
Crowd Context-Dependent Privacy Protection Filters
Hajer Fradi 1#, Volker Eiselein 2∗, Ivo Keller ∗, Jean-Luc Dugelay #, Thomas Sikora ∗

# Multimedia Communications Dept., EURECOM, Sophia Antipolis, France
1 E-mail: fradi@eurecom.fr

∗ Communication Systems Group, Technische Universität Berlin, Germany
2 E-mail: eiselein@nue.tu-berlin.de

Abstract—While various privacy protection filters have been
proposed in the literature, little importance has been given to
the context relevance of these filters. In this paper, we specifically
focus on the dependency between privacy preservation and crowd
density. We show that information about the crowd density in a
scene can be used in order to adjust the level of privacy protection
according to the local needs. For the estimation of density maps,
we use an approach based on FAST feature extraction and local
optical flow computation which allow excluding feature points on
the background. This process is favorable for the later density
function estimation since the influence of features irrelevant to the
crowd density is removed. Afterwards, we adapt the protection
level of personal privacy in videos according to the crowd density.
The effectiveness of the proposed framework is evaluated with
videos from different crowd datasets.

Index Terms—Crowd density, local features, tracking, privacy
filters

I. INTRODUCTION

In recent times, video surveillance has developed from a
rather abstract, research-related topic to a key technology
for modern society. Camera prices are dropping while their
performance is increasing steadily. Analytics algorithms are
becoming more intelligent while CCTV is ubiquitous in almost
all public areas. On the one hand, this poses a number of
interesting technical challenges, but then it also emphasizes
the need for privacy-preserving video analytics techniques.

Privacy aspects in video surveillance systems have already
been discussed in different approaches. In [1], [2] and [3]
extensive overviews of general requirements such as the need
for integrity, confidentiality or access authorization are given.
In [4], Cavallaro points out how the ongoing changes towards
digital CCTV footage leads to easier storing, transmission and
analysis of video data compared to earlier years. This also
enables CCTV network operators to choose which analysis
tasks have to be run in real-time and which can be done on
stored video data as not all tasks have to be carried out in
all scenes and contexts. Consequently, [4] proposes to use
a privacy-by-design approach in which smart cameras split
the recorded data into a behavioral part and a part containing
personal data. From this splitting point on, a video operator
can only access the behavioral part while personal data is
maintained confidential and only stored in a video archive in
order to allow a later access for police and law enforcement
agencies (if this is needed and permitted by jurisdiction).

A fundamentally new approach has been given by the

concept of scene-dependent privacy levels. It is a natural and
intuitive idea that a specific human action in a video has to
be considered according to the scene context. As a simple
example, detection of fireworks in a train station on a normal
day would be an unusual and potentially dangerous event
but can be mostly considered normal in an outdoor scene
on New Year’s Eve. While in this case, simply time and site
information is taken into account, in [5], the authors propose to
adapt the privacy level according to the nature of the detected
events. Taking an example of crowd management, normally
only the number of people in the scene and their motion is
of interest to a video operator. However, in case of severely
abnormal events such as potential overcrowding or dangerous
motion patterns, the operator has to decide if an intervention
by security forces is needed and should thus be able to perceive
the maximal information possible. Badii et al. show in [6] how
this model can be extended even further by inclusion of more
dynamic information such as gait analysis or human tracking.

The number of people in the scene can be an important
indication of what events are to be expected and therefore
also which privacy level is suitable in the scene. If we take
crowd management as an exemplary standard task within the
field of Video Surveillance, video operators need clear visual
information in which areas of the scene overcrowding or
potentially dangerous crowd movements occur. Also crimes
such as pickpocketing or violence in demonstrations are more
likely to happen when a scene is crowded. At the same time,
the more people are present around a site, the less perceivable
and identifiable is a single individual. It is therefore reasonable
in many applications to reduce the privacy level in crowded
areas compared to spaces with isolated individuals.

In the following sections, we propose a system which is
able to choose a suitable level of privacy according to a crowd
density measure. In the simplest form, the used crowd density
measures could be the number of persons [7], [8], [9] or the
crowd level [10], [11], [12]. However, these measures have
the limitation of giving only global information for the entire
image and discarding local information about the crowd.

We therefore resort to a crowd information at a local level
by computing crowd density maps. This alternative solution is
indeed more appropriate because it enables both the detection
and the location of potentially crowded areas. The estimation
of crowd density maps is typically based on extracting local
features.



In our work, this approach is extended to feature tracking
as well and enables us to identify which objects in the scene
have undergone a sufficient motion to be considered as a
person. Consequently, the effort of computation is reduced to
the features relevant for crowd density.

Our following objective is then to use these results in order
to build adaptive privacy protection filters, in which the privacy
level gradually decreases with the crowd density.

The remainder of the paper is organized as follows: we
introduce our proposed approach for crowd density map es-
timation in Section II. Section III shows then how we incor-
porate the crowd density information into a privacy protection
framework which alters the data protection level accordingly.
Experimental results for two privacy filters and several video
sequences are given in Section IV. Finally, we briefly conclude
and give some potential for future works in Section V.

II. CROWD DENSITY MAP ESTIMATION

Crowd density analysis has been studied as a major compo-
nent for crowd monitoring and management in visual surveil-
lance systems. In this paper, we explore a new application
of crowd density measures in privacy context. From this
perspective, generating locally accurate crowd density maps
is more helpful than computing only an overall density or
the number of people in a whole frame. Using our approach,
local information at pixel level substitutes global, per-frame
information. To achieve this goal, we compute crowd density
maps using FAST local features as an observation of a
probabilistic crowd function.

In the following, our proposed approach for crowd density
estimation is presented. First, local features are extracted to
infer the contents of each frame under analysis. Then, we
perform local feature tracking using the Robust Local Optical
Flow algorithm from [13] and a point rejection step us-
ing forward-background projection. Building trajectories from
these data enables us also to remove static features which can
be considered background. Finally, crowd density maps are
estimated from the feature points using a symmetric Gaussian
kernel function.

An illustration of the density map modules is shown in
Figure 1. The remainder of this section describes each of these
system components.

A. Features from accelerated segment test

For local features, we extract features from accelerated seg-
ment test (FAST) [14]. FAST is proposed for corner detection
in a fast and a reliable way. It depends on a wedge model style
corner detection. Also, it uses machine learning techniques
to find automatically optimal segment test heuristics. The
segment test criterion considers 16 surrounding pixels of each
corner candidate P . Then, P is labeled as corner if there exist
n contiguous pixels that are all brighter or darker than the
candidate pixel intensity.

The reason behind applying FAST as local features for
crowd measurement is its ability to find small regions which
are outstandingly different from their surrounding pixels. The

selection of this feature is also motivated by the work in [15],
where FAST is used to detect dense crowds from aerial images.
The derived results in [15] demonstrate a reliable detection of
crowded regions using FAST.

The extracted FAST features will be further used as ob-
servations of the probability density function. But since the
probability density function should correspond to the density
of crowds, a feature selection process is required to remove
features which are not relevant to the crowd.

B. Local features tracking

Using the extracted features directly to estimate the crowd
density map without a feature selection process might incur at
least two problems: firstly the high number of local features
increases the computation time of the crowd density. As a
second and more important effect, the local features contain
components irrelevant to the crowd density. Thus, we need
in our system a separation step between foreground and
background entities. It is done by assigning motion infor-
mation to the detected local features in order to distinguish
between moving and static ones. Based on the assumption
that only persons are moving in the scene, these can then
be differentiated from background by their non-zero motion
vectors.

Motion estimation is performed using the Robust Local
Optical Flow (RLOF) algorithm from [13] which computes
very accurate sparse motion fields by means of a robust norm1.

However, a common problem in local optical flow estima-
tion is the choice of feature points to be tracked. Depending
on texture and local gradient information, these points often
do not lie on the center of an object but rather at its borders
and can thus be easily affected by other motion patterns or
by occlusion. While RLOF handles these noise effects better
than the standard KLT feature tracker from [16], it still is not
prone against all errors. This is why we establish a forward-
backward verification scheme where the resulting position of
a point is used as input to the same motion estimation step
from the second frame into the first one. Points for which
this ‘reverse motion’ does not result in their respective initial
position are discarded. For all other points, motion information
is aggregated to form longterm trajectories.

In every time step, the overall motion mt of a trajectory t
is compared to a certain threshold β which is set according to
image resolution and camera perspective. Moving features are
then identified by the relation mt > β while the others are con-
sidered static background. The advantage of using trajectories
in this system instead of computing the motion vectors only
between two consecutive frames is that outliers are filtered out
and the overall motion information is less affected by noise.
As a result the separation between foreground and background
entities is improved and the number and position of the tracked
features undergo an implicit temporal filtering step which
makes them smoother.

1download at www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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Fig. 1. Illustration of the proposed crowd density map estimation using FAST as local features: (a) Exemplary frame, (b) Local feature points by FAST
algorithm, (c) Feature tracks, (d) Distinction of moving (green) and static (red) features - red features at the lower left corner are due to text overlay in the
video, (e) Estimated crowd density map

C. Kernel density estimation

After generating feature tracks to filter out static points, we
define the crowd density map as a kernel density estimate
based on the positions of local features. Starting from the
assumption of a similar distribution of feature points on the
objects, the observation can be made that when more local
features come close to each other, higher crowd density is
perceived. For this purpose, the probability density function
(pdf) is estimated using a Gaussian kernel density.

If we consider a set of K FAST local features extracted from
a given image at their respective locations {(xi, yi), 1 <=
i <= K}, the density in (x, y) position is defined as follows:

D(x, y) =
1√
2πσ

K∑
i=1

exp−( (x− xi)
2 + (y − yi)2

2σ2
)

where σ is the bandwidth of the 2D Gaussian kernel.

III. APPLICATION OF CROWD DENSITY ESTIMATION ON
PRIVACY CONTEXT

In order to apply crowd density information for privacy
purposes, we want to hide personal information to the video
operator while still allowing him to identify potentially dan-
gerous areas and events in the scene. A simple approach for
this could be to just use crowd density directly as an input
to a privacy filter. In this case, the obfuscation level would
depend directly on the number of people present in a given
region. However, this approach would decrease the visibility
of potentially important information as just all crowded areas
would be obscured.

In our work we follow a different approach and focus on
obfuscating only the regions which contain personal infor-
mation. Generally these are depending on the scene context
and could include face, clothing, skin/hair color or even gait.
Given this variety and considering that these information are
not perceivable under all circumstances (e.g. heavy crowding,
different lighting conditions, motion blur, low contrast, low
resolution...), in our work we consider only head obfuscation
as the most visible part of a human in a crowd.

As a measure for privacy protection, the level of obfuscation
is adapted to the crowd density for the following reasons:
Crowds are usually interesting to video operators as they are
a common place for crimes such as pickpocketing or for
dangerous events as e.g. overcrowding. At the same time, as

Fig. 2. Exemplary result of the used detector [17] on a frame of PETS2009
public dataset. By building a combination of multiple object parts, detection
results are increased compared to the standard HOG detector from [18].

said above, people in a crowd exhibit a smaller amount of
information to a video operator than isolated people who are
completely visible. We therefore propose to lower the level of
privacy protection within a crowded area because the visible
information is also smaller and does not have to be filtered to
the same degree as for isolated people.

A. Head detection

For obfuscation of people’s heads in a scene, we apply a
detection step using Histograms of Oriented Gradients (HOG)
in order to find the head positions in the scene. Firstly
proposed in [18], this algorithm takes gradient information
from a detection window, derives a feature vector from it and
compares it against manually annotated samples. We use a
state-of-the-art detector [17] which is an extended form of the
original algorithm [18] using multiple scales and resolutions.
By means of a part-based model (see Figure 2 for details),
the detection accuracy of the HOG algorithm is enhanced
considerably. We will see in the results section that the HOG
detector gives mostly promising results for person detection
especially when the face is visible. As it is our goal to enhance
the privacy of the people in the scene, this detector adds
valuable information to our system. However, the performance
of HOG detector can be affected by many factors such pose
of the person, camera view, resolution of the image. This is
also the reason why we will use a FAST-based approach for
the estimation of crowd density maps.



B. Adaptive privacy filters

After performing head detection, we obtain Fn(x, y), n ∈
[1, 2, ..., N ], where n denotes the image index in a video
sequence and Fn(x, y) = 1 if a detection is found at (x, y)
position, otherwise Fn(x, y) = 0. On the other hand, we get
a crowd density map Dn(x, y) which gives information about
the crowd size and the crowd location as well.

At this stage, we intend to adapt the level of the privacy
protection filters according to the crowd density. More pre-
cisely, as explained before we propose to allow high privacy
protection in less crowded areas while reducing the level
of privacy protection in areas with many people. For this
purpose, given a set of filter parameters representing different
obfuscation levels P = {Pmin, ..., Pmax}, we quantify the
crowd density values Dn(x, y) into d = |P | crowd levels and
apply the respective filter parameter to the region of interest
(ROI).

In this paper, we show results for two typical privacy
protection filters which are:

• Blurring: This privacy filter consists essentially of remov-
ing details in a region of interest by applying Gaussian
low pass filtering. For this technique, the bandwidth of the
used Gaussian is adapted according to the crowd density
level.

• Pixelization: This filter is based on decreasing the reso-
lution of any region of interest by replacing each block
of p pixels in this area with its respective average. As
for the blurring process, the filter size p is chosen with
respect to the estimated crowd density level.

IV. EXPERIMENTAL EVALUATION

The proposed framework is evaluated within challenging
crowd scenes from multiple video datasets. In particular, we
selected some videos from PETS 2009 2, UCF [19], and Data
Driven Crowd Analysis[20] public datasets.

As described in Section II, FAST local features are extracted
and tracked in each frame under analysis. The moving local
features are further used for estimating the crowd density
map. On the other hand, head detections are performed using
the state-of-the-art detector. The goal is to combine these
two sources of information (crowd density map and head
detections) for adaptive protection filters. For this purpose, two
privacy protection tools (blurring, pixelization) are employed
to show different ways to protect personal privacy in video
sequences. The results using four frames from different videos
are shown in Figure 3. In this figure, it is visible that the
block size in the pixelization filter and the bandwidth of the
Gaussian Blurring are changed by our system according to the
density values of the crowd density function and both are not
affected by the density scaling problem. Comparing e.g. the
man dressed in black (lower left corner of first image row) to
the man walking behind the three blond ladies in the lower
middle of the image, it is well perceivable that the privacy
level is reduced within the crowd by a smaller block size

2http://www.cvg.rdg.ac.uk/PETS2009/

or a smaller bandwidth respectively. As one would expect,
the overall filter performance can be limited to maximal and
minimal values for both privacy filters but for presentation
purposes we show rather high protection levels.

We also note that the estimated crowd density is lower for
the second scene (second row), compared to to the first one.
As in both scenes people are rather uniformly dressed, in the
second example there is not much texture available which
reduces the number of FAST features. However, as in the
first video faces of many people are visible, there is a higher
contrast which results in more feature points and thus also a
higher overall crowd density.

The PETS sequences shows more variance in crowd density
and are therefore better suited to show the different levels
of privacy protection. It can be seen that the single person
(3rd row) and the smaller group of people (4th row) walking
behind the crowd do not generate such a high density measure
and are consequently obfuscated to a higher degree than
people walking in the big crowd. Again, the different filter
sizes can be seen also in these sequences. However, if no
other constraints are given, the blurring filter seems to be
better suited for our application as in general already small
block sizes are sufficient in the pixelization filter to render
it completely unrecognizable to humans. Nonetheless, our
results indicate clearly that crowd density maps are well-suited
to improve the crowd context-specific privacy protection in
CCTV systems and thus offer a lot of options for further
applications.

V. CONCLUSION

In this paper we show how it is possible to include crowd
density information into a privacy-preserving framework. Us-
ing FAST local features as observations, we computed a
probability density function for the feature points in each
frame. Separation of foreground and background objects in
the scene is performed using Robust Local Optical Flow which
also implicitly introduces a temporal filtering step to improve
the smoothness of the density maps between separate frames.

The computed crowd density maps are shown to be a
valuable information source for privacy preservation. Using
an additional head detection step, we adapt the degree of data
obfuscation for privacy according to the crowd level and are
thus able to show how it is possible to achieve an acceptable
level of privacy for the people in a scene while still allowing
the operator to view the data relevant for him.

For future works, we are working on ways of complement-
ing person detection by crowd information in order to obtain
better people detection results also in highly crowded situa-
tions. While this would primarily provide better detections, it
could also improve privacy protection for cases as shown in
this paper.
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(a) Head detections (b) Crowd density map (c) Pixelized image (d) Blurred image

Fig. 3. Results of adaptive protection filters using four frames from different test videos. From top to down order: UCF 879, INRIA 879, PETS2009
S1.L2.14.06.V1, and PETS2009 S1.L1.13.59.V1. From left to right order: Head detections according to [17], Estimated crowd density map, Application of
pixelization filter, Application of blurring filter


