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Abstract

What is that object depicted in that image? Very easy question, if asked human
beings. But if we ask the same question to a computer, it will answer us with the
values of the pixels composing the image: it would not be able to recognize the
content of an image.

However, in the internet era, computerized categorization and classification of
images and their properties (objects, scene, emotions generated, aesthetics and ar-
itstic traits) became of crucial importance for the automatic organization, selection
and retrieval of the huge amount of visual content surrounding us. But how can
computer see the meaning of an image?

Multimedia Information Retrieval (MMIR) is a research field that helps building
“intelligent” systems that automatically recognize the image content and its char-
acteristics. MMIR systems takes as input an image and give as output a set of
automatically assigned labels describing its properties.

In general, this is achieved by following a chain process: first low-level features,
namely numerical vectors summarizing the image statistics, are extracted; features
are then pooled into compact image signatures; based on such signatures, machine
learning techniques are then used to build models able to distinguish between dif-
ferent image categories . Such model is finally used to recognize the properties of a
new image, and output the corresponding labels.

Despite the advances in the field, human vision systems still substantially out-
perform their computer-based counterparts. In this thesis we therefore design a set
of novel contributions for each step of the MMIR chain, aiming at improving the
global recognition performances.

In our work, we explore techniques from a variety of fields that are not tradi-
tionally related with Multimedia Retrieval, and embed them into effective MMIR
frameworks. For example, we borrow the concept of image saliency from visual
perception, and use it to build low-level features. We employ the Copula theory of
economic statistics for feature aggregation. We re-use the notion of graded relevance,
popular in web page ranking, for visual retrieval frameworks.

In the following, we will explain in detail our novel solutions and prove their ef-
fectiveness for image categorization, video retrieval and image aesthetics assessment.
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Chapter 1

Introduction
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“A picture is worth a thousand words”. Unquestionable consideration, when deal-
ing with human beings and their human vision system. When looking at a picture,
we not only identify objects, actions, scenes, landmarks, but we also link the image
content with our memories, with a set of emotions, movies, books, sensations. . . .
However, when dealing with computer vision systems, the scenario changes. For an
artificial vision system, the same picture is simply worth a thousand or more pixels,
namely triplets of discrete numbers representing the amount of green, red and blue
in an image point.

How can we allow computers to see the world like we do, and infer thousands of
real words from a digital image? How can we make machines that transform pixels
to semantics and other relevant information about the image content? One set of
solutions is provided by Multimedia Information Retrieval (MMIR), a research
discipline that helps bridging the gap between pixel-level values and semantic-level
understanding.

MMIR techniques aim to automatically extract information about objects,
scenes, emotions depicted in the image, based on the analysis of its visual con-
tent. MMIR researchers design frameworks that learn how to link the pixel values,
summarized into non-redundant features, to a set of intelligible concepts.

A MMIR system is able to automatically classify or categorize an image based
on its visual appearance, by automatically recognize the image content and prop-
erties. Given an image, a classification framework outputs a set of short descriptions
of its content, that we call labels or annotations. Labels can be seen as positive or
negative judgments regarding the relevance of an image with respect to a given
concept (e.g. “there is a cat”, “there is not a mouse”). Given the automatically
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assigned annotations, MMIR systems can also go beyond classification, allowing for
content-based image retrieval.

The goal of a Multimedia Retrieval framework, i.e. its application, depends
on the nature of the annotations assigned to the image. A MMIR system can
automatically classify or retrieve images not only based on their semantics, but also
on the emotions it arouses, the degree of beauty of the given picture or how much
an image is interesting.

MMIR systems are therefore complex frameworks whose performances depend
on many factors: the type of features used, the learning framework, the redundancy
reduction techniques, the quality of the annotations, the application etc.. Inspired
by very diverse disciplines, in this thesis, we will discuss many different contributions
to the improvement of the quality of MMIR systems, from global features based on
saliency to graded-relevance learning frameworks. For each of the factors playing
an important role in MMIR, we present novel techniques that improve the global
performances of a Multimedia retrieval system, namely the accuracy of the labels
predicted, or the precision of the retrieved results. We will mainly focus on two types
of applications for our MMIR studies: semantic analysis, namely the automatic
extraction of object, scene and general concepts labels, and aesthetic analysis,
namely the automatic prediction of the image beauty degree.

In the remainder of this introductory chapter, we will give a broad overview
of the motivation and the structure of this thesis. We will first explain in detail
the importance (see Sec. 1.1) of MMIR. We will then give an overview of the key
processes and steps that an MMIR system needs to automatically assign image
annotations, and finally highlight our contributions to the field (Secc. 1.2 and 1.3).

1.1 The Importance of Multimedia Information Re-
trieval Today

In 2012, the Flickr1 users have uploaded on the photo management website an
impressive amount of pictures, 517.863.947 uploads. And Flickr is just one of the
many on-line services that allow sharing digital visual content.

We live in a digital visual world: news, movies, pictures, user-generated im-
ages and videos... With the widespread diffusion of portable device and broadband
internet connections, we produce, edit, and share huge amounts of image and videos
almost instantaneously, allowing other users to access fresh, original visual content
from every point of the interconnected world at the same time. Accessing this con-
tent means having an eye on the world: we develop ideas and concepts by receiving
and transmitting visual information, we share emotions and memories through im-
ages because “an image is worth a thousand words”.

Millions of users every day explore such multimedia space, by searching in the
multimedia collections the media items that better suit their needs. And Multimedia
Information Retrieval is about helping them to explore such space.

1www.flickr.com
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As a matter of fact, in order to better organize, search, and select portions of
this huge amount of visual information, we need efficient and effective tools to index
and retrieve the elements in such data collections. One of the most intuitive ways
for exploring visual information is to search and select image based on their content,
by looking for visual data containing given semantics, e.g. “images with cats”. One
could also like to look at images by beauty degree or according to the emotions that
the images generate, e.g. “scary images”.

However, semantic, aesthetic and affective exploration is in practice not so sim-
ple. An image is worth a thousand words, but those words are in our human eyes,
while the thousands of pixels forming an image are meaningless to a machine, if the
machine does not know how to understand them. The digital visual world is very
difficult to order and organize: we need therefore automatic procedures to support
such exploration.

While textual documents can be indexed and retrieved, for example, by counting
the word frequencies, when dealing with digital images the plot changes, because
there are no actual “words” to index. One solution would be to order the visual data
manually, by assigning a set of words to each image describing their characteristics,
and then categorize and retrieve them based on such descriptions. However, given
the volume of multimedia data we are dealing with, it is practically infeasible to ask
humans to label the whole digital visual world by hand.

The general solution of on-line services for image retrieval is to work with textual
information related to visual data. Given a textual query, such systems look for
relevant images given their contextual information, namely all the collateral text
related to the image but coming from external sources, and then rank the images
based on their relevance to the concepts expressed in the query. For example, in
popular web image search engines, such as Yahoo! or Google, the semantics of the
image are inferred given the intelligible concepts inferable from the text surrounding
the picture in the webpages related to the image. Another popular approach, used
by the most common multimedia repositories such as Flickr, YouTube, or Facebook,
is to retrieve and organize images given user-generated “tags”, namely short textual
labels that are assigned by the image owners and that somehow reflect some image
properties such as content, location, emotions, etc..

Both approaches have several practical drawbacks. First, the concepts inferred
from the image surrounding text are often unreliable when dealing with complex
semantics, and especially with emotions. While the user-generated tags might be
less noisy, manual semantic labeling of visual data is time-consuming and can be
often incomplete, and most of the times totally absent. Moreover, discriminative
contextual information appears in web images only, while for offline image collec-
tions, the only source of information that can help the image categorization is in its
pixels. In order to infer the thousands of words expressed by an image, we would
require therefore intelligent tools that can automatically deduce the image content
given its visual appearance: we need frameworks that model the human vision and
recognition system, and that can recognize the perceivable objects, scenes, aesthetics
and emotions depicted in the image.
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Figure 1.1: We represent a Multimedia Retrieval framework using a pyramidal struc-
ture: from feature extraction from label prediction and image ranking.

Multimedia Information Retrieval is a research discipline investigating these is-
sues. MMIR indeed studies how to link the pixel intensity values of an image with
its general meaning. Multimedia Retrieval systems automatically label the images
with information about their content, by using learning machines that “see” the se-
mantics, aesthetics and emotions generated by the picture, and translate them into
intelligible words.

How does it work? In the following, see Sec. 1.2, we will illustrate a MMIR
system with a simple pyramidal structure having different level of abstractions, where
the base is the pixel-level processing for feature extraction, and the top corresponds
to the application level, namely the label assignment (see Fig. 1.1). Everything start
with a groundtruth, a training set of images annotated with their corresponding
known labels, namely manually assigned annotations reflecting the presence/absence
of given concepts. Given such groundtruth, MMIR systems first extract a set of
features (level 0), namely a small set of very informative values regarding its visual
appearance (e.g. what are the most dominant color in the image?). They then use
such features, or their reduced version (level 1), together with the image labels as
input for machine learning techniques, that learn a model (level 2) able to associate
the feature values to the presence/absence of a given concept. Such intelligent
system will be (level 3) then able to automatically annotate new, unknown, test
images given their features and the computed model.

For each level of the MMIR pyramid, in this thesis we give a broad overview of
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the existing techniques and design one or more novel solutions that aim to enrich
the global visual analysis. We will learn how to increase the performances of the
MMIR systems for semantic analysis by building new low-level features, novel feature
aggregators, and a particular learning framework. We will then re-use the lessons
learnt in our semantic analysis studies to build a Multimedia Retrieval System for
aesthetic analysis. We will see an overview of our contributions in Sec. 1.3.

1.2 How Does it Work? The Image Analysis Pyramid

In this thesis, we look at a general Multimedia retrieval system as a layered pyra-
midal framework. In the MMIR pyramid, each level corresponds to a different
stage of the visual information transformation process. Each level re-processes the
outputs of the lower levels, starting from the raw image pixels and aiming at the
automatic understanding of the image meaning. The higher the layer, the higher
the level of abstraction, from the discrete, meaningless, pixel integer values, to the
semantic/aesthetic image label intelligible to humans. The higher the level, the
smaller the amount of information processed, from the complete pixel map to the
simple image label. In the following, we will take a closer look at the characteristics
of each layer.

Level 0: Low-Level Feature Extraction

Low-level features are the roots of any intelligent system for image analysis.
Features, or signatures, descriptors are descriptive sets of numbers summarizing
important visual properties of the image. This means that images with similar
semantics or aesthetics should have similar low-level features. Features therefore
help the machine to perceive the similarity or dissimilarity between images as
humans do.

Input image 
Image Processing (Color, 

Texture, Edge, ... ) 

IMAGE 
FEATURE 

LOW-LEVEL 
FEATURE 

EXTRACTION 

Figure 1.2: Feature Extraction: a small set of numbers describing the image prop-
erties is extracted from the image pixels.

At this stage of the MMIR process every pixel in the image is examined, and
relevant information is summarized into a smaller set of numbers, stored in the final
image signature. Feature extraction techniques can range from simple pixel average
or counts, to the detection of edges, corners, and texture properties. Generally,
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the types of features extracted changes with the goal, the application of the MMIR
system. The pixel information can be “relevant” to a given task with different
degrees: for example, the value of the contrast of a given image tells us more about
the image aesthetic characteristics rather than highlighting the objects depicted.

But which features are important for semantics and aesthetics? semantic fea-
tures are in general designed to describe the image content : the objects and their
placement in the scene. In the literature of MMIR for semantic analysis we can
find two opposite approaches for feature extraction: Local Features, such as SIFT
[105] or SURF [6] namely statistical descriptions of the edges distribution around
local interest points, and Global Features, that summarize general properties of
the image into a single descriptor, such as color [175] or texture [187]. Aesthetic
features are instead designed to describe the image composition and style, such as
its contrast [116], its level of details [110] or its low depth of fields indicators [32].

Low-level features are the basement of every MMIR system and their informa-
tiveness, or discriminative ability namely the quantity of reliable information about
the image content/aesthetics they carry, is crucial for the development of effective
MMIR frameworks for image analysis.

Level 1: Feature Encoding and Pooling

In some cases, low-level features cannot be used directly as input for the third level
of the pyramid, namely the learning framework, but they need to pass through an
intermediate step that aggregates them into a compact image signature. This is
the case of local semantic features such as HoG [31], SIFT [105], and SURF [6].

Input image 
IMAGE 

FEATURE 

Local descriptors 

FEATURE  
ENCODING 

FEATURE 
POOLING 

Shared Codebook 

Figure 1.3: Feature Pooling: local features are aggregated into a compact image
descriptor.

The reason for this issues is that learning framework require low dimensional,
fixed-length signature, while, in local feature extraction, a variable amount of local
descriptors are extracted from each image, making the direct extraction of signatures
with equal dimensionality for all images impossible.

The general solution is therefore to aggregate all the local image descriptors into
a compact fixed-length signature representing the behavior of the image keypoints.
This is achieved by first encoding a training set of local descriptors into a smaller
set of values, namely a shared codebook with a given number of “visual words”. For
a new image, the variable amount of descriptors is then pooled into a new image
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signature that aggregates their properties by looking at their distribution given the
shared codebook, having therefore a fixed dimensionality equal to the number of
visual words.

Pooling is another important level of processing in MMIR: the aggregation
process, generally achieved through vector quantization and high-dimensional
clustering may cause losses of information regarding the global distribution of the
local image descriptors, thus reducing the global informativeness of the features.
The final image signature has to retain the original information as much as possible,
while keeping the dimensionality low and equal for all the images.

Level 2: Model Learning

Once obtained a fixed length signature, by directly processing pixels with global
semantic or aesthetic features, or by pooling the local descriptors, the next step
towards the automatic understanding of the image characteristics is the learning
step. At this level, we use supervised learning frameworks that learn how to
distinguish between images containing different characteristics (i.e. different
content or aesthetic degree), and then predict the labels corresponding to new
images.

Similar to human brains, that recognize the world based on the association with
their memories, supervised machine learning requires a groundtruth, namely a set
of training images (features) for which the corresponding labels to be predicted are
known. In order to express this knowledge, such annotations are generally previously
assigned by hand, by asking humans to indicate the presence or absence of a given
semantic concept, the emotion generated, or an aesthetic degree.

CLASS! 

Feature Vectors 

Model Parameters 

NEW IMAGE 

MODEL BASED 
ON FEATURES 

Which 
characteristics

? 

CLASS 1 

CLASS 2 

Figure 1.4: Model Learning: based on the feature values, the learning frameworks
learn the parameters to distinguish between different image categories.

In general, each property to be predicted, i.e. each label, represents a separate
learning problem. By processing the groundtruth, the learning framework deter-
mines the links between the feature values and the label (for example, a high value
of blue color is likely to be correlated with the presence of water, and unlikely to
represent the presence of grass). In case of aesthetic degree prediction, the learning
framework learns to distinguish between appealing and non-appealing pictures given
the aesthetic feature values.

The output of this step is a set of models, one for each label to be predicted, that
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contains all the equations and parameters to partition the feature space into groups
having similar labels (e.g. similar aesthetic degree, presence of the same object. . . ).

The accuracy of the partitions in the learning step often depends on the
quality of the training dataset: both the groundtruth annotations and the feature
informativeness are crucial for the construction of a meaningful model. Moreover,
the precision of the model can vary depending on the type of learning algorithm
used, and how well it finds common patterns between the features. In general,
for MMIR systems, we use Support Vector Machines [17], namely simple binary
learning frameworks based on kernel similarity measures.

Level 3: Tasks and Applications

What is left in the Multimedia Information Retrieval chain? We are missing the
prediction step, namely the automatic assignment of semantic/aesthetic labels to
new, unseen images. At this level of the chain, we test the performances of our
model by computing the accuracy of the predictions on the new images.

At the top of the pyramid, we do not deal with any training set nor large-scale
feature analysis: for a new given image, the MMIR system predicts one or more
labels, given the concept-specific models built in the lower level and the feature
values of the new image. Such labels are predicted with a given degree of confidence,
namely a value representing the reliability of the labels automatically assigned.

Depending on the task the system is designed for, MMIR systems can then
present the results into two different ways. When the aim is to classify a set of im-
ages into pre-defined mutually exclusive categories (for example, scenes or objects),
the MMIR system, given an image, outputs its corresponding category, and the per-
formances are evaluated through the overall accuracy measure, namely the number
of correctly classified images over the total number of images. When dealing with
image search, the MMIR system presents the results of a given textual query from
a pre-defined set of non-exclusive image labels. Given the confidence score assigned
by the predictor, the MMIR system retrieves a list of images ranked according to
their pertinence with respect to the query. A common way to evaluate the quality
of such ranked lists is the Mean Average Precision, namely a measure that takes
into account the amount of relevant image that are retrieved given the query, and
the order in which they appear in the ranked lists of returned results.

At this level of the chain, an important aspect is the type of application the
system is built for. Traditionally, MMIR frameworks are designed by researchers for
general semantic analysis, i.e. object and scene recognition. Given the estab-
lished importance of automatic semantic analysis over the years, the crucial element
to determine the quality of a general semantic MMIR system is the evaluation step.
Evaluation is generally performed using well known publicly available benchmarking
datasets (mostly developed for scene [143, 133, 205] or object [41] recognition), built
to compare the performances of various techniques using a common groundtruth,
or by participating to international challenges and evaluation campaigns such as
TrecVID [168] or Pascal VOC [39].
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But retrieval and classification techniques can go also beyond the general se-
mantic prediction, by applying, for example, semantic analysis techniques to nar-
rower, specific domains that benefit from the automation brought by MMIR (for
example, medical images, cooking videos, satellite images. . . ). Moreover, MMIR
techniques can be used to predict information that is not strictly related to the im-
age object and scenes, abandoning semantics and focusing on emotions, artistic
traits, aesthetic assessment.

1.3 Our Contributions at each Level of the Pyramid

Given the properties and crucial elements of the MMIR systems, in this thesis we
propose a set of novel contributions at all levels of the MMIR chain, with the aim
of improving the global visual analysis and the accuracy of MMIR systems built for
semantic and aesthetic analysis.

The peculiarity of our work is its intrinsic multidisciplinary: we borrow, study,
extend and re-use techniques from fields that are traditionally external or not di-
rectly related to Multimedia Retrieval. By introducing these new cues into MMIR
systems, we build solutions that are not only very effective in terms of recognition,
but generally also complementary to the existing approaches.

For level 0, 1 and 2 (feature extraction, pooling and learning) we design a
set of new techniques that we test on general semantic classification/retrieval
benchmarking datasets. In our first studies, the main application our techniques
is therefore mainly semantic analysis. At level 3, we go beyond pure semantic
applications and we build a system for the prediction of the image appeal and
beauty, by embedding-using many of the techniques we proposed in the lower levels
into an MMIR system we build for aesthetic analysis. In the following we will see
an overview of our contributions.

Level 0: Saliency-based Hybrid Features for Image Categorization
(Chapter 3)

In Chapter 3 we operate directly at a pixel-level, building a set of new, very
discriminative low-level features for semantic analysis inspired by visual perception
theory.

As we have seen, semantic features can be classified into two groups: local and
global features. While the first ones are very informative regarding the image details
and contours, and invariant to transformations, global features gather the general
image behavior, somehow losing some accuracy when the illumination/rotation con-
ditions change. Despite their effectiveness, the major drawback of local features is
their computational cost and the pooling requirement; on the other hand, global
features are extremely low-dimensional and fast to compute.

Our features stand in an intermediate point between the two mentioned ap-
proaches: we design a set of hybrid features, namely global, low-dimensional ef-
ficient features that embed some locally-parsed information. The local information
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we integrate into a global descriptor arises from the image saliency maps, namely
grayscale matrices with higher intensity values corresponding to the regions that
more probably attract the human fixations in the image. We present two features
following the hybrid approach: the Saliency-Aware Color Moments descriptor,
namely an improvement of a color feature based on saliency techniques, and the
Saliency Moments descriptor, namely a gist-based [133] descriptor embedding
saliency information.

We test the effectiveness of our features for object categorization, scene
recognition and video retrieval, and we show that they not only outperform existing
features for MMIR, but that saliency bring also complementary information to the
pool of existing descriptors generally used in MMIR.

Level 1: Aggregating Local Features through Marginal analysis and
Copulae (Chapter 4)

In Chapter 4 we dedicate to the feature pooling and encoding, by proposing a set of
new techniques for fast and effective local image descriptors aggregation, inspired
by economic statistics modeling.

Our observation is that traditional techniques for feature aggregation need ex-
pensive procedures for the encoding techniques: they need to estimate the joint
distribution of the components of the local image descriptors in a training set in
order to build a shared codebook that will allow to produce a compact image repre-
sentation. The compact image representation is then calculated by computing the
joint distribution of the image local descriptors given the global codebook. This
approach has been proved to be very effective [30, 79] for MMIR applications. How-
ever, one of the major drawbacks is its intrinsic storage and computational cost,
together with the loss of information due to the pooling-encoding step.

The solutions we propose differ significantly from the traditional approach, and
improve both efficiency and accuracy of traditional feature pooling methods. First,
we design the MEDA descriptor, that describes the behavior of the image local
descriptors based on the approximation of their marginal distribution, leading
to an image signature that is extremely light to compute but that keeps high
accuracy for classification and retrieval. We then improve this method by building
MultiMEDA, a kernel for Support Vector Machines that is able to extract a
multidimensional probability of the local image descriptors given the product
of the marginal approximations stored in MEDA. Finally, we use Copula theory
[166] to compute the real joint probability of the local image descriptors, based
on the pure marginal information stored in MEDA. We model the multivariate
probability of the image keypoints without involving any encoding process in the
multidimensional space. The resulting COMS vector is proved to be much more
effective than state-of-the art technologies for local feature aggregation applied to
scene recognition and video retrieval.

Level 2: A Multimedia Retrieval Framework Based on Automatic
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Relevance Judgments (Chapter 5)

In Chapter 5, we focus on re-designing the learning framework used for classifica-
tion and retrieval, by introducing in MMIR some concepts from web information
retrieval.

The main observation is that, in the learning step of MMIR systems, training
labels are assigned using a binary scale (Relevant/Non Relevant). This means that
the user-generated annotations identify the mere presence or absence of a given
concept in the visual data, without allowing for intermediate options. However, a
picture can be relevant to a semantic category with different degrees, depending on
the way such concept is represented in the image.

Different from the most common frameworks, in Chapter 5 we build a learning
framework that supports graded relevance judgments, namely multiple degrees
of annotations reflecting the different levels of image relevance with respect to a given
concept. Since manual annotation is an expensive and imprecise process, in order
to quickly build graded ground truths, we propose a measure to reassess binary-
labeled databases without involving manual effort: we automatically assign a reliable
relevance degree (Non, Weakly, Average, Very Relevant) to each sample, based on
its position with respect to the hyperplane drawn by Support Vector Machines in
the feature space.

We test the effectiveness of our system on two large-scale databases, and
we show that our approach outperforms the traditional binary relevance-based
frameworks in both scene recognition and video retrieval.

Level 3: Beyond Pure semantics: the Synergy with aesthetic anal-
ysis (Chapter 6)

In the last technical chapter, we investigate a new emerging application of Multi-
media Retrieval: aesthetic analysis. We apply new and existing MMIR techniques,
traditionally used for semantic tasks, to the problem of automatic image appeal
assessment. We re-use many of the lessons learnt in the previous Chapters and
apply it to the prediction of the aesthetic degree of visual content. We add semantic
cues to aesthetic analysis frameworks, and we see the improvement brought by the
content-based features to the global image appeal prediction.

Moreover, we also explore the other way around: are aesthetic analysis tools
useful for semantic analysis? We investigate the importance of aesthetic analysis for
semantic applications, by testing the effectiveness of aesthetic features for a scene
recognition MMIR framework.

In our contribution at the application level, we therefore enrich semantic and
aesthetic visual analysis by exploring the synergy of those two applications for
MMIR. The main idea is that semantic analysis and aesthetics are two closely
related applications in Multimedia Retrieval. We show the benefits and the limits
of this synergy, and propose some improvements in this direction.
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This manuscript is structured by following the pyramidal structure we illus-
trated. First, in Chapter 2, we give a detailed overview of the state of the art
techniques for MMIR systems applied to semantic and aesthetic analysis. Chapter
3 to 6 explain our contributions at each level of the MMIR pyramid, from feature
extraction to the application level. Finally, in Chapter 7 we draw conclusions about
the work carried out for this thesis, and picture some possible future tracks to fol-
low in order to improve the existing and new technologies, aiming at the global
enrichment of the automatic visual analysis.



Chapter 2

State of The Art and Baselines for
Multimedia Information Retrieval

Multimedia Information Retrieval is a complex research discipline that involves dif-
ferent, multidisciplinary fields: from low-level signal processing to machine learning,
passing through statistical modeling, many different research domains play an im-
portant role in the development of MMIR systems.

In this Chapter, we will review the most important research work in the field,
looking at the key methods that have been proved to have a substantial impact
for MMIR throughout the years. Moreover, we will take a close look at the most
important datasets and baseline techniques for semantic analysis in MMIR. We will
highlight in particular the methods and image collections that we will use throughout
this manuscript to evaluate the effectiveness of our contributions for MMIR.

2.1 State of The Art

In this Section, we will outline the most important works for Multimedia Information
Retrieval. We will structure this Section following the layers of the MMIR pyramid:
for each of the level, we will highlight significant related works, helping the reader
to have a clear idea of our reference background, on top of which we will build our
new techniques outlined in this dissertation.

The main application of the techniques outlined in this Section is semantic anal-
ysis, due to its key role in the MMIR literature. We will discuss other possible
applications in Sec. 2.1.4. We will start by focusing on low-level features (global,
local, aesthetic, see Sec. 2.1.1), then look, in Sec. 2.1.2 at the relevant methods
for feature encoding and pooling. We will then see key techniques for learning dis-
criminative models in Sec. 2.1.3 and finally look at the evaluation benchmarks for
semantic analysis, and at other possible applications for MMIR systems that have
been proposed until now (see Sec. 2.1.4).

2.1.1 Low-level Features: Local, Global, Aesthetic

Low level features lie at the base (level 0) of the MMIR pyramid and represent the
key elements for the development of effective MMIR system, since they store those
image properties that should allow machines to discriminate between different image
categories. The construction of the feature vector depends on the final application
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of the MMIR system: specific features are deployed given the goal of the frame-
work, aiming at modeling peculiar useful image properties. We will review here the
most important features for semantic and aesthetic analysis, namely the two MMIR
applications that we consider in this thesis.

2.1.1.1 Semantic Features

Semantic features aim at modeling the image content. They summarize into a few
set of numbers the objects, shapes, contours, scene attributes that are depicted in
an image. In MMIR literature, we can distinguish between two main approaches for
low-level feature extraction for semantic analysis, namely local and global features.

Global Features

Global image features model the general properties of the image, namely holistic
attributes that describe images “as a whole”, without involving therefore detailed
local analysis. Such low-level global features generally use basic signal processing
techniques to directly process the pixel values and extract salient information
about the image color distribution, texture patterns, or, for example, the edge
distribution. Global features are generally used for scene recognition [142, 181],
since they represent holistic information about the image, or as complementary
features for complex content-based video retrieval systems [153, 128].

Information about the image color distribution is quite straight-forward to
compute, since the pixel values represent the amount of red, green and blue colors
in a given image point. The first, intuitive approach that represents the chromatic
information, namely the color histogram, has been proved in the early years to be an
effective way to describe images [180, 58]. The simple histogram structure has been
improved by considering spatial information by Rao et al. [145], and by using kernel
density estimation techniques for histogram modeling in [192]. Color histogram has
been successfully improved also by Smith and Chang [169] by considering a more
biologically-inspired color space, namely the HSV space, and then using the resulting
histogram for fast image search.

Following the histogram idea, a faster and more robust descriptor has been pro-
posed in [175], where the first three moments of the color distribution are stored
in the Color Moments (CM) feature. Color correlograms [71] represent a step fur-
ther towards the accurate modeling of the image color properties, by considering
the spatial correlation of the various colors. In [138], Pass et al. further improve
the statistical modeling of color information, by proposing color coherence vectors,
resulting from classifying each pixel as coherent/non coherent based on whether the
pixel and its neighbors have similar colors. Recently, very efficient color distribution
entropy measures have been shown [178] to be very effective for image retrieval.

Texture properties are also very important for the description of image content.
They represent the description of the patterns of the surfaces depicted in the image,
bringing therefore precious information for image discrimination. Tamura textural
features are among the most popular features, they were first presented in [182]
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as a way to model texture using a computational approach following the human
visual perception principles. Popular texture models are also the Gray-level co-
occurrence matrices, proposed by Haralick [60], that extract feature information
using second order statistics. Wavelet packets have been more recently used in
[187], to characterize textures at multiple scales, and efficiently re-used for Video
Retrieval in [153]. Similarly, Manjunath et al. [115] use Gabor wavelets for browsing
and retrieval of image data.

The edge distribution is another relevant cue for content-based image retrieval,
since it describes the amount of edges and their orientations in the image. The most
widely used edge descriptor is the MPEG7 Edge Histogram [200], where the amount
of edges at each orientation is stored in a window-based histogram. Recently, edge
distribution has been improved by computing edge orientation autocorrelograms
[111] and by computing geometric distributions of edge pixels along the dimensions
of angle and radius, generating the Angular Radial Edge Histogram [144].

Holistic scene features are a particular type of features that aim at sum-
marizing the global shape of the scene by computing a general description of the
image contours. The most popular holistic feature for scene recognition is the
Gist descriptor [133], that samples the values of the Fourier transform of a given
image to obtain a “spatial envelope” of the image. Similarly, Schyns and Oliva[161]
represent the global scene gist by using oriented blobs in a particular spatial
organization to obtain a coarse description of the input scene. Another holistic
approach is presented in [10], where “Geons” are used to represent the scene shape
as arrangement of basic geometrical forms.

Local Features

Local Image Descriptors are extracted from localized areas in the image, and
generally they are built to describe the surroundings of local interest [44] or densely
sampled [42] points. Since the amount of Local Image Descriptors varies depending
on the image structure, such descriptors cannot be directly used as input for
learning machines, but they instead need to pass through an aggregation process
(see next Section).

One first issue about local image analysis is the detection of the points of
interest, namely salient points in the images containing important information
regarding the image content. Besides dense sampling [42], that assumes that interest
points are equally spaced throughout the image, two main interest point detector
have been widely used in literature, namely the Harris detector [64], invariant to
image rotation, and the Difference-of-Gaussian (DoG) detector, presented in [106].
Later on, Mikolajczyk and Schmid [117] apply scale selection after using a multi-scale
framework to detect interest points, invariant to scale changes. Image intensities are
used in the work Tuytelaars and Van Gool [186] to detect affine invariant regions.
More recently, affine invariant interest points have been extracted using an iterative
algorithm then modifies location, scale and neighborhood of each point in [118] and
proved to be very effective for image categorization. This work was further improved
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by [119], where A Harris-Laplace detector is proved to be invariant to scale, rotation
and affine transformations.

Once extracted the interest point, the second issue for local feature extraction
is how to describe their surroundings. Various techniques have been proposed in
the recent years, the most widely used being the SIFT [106] descriptor, designed
by Lowe, that first detects interest points using the DoG method, then rotates
the corresponding surrounding patches in the sense of their dominant orientation,
and finally describes each patch by capturing the local magnitudes and orientations
for each subwindow resulting from a 4x4 subdivision of the image gradient of the
patch area. The resulting SIFT descriptor is 128-dimensional, having 16 sub-regions
described by 8 orientation bins. Such high dimensionality of the SIFT descriptor is
reduced in the PCA-SIFT [87], where principal component analysis [84] is applied
to the normalized gradient patch.

Several other local descriptors have been proposed to overcome some disadvan-
tages of the SIFT vector. For example, SURF [6] (Speeded-Up Robust Features)
have been presented to improve the efficiency of local analysis by using gradient im-
ages and Hessian detectors. GLOH (Gradient and Location Oriented Histograms)
have been proposed by Mikolajczyk and Shmid in [120] to improve the SIFT descrip-
tor accuracy, by re-arranging the grid of the patch and allowing for more orientation
bins, and by finally reduce the dimensionality of the resulting descriptor using PCA
[84]. Shape Contexts have been also used to describe local shapes, by collecting in
a histogram the distribution of the orientations of the vector connecting a set of
points sampled from a shape contour. HOG (Histograms of Oriented Gradients)
features [6] represent nowadays one of the most accurate way to represent images
(for a comparison of various descriptors, see for example [205]). The HOG method
compute local edge orientations over image cells, namely radial or rectangular small
image regions, and then collects them in a weighted histogram.

2.1.1.2 Aesthetic Features

Aesthetic Features have been used in literature for MMIR system applied to aesthetic
analysis, namely the prediction of the image aesthetic and appeal degree.

In general, aesthetic features aim at modeling the photographic rules using a
computational approach, namely highlighting the properties of the image composi-
tion, such as symmetry, contrast, etc... Pioneer work in aesthetics was the paper
from Datta et al. [32], where various features inspired by photography theory were
invented. For example, Light Exposure, computed using the average pixel intensity,
Image Colorfulness, namely the image relative color distribution, the Rule of Thirds,
calculated by averaging the Hue, Saturation and Brightness of the inner rectangle
resulting from a 3x3 division of the image, the Shape Convexity, obtained through
the covex hull of local patches, the Low depth of Field Indicators, inferred from
the wavelet coefficients of local rectangular image blocks, and the Region Compo-
sition, namely a measure evaluating how many distinct color blobs and how many
disconnected signi?cantly large regions are present in the image.
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The pool of aesthetic features is enriched by [100], where, in order to describe
the composition of paintings, images are segmented into smaller areas and shape
features such as mass center, variance, and skewness are calculated. Moreover,
global and segment-based contrast measures are extracted. Later on, Obrador et
al. compute golden mean and triangle rules [131] as an extension of the Rule of
Thirds feature in [32], and create new features such as Simplicity, based on the
number regions resulting after segmentation, Layout’s Pleasantness, given by the
average distance between centroids of the relevant regions, and Visual Balance.
Recently, Bhattacharya et al. [8] used high-level features for the enhancement and
assessment of photo quality: for example, Relative Foreground Position, i.e. the
distance between the foreground’s center of mass, to each of four corners of the
inner rectangle resulting by a 3x3 division of the image, and Visual Weight Ratio,
computed by counting the number of pixel of the sky region divided by the number
of pixel in the foreground region.

2.1.2 Feature Aggregation: Feature Encoding and Pooling

Local Image Descriptors, as mentioned in Sec. 2.1.1.1 need generally to be re-
processed before passing to the next step, the learning stage. This is achieved by
aggregating them into compact image signatures that represent their global distri-
bution over the image using a few discriminative values. In order to obtain such
representation, the general approach employed by the most common feature ag-
gregators is to follow a two-step process: first, a set of training local descriptors
is encoded into a few values representing the global distribution of the keypoints,
i.e. a universal model, and then, for each image, local descriptors are pooled into
an image signature representing their distribution given the universal model. Sev-
eral approaches have been proposed to accurately design the two steps of the local
descriptor aggregation process.

2.1.2.1 Encoding Methods

The creation of a universal model that reflects the global density of the local image
descriptors is of crucial importance. Such universal model should capture the gen-
eral behavior of the image keypoints so that the final image signature obtained with
pooling can be discriminative enough to distinguish between different image cate-
gories. The general approach is to cluster or analyze the keypoints of a training set
of images, and generate a global model through a shared codebook or a parametric
model of the multivariate probability distribution.

One of the most popular solutions for feature encoding is the Vector Quanti-
zation performed by the Bag of Words (BoW) model [30]. In this scenario, the
keypoints are first clustered into a visual dictionary partitioning the descriptor
space into areas containing equal numbers of keypoints. The visual dictionary, or
codebook, contains a set of shared visual words, namely feature vectors repre-
senting the centroids of the clusters in the feature space. The pooling process will
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construct the final image signature by counting in each image the occurrences of
such visual words. The BoW was first introduced by Csurka et al. in [30], applying
k-means clustering on a training set of local image descriptors and then using the
centroids of the resulting clusters as visual words. Various techniques have been
proposed later on to vector quantize the keypoint space and improve the construc-
tion of the visual codebooks. For example, in [98] mean-shift clustering is used,
[129] hierarchically quantizes LIDs in a vocabulary tree and [122] uses Extremely
Randomized Clustering Forests to build efficient visual codebooks. Another way to
define visual codebooks is proposed in [185], where the codebook is composed of
the hypercubes resulting from the quantization of each dimension of the LID into a
fixed lattice. In a different approach, vector quantization efficiency is improved in
[206] by generalizing it to sparse coding.

While all the mentioned methods use unsupervised clustering, encoding ap-
proaches based on supervised encoding have been recently proposed to improve
the performances of MMIR systems. More discriminative codebooks have been
proposed by Winn et al. [199] that merge codewords that are proved to be less
discriminative for the MMIR task, and later by Lazebnik and Raginsky [95] that
maximize the mutual information between features and labels in the encoding step.
Supervised visual dictionaries for sparse coding have been proposed by Mairal et al.
[112] and optimized by Boureau et al. in [20].

A universal model can be also constructed by generative parametric models,
namely by computing the global probability density function of the descriptors in
a training set by fitting a known parametric distribution. This approach have at-
tracted a lot of attention in the recent years [79, 72, 40], especially when coupled with
a pooling step based on discriminative approaches, since treating multivariate dis-
tributions becomes non feasible when using learning machines. In these approaches,
a Gaussian Mixture Model [135] is used as a way to describe the global distribution
of the image keypoints. In this approach, each Gaussian in the mixture could be
seen as the equivalent of a visual world in the Bag of Word model.

2.1.2.2 Pooling Methods

Once the encoding step has created a universal shared model reflecting the global
behavior of the keypoints in a training set of images, the pooling step needs to
be performed in order to aggregate the local descriptors in an image into a visual
signature that reflects their joint distribution. This step is performed in different
ways, depending on the type of universal model built in the encoding step (visual
dictionary or parametric model).

When the universal model is a visual codebook of n visual words, the most
simple approach is the hard assignment [30], that approximates each keypoint in
an image to the closest visual word and then collects the occurrences of the visual
words in a n dimensional histogram. This intuitive approach has been improved in
various ways. For example, Van Gemert et al. in [190] apply soft assignments by
taking into account the distance of each visual word to the closes cluster centroids.
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Similarly, Jegou et al. in [77] use Hamming Embedding to refine the visual words
assignment by including a binary signature representing the position in the Voronoi
cell. Jegou et al. in [78] also improve the hard assignment approach by computing,
for each point, the element-by-element distance with the closest visual word, and
store in the VLAD vector the resulting values.

One major issue regarding classical visual words assignment is the lack of spatial
information. Lazebnik and Raginsky in [96] address this problem by introducing the
concept of “Spatial Pyramid”, where a different histogram of visual words is assigned
to different image regions. This work is improved in [194] where each descriptor is
projected into its local-coordinate system, and then max pooling is performed to
integrate the projected coordinates and generate the final image representation. The
Spatial pyramid approach is further improved by Boureau et al. in [19], that restricts
the pooling process not only to localized areas in the image space, but also to local
hypercubes in the descriptor space.

When the universal model is a generative parametric model, the output of
the encoding step is a continuous probability distribution function describing the
global keypoints distribution. Given that learning machines require a finite, fixed
length image signature, how to transform this continuous model into a discrete set of
numbers, i.e. an image features? Two, very popular approaches solve the problem by
coupling generative encoding with discriminative pooling process. For example,
Perronnin et al. in [79] first estimate the global density using Gaussian Mixtures,
and then use Fisher Kernels [79] over image keypoints to generate the Fisher Vector
signatures, that reflects the way in which the parameters of the distribution of
the image keypoints should be changed to fit the global Gaussian Mixture. Fisher
Vectors are proved to be one of the most effective solutions for LID-based image
analysis. Another approach, inspired by the supervectors of speaker recognition [22]
is proposed by Inoue et al. in [72], where, after fitting a GMM with the training
descriptor, each image is represented by a supervector containing the adapted mean
values.

2.1.3 Model Learning and Kenrels

Learning is a fundamental step for MMIR, since it represents the “intelligence” of
the system, the way in which the machines can memorize how to associate given
feature values to given image properties. Single similarity measures are too weak to
determine such complex links: the general approach is therefore to embed similar-
ity measures in more complex learning frameworks for classification and retrieval.
Depending on the task of the MMIR systems, two types of learning frameworks
can be used: unsupervised and supervised models. The first one works on absence
of labeled data, and it is generally used for the ranking or re-ranking for query-by-
image retrieval, namely retrieval systems where the query is directly a digital image,
and the aim is to retrieve similar examples. Supervised learning is used instead for
classification, categorization, and for ranking of the retrieval results.
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2.1.3.1 Unsupervised Learning Methods

Unsupervised learning methods have been widely used to visually separate the im-
ages in multimedia collections, and new, ad-hoc clustering methods have been cre-
ated for this purpose. For example, Gordon et al. in [56], cluster images by exploit-
ing the information bottleneck (IB) principle, namely by maximizing the mutual
information between clusters and image content. Another example can be found in
[26], where a dynamic clustering approach is proposed, by applying a graph-theoretic
clustering algorithm to a collection of images in the vicinity of the query.

Moreover, various unsupervised methods have been used in MMIR for web im-
ages exploration. For example, in [50], consistent bipartite graph co-partitioning
is used to cluster Web images based on the consistent combination of visual features
and image surrounding texts. Similar approach, but more text-oriented is presented
by Jing et al. with the IGROUP interface for web image clustering [82]. A re-
ranking approach is proposed in [191], where image search results are diversified
using lightweight clustering techniques in combination with a dynamic weighting
function of the visual features.

Clustering techniques have been also recently used to boost image annotation
and classification systems, such as frameworks for automatic annotation of personal
albums [81], object recognition [45], and as we have seen, for local feature encoding
into visual words [30, 129, 122].

At the edge between unsupervised and supervised Learning, several approaches
have tackled the problem of semi-supervised learning. Semi-supervised training
is a way for reducing the effort needed to annotate the groundtruth, by training
the model with a small number of fully labeled examples and an additional set of
unlabeled or weakly labeled examples. For example, Rosenberg et al. [156] use self-
training for object detection, and Zhou et al. in [212] improve content-based image
retrieval performances using an approach inspired by co-training that incorporates
unlabeled data. Other works use semi-supervised boosting [114, 99] to improve the
learning with unlabeled examples for image retrieval.

2.1.3.2 Supervised Learning Methods

When groundtruth annotations are fully available, one of the most used learning
approaches for both retrieval and classification of digital images is the supervised
learning. In this scenario, a training set of images is previously annotated with
labels indicating to the presence/absence of given image properties. The problem
often reduces to a classification problem where the task of the learning framework
is to find common patterns between the feature values of the images belonging to
the same category.

Classification methods can be grouped into two major approaches: generative
and discriminative models. In generative modeling, each class is represented with
its probability distribution; then, for a new image, the Bayes formula is used to
compute the posterior probabilities, that represent how likely is that the image
belongs to each of the classes. Discriminative models estimate the class boundaries
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by looking at similarities and differences between features belonging to different
categories.

Generative Models

Generative Models have been used for scene and object categorization in MMIR for
their ability to deal with many classes. A particular approach is the one of Bosch et
al. [15], that model scenes classes based on the object distribution discovered using
Probabilistic Latent semantic analysis over bag of visual words, and then classify
the test images using a k-nearest neighbor classifier. Another popular approach is
to use Conditional Random Fields, as proposed by [66] to classify natural images.

One of the more practical ways to model the class density is the Gaussian
Mixture Model. For example, in [140] GMMS are computed based on color and
texture features, and then used in various classification tasks. Generative Models
using Dirichlet Mixtures have attracted a lot of attention in the recent years. For
example, Kivinen et al. in [90] use Dirichlet Processes for marginal modeling and
Markov trees for feature dependency modeling in order to represent the density of
each class, and then use marginal likelihood to assign the scene category. Latent
Dirichlet Allocation is also used in [43] to discover mid-level “themes” based on
which each class is modeled and then to classify new images based on Bayesian
rule.

Discriminative Models

Discriminative learning frameworks directly model the separation between the
classes in the feature space, and store the parameters useful to characterize such
separation.

The easiest discriminative learning framework is the Nearest-Neighbor tech-
nique, where no learning on the training set is required, and new sample is classified
by calculating the distance to the nearest training case, and assigning the label
accordingly. In MMIR literature, one of the works successfully employing Nearest
Neighbor, that have been received substantial attention from the community, is the
one in [13] by Boiman et al. for object categorization.

Decision trees [158] are very efficient and discriminative tools for classification:
the aim is to minimize the global entropy of the training set by splitting the data
at the optimum threshold. In semantic analysis, decision trees in their simple form
have been used for region-based classification in [104], and as an ensemble in a
random forest in [16].

Neural networks are more complex learning schemes aiming at modeling the
biological functioning of our brain. They have been widely used in MMIR due to
their ability of solving multiclass classification problems. For example, Hopfield
Neural Networks have been used in [125] for object recognition and an extended
version of neural network, namely a dynamic link architecture that group neurons
dynamically into higher-order entities was proposed in [93] for person recognition.
More recently, convolutional neural networks have been used for ImageNet classifi-
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cation by Krizhevsky et al.[92].
Support Vector Machines are probably the most widely used learning algo-

rithms for image classification and retrieval. The basic idea of SVMs is to find a
hyperplane that separates positive from negative examples. This is done by evalu-
ating the similarity between training examples using specific kernel measures. It
is a powerful tool for visual-feature based learning because of its optimized, fast
algorithm and its high generalization ability.

Support Vector Machines have been durably used for several MMIR applications
[32, 110, 205] and in several evaluation campaigns such as TrecVID [168] due to
their effectiveness in binary classification. When dealing with multiple classes, the
common approach [69] is to reduce the problem to a set of binary classification
problems, by 1-vs-all or 1-vs-1 groups of classifiers. In the first case, a model is
learn from each class that separates it from all the other classes, while in 1-vs-
1 support vector machines, a model is learnt to distinguish between each pair of
classes.

SVMs can also be used to go beyond the simple global image labeling: for exam-
ple, in Multiple Instance Learning [25], used for region-based image categorization,
images are viewed as bags, each of which contains a number of regions resulting
from image segmentation. MIL defines a bag as “positive” if at least one of the
regions in the bag is positive, otherwise, the bag is labeled as negative. Then, a
Diverse Density function is used define a set of instance prototypes, namely pattern
of instances that are more likely to appear in given classes, and then such prototypes
are learnt using SVMS.

SVMs are also used for non-classification tasks. For example, active learning
frameworks, [53, 183, 195] extensively use SVMs to choose the examples to interac-
tively query the users that are manually labeling a new dataset. Similarly, Relevance
Feedback algorithms [210, 67, 27], take the results that are initially returned from a
given query and analyze through SVMs the relevance of those results with respect
to that query given the user response.

One of the core elements for the effectiveness of the SVMs learning is the kernel
used to evaluate similarities between feature vectors and define an optimal decision
boundary, namely a hyperplane in the feature space. When the input samples are
linearly separable, the similarity between two features v and w is computed with
a simple dot product v · w. However, in many cases, e.g. in multimedia data
representation, decision boundary is not linear: one common solution is to define
a transform φ that maps the input space in the feature space v → φ(v) and then
use a kernel function k(v, w) = φ(v) · φ(w) to represent the dot product in the
high-dimensional feature space.

One of the most common choices for kernels is the Radial Basis Function kernel,
that has been proved [210, 148] to be very effective for image retrieval. However, due
to the diversity of the features used for image recognition and retrieval, several work
focused on building ad-hoc kernels for specific descriptors. For example, Histogram
Intersection kernels, originally built in [180] to match color histograms, have been
proved in [113] to be efficient tools for image classification. Another example is also
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brought by the work of Lazebnik et al. in [97], that use Spatial Pyramid Kernels
to add the spatial information in the BoW model learning. A particular approach
for kernel modeling is represented by the work in [12] where local image descriptors
are mapped into a low dimensional feature space, then averaged to obtain a set-
level random features, and finally using a linear classifier to model the resulting
vectors. Probabilistic approaches, such as Bhattacharaya kernels and Kullback-
Lieber divergence kernels, have been used in [40] to compute similarities between
images described by fitting GMMs with the image keypoints.

2.1.4 Which Evaluations? Which Applications?

At the end of the MMIR chain, at the top of the pyramid, the system takes as
input an image, and, given its learnt model and the image feature, assigns a label
to the new image. Generally, labels are output together with a confidence score
representing the likelihood that the image can take such label, based on the position
of the image feature in the feature space. Such confidence score is generally used
to rank results in retrieval frameworks, where images are ranked according to their
relevance to a given concept or query.

The nature of the labels assigned, and therefore the type of the user query, de-
termines the application of the MMIR system. While the structure of the MMIR
system is fixed (feature extraction, pooling, learning, prediction), the type of infor-
mation processed by the system is adapted according to the goal of the Multimedia
Retrieval Framework. For example, if the application of the system is to predict
the emotions that the image arouses, then the underlying features, annotations, and
learning frameworks will be adapted to reflect the affective content of the images.

MMIR systems can be built for different applications, the most popular one
being semantic analysis for general concept detection: almost every technique listed
until now have been built for this purpose. In such research works, at the application
level the performances are evaluated by comparing new and existing techniques on
benchmarking datasets.

Semantic MMIR can be also applied to a particular domain (e.g. medical imag-
ing, space imaging, . . . ), showing the usefulness of semantic analysis outside the pure
research context. MMIR techniques can also go beyond semantic image classifica-
tion: they can be employed for more diverse applications such as artistic, aesthetics
affective image analysis.

In the following, we will analyze key aspects of the application level: we will
first look at the general semantic analysis techniques from an evaluation point of
view, and then show various works that apply semantic analysis to narrow semantic
domains. We will then look at how MMIR systems can be used for a variety of
applications different from semantic analysis.
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2.1.4.1 Semantic Analysis

The main, traditional application of MMIR is semantic analysis, namely the
automatic recognition of image objects and scenes. The majority of the techniques
we have seen before are designed to fulfill this tasks. At an application level,
two main interesting elements can characterize the novelty of semantic analysis
techniques: their effectiveness compared to state-of-the art techniques, and their
application to novel, relevant sub-domains.

Determining the Effectiveness of Semantic Analysis Techniques:
Datasets and Evaluation Campaigns

In order to evaluate the effectiveness of semantic analysis approaches, one of the
most common procedures is to compare the performances with existing, state of
the art approaches. Several databases for object [41, 57] and scene [143, 133, 205]
categorization have been built as benchmarking image collections that can
support the development and the comparison of new and existing techniques for
MMIR. In this thesis, we extensively use such image collections and in the next
Section, we will look at some of this datasets in details.

Moreover, there exists several evaluation campaigns and competitions that
aim at gathering the works in the field from different research groups around the
world, and evaluating their efforts on a common, large scale database. In general,
such campaigns provide the participants with training sets of annotated data, and
the task is to build system addressing semantic MMIR problems. Such systems are
then employed to label a test set of unlabeled images, and results are evaluated by
matching them with manual judgments. Examples of such competitions are the
Pascal Visual Object Classes Challenge [39], for object recognition, the ImageCLEF
[123] for cross language annotation and retrieval of images, the TrecVID [168]
evaluation campaign for semantic indexing, search and retrieval of video collections,
and the recently appeared MediaEval [94] benchmark for multimedia retrieval
focusing on multimodal approaches involving text, speech, social information, etc..
All the mentioned evaluation campaigns are useful to share new ideas and establish
permanent knowledge for semantic MMIR.

Applying Semantic Indexing to Real Problems

While traditional semantic analysis aim at recognizing objects and scenes with
general, large-scale semantics, many curious and useful applications for semantic
analysis have been explored throughout the years to automatically classify images
coming from narrow semantic domains. In the following, we will outline a non-
exhaustive list some of these applications, giving an idea of the potentialities of
MMIR tools for semantic analysis.

One of the most popular applications for semantic analysis is medical image
classification, namely the automatic identification of sicknesses of bodies part given
medical visual data such as echography, RMIs, x-rays, etc. As an example of its
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importance, the ImageCLEF challenge has an entire task dedicated to the anno-
tation and retrieval of medical images [124], and participants achieve impressive
results for this task, in particular when combining visual and textual information
together. Another very useful application for semantic analysis techniques is about
satellite images, see [198] for a review, namely the identification of objects and
regions given remote sensing images. Multimedia Information Retrieval can be also
useful for computer security, see for example the works for Captcha generation
[33] and breaking [21] using visual features.

One application that recently attracted the attention of the MMIR researchers,
brought in the ImageCLEF benchmark in 2011, is plant identification [52], namely
the recognition of plant and flower species, useful for the automatic monitoring of the
environment. Similarly, a substantial amount of research work have been carried out
[172] to develop image classification techniques for ecologic activity monitoring,
such as underwater activity identification, the categorization of animal species, and
so on. Another interesting way to apply MMIR techniques for semantic analysis
is to build classification systems supporting cooking activities [37], for example
cooking gesture recognition, or ingredient identification.

2.1.4.2 MMIR for Other Applications

Multimedia Information Retrieval is not only about semantics: many different types
of labels can be predicted given a visual recognition system, the structure is similar,
but the information extracted from the images varies.

One of the most widely explored branches of MMIR using content-based tech-
niques is aesthetic image analysis, aiming at building systems that automatically
classify the image beauty and appeal. Pioneer work in this field is the one from Datta
et al. [32], that learn features that model photography rules, and use a groundtruth
of web images from Photo.net annotated with aesthetic judgments averaged over a
large number of users to predict the image beauty. Wong et Al improve it in [201]
by adding saliency information in the prediction framework to distinguish between
amateur and professional pictures. Obrador et al. in [131] further improve the work
in [32] by adding more compositional features. A step towards the incorporation of
image semantics into an aesthetic framework is represented by the work of Obrador
et Al. [130], that build different aesthetic models for different image categories,
using pre-defined manually labeled image categories. The use of semantic features
for aesthetic prediction has been explored also in [35], where semantic concepts such
as animals, scenes, people, are detected and the probability of their presence is used
as an attribute to predict image aesthetics and interestingness.

Multimedia Retrieval frameworks have been recently extensively used for af-
fective image classification, namely the categorization of images based on the
emotions they arouse. A first, very simple approach for emotion recognition based
on color was presented by Colombo et al. in [29], and expanded by [9] by including
textural and shape features for a complete affective-based image retrieval system.
Textual and visual information are later combined in [204] for affective image re-
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trieval by defining an affective space, and similarly in [197] an affective space is
determined through psychological studies, and then features such as luminance-
warm-cool fuzzy histogram, saturation-warm-cool fuzzy histogram integrated with
color contrast and luminance contrast integrated with edge sharpness are used to
learn affective models. In [59], Hanjalic et al. apply aesthetic techniques for video
classification and presentation. In the recent years, a research work that became
very popular for affective analysis is the one from [110], that infer a set of affective
features from psychology and art theory for a complete affective classification sys-
tem. Similarly, Lu et al. in [107] recently propose to model image emotions based
on shape features.

Another interesting application of MMIR, is artistic image analysis that has
been widely used for painting analysis and cultural heritage preservation studies.
Several types of knowledge can be automatically inferred from paintings, and this
branch of MMIR aims at building systems that model such knowledge. For ex-
ample, given the painting contained in specific collections, [83] build systems that
automatically infer who is the artist that painted them. Another interesting work
was presented in [75], where MPEG7 descriptors were used to create the profiles of
art painting images (i.e. artist, current, . . . ). Similarly, in [74] Ivanova et al. group
paintings by color harmonies and color using learning techniques. Panting cracks
are classified into typical patterns in [2] using local and global features. artistic
Image analysis combines with aesthetics in [100], where the beauty of paintings is
evaluated using aesthetic features. Similarly, we find the presence of both artistic
and affective analysis in the work of Zhang et al. [209], that assess the affective
content of painting using low-level features.

2.2 Baselines and Datasets

In order to clearly understand our contributions throughout the manuscript, and
understand the novelty of our approaches, we present here a detailed analysis of
the benchmarking datasets and baseline techniques that we use to compare and
evaluate the performances of our descriptors, aggregators, learning frameworks and
applications.

For each of the level of the pyramid, corresponding to each Chapter in each thesis,
we outline here the implementation details of a set of techniques that have been
widely used in MMIR literature for Semantic analysis. These techniques represent
our baselines, namely the reference methods whose performances we compare with
our new proposed solutions. We will therefore focus on the most popular descriptors,
feature aggregators, learning techniques for semantic MMIR. We then discuss here
the peculiarities and experimental set-up of commonly used benchmarking databases
that we use to evaluate our techniques, together with the commonly used evaluation
measures we employ for this purpose.
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2.2.1 Baselines: Low-Level Features

We detail here the properties of very popular low-level features, whose performances
for MMIR we will compare with our methods. Following to the feature definition
we proposed, we chose both global and local features that have been proved to be
very effective for image and video classification and retrieval.

The Global Features we extract for evaluation are as follows:

• Color Moments [175] is a color descriptor incorporating higher order statis-
tics. This global descriptor computes, for each color channel in the LAB space,
the mean, variance and skewness of the pixel values lying each subregion re-
sulting from the division of an image with a 5 × 5 grid.

• Wavelet Feature [187]. This texture-based descriptor calculates the vari-
ance in the Haar wavelet sub-bands for each window resulting from a 3 × 3
division of a given keyframe.

• Edge Histogram [200]. The MPEG-7 edge histogram describes the edges’
spatial distribution through the amount of vertical, horizontal, diagonal, mi-
nor diagonal, and non-directional edges in each of the 16 blocks resulting from
a 4 × 4 subdivision of the image. Each image block is then further divided
into smaller regions, the direction of the most prominent edge in each region
is taken and a 5-dimensional (1 for each direction) histogram is updated ac-
cordingly.

• Gist Descriptor. This holistic descriptor has been first introduced in [133]
as a powerful descriptor for scene recognition. Its values represent the average
over the windows in a 4 × 4 of the Fourier spectrum sampled with a set of
Gabor filters.

Moreover, we also consider a set local descriptors that we will then use as input
for existing and new feature encoding/pooling methods. In particular, we choose
to extract the SIFT [105] descriptors using the VIREO system [1]. We compute
three different types of sift descriptors using different salient points detectors and
descriptors:

• Sift DoG. We detect the interest points in an image using Difference of
Gaussians, as originally proposed in [105], and then describe them with 128-
dimensional sift resulting from the 8 orientation bins of the histogram of each
subwindow of the patch around the interest point.

• Sift HLD. We detect points using Hessian-Laplacian Detector, proposed in
[119] as a scale and affine invariant interest point detection , and then describe
them with 128-dimensional sift resulting from the 8 orientation bins of the
histogram of each subwindow of the patch around the interest point.
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• PCA-SIFT. We detect points u using Difference of Gaussians, and then de-
scribe them using the PCA-SIFT technique outlined in [87], that applies PCA
to the values in the patch surrounding the interest point, generating a 36-
dimensional descriptor.

2.2.2 Baselines: Local Feature Aggregators

The local descriptors presented in Sec. 2.2.1 cannot be used directly as input for
the learning machines we will use to compare the effectiveness of our approaches.
This data need to be aggregated into compact image representations. We will use
here two of the most important approaches for feature aggregation, namely the Bag
of Words (BoW) model and the Fisher Vectors.

In order to build the Bag of Words signature, we follow the approach outlined
in [30]. We use a K-means algorithm to cluster a subset of the training set descriptors
in a vocabulary of n visual words (the amount of visual word will change based on
the dataset). Then, for each SIFT point in an image, the nearest neighbor in the
vocabulary is calculated; based on this statistics a n-dimension feature vector is
built collecting the number of points in the image that can be approximated by the
nth visual word. Typical sizes of BoW are around n = 500.

Moreover, we will also use the PCA-SIFT descriptors as input to a very pow-
erful generative-discriminative aggregation technique, namely the Fisher Vectors
methods [79]. In order to extract the compact Fisher Vector Signature, we will use
the fast implementation proposed in [79]. First, we estimate the global distribution
of the keypoints given a subset of the training set descriptors using a Gaussian Mix-
ture Model with m Gaussians (typically 32). We then obtain the Fisher vectors by
computing the gradient of the log-likelihood of the image keypoints with respect to
the with respect to mean of the global GMM. The final signature has therefore di-
mensionality m×36 (number of Gaussians multiplied by descriptor dimensionality).

2.2.3 Baselines: Learning Frameworks and Kernels

Here, we look at the choices we made in our work regarding the learning machines
and their similarity measures. As mentioned, in our experiments, we mainly use
Support Vector Machines [17] to learn both the global descriptors (see Sec. 2.2.1)
and the aggregated descriptors (see Sec.2.2.2). We will use the same frameworks to
test the effectiveness of our descriptors and aggregators.

We chose Support Vector Machines for their ease of practical use when dealing
with large features and large-scale data, and for their proven effectiveness for MMIR
[153, 210]. The most important element of a Support Vector Machine is the kernel,
namely the similarity measure used for comparing 2 features v and w belonging to
different or similar classes. Among the various approaches available, we chose a set
of kernels that better fit our needs.

We will use, mainly for global features, a polynomial kernel with degree d (in
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general, we choose d=2)
k(v,w) = (v ·w)d

We will also employ, mainly for kernel re-designing and aesthetic feature learning,
a Radial Basis Function Kernel:

k(v,w) = exp(−λ||v −w||2).

When learning n−dimensional signatures aggregating local descriptors, we will use
the exponential chi-squared kernel:

k(v,w) = exp(−λ
n∑
i=1

(vi − wi)2

1
2(vi + wi)

).

2.2.4 Benchmarking Datasets and Their Experimental Setup

Many of the solutions we propose for MMIR are tested on benchmarking datasets
for semantic analysis. In particular, we chose a set of very challenging datasets,
very popular in our field for scene recognition, object categorization and concept
detection for video retrieval (see Figg. 2.1 and 2.2 for visual examples). In the
following, we will detail the content of such image collections, and show how we
process them to train and test our techniques.

2.2.4.1 Scene Recognition

MMIR techniques for Automatic Scene Recognition aim at automatically predict the
image scene category (where was the image taken?) based on a pre-defined set of
scene classes (generally, mutually exclusive). In order to evaluate the performances
of our techniques for scene recognition, we selected three databases that have been
widely used in literature to study the impact of global and local low-level features
or scene analysis.

The Outdoor Scenes Databasehas been used in [133] to evaluate the perfor-
mances of the Gist descriptor and to describe the properties of the spatial envelope.
It is composed of 8 categories of natural scenes and a total of 2600 color images,
with a resolution of 256x256 pixels. For each feature, we trained the classifier with
our baselines techniques on 100 images per class and used the rest for testing.

The Indoor Scenes Database was proposed in [143] as a new, unique database
for indoor scene recognition, collecting around 15000 images from various sources,
and considering 67 different image categories related to indoor environments. For
the indoor scenes experiments, we follow the approach outlined in [143]: we use 20
images for testing and the remaining for training over the baseline descriptors.

The Scene Understanding Database (SUN) is a large-scale scene recogni-
tion databases. It was proposed in [205] as a complete dataset for scene under-
standing, with a variety of indoor and outdoor scene environments, spanning 899
categories for more than 130,000 images. As in [205], for benchmarking purposes,



30
Chapter 2. State of The Art and Baselines for Multimedia Information

Retrieval

Outdoor 
Scenes 

Indoor 
Scenes 

SUN 
Database 

Caltech 
101 

Figure 2.1: Typical pictures from our selected datasets for scene and object recog-
nition

we select a pool of 397 scenes out of the categories proposed, and we use a subset
of the SUN dataset consisting 10 folds that contains, for each category, 50 images
for test and 50 for training. Results are obtained by averaging the performances of
the descriptors over the 10 partitions considered.

2.2.4.2 Object Recognition

Object Classification algorithms aim at labeling an image with an object category
selected out of a defined set of mutually-exclusive classes. One of the most popular
databases for this task is probably the Caltech 101 [41] database , a widely-used
dataset that contains images of various resolutions labeled with 101 different se-
mantic object categories. Despite its limited amount of highly cluttered images and
its lack in pose variation, we chose this database because it is one of the most di-
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Dataset
ID Task Images/Shots Classes/Concepts Evaluation

Measure
Indoor
Scenes

Scene
Recognition 2600 images 8 classes Average

Accuracy
Outdoor
Scenes

Scene
Recognition 15000 images 67 classes Average

Accuracy
SUN

database
Scene

Recognition 130,000 images 899 classes Average
Accuracy

Caltech
101

Object
Recognition 9146 images 101 classes Average

Accuracy

TrecVID
Video

Retrieval
around

100,000 shots 10 concepts Average
Precision

Table 2.1: Overview of the benchmarking datasets used in this thesis

verse multi-object set of labeled images publicly available. For object categorization
tests, we follow the experimental approach explained for the indoor scene images
(20 images per class for test, the rest for training).

2.2.4.3 Video Retrieval

We also test the performances of our techniques in a large-scale video retrieval
framework. We use as a database theTrecVID 2010 IACC.1.tv10.dev set, which
is composed of 3200 Internet Archive videos (a total of around 100,000 shots).

In particular, we focus on the Light Semantic Indexing Task (SIN), where
we are required to build a retrieval system that can produce a ranked list of rele-
vant shots for a set of 10 semantic concepts proposed (Airplane_Flying, Boat_Ship,
Cityscape, Classroom, Demonstration_Or_Protest, Hand, Nighttime, Singing, Tele-
phones).

Our baseline run is composed as follows. First, we identify, for each video, the
keyframe of each shot, representing the central frame of the sequence. For each
keyframe/shot, we then extract a pool of low-level features (Color Moments [175], a
Wavelet Feature [187], and the MPEG7 edge histogram [200]) together with pooled
features (typically, SIFT DoG+BoW and SIFT HLD+BoW). We then use them as
input for a set of concept-specific classifiers, namely SVMs with polynomial kernel
of degree 2 for global features, and SVMs with chi-squared kernel for aggregated
features. The output of this step is a set of feature-specific models separating the
feature space in relevant/non relevant examples for each concept. For each concept c,
we have therefore defined a model based on each feature extracted from the training
data.

Such model is then used to detect the presence of c in a new sample s based
on each feature. The classifiers parameters are selected via exhaustive grid search:
their value is chosen based on the Mean Average Precision maximization on the
development set. For each concept and each feature f , we obtain concept scores
(the label confidence) representing the probability of the label given the shot pf (c|s).
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All the concept scores coming from the different features are linearly combined to
obtain the final concept score for each shot, that we will use to build the ranked list
of shots (see Figg. 2.2 for a visual explanation).
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Figure 2.2: Typical Baseline Run and Snapshots from the Light semantic Indexing
Task of TrecVID 2010

2.2.5 Evaluation Measures

We have seen the baseline descriptors, aggregators, learners, and datasets, but, how
to evaluate the performances of our systems? In this dissertation, we mainly use
two different evaluation measures: Average Accuracy and Average Precision. The
use of one measure or the other depends on the specific task that we are evaluating.

The Average Accuracy measure is used in case of classification and catego-
rization (for scene and objects data). For this problem, we have a pre-defined set of
possible c classes. Average Accuracy represents the percentage of correct predictions
that a given system makes, compared with the actual labels of the test data. Since
we are dealing with multiclass classification problems, the accuracy is calculated per
class. That is, the accuracy is the averaged ratio between the true positives for a
given class (correct matches), divided by all the examples belonging to that class.

average accuracy =
1

c
·

c∑
i=1

number of true positives for class i
number of text examples in class i

The Mean Average Precision measure represents the precision of the ranked
results of a retrieval set. We will therefore use it to evaluate the performances of
our methods tested on the Video Retrieval Task. In order to understand the con-
cept of MAP, we first have to understand the concept of precision and recall.
Given a query, a retrieval system returns a set of documents that can be either rel-
evant or non-relevant to the user query. Precision represent the amount of relevant
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documents retrieved, compared to all the documents retrieved

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

while recall represents the portion of relevant documents retrieved, compared to all
the relevant documents in the collection

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|

Precision and recall are useful measures for information retrieval. However, they
lack of considering the order in which the documents have been retrieved: more
relevant documents should be retrieved first, while at the lower level of the list less
relevant documents should appear. The Average Precision (AP) measure solves
this problem by considering the performances of the retrieval framework at each
document k of the ranked list of K results, by averaging the precision for a single
query:

AP =

∑K
k=1{precision at document k} · {relevance of document k (0|1)}

|{relevant documents}|

Mean Average Precision (MAP) is the mean of Average Precision over all queries (in
our case, it will be the mean of the AP of each concept in the TrecVID SIN Task).
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Figure 3.1: Our two hybrid features for image recognition.

In this Chapter we design two features for Scene Recognition, Object Recognition and
Video Retrieval. The peculiarity of our features is that the information they carry is both
global and local. As a matter of fact, our hybrid features embed local, discriminative,
visual information into global, efficient image features. This is achieved by exploiting the
discriminative information contained in the saliency maps. We show that our features are
not only very discriminative for the proposed tasks while keeping a light-weight structure,
but also that saliency represents a new, complementary source of information regarding
the image content, that can be effectively combined with the existing low-level features.

Low-level features are the basement of every MMIR framework: they represent
one of the crucial elements for the development of effective, automatic categoriza-
tion and retrieval systems. The performances of MMIR frameworks are therefore
substantially constrained by the type of features used for representing image and
videos. Given the importance of such features, in this chapter we present a set
of contributions to improve the low-level image representation using a new set
of visual features. We focus here on the development of semantic features for
MMIR systems with semantic analysis applications. We will see in Chapter 6 their
application to aesthetic analysis, together with a set of new and existing specific
aesthetic features.
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Low-Level Features for semantic Multimedia Information Process-
ing

Generally, low level semantic features for image recognition model, using a com-
putational approach, the information that our brain (the retina, lateral geniculate
nucleus (LGN) and primary visual cortex (V1)) processes in the earliest vision
stages, such as color information and oriented lines and edges. Visual features
represent low-level information that generates the recognition of image properties.
Features are sets of numbers extracted by directly processing the pixel values,
similar to the early stage of the human vision, where no spatial integration or
pooling is performed. Such pixel-level features reflect therefore the natural statistics
of the image and provide information about simple image attributes at a local
and a global level (e.g. red on color, round on shape, and dirty on texture). In
the MMIR literature for object, concept and scene recognition, namely semantic
analysis, we can find two opposite approaches for low-level feature extraction:

1. Features arising from Local analysis: as mentioned in Chapter 2, de-
scriptors such as SIFT [105], HOG [31], and SURF [6] describe the surround-
ing of local interest [44] or densely sampled [42] points in an image, by per-
forming local edge and orientation analysis. Generally, such locally extracted
descriptors cannot be used straight-forward for classification, because of the
high-dimensionality of the global image representation (see next Chapter for
further details). “Raw” local descriptors are generally grouped (see Chapter
4), using keypoint aggregators [30, 146], into a single feature vector, that is
then used for modeling and categorization (see Chapters 5 and 6). The re-
sulting signature carries very discriminative information caused by a detailed
invariant analysis of local edges performed in relevant image regions, achieving
a very precise model of the visual input. However, one major disadvantage
of this class of features is their high computational cost arising from both the
detailed local invariant analysis and the pooling process.

2. Global analysis: image descriptors such as Color Moments and Correlogram
[175, 70], Wavelet feature [187], Edge Histogram [200] extract holistic proper-
ties of the image (respectively, color distribution, texture, and edge patterns)
into a single descriptor without requiring segmentation, interest point detec-
tion or grouping operations. One particular type of global feature is the GIST
[133] descriptor, whose aim is to represent the ”shape of the scene", a fin-
gerprint containing the general layout of the image structures. This class of
features is very computationally efficient, but the lack of detailed analysis and
robustness to transformations might deal to a loss of discriminative ability for
MMIR tasks.

These two classes of features have been widely used for scene categorization (global
features) , object recognition (local features) or general semantic concept detection
(both types of features together).
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Our Contribution: Hybrid Features Based on Saliency

Opposite to this subdivision, we propose here a set of new, biologically plausible,
hybrid features for content representation that stand in an intermediate point
between the mentioned approaches. Our hybrid techniques try to eliminate the
weaknesses of both approaches by embedding some local analysis into a holistic
representation of the image. By doing so, we ensure that our features are, like
global features, very efficient, while keeping the detailed analysis and accuracy
typical of local analysis.

How can we perform local analysis at a pixel level without introducing compu-
tational complexity and while keeping the dimensionality low, by embedding local
information into global features? We rely here on a particular type of local informa-
tion: the image salient regions, namely the selected subset of very informative
areas that attract the human eyes when glancing a scene (see Sec. 3.1 for a wide
explanation of visual attention and saliency). Automatic saliency detectors are
available in literature to automatically summarize the distribution of the salient re-
gions into a saliency map. Using a specific, light-weight spectral saliency detector
[68], we exploit the coarsely localized information arising from the saliency maps
and integrate it with global features to build our discriminative, efficient hybrid
descriptors.

Our features represent one of the first attempts to enhance global features
with saliency information. As a matter of fact, the role of saliency for semantic
MMIR has been mainly explored to improve local features-based analysis. For exam-
ple, in [193] Walther et al. show that object recognition performances are improved
by extracting keypoints in subregions corresponding to salient proto-objects: a sim-
ilar approach is used by Lowe et al in [46] for a mobile robot vision system. Saliency
information is also used by Moosman et al in [121] to sample image subwindows and
classify image patches for object recognition. On the other hand, besides the men-
tioned studies integrating saliency with MMIR, visual attention studies has been
rarely re-used for global image description and recognition. We can find attempts
of fusing holistic data with visual attention outside the MMIR context: Torralba
et al in [184] combine the gist information with the local saliency map to perform
object search and detection. Visual attention features have been used for mobile
robotics scene recognition in [164], where a low dimensional feature vector is used to
represent each feature map extracted from orientation, color and intensity channel.

These work suggests us that saliency is a promising cue for semantic image anal-
ysis using global features. In this Chapter, we design two different visual features
that arise from the integration of local and global features, and we test their effec-
tiveness for semantic analysis, namely scene, object and concept recognition (see
Fig. 3.1):

1. We first make an initial analysis about the role of saliency as a weighting factor
to enhance a color descriptor, resulting in an enriched color descriptor named
Saliency-Aware Color Moments [147].
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2. We then explore the discriminative ability of the saliency distribution as a
hole, using the image saliency map as a fingerprint representing the global
shape of the scene, and summarizing it into a single holistic descriptor that
we name Saliency Moments [148].

We test the performances of a traditional MMIR system embedding our
features, in a variety of tasks, namely indoor and outdoor scene recognition, object
categorization and concept detection for video retrieval. Results show that hybrid
features outperform the existing local and global approaches for both tasks.

In the following, we will first give a brief overview of the notion of saliency, with
some highlights on the existing saliency detectors, including a detailed explanation of
the saliency detector we use for our experiments in Sec. 3.1. We will then detail the
proposed approaches that embed saliency into low-level global features, namely the
Saliency-Aware Color Moments and the Saliency Moments descriptors, respectively
in Secc. 3.2 and 3.3.

3.1 Visual Attention and Saliency

256x256 

128x128 

64x64 

(a) (b) 

Figure 3.2: (a) Saliency distribution can be seen as a coarse-resolution representation
of the image layout; (b) Multi-resolution saliency represents different level of details
in visual attentional selection

Some regions in the image are more informative than others for the human eye:
our visual cortex, when looking at a picture, focuses on few areas in the images, that
pop-out from the background, clustering around high-contrast regions and image
singularities [207, 137]. The human brain analyses a scene by gathering a reduced
but sufficient amount of information from such salient regions, i.e. very informa-
tive areas that support the long-term recognition process. Various attention-based
computational models have been proposed emulating the human way of parsing
the visual space with attentional selection, namely performing local parsing of im-
age regions, looking for image singularities. As pointed out in [14], the extraction of
salient regions differs from a segmentation problem, because saliency maps highlight
foreground objects with respect to their background, while segmentation algorithms
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generate a partition of the image into regions of consistent properties. The general
output of a saliency detector is a visual saliency map (see Fig 3.2 for visual ex-
amples) highlighting the regions that pop out when observing the image (e.g. areas
where the image shows high contrast or statistical singularities), corresponding to
the areas of human fixations. We will see in the next Section an overview of the
most common automatic saliency detectors.

3.1.1 Computational Models for Saliency Detection

Automatic saliency detectors aim at translating into a computational model the
neurobiological process on early visual perception theory. Various ways to implement
visual attention processes have been proposed. The first pioneer work for saliency
detection using a computational approach was the one from Itti et al. [73] that
used center-surround differences statistics to define the image saliency map, based
on color, orientation, and intensity features. Such work was improved in [109] with
a local contrast with fuzzy growth model. Harel et al. in [63] further improve Itti’s
approach by adding a graph-based analysis for map normalization achieving a very
efficient model for saliency detection.

Later, learning methods were used by Liu et al. [103] to model the differences
between foreground and background objects through multi-scale contrast, center-
surround histogram, and color spatial distribution. Learning techniques were also
used in [86], where object and faces detectors are used to predict human fixations,
and by Torralba et al. in [184], that build a “contextual guidance model” for pre-
dicting salient regions combining global features, bottom-up saliency, and top-down
mechanisms at an early stage of visual processing.

Frequency-based saliency detectors have recently attracted a lot of attention in
the field. Such spectral-based methods are much lighter and more efficient compared
to the previously mentioned saliency detectors. For example, Achanta et al. [3] pro-
posed an effective and efficient method for saliency detection based on the difference
of the pixel color from the average image color. Spectral components in an image
have also been used in [68] by computing the difference of the image spectrum with
the average image spectrum, further improved by [54], that uses the phase spectrum
instead of its magnitude.

For the development of our efficient global image analysis features, we chose to
employ a method from this last class of detectors.

3.1.2 The Spectral Residual Saliency Detector

Saliency maps based on frequency analysis represent therefore a fast and effective
tool for extracting coarsely-localized information about the image objects and their
locations, without recurring to pure local analysis or interest point detection. Among
those, we chose for our experiments the Spectral Residual approach [68] for its
efficiency and effectiveness, and for its light implementation that well fits the type
of analysis we perform with our hybrid features. The Spectral Residual technique
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aims to detect coarse salient regions using a fast, straight-forward approach, that
does not require parameter selection or multi-channel features weighting, and it is
therefore suitable for being the basic component of a global feature.

This method exploits the properties of the amplitude A(fx, fy) of the Fourier
Spectrum, observing that statistical singularities in the frequency domain corre-
spond to salient proto-objects in the pixel domain.

In order to obtain a saliency map, the Spectral Residual method computes the
following steps on the input image:

1. the luminance channel of the input image I is downsized to a i × i coarser
resolution.

2. The log-spectrum L(fx, fy) = log(A(fx, fy)) and its smoothed version
F (fx, fy) = L(fx, fy) ? hn(fx, fy), where hn is an average filter of size n, are
computed on the grayscale matrix. As a matter of fact, it is showed that the
log-spectra of different images are described by frequency-amplitude curves
with very similar shapes. F (fx, fy) represents therefore an approximation of
such general behavior of the log spectra. If all the natural images share a gen-
eral log-spectrum behavior, the spectral elements that produce discrimination
between different images, and that therefore imply visual attention, can be
found in the local peaks in the curve that deviate from such general trend.

3. the log spectral residual
LR(fx, fy) = L(fx, fy)− F (fx, fy)

is obtained therefore by subtracting the two signals computed in the previous
step.

4. the linear version of the spectral residual

R(fx, fy) = exp(LR(fx, fy) + P (fx, fy)) (3.1)

is obtained by joining LR(fx, fy) with its original phase P (fx, fy)

5. The saliency map is then obtained by applying the Inverse Fourier Transform
(IFT) on R(fx, fy), giving, for image I, the saliency map

S(I) = IFT (R(fx, fy)) (3.2)

3.2 Initial Analysis: Saliency-Aware Color Moments

In this Section, we show how we exploit the spectral residual signal to enhance the
discriminative power of existing window-based color indexing techniques.

Our observation is that traditional color descriptors treat all the image regions
with equal importance. However, we know from visual perception theory that some
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image areas carry more information about the image content (e.g. the scene fore-
ground). Therefore, higher importance should be given to the chromatic characteris-
tics of more informative windows when building low-level color features. We present
here an informativeness-aware color descriptor based on the Color Moments (CM)
feature [175]. We first define a saliency-based measure to quantify the amount of
information carried by each image window; we then change the window-based CM
feature according to the computed local informativeness. Finally, we show that
this new hybrid feature outperforms the traditional Color Moments in a variety of
challenging dataset for scene categorization and video retrieval.

In the following, we will first give a brief introduction on color indexing tech-
niques, motivating our choices and giving a high-level description of our approach
(See Sec. 3.2.1), we will then recall the principles of the CM descriptor in Sec. 3.2.2,
and propose our Saliency-Aware Color Moments enhancement in Sec. 3.2.3. Finally,
we will validate our theory with some experimental results in Sec. 3.2.4.

3.2.1 Why Adding Saliency Information to Color Description?

Background color (not informative)

Main Object

Background color (not informative)

Figure 3.3: Color indexing issue: even if the two images depict the same thing and
the main object (the canoe) has the same color, the two backgrounds vary and the
feature vectors are completely different.

Color Descriptors have been widely used an automatic image analysis. Color
is a necessary, powerful feature for the recognition of scenes and objects for both
biological and computational visual systems. Color-based features play an important
role in Multimedia Retrieval for semantic analysis.

The most intuitive representation of the chromatic information, namely the color
histogram, has been proved to be an effective way to describe images [180, 58].
Following this idea, a faster and more robust descriptor has been proposed in [175],
where the first three moments of the color distribution are stored in the Color
Moments (CM) feature. Generally, in MMIR, the CM is used in its localized version,
where the index is built by dividing the image into an n× n grid and collecting the
moments of the resulting image sub-windows.

Despite the proved effectiveness of chromatic features for object and concept
recognition, two main elements can cause the decrease of their discriminative ability.
First, images semantically dissimilar (i.e. depicting completely different concepts)
might have similar color composition, thus introducing noise in visual class sepa-
ration. This first issue can be partially solved by combining the color index with
other sources of visual description (texture, edge, . . . ) in a complete MMIR system.
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Figure 3.4: The effect of adding saliency and informativeness measures in the color
moments computation: the chromatic information is extracted from the main region
in the image and more importance is given to the salient regions color components.

Second, traditional window-based color analysis does not take into account the fact
that some regions (e.g. the foreground) could contain more information than others.
Treating all image windows with equal importance might cause inconsistencies in
color description, especially when the amount of informative regions is small com-
pared to the less important regions, i.e. when the main object is small compared to
the background (an example is shown in Fig 3.3).

Here, we propose a solution for this second issue; the main observation is that we
can improve the discriminative power (partly removing the mentioned inconsisten-
cies) of the color features by collecting the chromatic components of the informative
subregions only. An attempt of weighting image areas for color indexing was pro-
posed in [174], where users were required to indicate a value for each subregion
representing its importance for image matching. Another solution to this problem
was brought by Sebe et al. in [162], where CM vectors were extracted from image
patches surrounding interest points. These works show that the informativeness of
image regions can be a meaningful way to improve color-based image retrieval.

Different from these approaches, we design an informativeness-aware color fea-
ture that automatically weights the image regions according to their importance,
thus differing from the manual measures used in [174]. How can we automatically
measure the image sub-windows importance? Given the relationship between the
amount of information and the probability of a region to attract our attention, we
propose here a means of measuring image areas informativeness based on the local
saliency distribution,

We then use it to improve the Color Moments feature for image recognition and
retrieval, building a new descriptor that we call Saliency-Aware Color Moments
(SACM). This results in a low-dimensional representation of the image that allows
meaningful/salient regions to be taken more into account when performing color-
based matching and retrieval (see Fig. 3.4 for a visual explanation). Since we use
coarsely-localized information, we ensure computational efficiency, different from the
refined interest-point analysis proposed in [162].

With our approach we build therefore a hybrid feature that adds some localized
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information (i.e. the saliency distribution) in a typically global feature, without
involving any parameter tuning, learning or image segmentation. With a fast pre-
processing step, we change the localized CM values according to the amount of
information carried by each window, that we calculate with easy operations.

3.2.2 The Color Moments Feature

The traditional window-based Color Moments [175] is one of the most widely used
chromatic descriptors in image analysis and retrieval. It is based on the statistical
analysis of the distribution of pixel values at given locations.

First, an image I ∈ RX×Y is divided into a set of rectangular image subregions

Akl ∈ RM×N

where k = 1 . . . XM and l = 1 . . . YN are the region indexes and M ×N is the window
resolution 1.

For each window Akl the color feature in [175] extracts color information and
builds the window index

cm
(I)
kl = {µkl, σkl, ηkl} (3.3)

where µkl represents the average pixel value over the subregion Akl, and σkl, ηkl
correspond to the second and third moment of the distribution drawn from the
pixel values, namely standard deviation and skewness. Finally, as shown in Fig.3.5 ,
the feature describes the color components of an image by gathering the chromatic
information of each image subregion in a global image signature cm(I) = {cm(I)

kl }.

3.2.3 Saliency-Aware Color Moments

In its original framework, the CM feature is homogeneously calculated over the whole
set of image regions, without considering that not all the sub-windows are equally
important. As shown, various computational models [3, 73, 68] have been built that
highlight such regions in a saliency map, a matrix that represents the distribution of
the saliency over the image surface, or, equivalently, the probability that a specific
location attracts the visual attention of an observer, with higher values where the
image shows high contrasts or statistical singularities.

The main idea (see Fig.3.5) is that we can quantify the informativeness of an
image sub-window by calculating the amount of saliency in it. The more the saliency
concentrated in its rectangular area, the more the information carried by such sub-
window. Having calculated each sub-window importance, a scalar value that goes
from 0 (not informative) to 1 (very informative), we can then use it to weigh its
corresponding CM index. In this way, less informative regions do not give an im-
portant contribution in the final feature vector, and the description is mainly based
on the chromatic components of the salient objects.

In the remainder of this Section we explain in details our proposed approach
for color indexing. A window-based informativeness measure is proposed in Sec.

1window sizes are chosen so that mod(X,M) = 0,mod(Y,N) = 0
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Figure 3.5: SACM Algorithm: CM are extracted from each of the M ×N windows
and weighted by the informativeness value that is obtained, for each window, by
averaging the saliency map.

3.2.3.1, so that, for each rectangular area described by CM, we also have a value
that quantifies the information carried. Finally, in Sec. 3.2.3.2 the two analysis are
combined to build a Saliency-Aware Color Moments feature.

3.2.3.1 Image Regions Informativeness

How can we extract the importance of an image region using a quick computational
approach? As said, such value should represent the amount of salient regions in
each image window, in order to represent the amount of information carried.

From the previous subdivision, we have a set of M ×N rectangular region Akl,
and we need to find a function

g : RM×N → R

that maps the image window in a scalar value representing its informativeness, by
exploiting the local saliency information.

We know that the saliency distribution can be obtained by using visual attention
algorithms. No matter the approach used, the output of such models is a saliency
map, namely a matrix with higher pixel values corresponding to higher probability
of the pixel to fall into the visual attention space. In our case, we compute the
saliency distribution using the Spectral Residual approach [68] as in Sec. 3.1.2, that
gives, for an image I, its corresponding frequency-based saliency map S(I) in Eq.
(3.2).

Our proposed procedure is as follows (see Fig. 3.5 for a visual explanation):

1. From the image I, we obtain a X × Y saliency map S(I) (to simplify, we
assume same dimension for input image and output map).
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2. We can then find the window-based saliency distribution by dividing S(I)

into subregions S(Akl) = {sij}, being i = Mk, . . . ,Mk + M − 1, and j =

Nl, . . . , Nl + N − 1 the pixel indexes inside the saliency sub-window, whose
dimension is again M ×N .

3. Given the windowed saliency map S(Akl), the informativeness γkl of the rect-
angular area Akl can be obtained by averaging its value over the sub-window
surface:

γkl = g(Akl) =
∑M
i=1

∑N
j=1 sij

M×N

The function g will have higher values when the image window considered
contains more salient regions (higher values in the map), and lower values
when the window considered carries little information.

3.2.3.2 Adding Informativeness to the Color Feature

We now have a window-based color analysis cmkl and a window-based informa-
tiveness measure γkl. How do we integrate these two sources of information in a
meaningful feature for image recognition and retrieval?

Our aim is to extract from the image the color information generated mostly
from its salient regions (see Fig. 3.4). A straightforward way to obtain this effect
is to weigh the window-based color statistics with the scalar value representing the
amount of information carried by that window (the value of function g, as explained
in the previous Section). We therefore change Eq. (3.3) in order to “switch off” the
less important windows, obtaining a new set of components for each Akl:

sacm
(I)
kl = {µkl · γkl, σkl, ηkl} (3.4)

By weighting the first moment of each window, we modulate its average color bright-
ness based on the local informativeness value, allowing salient regions to pop-out
from the image background and mitigating the effect of less important regions.

Finally, we gather in a single descriptor the region-based indexes by concate-
nating them in a feature vector sacm(I) = {sacm(I)

kl } that we use as input for the
recognition and retrieval systems.

3.2.4 Experimental Validation

We evaluate here the improvement brought by adding our informativeness measure
into a classical color indexing technique, experimenting its effectiveness for scene
recognition, object recognition and video retrieval. We use as baseline for compari-
son the Color Moments descriptor.
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3.2.4.1 Experimental Setup

For our experiments, we divide each image (or keyframe) into 25 rectangular subre-
gions (k = 1, . . . , 5 and l = 1, . . . , 5) and extract the CM feature from each of them,
as shown in the baselines description (Chapter 2).

In parallel, we extract the map containing the salient locations in the image, as
shown in Sec. 3.1.2. In order to ensure computational efficiency, we chose to com-
pute the map with the spectral residual method [68], which produces fast saliency
measures, perceptually comparable to the state of the art methods. In Sec. 3.2.3
we assumed for simplicity that the map S(I) has the same resolution X × Y as the
input image. In practice, for most of the saliency detection algorithm2, S ∈ RX′×Y ′ ,
with X ′ < X and Y ′ < Y , therefore, having the same number of subregions (i.e.
the ratio between image and window resolution), the windowed saliency distribution
will have dimension M ′ ×N ′, where M ′ < M and N ′ < N .

We test our new descriptor and compare it with the Color Moments feature on a
variety of dataset and tasks for MMIR semantic analysis. For both CM and SACM
we learn a model using SVMs with polynomial kernel of degree 2 and test it on the
following datasets:

• for the scene recognition task, we considered the outdoor scene categories
database, introduced by Torralba et al.in [133].

• for the object recognition task, we chose the widely used Caltech 101
database [41].

• Moreover, we compare the effectiveness of CM and SACM for video concept
detection, comparing the performances of the two features for the TrecVID
2010 semantic Indexing Task.

For all the datasets considered, for both features, we use for experiments the same
training/test experimental setup as our baselines.

3.2.4.2 Experimental Results

Our descriptor represents an initial study about the possibility of introducing
saliency in MMIR for semantic Image analysis. Despite its simplicity, experimental
results show that our feature brings substantial improvement to the Color Moments
feature, for all the tasks considered

Outdoor Scene Categories

In Fig. 3.6 we show the results on the test set for each class of the outdoor scenes
database. When looking at the average multiclass accuracy, we can see that our
approach, that boosts the color feature with saliency measures, actually improves

2For example, the Spectral Residual method in [68] gives saliency maps at resolution 128× 128
pixels.
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Figure 3.6: Comparison of Saliency-Aware Color Moments and Color Moments for
all the three semantic MMIR tasks considered. (a) Outdoor Scenes, results shown in
term of average accuracy on the test set. (b) Caltech 101, results shown in terms of
average accuracy on the test set. (c) TrecVID 2010 semantic Indexing Task. Results
shown in terms of average precision for each concept and Mean Average Precision
for all the concepts considered.

the average accuracy for outdoor scene recognition, with SACM that brings an
improvement of about 10% over the standard CM feature.

We can explain this improvement because outdoor scene categories such as city,
mountain, and tallbuilding, are clearly identifiable by one single object (buildings,
mountains). Since with our approach we consider only the most informative
regions, the resulting color signature is describing the image areas containing the
most important objects in the image (i.e. a mountain), namely the regions that are
crucial to distinguish between the different image categories.

Caltech-101

In Table 3.1 we show the per-class accuracy on the test set of the Caltech 101
dataset, while the comparison of the two features in terms of average accuracy is
shown in Fig. 3.6 (b)Results show that by considering the color of the main object
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CM SACM CM SACM CM SACM CM SACM
Motorbikes 100, 0% 100,0% brain 45, 5% 45,5% wrench 27, 3% 54,5% bass 10, 0% 10,0%

minaret 100, 0% 100,0% windsor_chair 45, 0% 50,0% saxophone 26, 3% 31,6% garfield 5, 6% 5,6%

Leopards 100, 0% 100,0% grand_piano 45, 0% 50,0% joshua_tree 26, 3% 31,6% water_lilly 5, 0% 5,0%

Faces_easy 100, 0% 100,0% dolphin 45, 0% 35, 0% gramophone 26, 3% 21, 1% stapler 5, 0% 10,0%

Faces 95, 0% 100,0% umbrella 42, 1% 57,9% butterfly 26, 3% 21, 1% hedgehog 5, 0% 40,0%

airplanes 90, 0% 95,0% buddha 42, 1% 36, 8% pyramid 25, 0% 35,0% crocodile 5, 0% 10,0%

pagoda 85, 0% 60, 0% starfish 40, 0% 55,0% flamingo 25, 0% 30,0% chair 5, 0% 10,0%

bonsai 75, 0% 65, 0% scorpion 40, 0% 40,0% ewer 25, 0% 20, 0% barrel 5, 0% 5,0%

trilobite 72, 2% 83,3% revolver 40, 0% 46,7% dalmatian 25, 0% 15, 0% wild_cat 0, 0% 0, 0%

pizza 70, 0% 65, 0% lotus 40, 0% 30, 0% stegosaurus 21, 1% 36,8% snoopy 0, 0% 0, 0%

sunflower 65, 0% 70,0% kangaroo 40, 0% 55,0% schooner 20, 0% 26,7% sea_horse 0, 0% 5,0%

cellphone 63, 2% 63,2% inline_skate 36, 8% 47,4% okapi 20, 0% 25,0% scissors 0, 0% 11,1%

accordion 63, 2% 47, 4% electric_guitar 36, 8% 52,6% mandolin 20, 0% 40,0% platypus 0, 0% 5,0%

watch 60, 0% 60,0% dollar_bill 36, 8% 47,4% llama 20, 0% 45,0% octopus 0, 0% 5,9%

stop_sign 57, 9% 63,2% soccer_ball 35, 7% 42,9% lamp 20, 0% 15, 0% mayfly 0, 0% 0, 0%

hawksbill 55, 0% 50, 0% wheelchair 31, 6% 42,1% emu 20, 0% 15, 0% lobster 0, 0% 0, 0%

menorah 52, 9% 64,7% euphonium 31, 6% 52,6% crab 15, 8% 15, 8% gerenuk 0, 0% 5,0%

ketch 52, 6% 63,2% camera 31, 6% 36,8% headphone 15, 0% 30,0% cup 0, 0% 0, 0%

helicopter 50, 0% 40, 0% binocular 31, 6% 21, 1% nautilus 13, 3% 20,0% crocodile_head 0, 0% 10,0%

chandelier 50, 0% 60,0% strawberry 30, 0% 45,0% panda 10, 5% 15,8% ceiling_fan 0, 0% 10,5%

rooster 47, 4% 57,9% ibis 30, 0% 20, 0% ferry 10, 5% 21,1% cannon 0, 0% 0, 0%

metronome 47, 4% 63,2% elephant 30, 0% 35,0% rhino 10, 0% 15,0% brontosaurus 0, 0% 0, 0%

laptop 47, 4% 42, 1% tick 27, 8% 22, 2% pigeon 10, 0% 20,0% beaver 0, 0% 5,0%

dragonfly 47, 1% 41, 2% crayfish 27, 8% 22, 2% flamingo_head 10, 0% 10,0% ant 0, 0% 0, 0%

yin_yang 46, 7% 53,3% cougar_face 27, 8% 27,8% cougar_body 10, 0% 5, 0% anchor 0, 0% 0, 0%

Table 3.1: Per-class results of the Saliency-Aware Color Moments compared to CM
on the Caltech 101 dataset.

only, SACM improves the color indexing performances for the object recognition
task: the average classification accuracy improves of about 10%, when compared
to the CM descriptor. This is due to the fact that, in the Caltech 101 database,
the images depict objects that clearly detach from a uniform background, making
therefore the salient object detection an easy task for the Spectral Residual
Algorithm, and allowing SACM to describe the color of the main object only.

TrecVID 2010

We show in Figure 3.6(c) that the retrieval performance of SACM is in average 10%
better than CM, with some peaks for concepts like Cityscape (+20 %), Boat_Ship
(+190%), Demonstration (+113 %). A reasoning similar to the previous tasks can
be done to explain such performances. Despite the substantial noise in the images
and in the annotations of the TrecVID data, the saliency detector can identify the
most important objects in the images, decisive to identify the keyframe labels, such
as buildings, boats, and the typical flags and writing of the demonstrations.

3.3 Saliency Moments for Scene Categorization

With SACM, we showed the importance and discriminative power of saliency infor-
mation for global image analysis. In this Section we will make a step further.

We present Saliency Moments, a holistic descriptor for image recognition
based on saliency and inspired by another biological vision principle: the gist per-
ception. The gist of a scene is the coarse-level representation of the visual input
that the brain performs in the very first glance of a scene. Our idea is to generate
a gist of the image based on saliency maps.

We extract the saliency information with the Spectral Residual approach, and
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create a hybrid, low-dimensional image signature by globally processing the saliency
map directly in the frequency domain. Results show that this new type of image
description outperforms and complements the traditional global features on scene
and object categorization, for a variety of challenging datasets.

In the following, we will first introduce in Sec. 3.3.1 the Saliency Moments
descriptors and the notion of gist. We will then motivate with visual perception
theory principles our choice to use saliency information as the gist of the scene, see
Sec. 3.3.2, and then give in Sec. 3.3.3 the implementation details of the Saliency
Moments descriptor. We will finally show some experimental results on applying
the Saliency Moments descriptor for image categorization (Sec. 3.3.4).

3.3.1 A Biologically-Inspired Hybrid Descriptor

Biological visual systems can be a useful source of inspiration for the development of
effective computational vision systems. By analyzing how humans process the real
word scenes and objects in their early vision stage, we can build more discriminative
image features. Given this intuition, we propose here a new, biologically plausible,
hybrid feature for content representation that is inspired by the visual perception
theory. In particular, we explore two processes of the visual cortex, the (local)
already mentioned selective visual attention and the (global) gist perception for
scene recognition.

As mentioned, visual attention refers to the fact that the human eye, when
recognizing the content of a scene, focuses on a subset of selected salient regions
that attract its attention (local process). Such process is modeled in computer vision
by existing local analysis algorithms [73, 3, 63] that output saliency maps based on
predicted human fixations. On the other hand, various studies [126, 134] proved that
the brain is able to recognize images under very brief exposures (less than 100 ms),
gathering a coarse representation of the image contours and structures: the gist
of the scene (global process). Various global image descriptors have been proposed in
literature modeling such low-resolution, holistic summarization of the image spatial
layouts and components (e.g. the spectrum-based Gist [133], texture-based[154]).

Visual attention and gist perception both refer to early stages of human vision.
However, while the first one is based on a local parsing of the image regions, the gist
is a global fingerprint of the visual information reaching the brain when looking at
a scene. Our aim is to explore the interaction between these two principles using
a computational approach and apply it to MMIR. Even if both these two aspects
of visual perception have inspired computational models for image understanding
and categorization, the interaction between the two has been rarely explored for
MMIR. The Gist descriptor has been successfully used in [134] to enhance saliency
detection, showing that the synergy between these two notions leads to an enriched
visual analysis.

Given these observations, we evaluate here the contribution of adding locally-
extracted saliency information in a global feature for image categorization and re-
trieval. Following the idea that the gist of the scene is not a pre-attentive task (see
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Sec. 3.3.2 for further explanations), we build a robust hybrid feature based on a low
dimensional representation of the shape of the salient region. Our image signature,
called Saliency Moments, embeds some locally-parsed information, i.e. the salient
regions and objects in the scene, in a holistic representation of the scene. This is
achieved by abstracting the salient region shape as a whole for a global, gist-based3,
discriminative description of the image. In order to ensure computational efficiency,
we choose a frequency-based light-weight algorithm, namely the Spectral Residual,
[68] for the extraction of the saliency distribution and perform the image signature
construction via spectral sampling (directly in the Fourier domain) and higher order
statistics.

The final hybrid descriptor takes advantage of the discriminative power of local
analysis details (i.e. the saliency map) while keeping a low dimensionality and fast
computation. Moreover, the key aspect of our descriptor is that saliency is a new
source of discriminative information compared to traditional features for image cat-
egorization (e.g. color and edge distribution). Therefore, when we combine Saliency
Moments with existing local and global descriptors MMIR, we add complementary,
meaningful information that improves the overall performances of the system.

Saliency Moments represents one of the first attempts in literature to use saliency
maps for image categorization. The closest method related to our descriptor is the
one presented in [164], where center-surround difference saliency maps are averaged
over local windows, and then used in scene recognition for robot navigation. Our
descriptor differs from this approach because first of all we extract a light saliency
map, thus ensuring the computational efficiency typical of global features. More-
over, instead of performing averaging operations, we extract the saliency principal
components by analyzing the map directly in the frequency domain, thus keeping its
discriminative power and using the saliency information as a whole signal represent-
ing the shape of the scene. Moreover, while in [164] the method is tested on a few,
ad-hoc created scene categories for robot navigation, we present here an extensive
set of experiments conducted in challenging benchmarking datasets for scene and
object recognition.

3.3.2 Saliency in a Holistic Signature: Motivation and Key Ele-
ments

Here we motivate the use of saliency as a gist-based image fingerprint with studies
from the visual perception theory.

How do we process the information coming from the visual space?
A plausible answer can be found in [126]: the human brain synthesizes the image

globally before understanding the local details (i.e. it sees the “forest before seeing
the trees"). According to this model, Oliva and Schyns in [161] showed that the
visual information is organized in a set of spatial frequencies that correspond to
different resolutions and levels of detail of the visual space. When first looking at a

3In the following, we will use “gist” to identify a coarse representation of the image and “Gist”
to refer to Torralba’s descriptor in [133]
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Figure 3.7: Interaction of attention and gist in visual perception theories: a multi-
resolution input is parsed to obtain salient frequencies when gathering the spatial
envelope of the scene. Our proposed implementation: a multi-resolution saliency
map is extracted and summarized into a global signature.

scene, we perceive the holistic, most coarse-grained representation of the image, i.e.
its gist, which is enough for the human brain to categorize the visual space after a
very brief exposure (100ms or below). In this phase, we do not rely on segmenta-
tion or local analysis operations but we gather the meaningful information into a
low-resolution gist of the scene. According to the definition of gist, such “holistic
envelope” should represent an “impoverished version of the principal contours and
textures" [134].

On the other hand, a well-studied aspect of the human visual perception is the
selective visual attention, i.e. the process by which the human brain analyses a
scene by gathering a reduced but sufficient amount of information from the multi-
dimensional visual space.

Traditionally (see, for example [62]) visual attention is considered to be indepen-
dent and posterior to the gist perception. As pointed out in [164], apparently gist
and saliency rely on opposite procedures, as the first one is a global, fast summary of
the image structures, while visual attention requires slow local analysis to highlight
image singularities. Nevertheless, the human cortex bases the visual input under-
standing on both these components, and some perception-based experiments proved
the interaction between these two elements for rapid scene analysis. These studies
(see [134] [177] [28]) report that, similar to the traditional attentional perception,
scene understanding under brief exposures involves an attentional stage that selects
different frequencies from different spatial scales (see figure 3.7 for a visual explana-
tion). Following these theories, there would be an early attentional selection before
the gist perception that directs the fixations to particular salient region, supporting
that contribute to the recognition process.

Another issue regarding early stages of vision is: does a chromatic component
come into the picture under brief exposures? different studies showed that color can
play an important role in the rapid recognition of object and scenes. According to
these studies, conducted by Oliva et al in [132] and by Castelhano et al in [23], the
human brain, when gathering the gist of an image, synthesizes and uses the color
information for the classification task.

Given all these observations, we want to test the importance of the visual atten-
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tion component in the gist perception using a computational approach that:

1. Represents the input as a multi-resolution visual signal, according to the
spatial frequencies organization of the visual information mentioned in [161].

2. Extracts the saliency distribution for every spatial scale considered, simu-
lating the pre-gist attentional stage.

3. Analyzes the visual saliency as a whole, summarizing the previous analysis
in a gist-based image signature.

4. Explores the role of the chromatic component by adding a coarse represen-
tation of the locally dominant color information.

3.3.3 Saliency Moments for Image Categorization

We therefore build our hybrid descriptor by implementing the four requirements
outlined in the previous Section (see Fig. 3.8 for a visual explanation of our algo-
rithm).

The idea is to use the saliency shape (the ensemble of contours of the salient
objects and regions in a digital image) as an image fingerprint, in order to represent
the visual attention information in a gist-based image signature. Despite from its
local nature, using the saliency maps as a signature of the scene does not contrast
with the definition of spatial envelope seen in [134]. In fact, the saliency map is a
grayscale matrix, with higher pixel values that cluster around strong edges or object
of interest, outlining, as a whole, a coarse representation of the spatial composition
of the scene. Moreover, Fig. 3.2 shows that different objects and scenes generate
different saliency maps: the saliency shape can be seen as a discriminative source of
information for image categorization.

According to point (1) and (2), we downsample the image at different scales
and compute a multi-resolution map of the perceptually relevant areas (implemen-
tation details can be found Sec. 3.3.3.1). We use for this purpose a Fourier-domain
saliency detector proposed in [68] that highlights different salient shapes for different
resolutions (see Fig.3.2(b)).

We then propose an approach for the global image signature construction (re-
quirement (3)): we decompose the signal in what we call the “saliency components",
obtained by sampling the spectral maps directly in the frequency domain. We then
extract various statistics from these samples, building an image index that we call
“Saliency Moments” (SM) (see Se. 3.3.3.2 for details).

Finally, following requirement (4), we describe (Sec. 3.3.3.3 ) a color-opponents
based chromatic feature that is merged with the previous index to build the Color
Saliency Moments (CSM) feature.

3.3.3.1 Multi-Resolution Visual Attention

In this Section we show how we extract the saliency information signal, based on
which we will build the Saliency Moments descriptor. Of the many computational
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Figure 3.8: SM Algorithm: The spectral saliency at multiple resolutions is convolved
with Gabor filters. The resulting “saliency components"’ are then downsampled
using local mean, and global standard deviation and skewness

models available in literature, we chose to compute the visual attention map with
a spectrum-based approach presented in [68] by Hou et al., that we extensively
explained in Sec. 3.1.2. Besides its efficiency and accuracy, we chose the Spectral
residual detector for another peculiarity, namely its ability to capture saliency at
different scales.

As pointed out in [68], Spectral Residual can detect salient regions under various
scales of the image, depending on the size selected in the resizing preprocessing step.
Different spatial scales lead to different saliency maps, detecting proto-objects with
a level of details that increase with the resolution chosen, as shown in Fig.3.2 (b).

In our global feature, we compute the spectral residual R(fx, fy)i on three i× i
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Figure 3.9: Saliency components: sampling the frequency-domain spectral residual
with oriented Gabor filters we obtain different views of the saliency map in the pixel
domain

rescaled versions of the input images (i = 64, 128, 256), simulating the variety of
possible salient spatial frequencies (and salient shapes), from coarse to fine, available
to the observer when recognizing a scene.

3.3.3.2 The Image Signature: Saliency Components and Saliency Mo-
ments

We now construct a coarse representation of the image based on the salient spectrum.
We use as input of this step the Fourier-transformed Saliency Map, in Eq. (3.1),
we process it with a Gabor wavelet in the frequency domain; finally, we compute
average and higher order statistics in the pixel domain.

In fact, R(fx, fy)i is a very high dimensional signal (86016 variables: each com-
ponent of the 3d-matrix R(fx, fy)i, for all values of i) that we want to use as a whole
to discriminate different image categories for the scene and object recognition task.
We want to reduce the dimensionality of such information, finding a smaller set of
variables that allow to preserve the variation between different image categories.

However, as shown by Torralba et al in [133], traditional techniques for dimen-
sionality reduction, like Principal Component analysis [84], do not estimate the most
informative components reliably, when applied on such spectral, high-dimensional
signals. We therefore use a Gabor filter-based approach, proposed in [133] for the
power spectrum dimensionality reduction, that approximates, as shown in [85] , and
[163] , the behavior of the primary visual cortex cells receptive fields. Our proposed
procedure is as follows:

1. Gabor Filters Computation: Here, we analyze the saliency distribution
directly in the frequency domain with a set of oriented Gabor filters[49] that
are described by the function:

G(fx, fy)i,θ = e

−f2y
σ2y (e

−(fx−f0)
2

σ2x + e
−(fx+f0)

2

σ2x ) (3.5)

where f0 is the central frequency chosen to be 0.3 cycles/pixel, and σx, σy are
filter parameters. As Ri is already a multi-resolution signal, and saliency is
already created at different scales, the same central frequency f0 is selected
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for each scale i. For each band i, we considered 8 orientations by changing the
value of θ to rotate the components in equation (3.5).

2. Spectral Sampling: We have therefore a set of 24 (8 orientations x 3 reso-
lutions) filters that sample the spectral residual in the following way:

F (fx, fy)i,θ = R(fx, fy)i ·G(fx, fy)i,θ (3.6)

3. Saliency Components: Why Gabor filters? The convolution between the
saliency map at a given scale and the filters (a product in the frequency do-
main) at different orientations gives us a set of “saliency components”, that
represent different points of view about the saliency shape matrix, “shots” of
its discriminative regions, according to the orientation of the filter considered.
We can obtain the pixel-domain equivalentM(x, y)i,θ of the frequency-domain
samples in Eq. (3.6), by applying the IFT to the samples F (fx, fy)i,θ. As
shown in Fig.3.9, they represent fundamental, highly informative components
of the saliency shape.

4. Averaging Operations: We now want to summarize, in a shorter index,
meaningful information about the spatial distribution of such saliency com-
ponents. We use a simple approach suggested in [164] for the downsampling
of the saliency map: the local averaging. We divide each of the 24 saliency
components into 16 non-overlapping sub-regions. We then consider each block
as a sample and take the average value of every image block, and we store it
in the image feature vector, as in equation (3.7):

V k,l
i,θ =

1

16
i2

(k+1)i
4
−1∑

x= 1
4
ik

(l+1)i
4
−1∑

y= 1
4
il

M(x, y)i,θ (3.7)

where k, l represent respectively the horizontal and vertical block indexes,
and i × i is the saliency component resolution. We therefore obtain a 384-
dimensional (16 blocks x 24 components) image index.

5. Saliency Moments: In order to make the feature more robust, and similar
to the Color Moments feature [175], we interpret each saliency component as
a probability distribution and calculate 2nd and 3rd moment, namely stan-
dard deviation and skewness, on the whole matrix M(x, y)i,θ, for all the i
and θ considered. The result is a 48-dimensional vector storing the higher
order statistics, that we concatenate with the previously computed index V k,l

i,θ

obtaining a descriptor composed of 432 elements: the SM descriptor.

3.3.3.3 The Color Contribution

The proposed approach, until now, receives as input a single-channel, grayscale
image and builds a descriptor based on the luminance values only.
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We add the chromatic information in our descriptor by concatenating a summarized
representation of the dominant colors in the image, following an approach similar
to the one in [175]:

1. We transform the RGB input image (at resolution i=128) into an opponents-
based color space, namely the L*A*B*. The choice of this color space is again
due to its biological plausibility: the LAB system is built to map the percep-
tual distances between colors, as explained extensively in [132]. Moreover, the
channels A and B represent colors along the green-red and yellow-blue oppo-
nents, similarly to how the visual cortex gathers the chromatic information.

2. We perform averaging operations over subwindows obtained from the A and
B channels.

3. Similar to the SM approach, we then calculate 2nd and 3rd order statistics on
the global image matrix.

3.3.4 Experimental Validation

In this Section we present a set of experiments that we carry out to test the dis-
criminative power of the Saliency Moments descriptor for semantic analysis.

3.3.4.1 Experimental Setup

We compare our Saliency Moment Descriptor with the most widely used global
features for MMIR, by building MMIR systems for two different categorization tasks:

• Scene Categorization, for which we use two datasets, namely outdoor scene
categories [133] and indoor scenes [143].

• Object Recognition, using the Caltech-101 dataset [41].

In particular, we consider for comparison the Gist descriptor [133], the wavelet
feature [187], the Color Moments feature [175] and the Edge-Histogram based de-
scriptor [200]. We also experiment with the two different versions of our image
signature to test the influence of color opponents for scene and object recognition,
by computing both SM and CSM and comparing them to the other descriptors (
respectively, Saliency Moments and CSM in Fig. 3.10). For all datasets, for all
features, we learn a model of the feature space using SVM with polynomial kernel
of degree 2. For all the datasets considered, we use the same training/test setup as
our baselines.

Moreover, we also show the effectiveness of SM for Concept Detection for
Video Retrieval, by embedding it in a high-level feature extraction system tested
on the TrecVID 2010 [168] dataset. We use as baseline the standard TrecVID
baseline [153], as described in Chapter 2, and add the contribution of SM by linear
fusion, computing the improvement in terms of mean average precision.
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Moreover, we also present the results for our participation to the TrecVID 2012
Evaluation Campaign [128], where we presented a set of runs for the semantic Index-
ing Task, including one based on the addition of Saliency Moments to the baselines
of features (similar to the one we use for TrecVID 2010).

3.3.4.2 Experimental Results

Outdoor Scene Categories
The first dataset considered is the 8-categories outdoor scenes dataset [133].
Results in Fig. 3.10(a) show that, despite its lower dimensionality, our visual
attention-based feature outperforms the Gist descriptor, and that adding a coarse
representation of the dominant colors further improves the prediction accuracy. By
adding some light-weight local information, our hybrid descriptor outperforms the
pure global descriptor while keeping similar efficiency.

Indoor Scene Categories

The second group of experiments is based on a dataset that has been first proposed
in [143] as a new, unique database for indoor scene recognition. Despite the
challenging task, results shown in Fig.3.10(b) confirm the discriminative power of
saliency for image description: the CSM feature brings an improvement of 33%
over the Gist descriptor, which is already substantially outperforming the other
existing global descriptors.

Caltech-101

We evaluate also the effectiveness of our approach for object recognition on the
Caltech 101 database. Despite from its limited amount of highly cluttered images
and its lack in pose variation, we chose this database because it is one of the most
diverse multi-object set of labeled images publicly available. Same trend can be
spotted in the results for this task, with the SM obtaining again very good results
on the average accuracy with the SM (+35% compared to the Gist descriptor and
+21% compared to the edge histogram feature). Fig.3.10(c) shows the classification
results for the proposed set of descriptors.

TrecVID 2010

We show here the results for the TrecVID 2010 semantic indexing task. Results in
Fig. 3.10(d-e) show the per concept average precision and the MAP. By adding a
new, discriminative source of information, namely the Saliency Color Moments, we
introduced complementary knowledge on the image representation. Therefore, by
combining the concept score of the five features with the saliency-based classifiers
output we improve significantly the performances of the final retrieval framework.
In particular, global scene concepts such as Classroom, Cityscape or Nighttime bene-
fit from the introduction of SM in the pool of traditionally used features for this task.
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TrecVID 2012

In Fig. 3.10 (f) the performances (MAP) of the various systems submitted by
EURECOM for the light-SIN task of TrecVID 2012 edition are presented. In
2012, 15 out of 50 concepts were evaluated for this light task. Our run Eure-
com_Videosense_SM is built on top of the baseline Eurecom_Baseline, by adding
two new descriptors including the Saliency Moments descriptor. With this run,
our system is able to retrieve the videos of this challenging task with a MAP
improvement of more than 28% compare to the baseline. This is again due to the
complementarity brought by our saliency-based descriptor compared to existing
global and local descriptors for MMIR.

3.4 Summary and Future Work

We have proposed a novel approach to model low-level features for scene recogni-
tion. We developed hybrid descriptors, by building holistic, coarse-grained repre-
sentations of the image using saliency information. We ensured both efficiency and
discriminative power by embedding some locally-parsed information in a fast, low
dimensional, global description of the image. We created two different descriptors:
Saliency-Aware Color Moments (SACM) [147], that uses the local saliency dis-
tribution as a measure to weigh the color moments index, resulting in a color feature
that gives more importance to more informative image subregions; Saliency Mo-
ments (SM) [148], where we first extract a saliency map, namely a grayscale matrix
highlighting the perceptually salient regions, we analyze its shape with Gabor filters,
and finally extract from the obtained samples mean and higher order statistics. In
both cases, we showed that the resulting hybrid descriptors outperform the state-
of-the-art global descriptors for scene recognition. As mentioned in Sec. 3.1, the
analysis in our work relies on a spectral saliency detector [68]. It was not in the aim
of this work to compare different visual attention computational models for image
indexing and retrieval. However, both SACM and SM performances could be further
improved by using more complex saliency measures, e.g. the model proposed by Itti
et al. in [73].

An idea from the future extensions of SACM comes from the observation that,
similar to Color Moments, many of the global descriptors included in a CBIR systems
are computed on a window basis (e.g. Wavelet Features [187] or the Edge Histogram
[200]), in order to add some spatial constraint in the holistic representation of the
image. Therefore, a possible extension of the Saliency-Aware Color Moments may
involve the use of our informativeness measure to boost other window-based global
features (e.g. the MPEG Edge histogram [200]).

On the other hand, despite the spectral sampling and the moments extraction,
Saliency Moments is still quite high-dimensional compared to traditional low-level
features (e.g. Color Moments and Wavelet Feature). Therefore, part of the fu-
ture work to improve the SM descriptor will focus on more effective dimensionality
reduction techniques. Another related topic to be explored is the chromatic com-
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Figure 3.10: Performances on the test set for the different descriptors. Accuracy in
scene recognition on the (a) outdoor scene dataset, (b) indoor scene dataset and in
object recognition on the (c) Caltech-101. (d) mean average precision (MAP) and
(e) per-concept average precision (AP) for TrecVID 2010: we show the improvement
brought by adding Saliency Moments to the pool of visual descriptors (f) ranking
of the participants to the TrecVID 2012 semantic Indexing task

ponent. By adding a simple, low dimensional representation of the dominant color
we achieved very good performances for scene recognition, while the CSM in the
Caltech 101 dataset performs slightly worse than SM. The proposed color contri-
bution that we merge with our saliency-based descriptor is just one of the many
biologically-plausible possibilities, and our future research will study how to relate
the dominant color extraction with the visual attention information.
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Figure 4.1: Our marginal-based aggregators for image recognition.

In this Chapter we propose three different methods for the aggregation of local image
descriptors, and we prove their effectiveness for Scene Recognition and Video Retrieval.
Unlike traditional techniques that aggregate the local descriptors using multivariate
modeling approaches, the peculiarity of our pooling algorithms is that they stem from
marginal analysis. We first aggregate the local descriptors through their marginal
approximations, and then build a kernel that can process the marginal approximations
and infer a multidimensional probability. Finally, we use Copula structures to derive
a real multivariate probability of the local descriptors arising from pure marginal
information, without involving therefore expensive multivariate modeling techniques.
We show that the resulting aggregated signatures are much more efficient and very
discriminative compared to the existing methods for feature encoding and pooling.

We have seen how low-level global features can be used to describe the visual
content and automatically detect semantics by using supervised learning techniques.

In some cases however, pixel-level features cannot be used directly as input
for traditional learning frameworks. In general, this occurs when performing local
analysis with descriptors such as such as SIFT, HOG, or SURF[105, 31, 6].

The reason for this issue is that learning machines typically need as input image
features that:

• has low dimensionality
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• has fixed dimensionality

However, in local analysis, multiple Local Image Descriptors [105, 31, 6] (LIDs),
are computed to describe the surrounding of either (I) interest points [44] or
(II) densely sampled points [42]. When dealing with interest point description
(I), a variable amount of local descriptors, or keypoints, are extracted from each
image, making therefore the direct extraction of a fixed-length, global image
signature unfeasible. Likewise, in case of densely extracted local features (II), the
mere concatenation of the descriptors from a dense fixed grid would result in a
redundant, high-dimensional, untreatable feature, while learning machines need
low-level, informative features. In both cases, if we want to build a discriminative
signature representing the image content based on the LIDS analysis, we would
need a way to reduce the high dimensional data from local features into a smaller
set of values of fixed length.

The General Solutions for Feature Aggregation

In order to describe the behavior of the image LIDs while preserving information
and properly describe the image content, we cannot use simple operations for
dimensionality reduction such as averaging neighboring LIDs values, because
neighboring LIDs can carry very different values, since they describe different
regions of interest in the image, and averaging them would mean canceling their
discriminative power. In order to build a fixed-length signature for each image, the
global behavior of the image LIDs needs to be captured: we want a feature describing
which are the values the LIDs in every image, and with which magnitude,. We need
to model the LIDs probability distribution. The general solution is therefore to
aggregate the local descriptors into a new, statistically relevant, low dimensional
image signature that gathers their properties and reflects their joint probability
distribution function (PDF).

In general, this stage of the image analysis chain is performed in two steps: first,
the local descriptors of a training set are encoded through multivariate modeling
techniques into a universal model representing the global, natural keypoints distri-
bution. For a new image, keypoints are then pooled into a fixed length signature
based on their behavior with respect to the universal model (see Sec. 4.1.2 for
further details).

Feature aggregation is an important level of processing in MMIR, since the final
image signature must retain as much as possible all the amount of rich information
stored in the locally extracted descriptors, and avoid as much as possible information
loss during the aggregation process. Several works have tackled this problem under
different point of views. For example, the Bag of Words model in its different ver-
sions [30, 129, 98] uses Vector Quantization (encoding step) and multidimensional
histogram counting for keypoints multivariate PDF estimation (pooling step). Sim-
ilarly Fisher Vectors [79] compute the distance (pooling) between the image PDF
and the global probability distribution (previously encoded) of the keypoints through
Fisher Kernels (see Sec. 4.1.2 for further details).
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Feature aggregation is generally used in pure semantic analysis, and in particular
for local features. On the other hand, the features used for aesthetic analysis are
more similar to global features, and they can therefore be directly used as input for
the Level 2 of the MMIR pyramid, i.e. the learning step. We will therefore focus
our attention on the creation of new local features aggregators for semantic MMIR.

Major Issues and Our Contribution

Despite their good performances in image recognition and retrieval, one of the
major drawbacks of all these approaches is their complexity and computational
cost, for both clustering high dimensional feature space (determined by the
descriptors distribution) and visual words assignment. Moreover these types of
aggregators, since they base the image LIDs aggregation on a universal model
(such as a codebook or a mixture) , do not directly reflect the real PDF of the
image keypoints, dealing to a decrease of the discriminative power of local image
descriptors.

In this chapter we present a substantial set of contributions to the improvement
of the feature aggregation process, both from efficiency and an effectiveness point
of view. While generally the pooling algorithms [79, 30, 78] aim to model the mul-
tivariate probability of the local image descriptors, we present a set of aggregators
that stem from marginal, monovariate descriptor analysis. With our marginal-based
approaches [146, 149, 152], we overcome most of the problems related to traditional
feature pooling, such as low computational efficiency and loss of informativeness.

We test the effectiveness of our pooled descriptors for scene recognition and
video retrieval, and we show that our monovariate analysis is a new, complementary,
discriminative and efficient cue for automatic visual analysis.

In the following, we will first in Sec. 4.1 recall some principles of probability
theory, useful for understanding how LIDs are treated, and then give a detailed
introduction of the statistical analysis performed by the existing pooling methods.
We will then provide a high-level overview of our contributions, and stress the
differences and the complementarities with the existing approaches, see Sec. 4.2.
We then detail the theory behind MEDA (Sec. 4.3), MultiMEDA (Sec. 4.4) and
COMS (Sec. 4.5), namely our three proposed algorithms.

4.1 An Introduction to Feature Pooling: Statistics and
Existing Approaches

In this Section, we will first introduce some notations and definitions, looking at the
statistical properties of the image keypoints, by analyzing them as random vectors.
We will then see how the most common feature encoding and pooling methods apply
these principles and process the keypoints in order to obtain a fixed length image
representation.
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4.1.1 LIDs as Random Vectors

Generally, in local image analysis, for an image I we extract a set ofm k-dimensional
local image descriptors, or local features, or keypoints using a variety of existing
methods from local image analysis [105, 6, 31]:

x(I) = {xij}
i=1,...,m
j=1,...,k

where k is typically 36 or 128 dimensions.
In order to understand the statistic properties of the image LIDs, we have to

look at the descriptors {xij} as realizations of a general random vector x. A random
vector is a set of correlated or uncorrelated random variables that share the same
probability space. In our case the random variables are represented by the LID
components xj . A random vector of length k generates a probability in the Rk
space,

p(x) = p(x1, . . . , xk) = P (X1 = x1, . . . , Xk = xk)

We will call this measure joint distribution, or multivariate distribution.
Depending on the relations between the components, the multivariate PDF can

be estimated in two ways. When components are independent, meaning that it
does not exist a variable in the vector influencing the probability of the others, the
multivariate probability p(x) can be computed with the product of their probabili-
ties, namely:

k∏
j=1

pj(xj). (4.1)

When components are correlated, the joint PDF needs to be estimated by looking
at the behavior of the random vector in the k-dimensional space. There are several
options for multivariate density estimation. Parametric methods assumes the vector
distribution follows a specific density model such as Multivariate Gaussians or Gaus-
sian mixtures [135]. Non-parametric methods such as Vector Quantization [4] try to
model the global PDF without assuming any knowledge on the data distribution.

The multivariate distribution can give a lot of information regarding the
behavior of the random vector. In our local image analysis case, the real shape
of the LIDs PDF p(x(I)) can give substantial discriminative information regarding
the image content, representing the likelihood that the LID components take at the
same time a given combination of values. However, the estimation of the shape of
the joint PDF of a random vector is a non-trivial problem for high values of k.

On the other hand, in a random vector, the monovariate distributions of each
component of the vector are the marginal distributions, and they represent the like-
lihood of each component to take a value in the R1 space, namely

pj(xj) = P (Xj = xj)

Estimating the marginal probabilities of a random vector is pretty straight-forward,
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Figure 4.2: Bag of Words and Fisher Vectors: the state of the art in feature pooling.

since there is no need for operation in the Rk space, for example using histogram
counts [176] or kernel density estimation [165]. The marginal distributions pj(x

(I)
j )

of local keypoints of an image I represent the behavior of each component of the
LIDs: which values in its range are the most probable? They carry discriminative
information about the single components, but they lack of describing the multidi-
mensional properties of the LIDs.

4.1.2 The Major Existing Feature Aggregators and Their Statistic
Analysis

While the marginal modeling of LIDs distribution has rarely been explored for se-
mantic feature extraction, the estimation of the multivariate distribution of image
LIDs has been extensively studied in the Multimedia Indexing field. The idea is
to represent the content of an image through the shape of the distribution (or an
approximation) of its LIDs, building discriminative signatures that can be used for
learning and classification. But how is the LID information gathered so that their
distribution in the Rk can be properly approximated?

In general, LIDs aggregators do not directly represent the distribution of the im-
age keypoints, because this would lead again to computationally expensive, variable
length, high dimensional image signatures, that could not be used as input for the
learning machines. Traditional methods for LIDs aggregation approximate the joint
PDF of the image keypoints by a 2-step process (see Fig. 4.2.

1. First, a universal shared model u ≈ p(x) of the LIDs space is learnt using
parametric or non-parametric techniques such as vector quantization or Gaus-
sian mixture models. In this step, the LIDs of a training set of images are
encoded into a smaller set of values (e.g. codewords or Gaussian multivari-
ates) representing a universal model of the general behavior of the keypoints
of natural images.

2. For a new image I, the global PDF of their LIDs is then approximated based
on the distribution of the image keypoints given the universal model p(x(I)) =

p(x(I)|u). This is obtained by pooling them (generally, by histogram count
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[30] or, for example, soft assignment [190]) in fixed-length image signatures
that can be easily compared and matched by traditional kernel machines in
the subsequent learning phase in a practical, efficient way.

One of the most popular models for feature pooling is probably the Bag of
Visual Words model (BoW) [30, 129, 98]. In this model, a codebook c of Nbow

visual words is first generated by vector quantizing the LIDS of a training set of
images (encoding step), by using various clustering techniques such as (kmeans
[30], random forests [122], lattice-based [185]. For a new image, the final Nbow-
dimensional signature is then obtained by approximating each LID to the closest
visual word, and then pooling them in the final BoW vector. This is achieved by, for
example, counting the resulting visual words occurrences, either without retaining
spatial knowledge [30], or by building a spatial pyramid [96], or using methods like
linear coordinate coding [208], Sparse Coding [206] and Local Coordinate Coding
[194].

Given the partition of the k-dimensional space determined by the univer-
sal codebook c, the BoW signature approximates p(x(I)), the joint PDF of the
LIDs in a new image, with their joint probability given the codebook c, namely
pbow(x(I)) = p(x(I)|c) )see Fig. 4.4 (e)). A particular type of Bag of Words is the
(Fig. 4.4 (d)) Lattice- based BoW [185]. This approach builds a vocabulary of
k-dimensional hypercubes generated through the monodimensional quantization of
each dimension of the LID (without involving therefore any clustering or operation
in the high-dimensional space) in a fixed number of Nlat bins, and then reduce such
vocabulary clat according to the informativeness of the resulting codewords. Even
if this approach does not involve clustering, the size of the resulting codebook is
exponential with the number of LID components (O(Nk

lat)), implying therefore to
expensive searches and storage costs for the training phase.

A generative-discriminative approach for LID aggregation is the one of Fisher
Vectors [79]. In this approach, the distribution of the image LIDs is approximated
by first estimating the global LIDs PDF with a Gaussian Mixture Model [135] arising
from the LIDs of a training set (encoding step), as shown in Fig. 4.4 (f). For each
image, the gradient of the log likelihood of the set of image LIDs with respect to
the parameters λ of the GMM is then computed using Fisher Kernels [76]. Finally
the concatenation of the resulting partial derivatives is sorted in the final signatures
(the Fisher Vectors) that model the probability of the image LIDs given the GMM
parameters, namely pfv(x(I)) = 5λ log p(x(I)|λ).

As said, both approaches (BoW, Fisher Vectors) represent the joint probability
of the image LIDs indirectly: they describe the behavior of the LIDs in an im-
age given a universal model of the global LIDs space, obtained through operations
(generally very expensive) in the k-dimensional space, such as clustering or mixture
modeling. Despite its proved accuracy, this type of representation leads to a lack
of discriminative power for complex classification tasks, and to high computational
complexity in the training phase.
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4.2 Our Approach: Marginal Modeling for Feature Ag-
gregation

Given the properties and the issues of the most common feature aggregators, we pro-
pose in this Chapter a set of LIDs aggregators that differ significantly from the most
common methods for feature pooling. We present three alternative and complemen-
tary approaches that achieve a global representation of the image LIDs behavior
based on the marginal analysis. In contrast to the tendency of LIDs aggregators to
use multivariate analysis approaches for the joint PDF approximation of the im-
age LIDs p(x(I)), in our models [146, 149] we exploit pure monovariate analysis for
both unidimensional and multidimensional probability estimation, leading to more
efficient and effective aggregated signatures for image categorization.

We can see our three contributions as three stages towards the complete accu-
rate modeling of the multivariate LIDs PDF. Based on monovariate analysis, we
first build a feature approximating the marginal PDF of the image keypoints, then
we model their independent joint probability based on marginals, and finally their
multivariate probability based Copulae structures. As a matter of fact, our methods
for feature encoding and pooling can be summarized as follows (see Fig. 4.1).

1. We first introduce the MEDA [146] signature (Marginal Estimations for
Descriptors Aggregation). In this approach, the shared model u is a set of
n unidimensional bins (“letters”) per dimension, obtained by quantizing the
marginal distribution of each component of the LID The final image represen-
tation is a k × n histogram collecting the occurrences of such letters at each
dimension. The MEDA signature represents therefore a concatenation of the
approximated marginal distributions of the image LIDs components.
This approach is very efficient, because it performs the vector quantization in
a 1-d space, eliminating the correlation between the LID components by ana-
lyzing their distributions independently. However, by doing so, MEDA brakes
the relations between the LID components, losing a lot of useful information
regarding their multidimensional bounds.

2. In order to partially recover from this loss, in [149] we introduce the Multi-
MEDA kernel, that represents a first attempt to improve the MEDA analysis
by adding some multivariate information. The idea is that, if we assume that
the LIDs components are independent, we can estimate their joint probabil-
ity by multiplying their marginals (see Eq. 4.1). Since the actual Cartesian
product of the marginal approximation would be computationally infeasible,
we embed this process in a kernel for Support Vector Machines, that we name
MultiMEDA. By a quick mathematical formulation, we kernelize the multipli-
cation of the marginal values, generating a multidimensional probability out
of the MEDA marginal approximations directly in the learning step.
Even if MultiMEDA improves the MEDA discriminative power, it is still based
on the assumption that the LIDs components are independent and that their
marginals are uncorrelated. We need therefore to find a way to recover the
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actual multidimensional information arising from the relations between the
LIDS, and model the real multivariate PDF without using a universal multi-
variate model.

3. Given these observations, we present the COMS signature, (COpulae and
Marginals). Our idea is to use Copula Theory [127] to build a complete mul-
tivariate analysis of the LID space and generate a feature vector out of such
analysis. Why Copulae? Copulae are statistical tools for linking the marginals
of the variables in a random vector with their multivariate joint distribution,
modeling separately marginal distributions and their dependence structure
(the Copula). We use Copulae to analyze the LIDs multivariate density by
using marginal distributions only, in an efficient and statistically meaningful
way. Given the marginals approximations in MEDA, for each image we model
the corresponding Copula structure, that we store in the Co-MEDA vector,
and we couple it with its MEDA descriptor, generating the COMS signature.
With COMS, we finally achieve a complete representation of the real distribu-
tion of the image LIDS, based on pure marginal analysis, without referring to
any k−dimensional universal models such as codebooks or Gaussian mixtures.

We test our proposed feature aggregators with MMIR system for scene recogni-
tion and video retrieval, and we show that such methods are not only very efficient,
but they also lead to very discriminative image signatures. Moreover, given that the
type of probabilistic analysis we perform on the LIDs differs significantly from the
existing methods for feature pooling, when we combine our methods with BoW or
Fisher kernel we introduce a new, complementary type of information regarding the
keypoints distribution, achieving great improvements on the global performances of
the visual analysis systems considered.

4.3 Marginal Modeling: Visual Alphabets for Descriptor
Aggregation (MEDA) Model

In this Section, we describe our first idea for LIDs aggregation based on marginal
analysis.

We present here a simple, fast and effective algorithm for local feature quanti-
zation that we name MEDA (Marginal Estimation for Descriptors Aggregation).
This approach provides a different way of aggregating local descriptors that does
not involve any clustering or operation in the high-dimensional space, leading to an
image signature that requires much less computation and provides better accuracy
compared to traditional BOW models.

Similar to the BOW model, a k-dimensional local invariant descriptors are used
to describe a set of interest points in the image. While the general approach is
to then perform LID quantization in the k-dimensional space, the basic idea of
our approach is to model the k-dimensional space by the k marginal distributions
approximations.
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Figure 4.3: MEDA: a histogram representing the component distribution over uni-
dimensional bins.

This is obtained with an aggregation process that involves (see Fig. 4.3 for a
visual explanation) two steps:

1. (encoding)we quantize the range of each dimension of the LID into n bins,
defining a reduced set of possible values that each of the k components of a
described point can take , leading to a universal codebook cmeda = {cjmeda}

k
j=1

for each dimension composed of 1 − d words (letters) obtained through one-
dimensional marginal quantization.

2. (pooling process) given an image and its set of descriptors, we count the fre-
quencies of the computed bin values, and we collect them in a k×n histogram,
i.e. the MEDA image signature. Therefore, the marginal, i.e. the probability
distribution of each component of the LID of a new image is approximated by
a histogram representing its frequency over unidimensional bins. The resulting
MEDA vector represents the concatenation of approximations of the marginal
distributions: pmeda(x(I)) = ∪kj=1pj(x

(I)
j |c

j
meda), see Fig. 4.4 (a).

Following the textual metaphor of the BOW, our method defines, for each com-
ponent of the LID, a set of possible 1-d visual letters, namely the bin values; the
collection of such letters is a visual alphabet that allows the mapping of an im-
age into a fixed-length attribute vector. We present and compare three different
methods to define the values in the visual alphabet, based on different types of
range quantization, namely uniform quantization, quantile-based quantization and
an entropy-based quantization we perform using a decision tree.

MEDA vectors carry therefore pure marginal information regarding the LIDs
distribution, in contrast with existing approaches that model pure multivariate in-
formation. With MEDA, we therefore bring new knowledge about the LIDs distribu-
tion in the local image analysis, estimating a different, complementary probability,
pmeda 6= pbow, pfv. We indeed tested the performances of MEDA for semantic anal-
ysis not only by considering it as a stand-alone descriptor, but also by combining
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Figure 4.4: Comparison between the existing LID aggregators and our Copula-
Based approach, based on the type of probabilistic analysis they perform on the
image LIDs.

it with multivariate LIDs aggregators such as BoW, showing its effectiveness and
complementarity for a variety MMIR tasks.

In the following, we will first present a detailed implementation of the MEDA
model (Sec. 4.3.1) for local features quantization; we then explain, in Sec. 4.3.2,
a variety of methods to approximate the range of the components. Finally, in Sec.
4.3.3 we will test the MEDA model for semantic analysis by embedding it into MMIR
systems for scene recognition and concept detection for video retrieval.

4.3.1 The Signature: Marginals Estimation for Descriptors Aggre-
gation

We propose an image representation that collects in a histogram the frequency of
each component of the locally extracted vectors. While the BOW model quantizes
the local features in a multi-dimensional space (words) determined by the descriptor
length, here the quantization is performed in a 1-d space, for each component (letter)
of the LID.

As in BoW, we start our aggregation process with an encoding step. We consider
a set of LIDs each image I of a training set, namely x(I) = (xi1, . . . , x

i
k) , where each
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element xij represents the value of the descriptor xi at position j, j = 1, . . . , k in
image I.

After normalization, each element xij can take a value in the finite interval R =

[−1, 1], which covers a very large set of possible discrete values a1, a2, . . . , am. The
idea here is to quantize R by mapping it into a smaller set of n discrete values

βj,b ∈ R, b=0, . . . , n−1, n<m

corresponding to a set of bins cjmeda = binj,1, . . . , binj,n−1. Such values correspond
to our alphabet, defined for each dimension of the LID:

binj,b=[βj,b, βj,b+1[ (4.2)

(+1 is added to the last bin).
By doing so, each element in an image can be represented by the index of corre-

sponding bin binj,b : βj,b≤xij<βj,b+1 . The choice of the bin boundaries values will
be discussed in the next Section.

We have therefore defined a set of shared visual letters (our universal model)
that can be used to approximate the marginal distribution of the jth element of the
descriptors in the image. We can now perform the pooling, namely represent the
image as the collection of the number of elements xij , ∀xij ∈ I that fall into each of
the identified bins .

The resulting signature for the image I is a vector

v(I) = (v1,1, v1,2, . . . , v2,1, v2,2, . . . , vk,n) (4.3)

with vj,b = #{xi : xij ∈ binj,b}, ∀xij ∈ I,1
The MEDA vector in Eq. (4.3) can be seen as a concatenation of k n-dimensional

vectors {vj,·} = {p(x(I)
j,1 ), . . . , p(x

(I)
j,n)}. Each vj,· represents the approximation of the

marginal p(x(I)
j ) of the jth component of the LIDs in image I, given the probability

p(x
(I)
j,b ) at each bin binj,b .
The dimension of the MEDA signature is therefore n× k.

4.3.2 Alphabet Construction

How to define the boundaries of such bins, our letters, so that the marginal of the
jth component, ∀j is properly estimated? In this section we tackle this issue using
three different approaches, namely:

1. uniform quantization: the range is divided into n equally spaced bins, see
Sec. 4.3.2.1

2. quantile-based quantization: the range is divided so that the probability
of a sample to fall into a bin is equal for all the n bins in the quantized space,

1#{·} is a function that counts the number of the elements that satisfy the condition in brackets.
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Figure 4.5: Three versions of the MEDA alphabet: (a) uniform, (b) quantile-based,
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see Sec. 4.3.2.2

3. tree-based quantization: for each bin, the boundaries are learnt by mini-
mizing the overall entropy given a progressively smaller interval of R, as shown
in Sec. 4.3.2.3. Each of these methods leads to a different version of the MEDA
histogram, that will be evaluated in Sec 4.3.3.

4.3.2.1 Uniform Bins

The simplest approach to define the bin boundaries over the data range is the
uniform quantization. The advantage of such a simple approach is that it does
not require prior knowledge of the marginal distribution of the components. As
every component of the LID can take values in the same interval [-1,1], the resulting
alphabet is an identical set of letters for every j. The range R is divided into n
equal intervals of length 2/n, and the set of bins valid for every component (see Fig.
4.5(a)) is defined as:

binb = [−1 +
2b

n
,−1 +

2(b+ 1)

n
[

4.3.2.2 Quantile-Based Bins

Here we try to adapt the width of each bin to the probability distribution of the
component over the data range. When computing quantile-based bins, we generate
a simple universal model that takes into account the general marginal behavior of
each component of the LID. We will then use such general model to define the
specific behavior of the image LID.

This process requires a learning phase in which we identify the probability of the
jth component of the descriptors to take the value ar, r = 1, . . . , ν, with ν >> n in
the range R, (see Fig. 4.5(b)).

We need a dataset of N images over which we collect W described points xl,
l = 1, . . . ,W ; we can then define the marginal:

p(ajr) = #{xl : xlj = ar}
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and the cumulative probability

P (xlj≤ar) =
r∑
s=1

p(ajs)

of each component given all the LIDs in the training set.
We want now each component xlj to be equally probable for all the bins in

the range: we need therefore to find those values in the interval for which p(xlj ∈
binj,b) = W/n for all b, being

∑
p(ajr) = W . The final set of bins is defined as:

binj,b=[ajr : P (xlj≤ar) =
bW

n
, ajr : P (xlj≤ar) =

(b+ 1)W

n
[

4.3.2.3 Entropy-Based Bins

We propose a partition of the data range into a set of unbalanced bins, selected
based on the minimization of the overall entropy. Here again we need a learning
phase on a training set of N images and a total of W keypoints xl, l = 1, . . . ,W but
in this case, we perform a supervised search in order to find the best boundaries for
our bins.

We build, for each position j of the LID, a decision tree T j , with n splits built
in n iterations, that progressively learns the boundaries of each binj,b.

Each node T j(t), at depth T jd (t) of the tree considers the set of xlj that take
values between T j0 (t) and T jend(t). The tree growing starts from the root node
T j(0), corresponding to the whole set of xlj ∈ R and, at each step, finds the value
θjt in R for which the resulting partition of the data has the minimum entropy, i.e.
the optimum bin boundary.

If we assume the dataset is categorized in c classes y1, .., yc, the general entropy
of the data for a split ar ∈ R is:

H(y|ak) = −p(xlj<ar)
c∑

p=1

p(yp|xlj<ar)log(p(yp|xlj<ar))

−p(xlj≥ar)
c∑

p=1

p(yp|xlj≥ar)log(p(yp|xlj≥ar))

with p(yp|xlj<ar) and p(yp|xlj≥ar) being the probability of a component belong-
ing to an image labeled with category yp to fall into the low/high bin generated by
the split.2

2

p(yp|xlj<ar) =
#{xl

j :x
l
j<a∈yp}

#{xl
j :x

l
j<ar}

; p(yp|xlj≥ar) =
#{xl

j :x
l
j≥a∈yp}

#{xl
j :x

l
j≥ar}
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The following is the pseudo-code that summarizes how to grow a decision tree
to learn the alphabet for the jth component:

Grow_Tree
T j(0) = {root}
repeat
choose unmarked leaf T j(t)
find θjt = arg min

ar
Ht(y|ar), T j0 (t)≤xlj<T

j
e nd(t)

if T (t)jd < max_depth then
T j0 (t+ 1)← T j0 (t), T jend(t+ 1)← θjt {left child}
T j0 (t+ 2)← θjt , T

j
end(t+ 2)← T jend(t) {right child}

else
mark T j(t)

until all leaves are marked
βj,b ← in order tree walk on θjt

Two child nodes T j(1) and T j(2) are created as the result of the split at the first
iteration (see Fig. 4.5 (c)); at the second iteration, T j(1) will find the best split
for the set of elements for which holds −1≤xlj<θ0, while T j(2) will consider those
xlj that lie between θj0 and 1. The process is iterated until the maximum depth
(max_depth) required to identify n bins is reached. Finally, the set of boundaries
θjt found is sorted and the bin values are assigned according to Eq. (4.2).

4.3.3 Experimental Validation

This Section presents an evaluation of the different versions of MEDA as described
in the previous Section. In order to test the discriminative power of our descriptor,
we built an MMIR system based on the MEDA signature in its different versions for
a variety of challenging tasks. We compare accuracy and computational efficiency
of MEDA and BOW on two datasets (indoor and outdoor) for scene recognition.
We then test the effectiveness of the two approaches for concept detection in a video
retrieval system built for the TrecVID 2010 [168] database.

4.3.3.1 Scene Recognition Task

We evaluate the performances of our model for image recognition into two challeng-
ing datasets, for indoor and outdoor scene categorization.

First, we extract the image local descriptors using the PCA-SIFT method
described in [87], which reduces the dimensionality (d = 36) of the original SIFT
(as proposed in [105], with d = 128) by applying PCA on the gradient image
around the salient point. Once the local descriptors are extracted, we aggregate
them using both BOW, by clustering a subset of training images using a standard
k-means algorithm, and MEDA model (we implement the three different versions of
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Figure 4.6: Comparison of performances of MMIR systems based on MEDA and
BOW for (a,b) indoor and outdoor scene recognition and (c) video retrieval with
input SIFT HLD (d) video retrieval with input PCA-SIFT

the MEDA model according to the methods in Sec. 3). For both MEDA and BoW,
we finally use a one vs. all SVM with chi-2 kernel to separate each class from the
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Indoor 67 Dataset Outdoor 8 Dataset

BOW 360 62503 BOW 500 10027
500 86685 720 14429

MEDA
uniform (10× 36) 135

MEDA
uniform (20× 36) 55

quantile (10× 36) 163 quantile (20× 36) 23
tree (8× 36) 401 quantile (20× 36) 23

Table 4.1: Comparison of the computational times (in seconds) for computing BOW
and MEDA in the training phase, for Indoor and Outdoor scenes dataset.

others,. For all the features and datasets, we use the training/test subset separation
of the corresponding baselines. The number of bins of the MEDA descriptor for
each dataset is optimized in the learning phase. As evaluation measure, we use the
average multiclass prediction accuracy.

Experimental Setup

The first MMIR task for which we test the performances of our new MEDA model
is the Outdoor Scenes Dataset.

We use as input to learning machines our 3 different versions of the MEDA
signature.

• MEDA with uniform quantization, with 20 bins per dimension, resulting in a
signature with 20× 36 = 720 dimensions (uniform 20× 36 in Fig. 4.6 (b)).

• Quantile-based MEDA, with 20 bins per dimension, resulting in a 720-
dimensional signature (quantile 20× 36 in Fig. 4.6 (b)).

• Entropy-based MEDA, with 16 bins per dimension, leading to a 576-
dimensional signature, marked as tree 16× 36 in Fig. 4.6 (b).

In order to compare the performances with MEDA, we build BOW signatures of
comparable dimensionality, creating a set of visual dictionaries with 500/720 visual
words (BOW 500/BOW 720 in Fig. 4.6 (b)).
For the second group of scene recognition experiments, we classify the images of
the Indoor Scenes Dataset using MEDA and BOW. We define the following
signatures for this experiment (see Fig. 4.6 (a)):

• uniform 10× 36, MEDA with uniform quantization and 10 bins ;

• quantile 10× 36, quantile-based MEDA with 10 bins

• tree 8× 36, tree-based MEDA with 8 bins.

In order to compare our features with a traditional descriptor for multivariate
LID analysis, we compute BoW signatures with similar dimensionality, based on
dictionaries of 360/500 visual words (BOW360, BOW500 in Fig. 4.6 (a)).
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Results Discussion

As we can see from Table 4.1, the most complex version (tree · × 36) of the MEDA
model is more than 150 times less computationally expensive compared to the
BOW model corresponding to the same feature size.

Moreover, we show in Fig 4.6(a-b) that MEDA is not only efficient, but it out-
performs in accuracy the BOW model by 10% for the Indoor Scenes Dataset and
3% for the Outdoor Scenes.

Despite its simplicity, the BoW model with k-means is an example of multidi-
mensional modeling of Local Image Descriptors. With our results we show that, for
relatively small numbers of visual words, the approximation generated by the mul-
tivariate analysis and the related vector quantization deals to an information loss
and lacks of properly modeling the correlation between the LID components. As
a matter of fact, a simple descriptor such as MEDA, that involves uni-dimensional
quantization only, and that is based on pure marginal approximation, outperforms
BoW for a number of words comparable to the MEDA dimensionality.

4.3.3.2 Video Retrieval Task

For the Light semantic Indexing Task of TrecVID (SIN), participants are required
to build a retrieval system that produces a ranked list of relevant shots ten semantic
concepts. In this Section, we test and compare the MEDA descriptor for this task.

Experimental Setup

For our experiments, we extract SIFT-HLD [105] descriptors with k = 128 and
PCA-SIFT descriptors with k = 36 from the video keyframes (see Chapter2 for
baselines explanation) and quantize them using BOW with 500 words (BOW 500
in Fig. 4.6 (c-d)), as in [153], and MEDA with uniform quantization (uniform in
Fig. 4.6 (c-d)). The number of MEDA bins is optimized per concept in the training
phase. For both descriptors, a set of SVM-based classifiers is trained with chi-2
kernel to detect the concept presence, for each concept. The partitioning of the
datasets in training and test subset is exactly as explained in Chapter 2 for the
baselines.

The concepts score of MEDA and BOW are then linearly fused (fusion in Figg.
4.6(c-d)) to evaluate the effectiveness of the combination of the two approaches. As
evaluation measure, we use the Mean Average Precision.

Results Discussion

Despite its simplicity and efficiency, MEDA achieves retrieval results comparable
with the BOW model, as shown in Fig.4.6(c-d) for traditional SIFT-HLD modeling.
When dealing with PCA-SIFT, where the dimensions represent the projection
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of the SIFT dimensions on orthogonal components, and therefore they are more
informative, MEDA clearly outperforms BOW for the semantic Indexing Task.

The most interesting result here is the improvement we obtain on the BOW-
based retrieval (+25% on the final MAP for 128-d LIDs, +50% for 36-d LIDs) by
combining it with the MEDA-based retrieval. Our technique for descriptor aggre-
gation brings new, complementary information to a traditional BOW model. As a
matter of fact, MEDA calculates the frequency of each component (visual letter),
while BOW calculate the frequency for the whole vector (visual word). MEDA gath-
ers therefore a more holistic property of the image LIDs, counting the occurrences
of each specific characteristic of the LIDs over all the image, without considering the
LID vector as a whole chunk of locally extracted information. This holistic property
of MEDA makes it therefore more suitable for scene and global concept recogni-
tion, rather than local object recognition, justifying therefore the poor results we
obtain with MEDA for some local concepts e.g. Airplane_Flying, compared to the
improvement brought for concepts such as Nighttime.

4.4 Multidimensional Modeling of Marginals: Multi-
MEDA Kenrel

Traditional Kernel:  
JOINT MODELING 

Multi-MEDA Kernel:  
MULTIDIMENSIONAL 

MODELING 

Traditional Kernel:  
MARGINAL MODELING 

MEDA 

BOW 

Complementary 
approaches: 

COMBINATION 

LIDS 

),...,,,( 321 kxxxxx =

Figure 4.7: Multi-MEDA: a kernel over MEDA descriptors for multivariate proba-
bility modeling from marginals

As shown in Sec 4.3, the MEDA approach is very efficient, because it performs
independent vector quantization in a 1-d space, forgetting the correlation between
the LID dimensions analyzing their monovariate distributions only. Nevertheless,
by doing so, MEDA brakes the relationships between the LID components, losing a
lot of useful information for image representation. However, LID vectors arise from
the analysis of an entire image region, and each element in a LID is crucial to define
the surroundings of an interest point. It is therefore important to analyze the real
multivariate information that characterizes those vectors.
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Given these observations, we present here a first attempt to compensate the
loss of information caused by the marginal analysis, by building Multi-MEDA,
namely a new kernel function designed for the MEDA signature, that allows to
model the joint contribution of the LID components in an efficient way. Our Multi-
MEDA kernel models in a linear time the k-dimensional LID space, by deriving a
multivariate probability from the k marginal approximations. With our approach,
we keep as input to the kernel machine the classic, marginal-based MEDA signature,
but we increase its discriminative power by analyzing it under a multidimensional
perspective through the kernel formulation.

The main idea behind the Multi-MEDA kernel is that, since MEDA considers
each dimension of the LID as an independent variable, we can approximate the joint
distribution of the LID components by multiplying their marginal distributions, ac-
cording to Eq. 4.1. However, an image signature supporting such model would
require a k-fold Cartesian product of n-dimensional vectors, namely the multiplica-
tion of the approximations concatenated in the MEDA signature. This would lead
again to an exponentially complex problem (O(nk)), with a codebook of nk elements
and an extremely high-dimensional feature. For this reason, the key aspect of our
approach is that we do not compute explicitly the image signature nor the visual
dictionary, and instead we shift the computation of the multivariate probability in-
side the kernel machine. As a matter of fact, Multi-MEDA is a shift-invariant
kernel that embeds the marginals multiplication, i.e. the Cartesian product
of the marginal approximations. The most important property of our kernel is that
it does not require exponential time to achieve the multidimensional modeling. We
indeed show that the cost of computing the k-dimensional joint probability with the
Multi-MEDA kernel becomes linear with the dimension of the LID and the number
of letters in the MEDA codebook ((O(nk)). Therefore, although MEDA is built to
describe marginal 1-d probabilities, when placing the Multi-MEDA kernel on top of
MEDA signatures, we can reconstruct a model of the LID space that is based on a
k − d multi-variate probability, without needing to quantize the k − d space.

Compared to the models generated by traditional SVM kernels over MEDA sig-
natures, Multi-MEDA represents the LID space under a new, complementary point
of view, as shown in Figg. 4.7 and 4.4. Multi-MEDA allows to explore two spaces
(marginal-based and multidimensional) with the same feature (MEDA). Moreover,
both the MEDA model and Multi-MEDA model are in turn different from the joint
distribution approximation generated by traditional BoW approaches. By introduc-
ing Multi-MEDA, we therefore introduce a new discriminative source of information
regarding the LID distribution, that can be combined with the MEDA and BoW
models, leading to a significant increase (+50 %) of the MMIR performances, with-
out requiring the computation of new LIDs, and without introducing exponential
complexity.

In Sec. 4.4.1 we will look at the novelty introduced by MultiMEDA, explaining
the technical and statistical differences with existing methods. We will then recall
some MEDA principles and look at our marginal-based descriptor from a kernel
perspective (see Sec. 4.4.2). Finally, in Sec. 4.4.3 we will show our kernelized
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solution for marginal multiplication, namely the MultiMEDA kernel, and in Sec.
4.4.4 validate our theory with a set of experimental results.

4.4.1 Peculiarities of The MultiMEDA Kernel

We summarize here the novelty of MultiMEDA compared to similar approaches,
from both a technical and a statistical point of view.

As said, eliminating the correlation between the LID elements with visual al-
phabets can cause losses of precious information for image description. This issue
motivates us to perform a kernel-based analysis on the MEDA signature, that allows
to learn a multivariate model, and that therefore takes into account the relations
between the LIDs components. To our knowledge, the Multi-MEDA approach is
one of the first attempts to improve the MEDA model by focusing on the kernel
properties.

As a matter of fact, the cooperation between LID aggregators and kernels has
mainly been investigated for extending the traditional BoW model. Various steps
of the BoW approach has been improved through the interaction with kernels: a
better codebook generation is achieved in [203] by using the Histogram Intersection
Kernel in an unsupervised manner, while in [51] codebooks are used as free parame-
ters of a Multiple Kernel Learning-based learning algorithm. maji2008classification
swain1991color Lazebnik et al. in [97] use Spatial Pyramid Kernels to add the spa-
tial information in the BoW model learning. The learning step is also improved in
[12] by mapping the image LIDs into a low dimensional feature space, then averag-
ing such vectors to obtain a set-level feature, and finally using a linear classifier to
model the resulting vectors.

Our approach is different from the mentioned approaches because, first of all,
we do not analyze the BoW model, but we extend instead the MEDA model to a
multi-dimensional model through a kernel-based learning. Moreover, although we
generate a model that works on a multivariate probability, the space that we explore
through the Multi-MEDA kernel is statistically different from the space determined
by vector quantization in BoW. What are the reasons of these differences?

MultiMEDA allows for multidimensional probability estimation (Fig. 4.4 (b))
by performing a kernelized Cartesian product of the marginal approximations in
MEDA, assuming independence between LIDs components. The probability gen-
erated by MultiMEDA is therefore pMmeda(x

(I)) =
∏k
j=1 pj(x

(I)
j |c

j
meda). Since the

computation of this multivariate distribution is performed inside the Multi-MEDA
kernel, in our approach we do not need to compute a new visual signature or express
explicitly the shared codebook, and we use instead as input the traditional MEDA
vector.

pmeda and pMmeda are therefore generated using the same feature vector, but
analyzing it with different kernels (traditional RBF or linear in the first case, Multi-
MEDA in the second case). However, while the first one is a 1-dimensional marginal
probability, the second is an actual multivariate probability distribution. Therefore,
with our approach, we allow to construct two different models of the LID space
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using the same input vector. The two models generated represent different sources
of information regarding the position of the examples in the feature space. In this
way, we “feed two birds with one seed”: we explore two, complementary, probability
distributions using one single descriptor.

Moreover, even if pbow, pfv and pMmeda are all multi-dimensional approximations
of the LID distribution, pbow, pfv represent an estimation of the real joint probability,
because they do not assume component independence. On the other hand, pMmeda is
a k-d probability inferred from the set of k monodimensional probabilities in pmeda,
assuming, as in MEDA, that the LID components are independent. We can therefore
say that pbow, pfv 6= pMmeda. MultiMEDA and BoW allow to learn the LID space
with different, complementary approaches. We will verify such complementarity in
our experimental results.

4.4.2 MEDA from a Kernel Perspective

In order to understand the Multi-MEDA approach, we detail in this Section the
kernel perspective of the MEDA signatures, namely how the kernel function is for-
mulated when evaluating MEDA vectors.

What does “kernelized” mean? In MMIR frameworks, kernel machines are used
at Level 3 to learn the input space using as input visual descriptors such as MEDA,
SM, etc. (see Chapter 5 for further details). In the learning phase, the machine
learns how to separate the feature space into two classes.

In order to do so, kernels are used to evaluate similarities between such features
and define an optimal decision boundary, namely a hyperplane in the feature space.

Among the many kernel functions used to model the feature space (e.g. chi-
square, polynomial), the Radial Basis Function (RBF) kernel has been shown to
perform well for image retrieval applications [210].

For two input vectors v and w, the RBF kernel has equation

k(v, w) = exp(−λ||v − w||2).

When MEDA is used in conjunction with a RBF-based classifier, the kernel
function evaluates the differences between the letters frequencies for each pair of
training images I and J . In order to show this behavior, We will use the following
notation:

• for image I, the LIDs are in the set x(I) = {xij} and the MEDA signature is
v = {vj,b}

• for image J , the LIDs are in the set y(J) = {yij} and the MEDA signature is
w = {wj,b}

In order to understand the kernel view of MEDA, in Figure 4.8, we propose a
2-d representation (namely a scenario where the LID has dimension k = 2) of the
MEDA-based feature space. The MEDA vector in Eq. 4.3 can be seen as a set of k
n-dimensional vectors {vj} = {p(xj,1), . . . , p(xj,n)}, j = 1, . . . , n. Each vj represents
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Figure 4.8: Placing kernels on top of MEDA: marginal (RBF/traditional kernels)
and multidimensional (Multi-MEDA kernel) approaches

the approximation of the marginal p(xj) of the jth component of the LEDs in image
I. In the 2-dimensional case, the kernel function of MEDA signatures becomes:

k(v, w) = exp(−λ(
n∑
b=1

|v1,b−w1,b|2+
n∑
b=1

|v2,b−w2,b|2)

= exp(−λ(
n∑
b=1

|p(x1,b)−p(y1,b)|2+

+

n∑
b=1

|p(x2,b)−p(y2,b)|2)), (4.4)

i.e. for each dimension j, the sum over n bins of the squared differences between
the signature values at each bin b.
It is therefore straight-forward to extend such kernel view and consider the real case,
i.e. when k >> 2. In this scenario, the kernel evaluates the marginal contribution
of all dimensions (j = 1, . . . , k) and the previous equation becomes:

k(v, w)= exp(−λ(
k∑
j=1

n∑
b=1

|p(xj,b)−p(yj,b)|2)) (4.5)

As confirmed by the summation of Eq. (4.5) the current formulation of the
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MEDA signature analyzes the marginal distribution of each dimension of the LID
independently, without taking into account the interactions between the components
in the k-dimensional space.

4.4.3 Kernelized Multi-MEDA: Multidimensional Probability Es-
timation From Marginals

As explained before, the MEDA modeling generates a 1-dimensional probability,
while a model based on LID k-dimensional vectors should exploit a multivariate
probability. In the Multi-MEDA model, we derive a k-dimensional probability from
the marginal (1-d) probabilities computed for each dimension of the LID. Since
the computation of such signature would result in an extremely high-dimensional
vector, we shift the multidimensional modeling at a kernel level, embedding the k-d
evaluation of MEDA in a RBF kernel. In this Section, we start from the MEDA
formulation and show its multi-dimensional extension, that we then kernelize to
build the Multi-MEDA model.

Recall that MEDA vector in Eq. 4.3 can be seen as a set of k n-dimensional
vectors {vj,·} = {p(x(I)

j,1 ), . . . , p(x
(I)
j,n)}, j = 1, . . . , n. Each vj,· representing the ap-

proximation of the marginal p(x(I)
j ) of the jth component of the LIDs in image

I.
Having a MEDA vector for each image, we want now to derive a joint probability

by exploiting the combination of the occurrences of all the dimensions. Since MEDA
analyzes each dimension independently, in order to estimate the joint probability,
we can multiply the contribution of the marginals of all components.3

For image I, this would result in a k-dimensional vector determined by the k-fold
Cartesian product of all vectors vj , ∀j. The model codebook would be the Cartesian
product of all the k scalar alphabets, namely the set of hypercubes:

c(1,2,...,k) = c1 × c2 × . . . ,×ck =

= {(β1,1, . . . , βk,1), . . . , (β1,n, . . . , βk,n)} =

. = {(β1,b, β2,d, . . . , βk,e}, b, d, e = 1, . . . , n

Each value of the nk-dimensional signature would be therefore the product of the
occurrences of the unidimensional bins that concur in generating each hypercube:

v(1,b),(2,d),...,(k,e) = p(x1,b) · p(x2,d) · . . . · p(xk,e). (4.6)

The number of hypercubes to consider in such multidimensional formulation of
the MEDA signature is exponential with the number of dimensions of the LID, which
is typically 128 for traditional SIFT [105] vectors or 36 for PCA-SIFT [87]. Treat-
ing such high-dimensional feature, even with a small number of training samples,
becomes impractical with traditional kernel machines. This motivates us to shift

3(P (A,B) = P (A) · P (B) if A,B are independent, see Eq. 4.1)
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this multivariate probability computation inside an RBF-like kernel, and create the
Multi-MEDA kernel.

As proposed for the previous analysis, we start with the 2-d example (k = 2, see
Figure 4.8) and we then extend it to the more realistic k-d case.

When we want to take the Cartesian product of the marginals ( as in Eq. (4.6)
when k = 2) inside an RBF-like kernel, for the two images I and J the formulation
in Eq. 4.5 becomes

k(v, w)= exp(−λ(

n∑
b=1,c=1

|p(x1,b) · p(x2,c)−p(y1,b) · p(y2,c)|2)) (4.7)

Developing the power in Eq. (4.7), we obtain:

k(v, w) = exp(−λ(
n∑

b=1,c=1

p(x1,b)
2 ·p(x2,c)2+p(y1,b)

2 ·p(y2,c)2 −

−2(p(x1,b)· (y1,b)· (x2,b)· (y2,c))))

= exp(−λ(
∑
b

p(x1,b)
2
∑
c

p(x2,c)
2 +

∑
b

p(y1,b)
2
∑
c

p(y1,c)
2

−2
∑
b

p(x1,b)p(y1,b)
∑
c

p(x2,c)p(y2,c))). (4.8)

The trick that allows us to compute Multi-MEDA in a linear time is that, when
extending Eq. 4.8 to the k-dimensional space, the squares of the MEDA elements are
multiplied over all dimensions independently, and the previous Equation becomes:

k(v, w) = exp(−λ(

k∏
j=1

n∑
b=1

p(xj,b)
2+

k∏
j=1

n∑
b=1

p(yj,b)
2−

−2

k∏
j=1

n∑
b=1

p(xj,b)p(yj,b))), (4.9)

which has a complexity linear in k and n O(kn).
This allows us to use directly the original MEDA vectors as input to the kernel-

based classifier, without pre-computing the dictionary hypercubes and the multidi-
mensional MEDA (Eq.(4.6)). Moreover, unlike [185], this product-based formulation
allows us to increase both the number of letters in the 1-d alphabets and the LID
dimension without exponential increase of computation.

4.4.4 Experimental Validation

We test the effectiveness of the kernelized Multi-MEDA on two semantic analysis
tasks, namely scene categorization and video retrieval. We compute MEDA (learnt
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Figure 4.9: Comparison of performances of MMIR systems based on MEDA, Mul-
tiMEDA, BOW and their combination for (a,b,c) indoor, outdoor and large scale
scene recognition and (d) video retrieval

with traditional kernels), BoW and Multi-MEDA models on the input images and
we compare their performances. We use them as stand-alone descriptors and we then
analyze the effects of their combinations, on the two given tasks. In this Section,
we show that our proposed multidimensional modeling achieves good performances
in both the mentioned tasks, comparable with both MEDA and BoW. Moreover,
when we combine Multi-MEDA with the other LID aggregators, we show that it
actually provides complementary information, as hypothesized in Sec.4.4.1, bringing
a significant improvement in our experimental results.

MEDA, BoW, and Multi-MEDA share the same input seed. Therefore, the first
step of our experiments is the extraction of a set of SIFT keypoints. We choose
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for this purpose to extract SIFT-HLD keypoints as defined in the baselines. We
then aggregate them using both BoW, by clustering a subset of training images
using a standard k-means algorithm, and MEDA models (using the percentile-based
technique proposed in [146]). We then learn a model based on each signature using
SVMs with chi-square kernels.

In order to compute the kernelized the MULTI-MEDA, we use the MEDA signa-
tures as input for our RBF-based multidimensional kernel in Eq. (4.9). One major
issue is that the MEDA values are not normalized. Therefore, the products over k
dimensions in Eq. (4.9) result in very high values. This values become the negative
exponent of the RBF kernel, and k(v, w) becomes close to zero. The similarity be-
tween the two vectors cannot be estimated reliably without normalization. In order
to cope with this issue, we normalize the MEDA signature by m/n inside the kernel
formulation. This is because each element in the MEDA vector represents a fraction
(approximately 1/n) of the total number of vectors (m), namely the one that take
a given value in a given dimension. Moreover, instead of taking the product of such
small values, that would bring the exponent to zero, we compute the sum of the log
of those terms. Equation (4.9) becomes therefore:

k(v, w) = exp(−λ(
k∑
j=1

log((
n

m
)2

n∑
b=1

p(xj,b)
2)+

+
k∑
j=1

log((
n

m
)2

n∑
b=1

p(yj,b)
2)

−2
k∑
j=1

log((
n

m
)2

n∑
b=1

p(xj,b)p(yj,b)))). (4.10)

In the following experiments, other parameters or vector quantization models
can be used, but given the statistical difference between the three approaches, the
performances. of the stand-alone models and their combined contributions would
not change significantly.

4.4.4.1 Scene Categorization

For the task of scene categorization, we choose three different datasets, namely
the Indoor scenes database [143], the outdoor scenes database [133] and the SUN
database [205] For every database, for every feature we select an experimental
setup similar to the corresponding baseline , and we look at the experimental results.

Experimental Setup

For the two small-scale databases, Indoor and Outdoor scenes, we compute
quantile-based MEDA and BoW signatures as in Sec. 4.3.3.

For the large-scale SUN database for scene understanding, we compute MEDA
with 20 uniform bins, and BOW with 300 visual words.
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We then use the MEDA vectors as input for 1-vs-all SVM with Multi-MEDA
kernel to compare and combine the performances of the three descriptors. The
predictions resulting from the models based on each of the three features are then
combined with weighted linear fusion.

Experimental Results

Results on scene recognition show that actually the Multi-MEDA kernel models the
LID space in a meaningful and effective way: Multi-MEDA achieves substantially
good results for scene categorization.

Moreover, we can see here some evidences of the complementarity of the MEDA
and MultiMEDA approaches, and their effectiveness for semantic analysis: the com-
bination of MEDA and Multi-MEDA gives an improvement of about 2% for Outdoor
Scenes, 30 % for Indoor Scenes, and 8 % for the SUN database, compared to BoW-
only based classification, without involving any clustering, parameter tuning, or
operation in the high-dimensional space.

Finally, we can observe that MEDA, MultiMEDA and BoW are mutually com-
plementary, by looking at the performances of the three descriptors combined to-
gether: +3% for Outdoor Scenes, +34 % for Indoor Scenes, and 17 % for the SUN
database, compared to BoW-only classification.

4.4.5 Video Retrieval

We use the TrecVID 2010 dataset to test the effectiveness of our proposed approach
in a video retrieval task. In particular, we focus on the challenging Light semantic
Indexing Task (SIN), of TrecVID [168] 2010.

In our framework, we extract 128-length SIFT features extracted from interest
points based on Harris Laplace point detector (SIFT-HLD). From such points we
extract the following signatures:

• BoW with 500 words

• MEDA with a number of bins per dimension that have been adapted for each
concept (typically 10), as in Sec. 4.3.3

We learn models based on BoW and MEDA descriptors using a chi-square ker-
nel. We then apply the Multi-MEDA kernel on top of the MEDA signatures and
compare results with Mean Average Precision. For all the features, we use the same
experimental setup as our baselines.

Results in Fig. 4.9 (d) shows that the kernelized solution that we propose in
this Chapter is a good source of information for semantic MMIR. Multi-MEDA, as a
stand-alone model, brings an improvement of around 13% to both traditional MEDA
and BoW models. The concepts for which MEDA was not performing as good as
BoW (e.g. Bus, Telephones, Airplane_Flying) benefit from the multidimensional
modeling in the learning phase.
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In the TrecVID results we can also clearly notice the complementarity of the
kernelized multidimensional modeling that we propose in this Chapter with respect
to the existing approaches. As a matter of fact, the combination of just two out
of the three models considered for this task gives an average improvement of 30%
compared to using the traditional BoW model only. Moreover, when we fuse the
contribution of MEDA, Multi-MEDA and BoW together we obtain a prediction on
the test set that is 50% more precise compared to traditional aggregators alone.

4.5 Multivariate Modeling of Marginals: Copula Signa-
tures

Mountain 

Opencountry 

Coast 

Forest 

Highway 

Insidecity 

Street 

Tallbuilding 

Figure 4.10: The shape, for different classes, of Gaussian Copula PDF (big plot), CDF and
marginals (small plot) arising from the first two dimensions, , i.e. the most informative, of
the set of PCA-SIFT [87] extracted from the image.

Despite the improvements brought by MultiMEDA towards the complete multi-
variate modeling of the LIDs probability based on marginal analysis, one major issue
with our new kernel is that MultiMEDA stems from the assumption of component
independence. However, we know that the components of traditional LIDs are actu-
ally correlated and the main aim is to model the real multivariate distribution. Our
idea is to build a LID-based feature vector based on MEDA that can compensate
this loss of information and finally reconstructs the LIDs joint density.

How can we model a multivariate distribution given pure marginal information
only? We find here a solution to our problem in the Copula theory. This the-
ory [166] tells us that marginals can actually play an important role in multivariate
modeling. According to Copula theory, the PDF of a k-dimensional random vec-
tor x can be decomposed into k marginal distributions and one Copula function.
While the marginals describe the probability of each variable of the random vec-
tor, the Copula function represents the dependencies between the marginals, and
defines the probability of the vector by mapping the marginal PDF of the variables
to their joint PDF. Such mapping is either pre-defined or calculated based on the
marginal values, without therefore involving computationally expensive multidimen-
sional searches. For this reason, Copulae are generally employed as efficient tools for
multivariate modeling, and widely adopted in financial and medical data analysis.
Here, we apply Copulae to MMIR and LID-based analysis. The main intuition is
that, for an image I, we can fit a Copula with the marginals of the LIDs in I, and
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then describe I according to the resulting PDF shape. Following Copula Theory, in
order to build such representation, we should study separately the LIDs marginals
and their dependencies.

Given these observations, we present COMS (COpulae and Marginals Sig-
nature): a Copula-inspired extension of MEDA that, by using Copulae, allows
for efficient multivariate analysis of image LIDs using pure marginal information.
COMS combines the MEDA vector with its complementary feature, that we name
CoMEDA - Copula over MEDA. While MEDA models the pure monovariate in-
formation of the marginal distributions, CoMEDA represents the Copula struc-
ture: the marginal dependencies, namely the mapping between the image LIDs
marginal values and the image LIDs joint density. The resulting COMS feature
(MEDA+CoMEDA) reflects directly the PDF of the LIDs in an image, without
involving the estimation of a global k-dimensional LID model such as visual code-
books. COMS is therefore much more discriminative and much faster in the training
phase compared to both Fisher Vectors and BoW.

In the following, we will first give a general overview of our approach and detail its
statistical peculiarities compared to traditional feature aggregators, see Sec. 4.5.1.
We will then give some notions on Copula theory in Sec. 4.5.2, and then apply it to
LID aggregation in Sec. 4.5.3. Finally, we will look at the performances of MMIR
systems for semantic analysis based on COMS, and compare it with MEDA, BoW
and Fisher Vectors in Sec. 4.5.4

4.5.1 COpulae and Marginal Signatures: an Overview

We explain in the following the general approach of COMS and its peculiar way
of aggregating local image descriptors, different from the majority of the existing
approaches.

How do we model the Copula-based feature? In our approach, we focus on a
particular type of Copula, the Gaussian Copula CΣ . This function describes the
CDF (Cumulative Distribution Function4) of a random vector through the shape of
a multivariate Gaussian CDF with the following properties:

1. Its variables are the Gaussian inverse of the marginals of the vector p−1
j

2. its covariance matrix is the correlation matrix between the marginal inverses,

3. its mean is zero.

The Gaussian Copula function depends on one parameter only, namely its covari-
ance/correlation matrix, corresponding to the dependencies between the inverse of
the marginals.

We therefore fit a Gaussian Copula with the image LIDs, and store in CoMEDA
the values of correlation coefficients of the marginal inverses in Σ directly, giving

4As we will see later, the Copula-based PDF is easily inferable from the equation of a Copula
CDF
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pCoMeda(x
(I)) = corr(p−1

1 (x
(I)
1 |c1

meda), . . . , p
−1
k (x

(I)
k |c

k
meda)). By doing so, we repre-

sent in a single feature the marginal dependencies determining the Copula structure.
We then match the CoMEDA features using traditional kernel machines such as
Support Vector Machines.

Despite the accuracy of CoMEDA as a stand-alone descriptor for MMIR, we
know from Copula Theory that we can achieve a complete representation of the im-
age PDF only when we combine the marginals and their Copula together: CoMEDA
represents the multivariate complement of the monovariate MEDA vector, since it
stores the dependencies between the marginal distributions. We therefore concate-
nate MEDA and CoMEDA in a single, very discriminative, Copula-inspired image
descriptor, COMS, which we then use as input for the learning system. Therefore
in COMS, MEDA+CoMEDA, namely the union of the two fundamental element of
the LIDs density according to Copula theory, we model a complete Copula-based
distribution, pCOMS(x(I)) = CΣ(p1(x

(I)
1 |c1

meda), . . . , pk(x
(I)
k |c

k
meda)).

COMS is statistically different from the space determined by BoW, MEDA and
Fisher Vectors (see Fig. 4.4 (c)). First, pCOMS 6= pmeda, pMmeda because we are not
analyzing the independent marginal behavior, but we are instead trying to estimate
the multivariate density of the image LIDs through Copulae. Moreover, COMS.
despite the underlying marginal analysis, does not assume independence between
the LID components, but models instead a real joint PDF based on the marginal
dependencies.

Despite its multivariate nature, we can also say that pCOMS 6= pbow, pfv because,
while BoW approximates the joint LIDs distribution through Vector Quantization
given a global codebook, and while Fisher Vectors store the results of parameter
adaptation for GMM fitting, COMS directly stores the parameter of the image joint
PDF, leading to a more informative image feature modeling the real joint PDF based
on the marginal dependencies. Since both MEDA and CoMEDA arise directly from
the analysis of the image LIDs marginals, COMS does not require to build a universal
model using unsupervised search on a training set in the k-dimensional space such
as GMM, k-means or hypercube exploration to define the global LID density, saving
a lot of computational time on training.

4.5.2 Copulae: Linking Marginals with Joint Distributions

In this Section, we give an overview of the Copula theory, highlighting the notions
that we retain more useful for our proposed approach.

Given a 2-dimensional random vector x = {x1, x2}, we define u = Π1(x1) =

[P (x1 ≤ X1)], v = Π2(x2) = [P (x2 ≤ X2)] as the marginal cumulative distribution
functions (CDFs) of x1 and x2 respectively, and Π(x1, x2) = P [x1 ≤ X1, x2 ≤ X2] as
the vector cumulative joint distribution. For ease of understanding, we first consider
a bivariate case.

In order to be defined as a two-dimensional Copula, C needs to fulfill the fol-
lowing requirements (see [127]):

• It is defined over the interval [0, 1]
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• ∀t ∈ [0, 1], then C(t, 0) = C(0, t) = 0 and C(t, 1)=C(1, t) = 1

• ∀u1, u2, v1, v2 ∈ [0, 1], with u1 ≤ u2 and v1 ≤ v2, C(u2, v2) − C(u1, v2) −
C(u2, v1) + C(u1, v1) ≥ 0

As said, a Copula C, is defined as a unique mapping that assigns the joint CDF
of X given each ordered pair of values of its marginals, namely:

Π(x1, x2) = C(Π1(x1),Π2(x2)) = C(u, v),

and, following Sklar’s theorem and assuming that Π1,Π2 are continuous:

C(u, v) = Π(x1, x2) = π(π−1
1 (u), π−1

2 (v)). (4.11)

Where π is a given multivariate distribution function, and π−1
· (cdot) is the inverse

of the corresponding univariate distribution. Eq. 4.11 allows to construct a Cop-
ula from a given multivariate distribution function π, that in our case will be the
Gaussian distribution.

The Copula function by itself describes the vector CDF. However, we might
want to represent the vector in terms of probability density function (PDF), i.e.
p(x) = p(x1, x2) = P [x1 = X1, x2 = X2]. In order to obtain p(x1, x2) we have to
compute copula density, namely the CDF derivative, i.e., following Eq. (4.11) :

p(x1, x2) =
δ2C(u, v)

δu, δv
=

p∗(π−1(u), π−1(v))

p∗(π−1(u)), p∗(π−1(v))
,

where p∗ is the PDF corresponding to π, e.g. Gaussian CDF π, Gaussian PDF p∗.
The Copula describes therefore the dependence between the components of a

random vector, no matter the function describing their marginal distributions: if we
know the mapping C, the joint density p(x1, x2) can be inferred from the marginal
CDFs u and v.

4.5.2.1 Gaussian Copulae

A particular type of Copulae is the Gaussian Copula, which belongs to the class of
Elliptical Copulae (i.e. Copulae following Elliptical distributions such as Laplacian,
T-Student, etc..). The Gaussian Copula structure is a multivariate normal distri-
bution: in this model, π corresponds to the multivariate Gaussian CDF, while π−1

corresponds to the inverse of the univariate normal CDF.
A Gaussian Copula CΣ is then defined for the two-dimensional random vector x

as (following Eq. (4.11)):

CΣ(u, v) = θΣ(θ−1(u), θ−1(v)), (4.12)

being θ−1(·) the inverse of the univariate normal CDF, and θΣ the bivariate (or
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multivariate, when s > 2) standard with mean zero and covariance Σ, giving

CΣ =
1√

det(Σ)
exp

(
− 1

2
·
(
θ−1(u)

θ−1(v)

)T
Σ−1I

(
θ−1(u)

θ−1(v)

))
, (4.13)

How to find the covariance matrix Σ? When dealing with normal distributions,
the correlation values between two variables fully define their dependencies. In
Gaussian Copulae, Σ corresponds therefore to the correlation matrix between the
inverse standard univariate normal CDF

Σ(θ−1(u), θ−1(v)) =
cov(θ−1(u), θ−1(v))

σ(θ−1(u))σ(θ−1(v))
(4.14)

4.5.2.2 Why Gaussian Copulae?

As said, the Gaussian Copula function arises from pure marginal analysis: both
the variables (inverse normal of marginal CDFs) and the parameter (correlation
between the inverse marginal CDFs in Eq. (4.14) are constructed by manipulating
the marginal distributions with simple operations (O(k) for θ−1(·) , and O(k2) for
Σ). Gaussian Copulae represent therefore an efficient way to estimate the joint PDF
of vectors with the following properties

• they have a small dimensionality, namely a low value of s and

• they have marginals that can be easily modeled.

In fact, local image descriptors satisfy conditions (1) and (2). The dimensionality
of LIDs is generally k ≤ 128. Moreover, it exists a descriptor for LID marginal
approximation, MEDA, which have been proved to effectively model the univari-
ate distributions of the LID components. Gaussian Copulae can be therefore very
efficient tools to estimate the joint PDF of LIDs.

Moreover, a Gaussian Copula CΣ depends on one parameter only, namely the
covariance-correlation matrix Σ, whose computational time that is quadratic with
s, making it easy to characterize an image through its Copula shape. Furthermore,
various fast implementations are available to easily and quickly treat with multi-
variate normal densities, due to their popularity, making the computation of this
Copula very easy. This motivates us to use Gaussian Copulae to efficiently and
effectively approximate the distributions of the LIDs in an image and generate an
image signature out of it.

4.5.3 COMS: Multivariate LID Analysis from Marginal Values

In this Section, we show how to exploit Copulae Theory to aggregate LIDs and build
effective and efficient compact image signatures based on local descriptors.

In order to perform LID-based analysis, for each image I, we first extract m
salient points and describe them using a k-dimensional normalized SIFT [105] de-
scriptor x(I) = (xi1, . . . , x

i
k), i = 1, . . . ,m. Recall that, for an image I, we define



4.5. Multivariate Modeling of Marginals: Copula Signatures 93

pj(x
(I)
j ), j = 1, . . . , s as the marginal distribution of the jth component of the image

LIDs, and p(x(I)) as their joint density.
The main idea is that, similar to Copula Theory, we can approximate p(I)(x) for

an image I by extracting:

A its set of marginals pj(x
(I)
j ) and

B a Gaussian Copula Function

and use it as a discriminative image signature for MMIR purposes.
While it already exists a feature (A) approximating the marginals (i.e. MEDA),

we are missing (B) a feature to represent the Copula structure. We therefore design
CoMEDA for this purpose (See Fig. 4.11 for a visual explanation of our approach).

Therefore, we first (A) extract from image I the MEDA vector v(I) containing
the LIDs marginals approximations.

We then (B) use them, as we will show in Sec.4.5.3.1, to fit an image-specific
Gaussian Copula C(I)

Σ , that defines an approximation pC(x(I)) of the joint distribu-
tion of the image LIDs. We characterize the image I with the Copula structure of its
LIDs by storing in the CoMEDA feature the values of the image-specific covariance
matrix Σ(I), namely the unique parameter of the resulting Copula-based PDF.

Finally, we achieve a complete model of the LID density by combining the
CoMEDA feature of an image I with its marginal counterpart, i.e. the MEDA
vector for image I, into a final image signature, namely COMS.

4.5.3.1 Fitting a Copula with the Image LIDs

Once we have extracted the marginal information from the Image LIDs, we can
then use it to calculate the corresponding Gaussian Copula. This will allow us to
characterize each image with the distribution of its LIDs (using the parameters of
the Copula-based density as signature). First, for each dimension of the LID, for
each of the k marginals p̃j(x

(I)
j ) that we obtain with the MEDA histogramming5,

we compute the corresponding k univariate CDFs u(I)(1) = πj(x
(I)
1 ), . . . u(I)(k) =

πk(x
(I)
k ), normalized in the interval [0, 1]. According to the Gaussian Copula theory,

we then compute the inverse of the normal CDF, namely

θ−1(u(I)(1)), . . . , θ−1(u(I)(k)). (4.15)

If we now want to define a Gaussian Copula C(I)
Σ representing the CDF of the LIDs

for image I, we should extend the multivariate Gaussian in Eq. (4.12), for SIFT
vector analysis with k � 2, giving, for image I,

C
(I)
Σ (u(I)(1), . . . , u(I)(k)) = θ

(I)
Σ (θ−1(u(I)(1)), . . . , θ−1(u(I)(k))). (4.16)

5In practice, we will use for our experiments a more refined way to estimate the marginal
distribution shape, namely a kernel density estimator [165]
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and from the Copula theory, we know that Σ(I) can be computed as the correlation
matrix between the inverse of the LID marginals, namely:

Σ(I)(a, b) =
cov(θ−1(u(I)(a)), θ−1(u(I)(b)))

σ(θ−1(u(I)(a)))σ(θ−1(u(I)(b)))
(4.17)

where a, b = 1, . . . , j, cov(·, ∗) corresponds to the covariance between (·) and (∗),
and σ(·) is the standard deviation of variable (·).

4.5.3.2 The CoMEDA Vector

CoMEDA: Gaussian Copulae 
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Figure 4.11: Our Copula-based analysis on the local image descriptors.

How can we capture the behavior of the Copula structure we just described, and
store it into a single, effective feature? As we can observe, Eq. (4.16), has only
one parameter, the covariance matrix Σ(I). Such covariance matrix describes the
dependencies structure between the LIDs marginals and determines the equation of
the multivariate distribution.

We therefore fill the CoMEDA vector µ(I) for an Image I with the values cor-
responding to Σ(I), namely the correlation coefficients of the inverse marginal ap-
proximations of the LIDs in the image. The complexity of CoMEDA is quadratic
with the number of dimensions of the LIDs, and its dimensionality is k×k

2 , being
Σ(I) typically a symmetric matrix. CoMEDA does not imply therefore exponential
computation or multidimensional vector quantization for multivariate LID repre-
sentation. This low dimensional feature (we will select k = 36) can be easily then
used as input for discriminative classifiers, that will learn a model of the LIDs space
based on the CoMEDA feature representation.
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4.5.3.3 COMS: MEDA + CoMEDA

CoMEDA gathers the main element of the Copula structure: it is the representation
of the LIDs multidimensional information arising from the dependencies between
marginal distributions.

However, we can observe that the shape of Eq. (4.12) is determined both by
Σ(I) and by the behavior of the LIDs marginal distributions, specific of the image I.
Recall that, as a matter of fact, Copula theory states that the joint distribution of a
random vector can be represented by its marginal distributions and a multivariate
Copula structure. This suggests us that, in order to have a complete representation
of the LID space, we should combine the CoMEDA feature of image I with a de-
scriptor approximating the marginal behavior of I, e.g. MEDA. Therefore, for each
image, we concatenate these two types of information regarding the LID distribu-
tion, MEDA and CoMEDA, both very discriminative features, into a single image
descriptor COMS h(I) = {v(I), µ(I)}. By doing so, we enrich the representation of
the LID space, and determine a good approximation of the LID joint distribution.

4.5.4 Experimental Validation

In this Section we will show the performances of our Copula-based approach, com-
paring it with the most effective LID aggregators available in literature.

We test the effectiveness of our approach for two, challenging Multimedia Re-
trieval tasks, namely video retrieval and scene recognition. Since all the descriptors
work over the same input, namely local image descriptors, the first step of our
experiments is to compute the image LIDs.

Since we want to keep the dimensionality low, from all the images/keyframes in
our datasets we compute PCA-SIFT [87] (s = 36) as described in Chapter 2. We
then aggregate them using the following approaches for comparison (See Fig. 4.12):

1. bow, the Bag of Words Model computed, as in [30], through a codebook built
with k-means clustering

2. Meda, the marginal-based descriptor in [146] described in Sec. 4.3

3. Fisher, the Fisher Vectors approach, computed using and adapting the imple-
mentation in [79]

4. CoMeda, our Copula-based descriptor, i.e. the values of the correlation coef-
ficients of the inverse of the marginals

5. COMS, the early combination of MEDA and CoMEDA

Moreover, in order to prove the reasonableness of our Copulae-based LID processing,
we compute another feature, that we call MVN (Multivariate Normal), that stores
the values of the mean and covariance matrix of the image LIDs vectors (different
from CoMEDA, that treats with LIDs marginals). The difference of effectiveness
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Figure 4.12: Comparison of performances of MMIR systems based on MEDA, BOW
and COMS for (a,b,c) indoor, outdoor and large scale scene recognition and (d) video
retrieval

between COMS (or other multivariate approaches) and MVN will show the discrim-
inative value added by treating the LIDs with models more complex than a simple
multivariate Gaussian PDF.

Then, we use the computed descriptors as input to Support Vector Machines
(SVM) with Chi-square kernels, to build models able to predict the image category,
or the presence of a given concept (in the case of Video Retrieval).

Finally, in order to further prove the effectiveness of the combination of MEDA
and CoMEDA, we combine and weigh the predictions coming from the MEDA-
only model and the CoMEDA-only model, and we name this class of experiments
Posterior, see Fig. 4.12.

For all the features and datasets, we follow the training/test set splitting and
training used by our baselines.

We show that our approach outperforms the other methods in all the databases
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BOW MEDA Co-MEDA Posterior Early Fisher MVN
Outdoor 71,489175 71,64705 71,624425 76,2299375 74,9513375 74,0664625 69,6271
Indoor 22,85358485 22,92517727 24,2833197 27,34952576 26,58517879 25,59342576 22,245
SUN 8,0554 8,5945 10,0302 11,4408 11,2343 11,1285 8,534

Table 4.2: Seconds of computation for various LIDs aggregators on the training
phase

considered for scene recognition and for video retrieval. Overall, we can say that
posterior fusion of MEDA and CoMEDA is slightly more effective than COMS,
because we add one parameter to weigh the contribution of the two descriptors. We
can also observe that the simple MVN descriptor has a weaker discriminative power
compared to all the other descriptors, suggesting that adding complexity in the LID
modeling actually is useful for MMIR performances improvement.

Regarding computational costs, as we can see from Table. 4.2 (c), the time to
compute CoMEDA, for the training set, has the same order of magnitude as the
MEDA feature, because it does not require to estimate a universal model such as
the BoW codebook.

4.5.4.1 Scene Recognition

In this Section we present the results of our experiments for small scale (in-
door/outdoor) and large scale scene recognition. The goal for this task is to build
a model able to classify test images with the correct class, selected out of a set of
pre-defined mutually exclusive categories.

We achieve this goal by learning our features with a one-vs.-all multiclass SVM,
and assigning the image category according to the classifier that outputs the highest
score. The typical evaluation measure for this task is the average accuracy on the
test set.

In the following we will see the experimental setup and results for the various
datasets considered. A visual representation of the results can be found in Fig.
4.12(a-b).
Small Scale Scene Recognition
For the Outdoor Scenes, we compare the mentioned LID aggregators, computing
them as follows:

• Bow with 500 and 720 visual words;

• Meda with quantile-based quantization, as shown in Sec. 4.3.3

• Fisher with 64 Gaussians in the mixture (final dimension is 2304),

• CoMeda (dimensionality 1296)

• COMS, with 1656 components,

• MVN with 36*36(covariance)+36(mean)=1332 dimensions
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Our results (see Fig. 4.12 (a)) show that, even if CoMeda by itself does not out-
perform Meda, when they are combined together with early (COMS ) and Posterior
fusion, namely when we follow the Copula Theory approach, the resulting model is
much more effective than both Bag of Words and Fisher Vectors.

For Indoor Scenes dataset [133], we follow a similar experimental setup. The
details of the features that we compare follow:

• bow with 1300 visual words;

• Meda with percentile quantization, as proposed in [146], with 10 bins per
dimension (resulting in a feature with 288 components), see Sec. 4.3.3

• Fisher with 32 Gaussians in the mixture (final dimension is 1152),

• CoMeda (dimensionality 1296),

• COMS, with 1656 components,

• MVN with 36*36(covariance)+36(mean)=1332 dimensions.

Results for indoor scenes (see Fig. 4.12 (b)) show a similar trend as the experi-
ments on the outdoor scenes datasets. The CoMEDA feature used as a stand-alone
descriptor is actually more performing (+6%) than BoW, and it is improved by its
combination with the MEDA descriptor (+ 16% of COMS and +20% of Posterior
over bow), with a great improvement, = 6% over the Fisher Vectors-based classifi-
cation.
Large Scale Scene Recognition
The LIDs aggregators that we compute for the SUN database [205] are as follows:

• bow with 500 visual words;

• Meda with uniform quantization, as proposed in [146], with 10 bins per di-
mension (resulting in a feature with 360 components),

• Fisher with 32 Gaussians in the mixture (final dimension is 2304),

• CoMeda (dimensionality 1296),

• COMS, with 1584 components,

• MVN with 36*36(covariance)+36(mean)=1332 dimensions.

In the results for this dataset (see Fig. 4.12 (c)), we can see a homogeneous accuracy
score obtained the COMS/Posterior/Fisher descriptor, all outperforming by around
40% the simpler approaches such as MEDA and BoW.



4.6. Summary and Future Work 99

4.5.4.2 Video Retrieval

For this task, we focus on the challenging TrecVID 2010 [168] light semantic Indexing
Task, comparing the results in terms of Mean Average Precision. Here, we compute
the following descriptors for comparison:

• MEDA with fixed quantization (with a number of bins tuned, as in [146], for
each concept),

• bow with 500 visual words,

• Fisher with 32 Gaussians in the mixture (final dimension is 2304),

• CoMeda (dimensionality 1296), and

• COMS, with 1584 components, and finally MVN with 36*36(covari-
ance)+36(mean)=1332 dimensions.

As shown in Fig. 4.12(d), the effectiveness of our method is even more clear for
this challenging task: while COMS outperforms bow by more than 50% and Fisher
by 23%, the posterior fusion of MEDA and CoMEDA is further improving the
performances of our proposed method for video retrieval, with an increase of around
78 % over BoW and 44% over the Fisher Vector-based retrieval.

4.6 Summary and Future Work

We presented a set of methods for local image descriptors encoding and pooling.
While the majority of the existing methods for feature pooling aggregate the LIDs
based on their multivariate distribution, the key aspect of all the techniques proposed
in this Chapter is that the aggregation of the LIDs is based on the approximation of
their marginal distribution. This peculiarity of our methods not only leads to very
efficient and effective techniques for feature aggregation, but allows to introduce
a new cue for LID-based image analysis, namely the information arising from the
univariate distribution of the LID components.

The three methods correspond to three steps towards the complete modeling of
the multivariate LIDs distribution based on marginal analysis: we have first built
an image descriptor, that we named MEDA, that approximates the LIDs marginals
by quantizing each dimension of the local descriptors. We have then built a mul-
tidimensional model by constructing a kernel over MEDA signatures that allows
to generate a multivariate probability out of the MEDA descriptors by multiply-
ing their marginal approximations. Finally, we coupled the MEDA descriptor with
CO-MEDA, namely a Copula-based signature describing the link between the LID
marginal and their joint distribution, leading to an image signature that fully de-
scribe the LIDs multivariate distribution.

Possible tracks for future work include the construction of MEDA, MultiMEDA
and COMS signatures using as input LIDs local descriptors other than SIFT, for
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example SURF [6] or HOG [31]. Another possible development for our techniques
is to concentrate the marginal analysis over specific regions, in order to embed some
spatial information into the LID aggregation. Finally, given the good performances
of our 1-d quantization technique when combined with k-d quantization, we could
explore the possibility of 2 or 3-d quantization and build multi-dimensional visual
dictionaries. Similarly, we could explore the possibility of learning with MultiMEDA,
the joint contributions of the independent marginals over hypercubes of dimensions
l < k (e.g. considering the interactions between components 2 by 2, 3 by 3 etc.),
building a complete model with various level of multivariate analysis.

While we have already sufficiently extended MEDA and MultiMEDA, COMS
represents one of the first attempts in literature to introduce Copulae for LID pool-
ing. It opens therefore a wide range of possibilities for future work in this direction.
For example, the COMS idea can be extended by finding more effective kernels for
Copula-based signature matching, such as kernels based on Bhattacharyya distance
or Kullback-Leibler divergence. Moreover, we could use different Copula structures,
such as Clayton or T-student Copulae, or build an ad-hoc Copula formulation to
better model the LIDs multivariate distribution.
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Level 2: A Multimedia Retrieval
Framework Based on Automatic

Relevance Judgments

Very Relevant 
“Cup” 

Marginally Relevant Average Relevant 

Figure 5.1: Introducing graded-relevance into multimedia retrieval.

Traditional Content Based Multimedia Retrieval (CBMR) systems measure the
relevance of visual samples using a binary scale (Relevant/Non Relevant). However, a
picture can be relevant to a semantic category with different degrees, depending on the way
such concept is represented in the image. In this Chapter, we build a CBMR framework
that supports graded relevance judgments. In order to quickly build graded ground truths,
we propose a measure to reassess binary-labeled databases without involving manual
effort: we automatically assign a reliable relevance degree (Non, Weakly, Average, Very
Relevant) to each sample, based on its position with respect to the hyperplane drawn by
Support Vector Machines in the feature space. We test the effectiveness of our system on
a large-scale database for video retrieval, and we show that our approach outperforms the
traditional binary relevance-based frameworks for this task.

In the previous Sections, we looked at global and pooled descriptors and applied
them to MMIR for semantic analysis. Features are very important to describe in a
few values the salient properties of visual content, and in order to build a complete
system for visual analysis, we need to learn the links between the features and the
semantics of the image.
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In this Chapter, we aim at improving the learning level of the MMIR pyramid
for semantic analysis. We will apply the same techniques for Aesthetic analysis in
Chapter 5.

The core of the “intelligence" of an automatic image analysis system lies in
the learning framework used for classification. Supervised learning systems such as
Support Vector Machines [17], Neural Networks [173], Decision trees [158] learn,
from a set of input data samples with a variety characteristics, a model able to
separate data based on some common patterns. A learning system learns from
training examples, and infers rules and partitions of the input space.

A training example is generally composed of a feature vector associated with
a corresponding annotation, representing the label, or the category, associated to
the input sample. When given a new sample, the learning framework will be able,
given the knowledge extracted in the training phase, to predict the sample position
in the input space, and therefore its category and characteristics.

Learning in Semantic Multimedia Information Retrieval

In semantic analysis systems, we generally work with supervised learning frame-
works that receive as input either pixel-level features (Level 0 of the pyramid) or
pooled (Level 1 of the pyramid) features from a set of training images, together with
some semantic annotations. Such annotations are generally related to semantic
properties of the images: which is the content depicted in the image? Which
semantic concepts is the image relevant to?

In order to build discriminative models, supervised learning techniques require
therefore manually-assessed ground truth annotations associated with the images
in the training set. When labeling a dataset, real assessors are asked to categorize
an image or a shot according to its topical relevance with respect to a given con-
cept. The learning framework then learns how to separate the input data based on
its feature and the corresponding annotations, building a model able to distinguish
between images that are relevant and image that are non-relevant to a given seman-
tic concept, and to classify (in case of image categorization) and rank (in case of
retrieval) new images accordingly.

Given the features from the lower levels, at this level of the image analysis chain,
the general performances of the system mainly depend on two main elements:

1. The quality of the annotations, namely how well they indicate the presence
of the content represented in the image, i.e. the relevance of the image with
respect to a given topic

2. The generalization ability of the learning algorithm, namely how well
the framework perform accurate analysis on new, unseen examples

Our observation is that the notion of “relevance” used by general learning frame-
works in MMIR might cause lack of accuracy in both the mentioned elements.

As a matter of fact, In most cases (e.g. the TrecVID collaborative annotation
[5]), the notion of relevance is measured using a binary scale: a visual input is
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either “positive” or “negative” for the concept considered. Likewise, in MMIR, we
mainly use fast, effective learning systems, such as SVMs, that work on binary
separations of the input space only, without allowing for intermediate degrees of
annotations.

Our Contribution: Graded Relevance vs. Binary Relevance

One major issue regarding this approach is that this type of assessment assumes
that all the relevant elements are identically relevant and that all the irrelevant
samples are equally non-relevant. However, a picture can be relevant to a semantic
category with different degrees (see Fig. 5.1), depending on the way such concept
is represented in the image, and the binary learning can cause then inconsistencies
when predicting the presence of semantic concepts of new samples, due to the
variety of the forms in which a concept can appear in a picture. We would need
therefore ground truth annotations reflecting non-binary relevance judgments in
order to better represent the diversity of the semantic compositions of natural
images. Moreover, we would need a learning framework that is able to deal with
such multiple degrees of annotations.

A similar issue has been arisen for Web Information Retrieval in [55], where
Gordon et al. exposed the need for information retrieval systems able to distinguish
relevant documents from marginally relevant ones. This issue was then partially
addressed by the TREC editions [65] and improved by Sorumen [171] by formalizing
the concept of degree of relevance, namely “the potential usefulness of documents
for a reader trying to learn about a topic" [171] and re-assessing the TREC corpus
allowing for non-binary relevance judgements.

Given these observations, in our work we introduce the notion of graded rel-
evance learning for MMIR: we re-design the concept of traditional learning for
semantic analysis, by building a learning framework for image and video retrieval
that supports graded relevance judgments. In order to quickly build graded ground
truths, we propose a measure to reassess binary-labeled databases without involv-
ing manual effort: we automatically assign a reliable relevance degree (Non, Weakly,
Average, Very Relevant) to each sample, based on its position with respect to the
hyperplane drawn by Support Vector Machines in the feature space. We test the
effectiveness of our system on a large-scale database, and we show that our approach
outperforms the traditional binary relevance-based frameworks for video retrieval.
Moreover, we show another application of our graded relevance degree assignment
method, that we re-use for reducing the annotation noise in the TrecVID data.

In the remainder of this Chapter, we will first strongly motivate the need of
graded relevance learning systems for image categorization and retrieval (see Sec.
5.1), and give a broad overview of our approach and its novelty. We then recall in Sec.
5.2 some principles of standard techniques for learning in visual data analysis. We
will then show our graded-relevance extension in Sec. 5.3 and test its effectiveness
in Sec. 5.4 for video retrieval.
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5.1 Graded Relevance for Visual analysis: Motivations
and Contributions

(a) Telephones (c) Cup 

(d) Beach (b) Chair 

Figure 5.2: Relevance is a relative notion: images labeled as positive for (a) “tele-
phone” (b) “chair” (c) “cup” (d) “beach” actually have different visual evidences.

In this Section, we explain in detail the reasons of choosing graded relevance
assignments and learning for image and video retrieval and categorization. We will
then give a brief explanation of our contribution, and showing the novelty that it
brings compared to traditional systems for multimedia retrieval.

5.1.1 Why Graded Relevance?

“As all human notions, relevance is messy and not necessarily perfectly
rational”[159].

Each group in Fig. 5.2 shows a set of images that would be annotated as pos-
itive for the same corresponding concept: even if we can acknowledge that all the
images are relevant with respect to the group label (e.g. images in group a contain
the concept “Telephones”), the global semantic content of each image differs. Intu-
itively, we would say that each image is relevant for the associated concept with a
different degree (for example, similar to web search engines, labels or grades such as
“weakly relevant” or “very relevant” could be assigned). A distribution of relevance
inferences over a graded scale would reflect better the human way of understanding
concepts. From a learning system point of view, binary judgments imply that both
marginally-relevant samples and very representative samples are treated equally
when modeling the concept feature space: this might cause inconsistencies in the
classification process. In a multimedia retrieval framework, concept models might
be therefore less effective due to the contrast between the intra-class diversity and
the binary relevance judgment.

Relevance is a fundamental notion for information retrieval: as pointed out
in [159], while traditional bibliographic and classification frameworks aim to de-
scribe/categorize samples, retrieving information involves, besides description and
categorization, the need for searching, and “searching is about relevance”. Graded
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relevance-based learning methods first appeared for real Web search engines, where
pages cannot be simply categorized as relative/non relative, but they need a multi-
level relevance assignment. Several algorithms have been proposed to learn ranking
functions from relative relevance judgments, like RankNet[179], based on neural net-
works, RankBoost[48], or the regression-based learning proposed in [211] by Zheng
et al. How are these “grades” assigned? Generally, in traditional information re-
trieval such reassessment is done manually, either using real expert assessors [171],
or using Amazon MechanicalTurk [170]. For web-based searches, the relevance judg-
ment can be inferred in an automatic way, using the users’ clickthroughs (see [89]
for an overview of implicit relevance feedback method).

In the image analysis and video retrieval field, graded relevance has been rarely
explored. As a matter of fact, traditional multimedia retrieval systems (see, for ex-
ample, [153]) generally rely on binary-labeled keyframes or images. However, it was
recently shown [38] that a video retrieval framework benefits from a graded-relevance
annotated training set: in [38] the development set is reassessed by assigning, for
each generally “relevant” frame, a degree of relevance from Somehow Relevant to
Highly relevant. Three new training sets are then created based on different combi-
nations of the relevance-based partitions.

5.1.2 Automatic Graded Relevance Assignments for Multimedia
Retrieval

Our work is one of the first attempts in literature to build a complete automatic
graded relevance system for Content-based retrieval.

When building a graded-relevance framework for feature learning, the first step is
to reassess the training samples, labeled as positive/negative, by assigning a “degree”
of relevance. Generally [171] [38], the level of relevance of each sample is labeled
manually. However, when dealing with large collections of visual data, e.g. the
400 hours of training videos for TrecVID [168] 2011, such re-assessment becomes
time-consuming and practically unfeasible.

We propose here an effective automatic graded-relevance based framework for
image recognition and video retrieval. With our system, we can treat noisy and
marginally relevant samples with less importance, achieving a better usage of our
training set, thus improving the performances of traditional binary-relevance sys-
tems. Moreover, the key aspect of our framework is that, unlikely [38], the relevance
degree of a training sample is assessed automatically : we assign to each sample a
reliable and realistic relevance judgment, without involving any manual effort.

To auto-reannotate each training sample in the database according to a non-
binary relevance scale, we find a measure that first assigns a fuzzy membership
judgment (i.e. how much a sample is representative/positive for a given concept).
The idea is to exploit the learning methods traditionally used in video retrieval
frameworks: the SVMs. We are inspired by few works in machine learning litera-
ture that reassess the samples in a binary-labeled training set based on the learnt
feature space, looking at the distribution of the features given the class. Generally,
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they assign to the samples automatically a fuzzy membership score, namely a value
representing their relevance for a given class. For example [101] defines an auto-
matic membership measure as a function of the mean and radius of each class; this
work is then extended by Lin et al in [102], that uses an heuristic strategy based
on a confidence factor and a trashy factor in training data to automatically assign
a score to each sample.

Given these promising works, we therefore choose in our approach to assign the
image relevance degree based on the position of the sample with respect to the
hyperplane drawn by a Support Vector Machine (SVM) [17] in the feature space.

The second step is the discrete category assignment. Based on the computed
relevance score, we re-categorize the training dataset into 4 groups for every concept:
Very Relevant, Average Relevant, and Weakly Relevant and Non Relevant samples.
By training the system on such multiple repartitions, we then build a multi-level
model for each semantic concept considered. When assigning labels to a new sample,
the system outputs a set of concept prediction scores (one for each relevance-based
level of the model), that we weigh and combine to obtain a final label. Moreover,
we will also use this fuzzy score to identify the samples that have been wrongly
annotated, and discover new positives for the training set (See Sec.5.4 for further
details).

Our framework is somehow similar to the framework presented in [38]; however,
in their work, the manual database re-assessment involves a lot of human effort
and might increase the labeling noise. In this Chapter we automate this process by
automatically assigning a class membership degree to each sample.

An example of using automatic relevance assignment for image recognition is
represented by the work of Ji et al. [80], where, to solve a face gender classification
problem, the distance to the SVM hyperplane is used to measure the importance of
each sample in a dataset for a given class. Another example can be found in [139],
where the confidence of an image region label is again derived from the sample
distance from the hyperplane. Similar to the work in [80], we use a SVM-based
measure to identify a fuzzy relevance score for each class, that we then discretize,
in order to label our training sets with three relevance degrees. However, instead
of using the raw distance value, we prefer to use a calibrated, thresholded value,
that still depends on the distance to the hyperplane, but it is expressed with the
probability of a given sample to be positive with respect to a concept.

We test the effectiveness of our system by comparing it with traditional binary-
relevance frameworks for video retrieval. We consider a large scale, noisy, database of
internet archive video, namely the TrecVID database, and we show that traditional
categorization systems and features benefit from our automatic graded relevance-
based multi-level model when retrieving this kind of biased data based on visual
appearance.



5.2. The Baseline: Binary-Relevance Learning Frameworks 107

5.2 The Baseline: Binary-Relevance Learning Frame-
works

In order to understand our approach, we need to deeply understand the key elements
of the learning based on binary annotations.

We recall here some properties of the most commonly used learning machine
for image analysis, namely the Support Vector Machine, and show how this tool is
generally used for multimedia categorization frameworks. Traditional multimedia
categorization systems associate a set of images or videos with a semantic label
given a low-dimensional description of the input, namely a feature vector. Multime-
dia retrieval systems use categorization frameworks to build lists of pictures/shots
ranked according to their pertinence with respect to a semantic concept or query. In
both cases, the core of the system is composed by a set of SVMs, namely supervised
learning techniques that build models able to predict the presence of a given object
or concept in the visual input.

In order to build such system, a set of training samples v1, v2, . . . , vn is required,
where vi, i = 1 . . . n are the feature vectors extracted from the visual input data, such
as MEDA or Saliency moments. For a set of concepts or categories {c1, c2, . . . .cp}
(e.g. “Telephones”,“Cup”), each sample in the training set vi is labeled either as “pos-
itive”, yil = +1, l = 1, . . . , p, (the concept is present in the visual input represented
by vi) or “negative”, yil = −1 (no visual trace of the concept is found in vi).

A set of SVM-based classifiers, one for each concept/category, is used to learn the
training feature space and then to label new samples according to the same scheme.
The idea behind the SVM is to find a hyperplane that separates the two classes
in training the feature space, given the distribution of the relative and non-relative
samples with respect to a given concept. Such hyperplane satisfies the equation
wTl v − bl = 0, where wl =

∑
i αilyilvi has been proved in [18] to be the linear

combination of the support vectors (i.e. the samples vi for which the corresponding
Lagrangian multiplier αi is non-zero).

When a new point z needs to be categorized, the system assigns the correspond-
ing label yzl based on the side of the hyperplane where z falls after computing the
dot product-based decision function fl(z):

yzl =

{
−1 if flz < 0

+1 otherwise

For a retrieval framework, see, for example [153], a concept score p(yzl = 1|z) is
obtained for sample z based on decision function values; generally, various features
are used to infer such scores, that are then combined and sorted in order to finally
rank the results according to their pertinence with respect to a given concept.
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Figure 5.3: Differences and analogies between binary and non-binary systems.

5.3 Our Approach: A Graded-Relevance Learning
Framework

As showed in Sec. 5.2, a SVM separates the feature space so that, at the top of the
MMIR pyramid, our application will be able to distinguish between positive and
negative new samples for each given concept. This boundary is found based on a
binary relevance judgment, yil, i.e. the groundtruth annotation. As discussed before,
such binary division might be too restrictive compared to the range of possible
instances of a semantic concept in the visual input. In order to allow a better usage
of our data, we go here beyond the Relevant/Irrelevant subdivision, by reassessing
our binary-relevance based training set with graded relevance judgments: in the
new training set, a keyframe can be either Irrelevant (negative), Weak/Marginally
Relevant, Average Relevant or Very Relevant to a given category. We then integrate
the inferred relevance degree in a multi-level concept classifier.

The proposed framework works as follows (see Fig. 5.4):

1. The features extracted from the training samples are processed by a set of
binary p SVM-based classifiers (one for each concept). According to such
models, we analyze the position of each training sample vk with respect to the
hyperplane, using a calibrated decision value, and extract, for each concept
cl, a fuzzy membership score σkl. This is a continuous value representing how
much a given sample is representative for a semantic concept (see Sec. 5.3.1
for more details).

2. As shown in Section 5.3.2, for each concept, we sort the positive training
samples according to their fuzzy relevance scores and we set two thresholds so
that we are able to re-categorize the samples using discrete relevance degrees.
We obtain three subsets of Strongly, Average and Weakly Relevant training
samples. All the negatives are equally labeled as Non Relevant samples.

3. Similar to [38], we then build a multi-level model by training the system on
three different, relevance-based training sets. Then, as presented in Sec. 5.3.3,
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Figure 5.4: Visual representation of our Relevance Based Framework

given a new test image, for all cl we obtain from the multi-level model three
different concept prediction scores, that we then combine with weighted linear
fusion to obtain one single output score. Such output score is then used for
ranking and thresholded to determine the image label.

5.3.1 Decision Values as Relevance Indicators

As any traditional learning system, we start from an annotated training set of im-
ages/keyframes represented using low level features, namely our labeled samples.
Given a set of non-negative samples, how to automatically define the fuzzy degree
of relevance σkl of each sample with respect to a semantic concept? We tackle this
problem by exploiting the SVM decision values of the training set.

The idea is that if, for a concept cl, we are able to define how “positive” the
sample is, given its position with respect to the hyperplane, we can have a good
estimation of its relevance degree for that given concept. As a matter of fact,
various works [80, 101, 139] showed that there is a correlation between the distance
to the hyperplane (or the distance to the class center) and how much each sample
is representative for a given class (the bigger its distance from the boundary, the
higher its relevance with respect to the positive/negative category).

In our approach, we use as a fuzzy membership measure for a training sample a
thresholded version of the decision function, according to the solution proposed in
[141] to translate the uncalibrated decision value into a probabilistic output.

First, we calculate fl(vk), namely the decision value for concept cl, ∀vk, k =

1, . . . , n in the training set samples. We then estimate the membership assignment
as the positive class posterior probability σkl = p(ykl = 1|fl(vk)) with a parametric
model based on fitting a sigmoid function:

σkl =
1

1 + exp(Afl(vk) +B)
, (5.1)

Where A and B are parameters adapted in the training phase to give the best
probability estimates.
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5.3.2 A Multi-Level Training Set with Different Relevance Levels

Once the continuous value σkl is computed for each training sample vk, the next
step is to build a graded relevance learning framework. In order to achieve this goal,
we need to have a discrete relevance degree for each training sample, so that we are
able to perform a relevance-based split of the training set into smaller, consistent
subsets with different degrees of relevance with respect to a concept cl.

As pointed out in [88], there is no universal rule to define such number of rele-
vance degrees in a graded system. However, as shown in Sec 5.4, our experimental
results suggest to set to 4 the number of relevance levels considered (i.e. Very
Relevant, Average Relevant, Marginally Relevant, Non Relevant).

We therefore separate, for each concept, the positive/relevant training samples
into three groups: Very Relevant Samples, that represent the most representative
images/keyframes for a given class, Average Relevant Samples, and Weakly Relevant
Samples; all the negatives are equally labeled as Non Relevant samples. We then
generate three repartitions of our training database, based on which a multi-level
model will be learnt (see Sec. 4.3). Having the fuzzy membership score σkl for each
relevant sample, the discretization procedure is very simple:

i For each cl, we take the positive (vk : ykl = 1) training samples and sort them
according to their corresponding σkl, in decreasing order.

ii We now want to find a partition of the positive samples in three classes, according
to the relevance scale selected. Based on the shape of the curve drawn by the
sorted fuzzy relevance scores, we identify two thresholds, θVl and θAl . We use
and test three different approaches to choose such thresholds:

(ii.a) we split the curve into equally spaced intervals,

(ii.b) we choose the thresholds manually such that, intuitively, the intra-partition
variance of the scores value is minimized

(ii.c) we choose the values corresponding to 1/3 and 2/3 of the maximum mem-
bership score for the concept considered .
For each concept cl, the Very Relevant samples are then defined as the positive
vk : 1 < σkl < θVl |ykl = 1; the Average Relevant samples as vk : θVl < σkl <

θAl |ykl = 1; the Weakly Relevant as vk : θAl < σkl < 0|ykl = 1.

iii Finally, similar to [38] we create three new training sets: (a) merges the Very
Relevant Samples with all the Non Relevant (i.e. our negatives, vk : ykl = −1),
(b) merges (a) with the Average Relevant Samples, and (c) considers all positives
and negatives samples.

5.3.3 Multi-Level Prediction and Fusion

Once we have created the three concept-specific training subsets, for each concept we
build our multi-level model: it consists of three different SVM-based models, each of
them learning a partition (a), (b), (c). Each level of the model separates the feature
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BOW (HLD) BH Manual BH Equal BH Max BOW (DOG) BD Manual BD Equal BD Max CM CM Manual CM Equal CM Max
Airplane_Flying 0,045 0,047 0,048 0,047 0,018 0,018 0,018 0, 019 0,016 0,017 0,017 0,016

Boat_Ship 0,005 0,005 0,006 0,006 0,008 0,010 0,013 0,012 0,006 0,008 0,011 0,006
Bus 0,003 0,003 0,004 0,003 0,004 0,012 0,006 0,021 0,001 0,002 0,001 0,001

Cityscape 0,194 0,196 0,195 0,194 0,201 0,208 0,201 0,204 0,152 0,152 0,152 0,152
Classroom 0,006 0,007 0,008 0,011 0,003 0,003 0,004 0,005 0,001 0,003 0,001 0,001

Demonstration 0,033 0,035 0,033 0,033 0,037 0,035 0,037 0,037 0,010 0,010 0,010 0,010
Hand 0,004 0,004 0,005 0,005 0,008 0,009 0,009 0,009 0,004 0,006 0,004 0,00

Nighttime 0,050 0,051 0,050 0,051 0,039 0,040 0,044 0,042 0,027 0,027 0,028 0,029
Singing 0,072 0,073 0,074 0,074 0,078 0,082 0,082 0,089 0,074 0,077 0,074 0,076

Telephones 0,000 0,001 0,001 0,001 0,004 0,038 0,013 0,022 0,001 0,001 0,001 0,001
MAP 0,041 0,042 0,042 0,042 0,040 0,046 0,043 0,046 0,029 0,030 0,030 0,030

WF WF Manual WF Equal WF Max EDGE E Manual E Equal E Max
Airplane_Flying 0,028 0,028 0,028 0,029 0,028 0,028 0,028 0,028

Boat_Ship 0,002 0,003 0,002 0,002 0,015 0,018 0,017 0,017
Bus 0,001 0,002 0,002 0,002 0,001 0,001 0,001 0,001

Cityscape 0,107 0,111 0,118 0,112 0,193 0,203 0,198 0,203
Classroom 0,001 0,001 0,001 0,002 0,010 0,012 0,012 0,010

Demonstration 0,002 0,002 0,002 0,002 0,010 0,011 0,011 0,011
Hand 0,002 0,003 0,002 0,002 0,005 0,007 0,007 0,009

Nighttime 0,008 0,008 0,011 0,024 0,026 0,037 0,045 0,060
Singing 0,024 0,031 0,028 0,027 0,033 0,028 0,038 0,038

Telephones 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,002
MAP 0,018 0,019 0,020 0,020 0,032 0,035 0,036 0,038

Table 5.1: Applying graded relevance for video retrieval (TrecVID 2010 semantic
Indexing Task): per-feature results for binary relevance learning, graded relevance
with manual threshold tuning, graded relevance with equally spaced thresholds,
graded relevance with threshold values proportional to the maximum concept score
value

space in a different way, according to the annotations of the subset considered. When
a new test sample z needs to be classified, we compute, using probabilistic SVM,
three prediction scores for each concept (each of them is generated by a level of the
model). We therefore obtain , ∀l, pa(yzl = 1|z), pb(yzl = 1|z), pc(yzl = 1|z).

Each of these predictions is generated by a different relevance-based partition,
which gives a different, complementary type of information regarding the relevance
degree of the new sample to be classified. In order to exploit such different cues
and obtain a single output, we then merge the three outputs using weighted linear
fusion, as follows:

pzl = p(yzl = 1|z) =
∑
t

wtpt(yzl = 1|z), (5.2)

t = a, b, c, ∀l, where wt is a concept-specific weight learnt with cross-validation on
development data.

For retrieval purposes, we then rank, for each query l the test samples according
to pzl in decreasing score, while for image categorization, the final label yzl is assigned
according to the following scheme:

yzl =

{
−1 if pzl < 0.5

+1 otherwise

5.4 Experimental Validation

In this Section, we use our proposed graded relevance learning framework for the
semantic video retrieval MMIR task. We compare the graded relevance framework
with the classical binary-relevance systems (our baselines) for this task. Moreover,
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Figure 5.5: Our experimental results on the TrecVID 2010 Dataset. (a) Graded
Relevance MMIR system with 4 levels, vs. traditional binary learning system. (b)
Performances of the graded relevance dataset given the different relevance scales.
Results are shown in terms of Average Precision. (c) percentages of re-assessed
annotations, given the samples that has been labeled as negative but are detected
as very relevant by our system
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Figure 5.6: Automatic relevance-based reassessment: for given semantic concepts,
examples from the three relevance-based categories are shown.

we re-use our automatic way for sample relevance re-assessment to partly remove
the labeling noise of the dataset we consider.

5.4.0.1 Graded Relevance Framework Setup: Scale Selection and Rele-
vance Visual Results

In order to test the effectiveness of our approach, we compare it with our baseline
run for TrecVID 2010 [153], namely a pool of visual features (Sift DOG[105]+BoW,
Sift HLD+BoW, Color Moments [175], a Wavelet Feature [187], and the MPEG7
edge histogram [200]) learnt by binary concept-specific SVMs.

Our Graded Relevance frameworks are built on top of such baselines. Having
already computed all the features for all the images for the binary relevance MMIR
system, the next step is to reassess the binary annotations and re-learn a set of
models based on the resulting graded relevance degrees.

As we already have binary annotated datasets, we need to (1) add a fuzzy
membership score to each frame, (2) find proper thresholds to obtain a discrete
relevance category assignment, and (3) build a multi-level model as described in
Sec. 5.3. We therefore proceed as follows:

1. For each feature f , we can re-use the model built in the baseline to estimate
the fuzzy membership score σfkl of a keyframe/image in the training set vk
for a concept/category cl. Instead of using directly feature-based membership
scores, that might supply incomplete information (e.g. the most relevant sam-
ples given the color or the edge distribution only), we combine them to obtain
one single σkl for each sample.

2. Now that we have a fuzzy score, how to select the number of discrete levels
that we will use to re-categorize the training set? As shown in Fig. 5.5 (b),
we experimented with different subdivisions of the relevant samples of the



114
Chapter 5. Level 2: A Multimedia Retrieval Framework Based on

Automatic Relevance Judgments

training set and tested their respective performances on the video retrieval
task. Results shown in Mean Average Precision yield to the selection of a
4-level graded scale (namely Highly, Average and Weakly Relevant, and the
Non Relevant label assigned to all the negatives) to reassess the training set.
Given the trend of the fuzzy membership score curve, we manually select
the thresholds θV and θA, as the two values, that for each concept minimize
the score variance without reducing too much the number of positive samples
inside the resulting partitions.

3. Finally, for every feature and every concept, given the new training set repar-
titions, three models are created and then used to predict the presence of the
concept, combining the three outputs as shown in Sec. 5.3.2. At the end of
this step we will have, for a new sample z, a concept score pfzl for each feature.
Such feature-specific concept scores are then fused with linear fusion, similar
to the binary baseline.

5.4.0.2 Experimental Results

For the semantic Indexing Task of TrecVID 2010, we present the results of both
systems in terms of Mean Average Precision, the standard evaluation measure used
for TrecVID assessments. We first look at the per-feature results. As we can see
from Table 5.4 that the weaker features (e.g. Edge Histogram, +20% and Wavelet
Feature, + 10%) benefit from our graded system. Moreover, we can see from Fig.
5.5 that the overall MAP increases of about 9%, when considering the ensemble
of features combined together, with some peaks for those concepts for which the
binary system was less performing, e.g. Classroom +53%, Telephones +83%, Bus
+167% and BoatShip +60%, probably due to the variety in the visual appearance
of relevant samples.

5.4.0.3 Qualitative Results and Binary Annotations Correction

Is the subdivision that we automatically obtain by re-ordering their samples based
on their position to the hyperplane reliable? Fig. 5.6 shows examples from the
three relevance-based classes: as we can see, our proposed method actually separates
samples according to their relevance with respect to the given category or query,
and in some cases, among the “Weakly Relevant” samples we can even find wrongly
annotated images.

This suggests us to explore further the possibilities of these methods, in order to
see if the case of wrongly annotated examples is a localized phenomenon, or if the
TrecVID database is actually noisy in terms of groundtruth annotations. In order
to check for noisy candidates, we take the list of training shots ranked according to
their σkl . We then take the top 500 shots of this list and isolate the shots that have
been annotated as negative. These should represent the samples that, despite their
negative annotation, are detected to be very relevant by the learning framework. In
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fact, they are supposed to be the ones for which the system would more likely assign
a positive label.

We manually checked all such noisy candidates, and found out that actually
many of them (around 10% average) have been originally wrongly annotated as
negative examples. Even if they were labeled as negative, some of these shots are
practically identical to frames annotated as positive, introducing noise in the training
set and making the modeling more difficult.

5.5 Summary and Future Work

We presented a multimedia categorization and retrieval framework based on au-
tomatic graded relevance annotations. We automatically reassessed binary-labeled
databases by assigning a degree of relevance to each sample based on its position
with respect to the SVM hyperplane, and build an effective graded-relevance based
CBMR system. We showed that our system, by allowing different degrees of rele-
vance, outperforms the traditional binary-based frameworks for both image recog-
nition and video retrieval.

Our simple approach can be improved in various ways. First, the automatic
relevance fuzzy score assignment can be refined by using more complex machine
learning-based measures, or by considering the combination of the relevance scores
of a sample with respect to different concepts. Moreover, we can automate the dis-
cretization procedure (from fuzzy to discrete relevance degrees) by designing a mea-
sure that infers the best thresholds from the shape of the positive membership scores
curve. Finally, while in our framework, similar to traditional CBMR systems, we
use simple SVM classifiers for ranking, we could explore the learning methods used
for web page ranking (e.g. [211]), that are designed to support graded-relevance,
achieving a higher discriminative power.

Moreover, we have presented a first attempt of using the sample distance to
the hyperplane to remove the labeling noise of the positive examples of a very
challenging dataset. This approach can be extended and re-used for the denoising
of various datasets annotations, in order to re-evaluate both the negative and the
positive examples, by building a more formal or automatic model for the correction
of the sample labels.





Chapter 6

Level 3: Beyond Pure semantics:
the Synergy with aesthetic

analysis

3. Semantic  
Label 

0. Semantic Features 

1. Coding+Pooling 

2. Learning 

*No pooling     required* 

Semantic Analysis Aesthetic Analysis 

0. Compositional Features: 
Aesthetics, Affective , Artistic 

2. Learning 

3. Aesthetic, Interestingness, 
Appeal Degree 

Figure 6.1: aesthetic analysis and semantic analysis are two closely related applica-
tions within the MMIR fields

MMIR for aesthetic analysis provides a set of techniques to automatically assign a
beauty degree to a given image. In this Chapter, we re-use many of the techniques built
in this thesis for semantic analysis, and apply it to aesthetic analysis. We assess the
image appeal degree by using semantic features together with aesthetic features, and learn
models based on graded relevance. Moreover, we also explore the other way around: are
aesthetic analysis tools useful for semantic analysis? We determine here the importance of
aesthetic features for semantic prediction. Overall, in this chapter we enrich both types of
visual analysis by exploring the synergy between semantic and aesthetics. We show the
benefits and the limits of this synergy, and propose some improvements in this direction.

We have seen in the previous chapters a substantial set of contributions at all
levels of the MMIR chain, and applied them to semantic analysis by testing their
performance on benchmarking datasets. We will now see how to re-use and mix
together some of the technologies presented to go beyond semantics.

When reaching the upper level of the MMIR pyramid, namely the application
level, the whole process, from low-level feature extraction to model learning, is
enclosed in an intelligent “black box” and embedded into a real user-oriented appli-
cation. Based on the variety of the underlying features, one or more of these “black
boxes” can be used for the prediction of the image labels. The contribution of the
different predictions can be then combined into a single framework for MMIR.
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At this level of the chain, the system generally takes as input an image and gives
as output a label related to some characteristic of the image, given its features and
the underlying model. The nature of the label can be related to various peculiarities
of the image: the objects, scenes, events, or, for example, the level of beauty or
appeal of the image. Besides the efficiency, at the top of the pyramid there is one
single visible parameter: the accuracy of the application, namely how accurate the
predictions that the underlying image analysis system generates are.

Until now, following the traditional track of MMIR technologies, we mainly
concentrated our efforts and techniques to build automatic semantic analysis(SA),
whose task is to automatically predict the objects depicted in an image, the scenes
where the pictures have been shot, or general semantic concepts such as actions
or events. However, in the recent years, a new application for automatic image
analysis has attracted the attention of MMIR researchers: aesthetic analysis (AA),
namely a set of techniques to automatically assess the image beauty and appeal.
This Chapter will explore possible solutions for this application.

Automatic Semantic Analysis and Aesthetic Analysis: Similarities
and Boundaries

While with our traditional MMIR systems we predict the presence of given
semantics in an image, aesthetic analysis frameworks predict the aesthetic degree of
its visual content. semantic analysis techniques are generally more focused on the
analysis of the content of the image: they learn models based on semantic features,
such as the Saliency Moments [148], namely descriptions of the image content. On
the other hand, aesthetic analysis frameworks [32, 130] learn models able to predict
image beauty based on compositional features, that describe how much an image
is following given photographic rules [32], and what the general arrangement and
layout of the image is.

While semantic features such as MEDA, Saliency Moments, etc. give information
about the content, AA features collect the attributes related to the shooting process
and the image composition.

Despite their different applications and underlying features, semantic and aes-
thetic analysis systems are closely related fields, both from a technical and a per-
ceptive point of view.

• From a technical point of view, they share the same learning framework,
adopted by AA systems from SI. In both cases, a model (level 2, Chapter 5)
is learnt on annotated (with content labels or aesthetic degree) training data
(namely semantic or compositional features, level 0 and 1) through machine
learning techniques, and then used to label (with object/scenes categories or
beauty degree) a test image.
But analogies between SA and AA are not limited to their implementations.

• Content and aesthetics are closely related in natural images also from a per-
ceptive point of view. First, as proved in [35] the type of objects depicted in
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Figure 6.2: Similar images, similar aesthetics.

an image can strongly influence the aesthetic judgment (e.g. people, animals,
faces). Moreover, it is well known in photographic theory [91] that the image
shooting process and its composition technique, as well as the emotion vehic-
ulated and the degree of visual appeal, change according to the content to be
depicted. Content is therefore important to determine the image composition,
and, subsequently, its aesthetic degree.

Given this relation, we could also assume that the other way around is equally
valid, given the image aesthetics and compositional rules, we can infer some
image semantics. Groups of semantically similar images can share the same
compositional attributes, making compositional-aesthetic information an
additional cue for semantic analysis.

Our Contribution: Semantics at the Service of Aesthetic Analysis, and
Vice versa

These observations regarding the junctions between these two fields suggest us that,
by merging and combining AA and SA, and their underlying systems, we can enrich
the overall visual analysis and obtain higher accuracy and better performances at
an application level in both types of analysis. Our idea is that the synergy between
semantic analysis and aesthetic analysis can help both image category and aesthetic
degree prediction. Our aim is therefore to merge the intelligent systems underlying
the two applications and improve the performances on top of the pyramid.

The first step towards the complete understanding of the synergy between aes-
thetics and semantics is to explore the contribution that semantic analysis tools
for MMIR brings to image appeal assessment frameworks. In this Chapter, we will
therefore first address one main question: How is semantic analysis influencing
aesthetic prediction?
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In order to answer the first question, we re-use many of the new rules and features
in the previous chapters and our strong background in semantic analysis for aesthetic
prediction. We employ semantic features such as the Saliency Moments, that we
originally created for SA problems, that we combine it with a new compositional
feature vector we build for this purpose containing artistic, affective and aesthetic
features. We then learn a model based on such different types of features through
a graded relevance learning systems of Chapter 5. We use as annotations for this
purpose, the “interestingness” degrees assigned by the Flickr crowd to the images of
the popular online photo management service. We then apply the resulting model
for the prediction of the appeal of images and videos.

The key aspect of our approach is that it strongly relies on the interaction be-
tween different sources of information. Not only we combine semantic and compu-
tational aesthetics information, but we also build a compositional feature vector
collecting existing and new features from three, closely related fields: aesthetic im-
age analysis, affective image analysis and artistic image analysis. While in aesthetic
analysis literature [36] compositional attributes are generally related to the sim-
ple image layout (aesthetic attributes, e.g. rules of thirds), here we extend this
definition to include affective (emotional) and artistic attributes that can help
characterizing the “intent” [47] of the photographer when composing a given pic-
ture.

The fusion of such different, discriminative and complementary sources of in-
formation about the scene attributes, together with semantic features, brings a
substantial improvement on interestingness prediction performances, compared to
systems based on aesthetic features only.

Moreover, we also investigate the other way around: How is aesthetic analysis
information affecting semantic prediction? In order to explore this possi-
bility, we look at the prediction improvements on semantic annotation of scenes,
obtained by adding our compositional (aesthetic, affective, artistic) feature vector
to a classic SA framework for scene recognition based on the Saliency Moments
descriptor (see Chapter 3, and [148]).

Overall, in this Chapter we investigate the intersections between semantics and
aesthetics with the aim of improving the global effectiveness of AA and SA systems.
Since the general frameworks for AA and SA share the same pyramidal structure
of MMIR systems (see Fig. 6.1), it is practically straight forward to combine the
knowledge of these two conjoint fields. Content and aesthetics are complementary
sources of information regarding the image depicted, and we can exploit their com-
bination to enrich both the aesthetic and semantic learning.

In the following we will first identify similar works in the field, and highlight
the peculiarities of our approaches in Sec. 6.1, and then describe in detail our
compositional descriptor gathering aesthetic, affective and artistic features (see Sec.
6.2). We will then show in Sec. 6.3 how we employ it together with semantic features
under a graded-relevance learning framework for the prediction of the interestingness
degree of images and videos. Finally, in Sec. 6.4 we will combine it with semantic
features for the improvement of a scene categorization system.
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6.1 Related Work

We show here the novelty introduced by our work, one of the first attempt to improve
semantic analysis and aesthetic analysis through their interaction.

Existing aesthetic image analysis frameworks automatically define the beauty
degree of an image, generally by using learning systems trained on compositional
features. Datta et al. in their pioneer work [32] learn features that model photog-
raphy rules, and Wong et Al improve it in [201] by adding saliency information in
the prediction framework. Here, we go beyond the pure compositional analysis by
extending the pool of features used for aesthetic prediction, embedding semantic fea-
tures in the AA framework. Some work has been done in this direction by Obrador
et Al. [130], that build different aesthetic models for different image categories, us-
ing pre-defined manually labeled image categories. The use of semantic features for
aesthetic prediction has been explored in [35], where semantic concepts such as ani-
mals, scenes, people, are detected and the probability of their presence is used as an
attribute to predict image aesthetics. Our work differs from the one in [35] because
we do not train any concept model (in order to avoid complexity and prediction
noise generated by the low precision of semantic analysis systems), but we instead
use the semantic features in an unsupervised way, and predict the aesthetics of an
image given its semantic content without explicitly labeling it. Moreover, we also
improve the AA learning framework by using a graded relevance semantic analysis
system, previously used for video retrieval [150].

On the other hand, semantic analysis works generally by building MMIR frame-
works for scene categorization (using holistic features [148, 205]), object recognition
(using local features [30]), or concept detection for video retrieval [168]. Generally,
such systems use local or global visual features that represent the pure image con-
tent, without considering all the information coming from the image composition,
layout and shooting style. However, are compositional features useful for semantic
analysis? In our work, we address this question by creating a scene categorization
system that embeds some compositional features. To our knowledge, the work that
appears to be more similar to ours is the one presented by Van Gemert [188], that
incorporates into the spatial pyramid descriptor some style attributes for object
recognition. Our work differs from [188] first because of the final application (scene
vs object recognition), and second because we directly apply the compositional fea-
tures for semantic analysis rather than using composition to extend an existing
algorithm.

6.2 A New Set of Compositional Features Modeling the
Photographer’s “Intent”

The image aesthetics is strongly influenced by the image layout and arrangement,
namely its composition. Previous works in computational image composition [130,
36] understands composition as a set of objective rules for constructing the image
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Figure 6.3: The compositional features we extract for aesthetic and semantic image anal-
ysis.

layout. For example, compositional attributes have been defined for aesthetic scene
analysis as “characteristics related to the layout of an image that indicate how closely the
image follows photographic rules of composition” [36]. This is the reason why many
beauty predictors use mainly features related to the image composition in order to
assess the image aesthetic degree.

However, arranging pictures is not only about applying objective rules, but it is
also about following an artistic, intuitive process and convey intentions, meanings
and emotions [47]. Therefore, here, we extend this concept to include features
describing image emotional and artistic traits.

As Freeman states in [47] “So far we have been concerned with the vocabulary of
grammar and composition, but the process usually begins with purpose - a general or specific
idea of what kind of image a photographer wants”. In order to model the photographer’s
“intent” as defined by Freeman, we summarize the image composition using, besides
aesthetic-compositional features, also affective attributes, that describe the emotions
that a given image arouses through affective measures, and artistic attributes, that
determine, for example, the “order” of a given image. In addition to existing features,
e.g. low depth of field indicators [32], or color names [110], we implement two new
compositional features: our own version of “image uniqueness”, namely a measure
evaluating the novelty of the image content, and our own formula to determine
image “symmetry”.

Many of the features we extract have been proved to be discriminative in their
respective domains, but here, we test their discriminative ability for interestingness
prediction and scene classification.

In order to properly describe the image composition, we therefore extract a set of
features from three closely related domains, (aesthetic analysis [32, 130] , affective
image analysis [110] and artwork analysis [155]), and collect them into a single
compositional descriptor.

aesthetic image analysis aims at building systems that automatically define
the beauty degree of an image: for example, Datta et al. in [32] extract features



6.2. A New Set of Compositional Features Modeling the
Photographer’s “Intent” 123

that model photography rules using a computational approach to predict subjective
aesthetic scores for photographs; such model is improved in [202] by adding saliency
information in the aesthetic degree prediction framework.

In affective image analysis, the aim is to automatically define the type of
emotions that a given image arouses: in [196], specific color-based features are
designed for affective analysis and in [110], a pool of features arising from psychology
and art, and related to the image composition, is proposed to infer the emotions
generated by digital images.

In art image analysis, specific computational features (e.g. complexity, shape
of segments) are designed to investigate patterns in paintings [155] or to assess
artwork quality [100].

We therefore design a compositional descriptor of 43 features coming from
emotion-based image recognition, aesthetic analysis, and painting analysis. For
each image/frame, we extract our compositional 43-d feature vector a = {a(i)}43

i=1,
by gathering the following features (see Fig. 6.2):

1. Color names, a(1-9). Similar to [110] we
count the amount of 9 different common colors
(’black’,’blue’,’green’,’flesh’,’magenta’,’purple’,’red’,’white’,’yellow’) in the
image: different color combinations are used from artists/photographers to
arouse different emotions.

2. GLCM properties, a(10-19). Gray-level co-occurrence matrices [61] are ef-
ficient ways to infer the image texture properties, because they describe the
distribution of similar image values given a distance offset. Texture properties
are of crucial importance to determine the affective content of a given image.
Here, similar to [110], we fill our feature vector with the properties of correla-
tion, homogeneity, energy, entropy and dissimilarity inferred from the GLCM
matrix of a given image.

3. HSV features, a(20-25). After transforming the image into HSV space, we
take the mean of hue, saturation and brightness, and compute pleasure, arousal
and dominance features according to the values assigned to the affective fea-
tures in [136] and then [110]. 1

4. Level of detail, a(26). We measure image homogeneity from [110] based on
the number of segments resulting after waterfall segmentation [7].

5. Rule of thirds, a(27-29). The rule of thirds in photography states that
the most relevant subjects in an image should be placed along the horizon-
tal/vertical lines intersection resulting from dividing an image in a 3 × 3 grid.

1Pleasure = 0, 69Y + 0, 22S
Arousal = −0, 31Y + 0, 60S
Dominance = 0, 76Y + 0, 32S
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We evaluate how much the image follows the photography rule of thirds by tak-
ing the mean of Hue, Saturation and Brightness of the image inner rectangle,
as in [32].

6. Low depth of field, a(30-38). The depth of field measures the ranges of
distances from the observer that appear acceptably sharp in a scene. We
extract low DoF indicators using wavelet coefficients as described in [32].

7. Contrast, a(39). As in [34], we extract the contrast Michelson measure [116].
The Michelson contrast is defined as the ratio between the difference and the
sum of maximum and minimum luminance of the image.

8. Symmetry, a(40). Image Symmetry is a very important element to define
the image layout. We define our own symmetry feature: we extract the Edge
Histogram Descriptor [200] on both the left half and the right half of the image
(but inverting major and minor diagonals in the right half), and retain the
difference between the resulting histograms as the amount of symmetry in the
image.

9. Image Order, a(41,42). According to Birkhoff [11], image beauty can be
found in the ratio between order and complexity. Following this theory, image
(in particular, arts and painting) order is computed in [155] using an informa-
tion theory approach. We compute here the image order using first a Shannon
Entropy approach and then a Kologomorov Complexity approach, as proposed
in [155]. The first measure is computed based on the difference of the maxi-
mum entropy for an RGB image and the entropy of an image given its color
palette (computed based on the entropy of the normalized histogram of the
luminance values). The second value is computed with the differences between
the sum of the entropy values of the normalized histograms of the three color
channels and the complexity (1-compression ratio) of the image.

10. Uniqueness, a(43). How much an image represents a novelty compared to
known information, how much is an image unique, i.e. it differs from the
common image behavior? this variable can tell much about the artistic content
of an image. We propose a new solution to address this question. We define
the common image behavior according to the “1/f law" [157], saying that the
average amplitude spectrum of a set of images obeys a 1/f distribution. We
measure the uniqueness by computing the Euclidean distance between the
average spectrum of the images in the database and the spectrum of each
image (See Fig. 6.4 for visual examples).

We finally normalize all the features in the range [0,1] and combine them into our
compositional vector. While feature 1-7 and 9 are existing descriptors from affective
(1-4), aesthetics (5-7) and artistic (9) image analysis, the aesthetic feature of sym-
metry (8) and the artistic feature of uniqueness represent our novel contribution.
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Figure 6.4: Visual explanation of the Uniqueness feature. The average Fourier
spectrum of natural images is subtracted from the image spectrum, resulting in a
uniqueness features with higher values for original pictures

6.3 Retrieving Appealing Images and Videos by Learn-
ing Flickr-based Graded Judgments

Our first work that investigates the benefit of the combination aesthetics-semantics
is a MMIR framework that predicts the image “interestingness", typically related to
the beauty of the scene depicted (see [151] for details). Our aim here is to build a
system that, given an image (or a video sequence), can output a value corresponding
to the appeal of its visual content.

Given the huge volumes of visual information surrounding us, automatic as-
sessment of image beauty and appeal is becoming of crucial importance for the
development of effective user centered visual applications.

For example, one of the tasks set for the ACM Multimedia Grand Challenge
2012 by the Japanese national public broadcasting channel NHK, is named “Where
is the beauty?". In this track, participants are provided with a set of broadcasting
videos (from the NHK channel) describing Japanese famous landscapes and touristic
sites. The task is to automatically extract the beautiful scenes in such corpus and
rank them in terms of beauty.

We participated to this task building a novel system for image appeal prediction
based on semantic features, compositional features and graded relevance. We define
a peculiar notion of beauty and use it to create an external training database with
graded judgments. Based on this data we train a graded relevance framework (i.e. a
CBMR system able to deal with multiple degrees of annotations), that will provide
a list of beautiful scenes extracted from the NHK videos.

Our novel contributions can be summarized in the flow of our proposed approach:

1. Notion of Beauty. In the NHK challenge, the notion of beauty, and the
subsequent evaluation and annotation of the training images, is entrusted to
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Figure 6.5: Examples of interesting (top) and non interesting (bottom) Flickr images
from Japan.

the participants. However, there is no universal agreement on an objective
measure of beauty. It is therefore difficult to ask users to define the aesthetic
degree of images and build an annotated dataset out of it. Moreover, mere
scenic beauty might be of limited importance when describing broadcasting
data, that is typically edited to “attract” the passive TV user. We therefore
choose to model and automatically predict the more informative property of
“interestingness", namely an indicator representing how much the visual con-
tent is appealing for the audience. How do we quantify and use this attribute
to build a training set for NHK corpus evaluation?

2. Training Database. Since the NHK videos come without aesthetic labels,
we decide to train our system on an external database of images annotated
with interestingness degrees, reliably computed from the preferences of the
large Flickr audience. As a matter of fact, we exploit the Flickr “interesting-
ness" criteria and build our training set by downloading a set of “interesting”,
“average interesting” and “non interesting” (3-level annotations) Japan-related
pictures.

3. Feature Extraction. From both the Flickr-based and the NHK databases
we extract a set of compositional and semantic features, including the two new
features we design to define image “symmetry” and “uniqueness".

4. Two Learning Frameworks. We first train a traditional binary CBMR sys-
tem using a simple binary interesting/non interesting partition of the train-
ing images. We then learn a graded relevance framework similar to the one
presented in Chapter 5, that can deal with multiple degree of annotations.
Both systems, given a new image, are able to output a score reflecting its
appeal/interestingness degree.

5. Testing and Ranking. Flickr data is made of still images, while our test data
is composed of video sequences. Therefore, in order to transfer the knowledge
from the training set to the test set, we first take a set of still frames per
shot in the NHK corpus. We then predict the interestingness score for each
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frame, and we rank shots according to the highest score obtained by its frames.
For the final submission, we combine two lists of shots, one based on the
binary retrieval and the other based on graded annotations. We also present
some results on Flickr data to show the improvements brought by our choices,
compared to AA-only based analysis.

In the following, we will first analyze in detail our notion of beauty and the resulting
training database from Flickr images, see Sec. 6.3.2. We then explain in Sec. 6.3.2.1
the set of features used and the two proposed learning frameworks based on binary
and graded relevance. Finally, we will look at the effectiveness of our choices for
interestingness prediction of the Flickr dataset, see Sec. 6.3.3.

6.3.1 Training and Test Datasets: from Flickr Interestingness to
Video Appeal

For the 2012 NHK Grand Challenge we are provided with a database of 10 videos
depicting beautiful scenes in Japan touristic places. Shot boundaries and video
sources are given, but no annotation is provided. However, since we address the
challenge with a supervised learning framework, we require positive/negative labels
associated with the data, in order to feed the supervised learning techniques beneath
our system. To obtain such annotations, we should ask a substantial amount of
users to give their preferences regarding the beauty of the NHK scenes. However,
this turned out to be infeasible due to time and resources constraints. In order to
have reliable, non-subjective, average judgments about the video beauty, we would
need a large number of diverse human annotators. And even in this scenario, the
notion of beauty of such users could be biased by the education level, the gender,
nationality, etc. Moreover, we would like to retain all the scenes in the challenge
videos as a test set, in order to maximize the probability of finding beautiful shots
for the final submission.

Given these observations, we decided to train the whole system on external
annotated data, and then apply the learnt models to retrieve the whole NHK corpus.
How to define such external dataset? How to find a properly annotated training set,
that can be suitable to rank the video scenes we are provided with?

First of all, we clarify our definition of beauty. Since we are dealing with broad-
casting data, that is typically edited to attract the final user, we assume that the
scenes to be shown to the final users need to be appealing, besides being beautiful:
they need therefore to be “interesting”. It was proved indeed [160] that beauty and
interestingness are closely related, and that the second property includes the for-
mer one: precisely, beauty is said to be the “first derivative” of interestingness. An
interestingness-based annotated dataset would give us not only an aesthetic judg-
ment on the scenes, but also an evaluation of how much appealing they are, and
how much curiosity they arouse.

But how can visual content be judged for its interesting qualities without involv-
ing human subjectivity? Flickr Interestingness criteria is the answer to this issue:
a value representing the appeal of each photo in the Flickr collection, determined
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by number of views, comments, bookmarks, citations in discussion etc. As we can
see from Fig. 6.5, thanks to the “crowd wisdom”, the most interesting images for a
given query are high-quality, beautiful pictures, while the least interesting (second
row) are more anonymous, less stunning pictures.

How do we use Flickr interestingness to create a training set suitable for our test
data? Our approach is as follows (see Fig. 6.6).

1. First, since the NHK videos are shot in popular places in Japan, we select the
20 most touristic Japanese landmarks, helped by Japan guidebooks.

2. We then crawl the Flickr website and download 200 images per landmark,
namely the 100 most interesting and the 100 less interesting pictures tagged
with the proposed landmarks.

3. We then use the set of most interesting pictures as positives and the less
interesting as negatives for our annotated training set, and build our models
based on such data. However, a binary partition, based on positive/negative
annotations only can be a bit too restrictive for the type of information we
want to infer.

4. An image can be appealing for a user with different degrees, depending on the
way the image is composed. We therefore download additional 100 images for
each query, that we define as “average interesting”, namely, the pictures that,
for each query, lie in the middle of the returned sorted list. We then train a
graded relevance system (see [150]) based on training set sub-partitions.

5. Finally, we sample the NHK videos, extracting 16 frames per shot, and apply
the learnt models to such test dataset.

6.3.2 Our Proposed System

As shown in Fig. 6.6, in order to produce the final appealing scenes list we proceed
as follows. From the Flickr-based and the NHK databases (i.e. the still frames
extracted from the videos) we extract a set of compositional and semantic features
(see Sec 6.3.2.1). We then use the training features with their corresponding inter-
esting/non interesting annotations to train a binary learning system, as shown in
Sec 6.3.2.2. We then extend the training set to allow for non-binary annotations and
feed a graded relevance interestingness-based retrieval system (see Sec. 6.3.2.1). We
use both systems to rank the shots in the test NHK set according to their interest-
ingness, as shown in Sec. 6.3.2.3. Finally, we combine the outputs of both systems
to compose the final list of beautiful shots, as shown in Sec 6.3.2.4.

6.3.2.1 Feature Extraction

As a first step, we extract a set of discriminative image features coming from both
the AA domain and the SA field.
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Figure 6.6: The flow of the proposed system for video scene appeal evaluation

We first extract a set of affective, artistic and aesthetical features, accord-
ing to the compositional descriptor presented in 6.2, obtaining the feature vector
a = {a(i)}43

i=1.

In order to enrich the visual analysis, we then compute a set of semantic fea-
tures.

As proved in [35], and confirmed by our results, the semantic content of an
image plays an important role in determining its interestingness degree. In our
system, we extract two semantic features (whose contributions will be combined
with the compositional features in Sec. 6.3.2.2 and 6.3.2.3), namely the MPEG7
Edge Histogram Descriptor (EHD) [200], that generates a 80-dimensional vector,
namely e = {e(j)}80

j=1 and the Saliency Moments Descriptor (SM) [148], a 462-d
feature vector s = {s(l)}462

l=1. We chose the former one because it is a holistic image
representation highlighting the image composition, which is typically very important
to define the aesthetic degree of an image. Similarly, the SM descriptor is based
on the shape of the salient region, and it is proved in [201] that visual attention
information is closely related to image aesthetics.
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6.3.2.2 Binary Relevance System

The first system we use for ranking NHK video scenes is a traditional learning
framework. We extract from the training Flickr images the feature vectors a, e, s
in Sec. 6.3.2.1. We then label each feature vector with a positive/negative label
according to the interestingness of its corresponding image, and we use them as
input to feed a set (one per feature) of Support Vector Machines (SVM) with RBF
Kernel. We have now three feature-specific models able to distinguish between
appealing/non appealing images.

On the NHK test set, we extract 16 frames per shot, for the 10 videos provided.
We then classify the resulting frames with the feature-specific models: by doing so,
we obtain, for each frame F an interestingness score pF (f) = p(int|f), f = a, e, s,
corresponding to the output probability of the f -specific SVM. Since we want to
determine the beauty of an entire shot S, and we have several frames per shot, we
retain as interestingness score for a given shot the maximum of the scores of the
frames belonging to that shot, namely pS(f) = max(pF∈S(f)). Finally, we compute
the output interestingness score for each shot by linearly combining the output of
the three feature-specific predictors: p(all)

S =
∑

f wf ·pS(f). We then rank the results
according to pallS and the top 5% shots are retained for the final run.

6.3.2.3 Graded Relevance System

In our second framework, similar to the graded relevance system of Chapter 5 [150],
we use 3 levels of labels(interesting, average interesting and non-interesting) and
build a graded relevance retrieval system able to deal with multiple degrees of an-
notations.

First, we extend our training set by adding the images (and their corresponding
features) that have been ranked by Flickr as being “average interesting". We then
create two training subset: (t1) considers as positives the "interesting" images and
as negative the “average interesting" plus the “non interesting" images; (t2) consider
as positives the “interesting" and “average interesting" images, and as negative the
“non interesting" ones. We then build a 2-layer model by training the system, for
each type of feature, with both training subsets. Each level of the multi-layer model
is a model generated by a different relevance-based partition of the training set, and
it will therefore provide complementary information regarding the interestingness
degree of a new sample to be ranked.

As a matter of fact, when we test on the NHK database, for each shot (processed
as in the Binary Relevance System) we obtain two, complementary, feature-based
interestingness score, namely p1S(f) = p(int|f, t1) and p2S(f) = p(int|f, t2), that
we linearly combine into pgrS (f) = λ(p1S)+(1−λ)(p2S) order to retain the informa-
tion coming from both levels of the multi-layer mode. Finally, feature-based scores
are combined as in the binary system, results are ranked and the top 5% shots are
retained for the final run.
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(s) (e) (a) a+e+s
Binary 0,16646227 0,11358656 0,17658801 0,18944645
Graded 0,17648103 0,12364157 0,20284673 0,21484038

Table 6.1: MAP for the top 10% results of each system in our framework.

Figure 6.7: Snapshots the selected appealing scenes

6.3.2.4 The Submitted Run

We compose our final run by combining the top 5% of each list (namely, top 5% of
Binary System and top 5% of Graded Relevance System). As we observed on our
training data, the ranked lists of the two systems are very different, and they are
more likely to show more interesting examples on the top positions.

Moreover, we run a face detector on the final list, that identifies the size and
the number of the human faces represented in each listed frame. We then eliminate
those frames for which the detector identifies a face with size ≥ 1/4 of the frame
surface, since such frames are very likely not to contain sceneries or landscapes.

Given the resulting keyframes and shots detected by our system as being the
more “interesting” of the NhK corpus, our system has been selected as one of the
finalists of the MM Grand Challenge 2013.

6.3.3 Evaluation

In this Section, we present some results on our development data, namely the Flickr
annotated data, that proves the effectiveness of our solutions.

We split the images of Flickr dataset into a train and a test subset, in order to
learn the various parameters of our framework (i.e. the RBF parameters, wf in Sec
6.3.2.2, λ in Sec 6.3.2.3). We learn a model for each system (binary, graded) on
the Flickr training subset, then we test on the Flickr test subset and evaluate the
results on the using Mean Average Precision (MAP) over the list of the images that
have been ranked in the top 10 %.

Results in Table 1 show the performances of the three features (aesthetics, a,
EHD, e, SMD, s) used alone and their improvement after posterior fusion (+ 7%
over a-based classification only, which show the importance of semantic features in
the interestingness-based retrieval) in the binary-relevance system. Moreover, we
show the MAP results for the graded relevance system, that improves the results
of the previous system by 6% for s−based retrieval, 8% for e−based retrieval, 15%
for a−based retrieval, and by 14% when we consider the contribution of the three
features together.
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6.4 Enhancing Semantic Features with Compositional
Analysis for Scene Recognition

The second work we propose to investigate the relations between aesthetics and
semantics is a MMIR system for the semantic scene categorization task, namely
the automatic prediction of the image scene category (where was the image taken?)
based on a pre-defined set of scene classes.

In scene recognition literature, semantic features are extracted to analyze the
image content using either local analysis, based on local interest point descriptors
(see Chapter 4) aggregated into a compact image representation, or global analysis
(see Chapter 5), where general properties of the image, such as color or texture
distribution, are summarized into a single descriptor.

Semantic information is without discussion the primary cue for scene identifica-
tion. However, as mentioned, there exists another important source of information
regarding the image scene, namely its composition, that not only is helpful to assess
the image beauty, but it also could be an important cue to recognize the scene cate-
gory. We understand here as image composition a combination of aesthetic, affective
and artistic components that concur in creating its photographic style, intent [47]
and layout, as shown in Sec. 6.2.

How is this related to scene identification? For example, intuitively it is more
likely than an image with a high level of symmetry depicts a non-natural scene
(e.g. a building), or that a picture with high level of detail comes from indoor
environments. Moreover, as proved in [189], groups of semantically similar images
can share the same compositional attributes (e.g. same point of view and depth of
field for buildings or sport fields, same color contrast for natural outdoor scenes, see
Fig. 6), as also studied in Photogrpahy Theory [47].

Given these observations, we explore here the role of compositional attributes
for scene recognition using a computational approach. We design a categorization
system that incorporates affective, aesthetic and artistic features, and combines
them with traditional semantic descriptors for scene classification. The fusion of
such different, discriminative and complementary sources of information about the
scene attributes brings a substantial improvement of the scene categorization per-
formances, compared to systems based on semantic features only.

We test the effectiveness of our compositional descriptor for scene classifica-
tion using a variety of challenging datasets [143, 133, 205], including the SUN [205]
dataset, that contains around 400 categories of very diverse scenes. We first use
our compositional vector of Sec. 6.2 as a stand-alone descriptor, and we verify that
compositional features carry discriminative power for scene categorization. More-
over, we show that, by summarizing the image layout properties into an image
descriptor for classification, we introduce a new, complementary source of informa-
tion regarding the scene characteristics. Therefore, when we combine our descriptor
with traditional semantic features in a complete scene categorization system, we
increase the classification accuracy of a semantic feature-only system by 13-15% for
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Figure 6.8: Combining compositional and semantic attributes for scene recognition

both small-scale [143, 133] and large-scale [205] scene understanding datasets.
In the following, we will first see a broad overview of our framework and then

verify the discriminative power and the complementarity of compositional features
for scene analysis given our experiments.

6.4.1 Analyzing Compositional Attributes for Scene Recognition

Scene recognition systems automatically categorize a given image into a pre-defined
set of semantic classes corresponding to different scenery situations. In our ap-
proach, we exploit for this purpose the informativeness regarding image composition
and photographic style typical of aesthetic, artistic and affective image features. We
then combine them with the discriminative traditional semantic features in a com-
plete scene categorization system that predicts an image class based on such diverse
sources of information.

While we use traditional learning frameworks for classification, the peculiarity of
our system is the choice of particular, discriminative image features that go beyond
the traditional semantic descriptors for scene categorization by evaluating not only
the content but also the compositional style of the image.

The set of features we combine is as follows:

• The core of the discriminative power of our scene recognition system is the
set of semantic features for categorization. Here, we select to compute a
powerful global feature for scene recognition, namely the Saliency Moments
(SM) descriptor, see Chapter 3, s = {s(i)}462

i=1.

• We then extract our compositional feature vector a = {a(i)}43
i=1 gathering

artistic, affective and aesthetic features (see Fig. 6.2).

Our general framework is basically a traditional image categorization/retrieval
framework (see Fig. 6.8): based on compositional image features, for each category,
we learn a model from the training images with Support Vector Machines (SVMs).
Similarly, we train a set of SVMs (one for each class) using a set of semantic features.
In the test phase, for a new image, given both compositional and semantic features
and the models previously computed, we obtain, for each category c, pa(c) i.e.



134
Chapter 6. Level 3: Beyond Pure semantics: the Synergy with

aesthetic analysis

84,34 

67,10 

84,66 85,14 

77,38 
71,09 

78,60 
86,02 

50

60

70

80

90

100

SM COMP SM+COMP (Early) SM+COMP (Posterior) GIST BOW BOW+COMP BOW+COMP+SM

26,75 

17,82 

28,91 30,83 

21,17 19,36 
25,24 

34,82 

0
5

10
15
20
25
30
35
40

                                                  

 

restaurant_kitchen +500% movietheater +125%
casino +250% bar +100%
airport_inside +200% gym +100%
kindergarden +150% bakery +100%

pub/indoor +900% wrestling_ring +133%
fishpond +233% stadium/football +129%
casino/indoor +180% bakery/shop +125%
arcade +150% basilica +100%
kindergarden_class +150% bistro/indoor +100%

opencountry +30% 
coast +22% 
tallbuilding +19% 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

 

Av
er

ag
e 

Ac
cu

ra
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
65

70

75

80

 

Av
er

ag
e A

cc
ur

ac
y

Most improving categories Most improving categories Most improving categories 

Accuracy for different values of λ Accuracy for different values of λ Accuracy for different values of λ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

Av
era

ge
 A

cc
ur

ac
y

Outdoor Scenes Indoor Scenes 

Average Accuracy 
Average Accuracy 

16,38 

8,62 

17,73 18,83 
16,30 

8,06 
12,45 

20,85 

0

5

10

15

20

25 SUN Database 

Average Accuracy 

Figure 6.9: Results of large scale and small scale scene recognition

the category score given compositional features, and ps(c), i.e. the category score
given semantic features. We retain the prediction from each model to test the
discriminative ability of each feature, and we assign the category as arg maxc px(c),
being x = a, s.

In order to explore the complementarity of our features, we use two types of
combination for the prediction of the scene category based on both compositional
and semantic attributes.

• Early Fusion: We combine the vectors a and s in a single vector as =

{as(i)}505
i=1 gathering the information coming from such diverse set of sources.

We then build a model based on the early-combined feature vector that will
be able, in the test phase, to predict a category score pas(c).

• Posterior Fusion: We then combine the prediction scores with weighted
linear fusion, namely pf (c) = λ(pa(c)) + (1 − λ)(ps(c)), where λ is a value
learnt during training. The final image category is assigned according to the
resulting category scores after fusion.

6.4.2 Experimental Results

In order to test the effectiveness of the proposed approach, and verify the usefulness
of aesthetic and affective features for semantic analysis, we use our framework for
two scene recognition tasks: small scale categorization and large scale categorization.
For the first task, we use two very popular benchmarking datasets for indoor [143]
and outdoor [133] scene recognition, while for large scale scene recognition, we test
our system on the challenging SUN database [205].

For each database, we first compute the classification accuracy given the model
built using each semantic feature (i.e. “COMP” or “SM” in Fig. 6.9). We then
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look at the classification performances resulting from using our compositional fea-
ture (“COMP”) as a stand-alone descriptor. Furthermore, we show the effectiveness
of the combination of aesthetic and compositional features by first fusing semantic
and aesthetic features in a single, early fused descriptor (e.g. “SM+COMP (early)”).
Finally, we combine the predictions of the single-descriptor-based models with pos-
terior linear fusion. We fix the parameter λ for fusion and show the resulting,
improved, performances (e.g. “SM+COMP (posterior)” in Fig. 6.9). For all de-
scriptors and datasets proposed, we learn the feature space through a multi-class
SVM with Radial Basis Function Kernel and we evaluate the performances by av-
erage multiclass accuracy, using training/tests subdivisions similar to our baselines
for such datasets.

In order to further enrich our analysis, besides the SM descriptor we also compute
a more purely semantic feature, namely the BOW signature aggregating PCA-SIFT
[87] descriptors (“BOW”). We use the BOW feature as input for multiclass SVM with
chi-squared kernel, and combine the resulting predictions with the compositional
descriptor using posterior fusion.

6.4.2.1 Small Scale Scene Recognition

Automatic classification of images into scene categories is performed here using
the proposed framework over two small scale dataset for indoor and outdoor scene
recognition.

In all cases, we see from Fig. 6.9 that the combination between the two sources
of information is bringing substantial improvement to the final performances, and
that both sources of information (aesthetic, semantic) concur in discriminating
the scenes. As a matter of fact, we can observe that the average accuracy
reaches its maximum value when the weight λ, representing the importance of the
aesthetic information for semantic classification, is around 0.5. This means that,
when combining aesthetic and semantic prediction, the MMIR system will give
equal importance to the aesthetic-based and to the semantic-based classification,
suggesting that compositional analysis is a promising cue for semantic MMIR.

Outdoor Scenes

Results show that, by combining aesthetic, affective and artistic features in our
compositional descriptor (“COMP”) we obtain an effective descriptor (68% of accu-
racy VS 12.5% of a random classifiers) for outdoor scene recognition. Moreover, we
can see that, while its combination with the SM descriptor does not bring much
improvement, its fusion with the BOW features increases the performances of the
BOW-only classification by 11%. This is because SM is an extremely effective
descriptor by itself for outdoor scenes, and because it contains already some
compositional information related to saliency, while the BoW feature arises from
local analysis of the shapes and contours, leading to a more accurate description of
the pure content of the image.
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Indoor Scenes

Results in this task clearly highlight the effectiveness of compositional features
for scene recognition: while the accuracy of the compositional descriptor alone
is not as good as semantic features (around 17% vs. 26% of SM), but still more
than 10 times better than a random classifier (∼ 1,4%), the scenario changes
when we combine it with traditional semantic features. As a matter of fact, both
the early (+ 8%) and the posterior (+ 15%) fusion with the Saliency Moment
descriptor successfully enhance the final scene recognition performances. Similar,
more evident behavior when we combine the compositional features with the BOW
descriptor: such fusion brings an improvement of 30 % compared to BOW-only
classification. Being BOW and SM complementary, and being both complementary
to compositional features, we also tried to combine the predictions resulting from
the three stand-alone models using posterior linear fusion. The improvement over
the classification based on SM (i.e. the most performing stand-alone descriptor) in
this case is more than 20%, suggesting that introducing compositional features in
the pool of existing semantic features is a promising cue for indoor scene recognition.

Large Scale Scene Recognition

Finally, we present our results for large scale scene recognition over the challenging
SUN database. Results on this dataset follow the same pattern of the previously
analyzed experiments: the combination of the SM with aesthetic/affective features
brings an improvement of 8% with early fusion and 13% with late fusion compared
to the SM-only classification, thus confirming the discriminative ability and the
complementarity of aesthetic and compositional features for scene recognition even
on a large scale.

6.5 Summary and Future Work

In this Chapter, we have investigated the possibility to apply the MMIR techniques
for semantic analysis to another MMIR application, namely aesthetic analysis, to
automatically assess the image beauty and appeal. Given the set of features com-
monly used for aesthetic analysis, we also explored the possibility of using aesthetic
and compositional cues for semantic analysis, by embedding aesthetic information
into a complete MMIR system for Scene Recognition.

Given our studies, we have verified that both applications, semantic and aes-
thetic analysis, benefit from the combination and integration of the respective un-
derlying MMIR systems. Can we further investigate the synergy between those two
applications? Two main tracks can be followed for our future work.

Improving AA with SA. As said, content plays an important role for aes-
thetic prediction, and different contents will generally show different compositional
arrangements. We therefore aim to build a content-aware aesthetic framework with
multiple aesthetic models, each one built according to the characteristics of a group
of visually similar images. Some work has been done in this direction by Obrador
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et Al. [130], that build different aesthetic models for different image categories,
using pre-defined manually labeled image categories. However, the relevance of an
image to one category is not always binary, as shown in [150], thus changing the
compositional rules and the aesthetic appreciation. Moreover, even if extended with
automatic classification, such work would be strongly dependent on the classifier
performances. Our idea is to perform an unsupervised pre-grouping of the training
images, by automatically defining a set of appearance-based clusters based on se-
mantic features. We could then infer an aesthetic model for each “semantic” cluster,
and then predict the aesthetic degree of the image according to its group and to its
aesthetic features.

Improving SA with AA. On the other hand, we can improve the scene cate-
gorization system by looking at the compositional features that are more useful to
distinguish each class from the others. For example, symmetry might be more useful
to identify a skyscraper scene, rather than contrast. For each classifier, we could de-
sign a set of category-specific compositional vector, which can be constructed based
on the discriminative ability of each feature for the class.





Chapter 7

Conclusions and Future
Perspectives

Multimedia Information Retrieval is a complex research discipline. Its intrinsic
complexity is due to its global goal: building machines that can see what we see and
understand what we understand. Moreover, the research in the field is very diverse,
since several computer science domains are involved in the creation of a MMIR
system, from low-level signal processing, to statistic and probabilistic modeling, to
machine learning techniques. Due to the complexity of this task, computer vision
systems still perform an order of magnitude worse compared to their biological
counterparts, i.e. the human vision systems. A huge gap exists between what
humans see and understand, and what computer can infer from the image pixels.
In this thesis we presented a set of techniques to reduce this gap.

As we showed in this manuscript, MMIR follows a complex chain of stages
that translate the image pixel values into intelligible concepts: first, the image pixel
are processed and their properties are summarized into low-level features. Such
features are then either pooled into a compact image descriptor, or directly used
as input for learning machines. Learning frameworks build models of the feature
space by linking the feature values to the image properties. Such properties are
expressed as labels, and can represent the type of objects depicted in the image,
the scene and location where a given image has been shot, the aesthetic degree
of the image, or the emotions it arouses. At the top level of the pyramid, i.e.
the application level, the MMIR system is used for label prediction, given new,
unknown images.

7.1 Our contributions From a Multidisciplinary Point of
View: the Lessons Learnt

In this thesis, we presented a set of solutions for each level of processing of the
MMIR chain: from the feature point of view, we developed low-level features
based on saliency and several methods for feature pooling based on marginal
analysis. From the learning point of view, we build a graded-relevance learning
framework for video retrieval, and finally, at an application level, we applied the
lessons learnt to predict the image interestingness based on aesthetics and
semantics.

The common property of all the methods we proposed is that they tend to
be multidisciplinary: we design our techniques by borrowing technologies and
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principles from a wide variety of different sources that are not directly related with
computer vision. We believe that the discovery of new cues for image analysis can
bring not only substantial improvements with respect to existing techniques, but it
also generates techniques providing complementary information regarding the image
properties, and that can be therefore used in combination with existing techniques.

For example, by using the biological visual principles of visual attention and
gist perception in Chapter 3, we created a very powerful low-level feature that
can be compared for efficiency to the low-level global features, and for accuracy
to the compact descriptors generated by aggregating local image descriptors. This
suggests us that human visual systems and their understanding can be a useful
source of inspiration for the development of effective computational vision systems.
By analyzing how we process the real word scenes and objects in their early vision
stage, and by carefully studying the recent developments in neurobiology, we can
build more discriminative image features and learning frameworks.

Another example of our multidisciplinary approach is given by the techniques
we design at Level 1 of the image analysis chain (Chapter 4) for local feature ag-
gregation. Here, we borrow from economic statistics the theory of Copulae,
and we successfully apply it for marginal-based multivariate modeling of the local
image keypoints. The resulting compact feature is much more effective for semantic
analysis compared to the complex traditional models such as Bag of Words, without
involving any universal model construction. This work represents a first, successful
attempt of using Copulae for image statistics. But Copula theory is a whole branch
of statistics that can provide several tools to solve computer vision problem, and
that we wish to explore in our future work.

At the learning level (Chapter 5), we built a graded-relevance learning frame-
work. The concept of graded relevance is not new in the web information re-
trieval field. Web pages ranking are based on a non-binary scale of relevance, and
ad-hoc learning and ranking techniques have been proposed for this purpose. Such
techniques can be re-used for Multimedia Information Retrieval, and deep, interest-
ing studies can be done in how to adapt such ranking methods to the video retrieval
field.

Finally, at an application level, in Chapter 6 we explore the synergy of many do-
mains within the MMIR field: semantic analysis, aesthetic analysis, affective
Analysis, artistic analysis. The combination of such variety of cues for image
analysis enriches the global visual analysis and brings substantial improvements to
the performances of scene recognition and image interestingness prediction. In par-
ticular, one of the key elements of the MMIR system we build for interestingness
prediction is that the groundtruth information is not generated manually, but by
using a non-standard procedure in traditional MMIR systems, namely the crowd
sourcing.
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7.2 Future Perspectives: Does Content matter?

The work we outlined in Chapter 6 represents our first attempt to use contextual
information for MMIR. Contextual information is a precious source of information
regarding the image properties, since it is composed of textual captions and descrip-
tions directly input by the image users. With the explosion of the on-line photo
management and sharing tools, we have available an incredible amount of metadata
that we can use to improve our aesthetic and semantic prediction.

It was pointed out [167] that visual-based analysis might not be even actually
useful for multimedia-based applications, and that contextual information could be
enough to perform automatic image analysis. It is true that visual analysis research,
constrained by benchmarking experimental datasets, tend to rely on the mere con-
tent (compositional, semantic) analysis of the images, losing precious information
coming from the media context (metadata, user characteristics). Semantic and Aes-
thetic MMIR systems also lack of considering real-world applications, limiting the
experiments to the pure prediction of image characteristics (image category or image
beauty). As a matter of fact, despite their effectiveness for image properties predic-
tion tested on benchmarking datasets, pure content-based techniques have several
performances limitations when coming to practical uses.

However, living in a world of user-generated content, we are learning that we
must consider what the user needs, analyze her behavior, her way of producing
media, and all the information she is giving as input about her visual content. We
can say that content analysis is not over, but we have to find its right place, specific
applications that need its informativeness, merge it with other sources to enrich the
media analysis. Content matters, and, in the following, we can see a possible future
track to follow to improve the prediction of the image interestingness and appeal
based on content and context. The global intention is to follow the idea of synergy
between different sources initiated in the last chapter of this thesis

With the wide diffusion of picture management tools such as Flickr, Picasa,
Facebook, the need of automatic assessment of image beauty, interestingness and
appeal becomes clearer day by day. Instead of trying to model interestingness us-
ing pure visual cues, we should consider several factors that might be involved in
aesthetic image judgment on online photo services, for example:

1. The position of the user in the social network: how much is she appreciated?
How many contacts does she have? How interesting were her previous pictures
for the crowd?

2. The content of the image: there are some subjects that are more likely to
attract the crowd than others, depending on the culture and nationality, the
current news, the general tendency of humans to focus on certain type of
objects and scenes etc.. Important is also the location where a given image
has been shot.

3. The aesthetics of the image: the way the image is composed, arranged, the
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photography rules that have been used to enhance its beauty, the type of
camera that is used for shooting, the emotions vehiculated etc..

If we are able to infer this kind of information regarding the user and its media, we
could then translate such elements into numerical features and model (learning the
importance of each feature) the image interestingness using as groundtruth a large
number of Flickr images annotated with their corresponding Flickr interestingness
values 1.

How to extract such features? Social Network analysis (see, for example,
[24]), very popular in the recent years, can help us understanding the social position
and profile of the user (1). Regarding the content and location (2), besides the
tag and metadata that the user provides with her media, we could also rely on
pure content-based techniques such as the ones we presented in this thesis. Similarly,
aesthetic and compositional features (3) can be calculated by modeling photographic
rules, emotions, and artistic traits using a computational approach, and we can
enrich this pool of features with some forensic analysis for camera identification
[108]. Moreover, there will be other factors impacting interestingness that we can
discover thanks to user perception studies.

Similarly, we could help affective and artistic image analysis with similar
frameworks, and perhaps re-use similar techniques.

As a conclusion, we showed with this thesis that the synergy between different,
related or unrelated field can bring substantial improvements towards the real mod-
eling of a computer vision system. Perhaps, by increasing the interaction of such
variegate cues, and exploiting the new technologies that the digital visual world is
providing us, we could soon infer, in a reliable way, at least 500 of those thousand
words an image is worth.

1http://www.flickr.com/explore/interesting/
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