

Proof: The claim follows from Remark 2.

B. Numerical Evaluations

The gaps found in the previous subsection were obtained by
manipulations of the bounds in Propositions 1, 2 and 3 so as
to obtain expressions that can be easily handled analytically.
We remark however that some bounding steps might be quite
crude resulting in a too large gap value. To prove our point, the
numerical optimization of the upper-bound r(CS) in (4) and of
the lower-bound r(CF) in (10), results in a GAP ≤ 1.52 bits,
which is smaller than the analytical gap in Theorem 4 of
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Fig. 1. Comparison between outer and lower bounds for the G-HD-RC.

1.61 bits. Notice that we used Gaussian inputs conditioned
on the RN’s state Mr; this might not be an optimal choice
when the RN employs random switch; other input distributions
might lead to a smaller gap.

Fig. 1(a) shows the rates achieved by using the different
achievable schemes presented in the previous section for S =
30dB, C = 37.63dB, I = 34.77dB:
• upper bound: black curve, obtained by optimizing r(CS)

in (4), gives C ≤ 11.90 bits;
• PDF with random switch: red curve, obtained by optimiz-

ing r(PDF) in (7) with the actual value of I(PDF)
0 , gives

C ≥ 11.66 bits;
• PDF with deterministic switch: blue curve, obtained by

optimizing r(PDF) in (7) with I
(PDF)
0 = 0, gives C ≥

11.40 bits;
• CF with random switch: cyan curve, obtained by opti-

mizing r(CF) in (10) with the actual value of I(CF)
0 , gives

C ≥ 11.11 bits;
• CF with deterministic switch: magenta curve, obtained

by optimizing r(CF) in (10), which has I(CF)
0 = 0 gives

C ≥ 10.94 bits;
• direct link transmission: green curve, obtained without

using the RN, gives C ≥ 9.97 bits.
We observe that: (i) PDF with random switch achieves the
largest rate among all achievable schemes, and (ii) PDF with
deterministic switch outperforms the CF with random switch;
this shows that exploiting the randomness into the switch at the
RN increases the rate performance [6]. Similar observations
hold for Fig. 1(b), where the channel conditions are such
that CF outperforms PDF (cyan curve versus red curve and
magenta curve versus blue curve).

VI. CONCLUSIONS

In this work we studied the G-HD-RC and we made
progress towards deriving its capacity by showing that PDF

with random switch is optimal to within 1 bit regardless of the
channel parameters. Moreover we showed, through numerical
evaluations, that the system achieves higher rates with random
switch at the RN compared to deterministic switch.
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