
DistBack: A Low-Overhead Distributed Back-Up
Architecture with Snapshot Support

Thomas Mager, Ernst Biersack
EURECOM, Sophia Antipolis, France

{mager,erbi}@eurecom.fr

Abstract—There exist many distributed storage systems tol-
erating failures of participating nodes. However, they require
high amounts of metadata and do not focus on a user’s need
to easily recover a snapshot of their data. In this paper, we
describe DistBack, a distributed back-up system that involves
always-on home network gateways with the assistance of a reliable
data center. We separate the system into swarms in order to
ease monitoring and limit the scope of data requests. DistBack
introduces index files which comprise metadata necessary to
recover a snapshot. To increase efficiency, we embed small files
into these index files. We show that this is reasonable due to the
low amount of storage space they account for, which in our case
is less than 0.1%. As a result, DistBack requires less metadata to
relocate data. It supports snapshot based back-up and provides
solutions for storing files of different sizes.

I. INTRODUCTION

Storing data not only locally at home but also at different
locations significantly reduces the risk of data loss due to theft
or natural disasters. Although data may be very valuable to
them, most users underestimate these risks and neglect efforts
or costs for an off-site back-up, which is distributed over
different locations.

However, today, many users have sophisticated home net-
work gateways (HNG) which include network-attached storage
and functionality to seamlessly synchronize data with different
user devices at home [1]. Due to the mutual interest in storing
a back-up off-site, it is possible to leverage spare resources
on such HNGs for free. TotalRecall [2], Glacier [3], and
OceanStore [4] are examples of systems using such approach.

Unfortunately, these systems entail a lot of metadata and
overhead for checking data availability. They assume data to be
organized in abstract blocks of fixed size. Files either consist of
multiple blocks or may share a block with other files. Finally,
each block is stored on a subset of participants in the network.
This results in a lot of metadata and overhead for checking the
availability of each block.

Further, existing systems employ block-level incremental
back-up, so that only differences to a former state of a file
system are uploaded [5]. This form of back-up, however, does
not support deletion of former back-ups. This is crucial since
storage space on foreign nodes is limited. Therefore, after
reaching such limit, a user is no longer able to upload recent
data. On-site back-up solutions like Time Machine [6] offer
snapshot-based back-up, supporting deletion of older states.
In contrast, we are not aware of any system with distributed
snapshot support.

Based on this motivation, the contribution of this paper is as
follows:

• A swarm based architecture which uses file level access
and reduces necessary metadata to a very low level.
Further, it is easy to monitor a swarm.

• We show how to support a snapshot based back-up in a
distributed storage system.

• Solutions for efficiently storing files of different sizes in
such a system.

The remainder of this paper is structured as follows. First,
we present related work in Section II. In Section III we
overview our architecture. Section IV illustrates the mapping
of back-up snapshots to data structures. The data placement
policy is explained in Section V. We address maintenance
of stored data in Section VI, followed by a discussion in
Section VII concerning files of different sizes. Section VIII
provides a recommendation on how to implement the archi-
tecture. Finally, we conclude in Section IX.

II. RELATED WORK

For peer-to-peer systems, lots of research has been done
with focus on on-line storage [7], targeting features usually
provided by common file systems. These features include, for
example, requirements for latency or consistency of concur-
rent reads and writes. Since peers are prone to churn, these
solutions need additional redundancy and maintenance mech-
anisms to ensure data availability over time. The redundancy
is generated using simple replication, or more sophisticated
coding techniques such as Reed-Solomon coding [8], fountain
codes [9], [10], or regenerating codes [11]. Unfortunately,
these codes come with a trade-off [12]: either higher initial
bandwidth requirements and increased storage costs, or higher
demand of repair bandwidth later on.

In contrast to on-line storage, for the scenario of on-line
back-up, Toka et al. show that requirements on the system are
relaxed [5]. Writes are solely performed by the data owner and
latency is less crucial. Furthermore, a local replica can be used
to inject redundancy at minimum bandwidth costs. According
to the level of injected redundancy, a certain period without
further maintenance can be bridged, so that no data loss is to
be feared.

Deduplication [13] is often used in storage systems to avoid
storing the same data multiple times. This results in storage
and bandwidth cost savings. We do not use this approach
to deduplicate files of different users (which entails security
concerns [14]), but within a single snapshot as well as across
different snapshots.



III. GENERAL ARCHITECTURE USING SWARMS

Before we go into the details, we provide an overview of
the system architecture. The entities in our system, also shown
in Fig. 1, are as follows:

Fig. 1. General Architecture

A. Node

A node is the equivalent of a HNG, that is part of our
system. A node has a unique identifier and offers storage space
to other nodes. There are two different roles to fulfill for a
node:
Swarm Leader: A swarm leader is the owner of a swarm and
the data owner of the particular back-up stored in its swarm. It
synchronizes data to be backed up with the user devices in the
local home network and hence always holds a replica of the
data. This way, we unburden user devices of staying connected
to the Internet in order to achieve an external back-up. Each
node is swarm leader only once.
Storage Node: A storage node is a member of a swarm and
consequently stores data related to a swarm leader’s back-up.
It can be seen as a simple key value store. Typically, a node
is storage node in several swarms.

B. Swarm

A swarm is a list of randomly chosen storage nodes. Each
swarm leader backs up all its data in such an individual swarm.
By design, this means we do not intend to store data in
a reciprocative way. Within a swarm, we assign increasing
indices to all storage nodes. Further, a swarm can be in one
of the following states:

Intact Swarm: The swarm leader is on-line. Whenever a
storage node in its swarm leaves, it can upload additional
redundancy to a new storage node. This redundancy can be
generated using the local replica [5].
Isolated Swarm: The swarm leader is off-line. The state of
its swarm needs to be observed by the tracker.
Managed Swarm: The number of available storage nodes in
the isolated swarm dropped below a threshold. Without action,
data loss is feared. All files stored in the swarm are downloaded
and reconstructed in the data center. Only in this case, the user
needs to download its back-up from the data center.

C. Tracker

The tracker as a central instance within a data center has
several responsibilities, described in the following.
Track Nodes: The tracker keeps track of the availability of
all nodes in our system. Therefore, the nodes occasionally
send heartbeat messages to the tracker. If several consecutive
heartbeat messages are missing, a node is considered to be
off-line. The tracking of nodes also includes the mapping of
node identifiers to the currently assigned IP address of a node.
Nodes can query this information in order to connect to swarm
members.
Store List of Uploaded Snapshots: For each swarm leader,
we store a list of previously uploaded snapshots on the tracker.
This includes the date of a snapshot as well as a reference
to the corresponding index file (explained in the following
section).
Observe Swarms: It may happen that a swarm leader is off-
line for a longer period. To protect its back-up, a tracker needs
to identify which swarms are prone to data loss. As mentioned
above, these swarms are set to the managed state.

IV. SNAPSHOTS YIELDING INDEX FILES

By snapshot we denominate a state of a folder structure
with all its files at a particular point in time. In our system,
each snapshot consists of the following (also shown in Fig. 2):

• The file set, which is the set of all files that are included
in the snapshot. Each file in the file set has a unique file
identifier. The file identifier is deterministically derived
by hashing the file contents. This ensures that the file
identifier for the same file will remain the same in later
snapshots, given the file contents do not differ. In general,
only a small subset of files is expected to change from
one snapshot to another [15]. Since we are able to map
identical files to different snapshots, we avoid storing
duplicates of files that are already present in a swarm.

• A single index file, which holds all metadata necessary
to reconstruct a snapshot. In particular, this includes all
file identifiers, the folder structure, and file metadata such
as filename and modification time. As we will see in
Section VII, we can also profit from embedding small
files into the index file.

V. DATA PLACEMENT

In this section, we explain how fragments of files are
generated and where they are placed subsequently. The data
placement strategy impacts not only the amount of metadata



E6A13 37FA4 B3AE5B9A32

folder 1

folder 3folder 2

folder 1

folder 3

index file 1 index file 2

file1 file2 file3 file3 file4

file id.: 37FA4
length: 4213
creation: 01.02.03
last mod.: 02.03.04
owner: user1
[...]

file set 1 file set 2

Fig. 2. Example of Two Index Files Having One File in Common

necessary to relocate data, but also how to perform mainte-
nance in the system (see Section VI).

We split a file of size Sf to be stored in a swarm into
k equally sized fragments Ti with an index i ∈ {1, . . . , k}.
Hence, each fragment has a size of dSf/ke. Using erasure
codes (such as Reed-Solomon [8], or fountain codes [9], [10]),
we can generate h additional fragments Ti, i ∈ {k + 1, . . . , h}.
As a property of erasure codes, any k out of the k+h different
fragments will be sufficient to reconstruct the original file
content later on.

For data placement, we group fragments of all files
f1 . . . fn in the swarm by their index i to a redundancy
stream. Consequently, such a redundancy stream RSi is
defined as:

RSi = Ti,f1 , Ti,f2 , . . . , Ti,fn (1)

The size of a redundancy stream depends on the total
amount of data St for the back-up and is determined by
SRS = St/k.

On each storage node within a swarm we place a different
redundancy stream. This placement policy transfers the above-
mentioned property of erasure codes on nodes: any k out of
k + h storage nodes are sufficient to recover all files stored
in a swarm. Since all storage nodes in the swarm hold a
fragment of each file, we spare additional metadata or look-
ups to relocate data corresponding to a file. The knowledge of
a single file identifier is sufficient to query different fragments
of the particular file.

VI. MAINTENANCE

This section focuses on the process of maintaining a back-
up alive in the swarm. The swarm leader performs this task,

given it is not off-line for a longer period. Otherwise, as
mentioned before, a replica is downloaded to the data center.

A. The Need for Maintenance

In our system, we need to consider failures of nodes.
These failures can be divided into two categories. If a node is
only temporarily unavailable for other nodes, such a failure is
denoted as a transient failure. For a permanent failure, the
node left the system forever and data stored on the node is
lost permanently. Unfortunately, it is impossible to distinguish
these failures from outside because both types of failures
have the same characteristics, while it is unknown how long
a transient failure of a node lasts. In contrast to transient
failures, permanent failures entail data loss in a swarm and,
consequently, require the upload of additional redundancy.

B. New Redundancy and Reintegration

In our system, we only add new redundancy, instead of
restoring previously uploaded redundancy that is temporarily
unaccessible. According to the data placement policy described
in Section V, this means a new redundancy stream is uploaded
to a new storage node. After the complete upload, the storage
node is included in the swarm, which therefore grows in size
over time.

This implies that we are always able to reintegrate reap-
pearing nodes. As investigated by Wheatherspoon et al. [16]
this can significantly reduce the maintenance costs of the
system: in the long term, only permanent failures trigger an
upload of additional redundancy.

C. Redundancy Needed

We need to inject more redundancy in the system in
order to bridge a time period without further maintenance
by the swarm leader. The amount of necessary redundancy
also depends on the average lifetime τ of nodes in the
system. Assuming node lifetime values to be independent and
exponentially distributed, we can calculate the probability pdur
that at least k out of k + h nodes in a swarm remain intact
within the time period tiso [5]:

pdur =
k+h∑
i=k

(
k + h

i

)
(e−tiso/τ )i(1− e−tiso/τ )(k+h)−i (2)

Given the average availability α of storage nodes in a
swarm, new storage nodes need to be added as long as there
are less than d(k+h) ·αe storage nodes on-line. Fig. 3 shows
an exemplary evolution of a swarm list at four points in time.

VII. FILE HANDLING

In the Section V we decided to send fragments of size
dSf/ke to storage nodes. Unfortunately, in practice, this ap-
proach is accompanied by drawbacks resulting in inefficiency.
As shown in [17] and [18], it can be advantageous to store very
small files close to their metadata. In our scenario, this means
we store small files embedded in the index file. As a trade-off,
such small files are excluded from deduplication over several
snapshots.



t1

t2

t3

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14t4

on-line

transient
failure
permanent
failure

Fig. 3. Evolution of a Swarm List Due to Maintenance. t1: The initial upload
to k+h = 4+3 storage nodes; t2: Two storage nodes are off-line. Assuming
α = 0.8, d(4 + 3) · 0.8e = 6 storage nodes need to be on-line, thus, one is
added to the swarm; t3: One storage node permanently fails. Since there are
still 6 storage nodes on-line, nothing needs to be done; t4: Advanced state
after several transient and permanent failures.

In order to determine the limit file size at which a file
should be embedded in the index file, we define functions for
the local storage costs on a single storage node for placing a
single file of size Sf . For embedded files, these costs depend
on the number of snapshots v in which a file is used in and on
the overhead Sto within the index file. This constant overhead
is used for storing an additional file entry with all its metadata.
The costs Semb for an embedded file are defined as follows:

Semb = v · Sf + Sto
k

(3)

For the case where we store each file individually in the
swarm, the costs are divided into two parts. The first part
are the singular costs for storing a fragment of the file on a
storage node. These include the costs Sh for the file identifier.
Additionally, there is some constant overhead Sso, depending
on the storage engine used on storage node side. The second
part are the costs for the reference in the index file, which
needs to be included for each snapshot. At this point, we also
need to store the original file size of the stored file in Sl. This
information is needed to crop a decoded file to its actual file
size again. The costs for an individually stored file finally are:

Sind =
Sf
k

+ Sh + Sso

+ v · Sh + Sl + Sto
k

(4)

To find the break even point for the costs of embedded
respectively individual files, we identify the costs for storing
an individual file with the costs for storing an embedded file
and solve for Sf :

Semb = Sind

v · Sf + Sto
k

=
Sf
k

+ Sh + Sso

+ v · Sh + Sl + Sto
k

(5)

Sf =
Sh · (k + v) + k · Sso + Sl · v

v − 1
(6)

Since we do not want to make an assumption on the number
of snapshots stored by a user, we look at an unlimited number
of snapshots:

lim
v→∞

Sh · (k + v) + k · Sso + Sl · v
v − 1

= Sh + Sl (7)

However, this only provides a lower bound considering
storage space efficiency. There are more reasons to embed
small files. This includes computational overhead, which de-
pends on the erasure code used, and the additional bandwidth
used for sending and requesting small fragments. Additionally,
splitting files into fragments globally increases fragmentation,
thus, leads to increased disk head movement. At worst, this can
lead to bottlenecks which might increase the time needed for
uploading redundancy to the system. As investigated in [19]
and [20], this needs to be avoided. Consequently, this means
a system design may need to disregard strict storage space
efficiency and, instead, embed more files.

Here we can benefit from the fact that the total storage
overhead in the system depends on how much storage space
is occupied by smaller files in general. Based on data of 2004,
Agrawal et al. show in a study that typically, file systems
contain a lot of small files, but the majority of stored bytes are
found in increasingly larger files [17]. They determine that the
mean file size in file systems grows each year. Unfortunately,
there is no such comprehensive study concerning file size
distributions of current file systems. We asked the authors of
Wuala [21], a widely used cloud storage provider, for statistics
on their file size distribution. We received statistics on all
incoming files for the month of October, 2012. Fig. 4 shows
the corresponding CDF of used storage space by file size.

64 KiB 1 MiB 16 MiB 256 MiB 4 GiB 64 GiB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File Size (log scale, power−of−2−bins)

C
D

F 
of

 U
se

d 
S

pa
ce

 b
y 

Fi
le

 S
iz

e

Fig. 4. CDF of Used Space by File Size

As can be seen the amount of storage space used for smaller
files is fairly low. In fact, files smaller than 128 KiB account
for less than 1% of the total storage space used, while files up
to 16 KiB occupy less than 0.1%.

VIII. IMPLEMENTATION

This section provides further information about an imple-
mentation of the proposed architecture.

A. Joining the System

The first time a node joins the system, it needs to create
an initial swarm. This is done in the following steps:



1) The node contacts the tracker.
2) The tracker observes the node until it shows a minimum

level of availability.
3) The tracker includes the node in a list of available storage

nodes.
4) The node asks the tracker for a random list of other nodes

to build its individual swarm.

After these steps the upload of data to other nodes in the swarm
is performed like described in the following section.

B. Uploading a Back-up Snapshot

To keep the back-up in the swarm in synchronization with
the local data stored on a swarm leader, a new snapshot needs
to be created. We avoid orphaned file references by dividing
the upload into the following sub-phases:
Upload files missing in the swarm: We do not expect all
files to change between two successive snapshots. To skip files
already uploaded as part of previous snapshots saves storage,
bandwidth, and processing resources.
Upload a snapshots index file: The upload of an index file
finalizes the upload of a new snapshot. All files previously
uploaded can be referenced afterwards using this file.
Delete exclusive files of oldest snapshot: As soon as a swarm
leader runs out of storage in its swarm, we want to free the
storage occupied by the oldest snapshot. Therefore, we delete
all files that are referenced in the oldest, but in no newer
snapshot anymore. We can identify these files using simple
reference counting [22].
Delete index file of oldest snapshot: By deleting the index
file of our oldest snapshot we complete the deletion of our
oldest snapshot.

C. Security

This section explains our usage of state of the art tech-
nology to ensure data confidentiality, authentication, and data
integrity.
Encryption of Data: To preserve data confidentiality we
encrypt data using AES 256-bit before uploading fragments
of our data into the system. This ensures that nobody, except
the data owner, can access the original content of a back-up. To
derive an encryption key, we use a key derivation function [23]
with the user’s log-in credentials in combination with password
strengthening [24]. This encryption key is the same for all
files, including index files. Without the knowledge of the log-
in credentials it is therefore not possible to decrypt any data
stored in the system.
Authentication of Swarm Leaders: A swarm leader needs to
update its swarm list and upload fragments to storage nodes.
To prevent attackers modifying a foreign swarm list or data
stored in foreign swarms, we use the tracker as a central
authentication instance. The user credentials with a unique
node identifier are used to create an authenticated session for
the swarm leader at the tracker. Before accepting data to be
stored, storage nodes check the authentication state using the
Kerberos protocol [25].
Checking Data Integrity: Since the swarm leader has a local
replica available, we use a conventional challenge-response
protocol [26] to check a fragment’s integrity on a storage node.
Only if the corresponding fragment is available on the storage
node, it is able to reply with the correct response.

D. Data Structure for the Index File

We use a compressed tar-archive to store all necessary
information of an index file. The folder structure of a back-
up snapshot can be preserved by copying the original folder
structure to this archive. For small files we also copy the
complete files in this folder structure. For larger files we only
create a dummy file with the same name at the same location.
In this dummy file, however, we store the actual file size and
a reference which allows us to query the relevant file content
from the storage nodes later on. The index file can be uploaded
to storage nodes as a common file.

E. Parameters for Erasure Coding

In our implementation we use Reed-Solomon coding, since
it is an optimal code and therefore uses the least amount
of storage. Further, for every erasure code some metadata
is required for the decoding process. For Reed-Solomon,
this is a simple increasing integer value. Since we already
have increasing indices for storage nodes, we can merge this
information and spare additional metadata.

The choice of parameter k has several consequences.
According to Formula 2, a higher value for k reduces the
necessary redundancy level in the system. On the other side,
the metadata overhead increases as expressed by Formula 4.
We also need to consider that the whole file tree needs to
be scanned for the creation of a single redundancy stream,
resulting in higher disk head movement. This needs to be done
more often for a high k. These factors taken into account, we
recommend a high, but not extremely high value for k, which
is 100.

F. Behaviour Dependent on File Size

For our implementation, we define three classes of files
which are handled differently:
Small files: Files with a size up to 16 KiB are embedded into
the index file (see Section IV) and need no further treatment.
They will be encrypted and encoded together with the index
file. Note that all small files are included in each snapshot. Due
to the small amount of storage they occupy (see Section VII),
this seems acceptable.
Medium files: After encryption, all files from 16 KiB to 1 MiB
are erasure coded using the whole file as coding block. This
results in fragments of size dSf/ke which entails a maximum
overhead of k − 1 Bytes per file.
Big files: Since erasure coding is performed in memory,
we cannot perform it on files with arbitrary size. This is
why we need to switch to an interleaving scheme, as seen
in Wuala [18]. To decrease the resulting storage overhead,
files exceeding 1 MiB are broken into coding blocks of
size b = 100 KiB. On each coding block erasure coding
is performed. Therefore, we obtain fragments with a size of
dSf/be · b/k, which entails a maximum overhead of 10% for
files slightly larger than 1 MiB. For larger files this overhead
becomes negligible.

According to this arrangement, a storage node receives
fragments of a size down to 164 Bytes. Since we send
fragments of different files to the same storage node (see
Section V), we do not have to open new connections for each
fragment. Further, we want to avoid wasted storage space on



a storage node due to block alignment in the file system.
Hence, we place fragments smaller than 256 KiB [27] in
a local lightweight database, using the file identifier as key.
Typically, databases provide compaction functionality, so that
fragmentation due to deleted fragments can be easily coped
with. Fragments bigger than 256 KiB are stored as files in the
file system using the file identifier as filename.

G. Downloading a Back-up Snapshot

Similar to the upload of a snapshot we can separate the
download of a snapshot into phases. In the first phase we
retrieve the index file while in the second phase we retrieve
all files referenced in the snapshot.
Retrieve index file: We can recover the file identifiers for an
index file by sending a query to the tracker. Afterwards, the
swarm leader needs to query all necessary fragments in the
swarm related to the index file. After all relevant fragments
are downloaded from the swarm, the index file can be decoded
and decrypted using the user credentials. The decrypted index
file allows us to reference all the files included in the snapshot.
Download all files referenced: Using the file identifiers stored
in the index file, the whole file set of a snapshot can be
downloaded. To do this, the tar-archive is extracted to restore
the folder structure. Note that this extraction includes already
small files which are stored within the index file. For medium
and big files, all necessary fragments can be requested in the
swarm using the deposited file identifiers. After decoding, the
files can be decrypted using the key derived from the user
credentials.

The system design also supports recovery of single files
within a snapshot. In this case, it is enough to download the
index file and the desired files subsequently. For a managed
swarm, the data center needs to download all snapshots, which
covers all files stored in a swarm. Storage nodes can list all
these files so that no decryption of index files is necessary in
the data center.

IX. CONCLUSION

In this paper we introduced our distributed back-up archi-
tecture DistBack. In our scenario, we benefit from a local
replica that allows us to add additional redundancy at low
costs. Further, we reintegrate reappearing nodes so that in the
long term the system only suffers from permanent failures.

Based on this background we introduced swarms which are
easy to monitor and therefore only impose little management
effort on a data center. In combination with our data placement
policy, we reduce metadata necessary for data localization
to a very low level. Using index files, we are, to the best
of our knowledge, the first to provide a distributed back-up
with support for snapshots. We saw that it is reasonable
to embed small files into these index files, due to the low
resulting storage overhead. Along with these benefits, we
provided instructions for an implementation of the proposed
architecture.

Acknowledgement The research leading to these results
has received funding from the European Commission’s
Seventh Framework Programme (FP7 2007-2013) under grant
agreement n. 258378.

REFERENCES

[1] Free SAS. (2013) Freebox revolution. [Online]. Available:
http://www.free.fr/adsl/freebox-revolution.html

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker,
“Total recall: system support for automated availability management,”
in USENIX NSDI 2004.

[3] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: highly durable,
decentralized storage despite massive correlated failures,” ser. NSDI’05.
USENIX Association, 2005, pp. 143–158.

[4] J. Kubiatowicz and et al., “Oceanstore: an architecture for global-scale
persistent storage,” SIGPLAN Not., pp. 190–201, 2000.

[5] L. Toka, P. Cataldi, M. Dell’Amico, and P. Michiardi, “Redundancy
management for P2P backup,” in IEEE INFOCOM 2012.

[6] Apple Inc. (2013) Time machine. [Online]. Available:
http://www.apple.com/support/timemachine/

[7] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A
survey of peer-to-peer storage techniques for distributed file systems,”
in ITCC 2005.

[8] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their
Applications. Wiley-IEEE Press, 1999.

[9] M. Luby, “Lt codes,” in Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on, 2002.

[10] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551 –2567, 2006.

[11] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” in IEEE
INFOCOM 2007.

[12] L. Pamies-Juarez and E. Biersack, “Cost analysis of redundancy
schemes for distributed storage systems,” CoRR, 2011.

[13] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller, “Secure data
deduplication,” in Proceedings of the 4th ACM international workshop
on Storage security and survivability, ser. StorageSS ’08. ACM, 2008.

[14] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in ACM CCS 2011.

[15] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller, “Measure-
ment and analysis of large-scale network file system workloads,” in
USENIX ATC. Berkeley, CA, USA: USENIX Association, 2008.

[16] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
F. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica main-
tenance for distributed storage systems,” in NSDI 2006.

[17] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-year
study of file-system metadata,” Trans. Storage, vol. 3, no. 3, Oct. 2007.

[18] Thomas Mager, Ernst Biersack, and Pietro Michiardi, “A measurement
study of the Wuala on-line storage service,” in IEEE P2P 2012.

[19] V. Venkatesan and I. Iliadis, “Effect of codeword placement on the
reliability of erasure coded data storage systems,” IBM Reseach, Tech.
Rep., 2012.

[20] F. Giroire, J. Monteiro, and S. Perennes, “P2P storage systems: How
much locality can they tolerate?” in IEEE LCN 2009, Oct. 2009.

[21] LaCie AG. (2013) Wuala cloud storage service. [Online]. Available:
http://www.wuala.com

[22] D. Bulka and D. Mayhew, Efficient C++: performance programming
techniques. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2000.

[23] B. Kaliski. (2000) RFC 2898 - PBKDF2 key derivation function.
[Online]. Available: http://www.ietf.org/rfc/rfc2898.txt

[24] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: an
empirical analysis,” in IEEE INFOCOM 2010.

[25] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authen-
tication service for open network systems,” in Usenix Conference
Proceedings, 1988.

[26] Y. Deswarte and J.-J. Quisquater, “Remote Integrity Checking,” in Sixth
Working Conference on Integrity and Internal Control in Information
Systems (IICIS). Kluwer Academic Publishers, 2004.

[27] R. Sears, C. Van Ingen, and J. Gray, “To BLOB or not to BLOB: large
object storage in a database or a filesystem,” Microsoft Research, Tech.
Rep., 2006.


