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On the Gaussian Half-Duplex Relay Channel
Martina Cardone, Daniela Tuninetti, Raymond Knopp and Umer Salim

Abstract—This paper considers the Gaussian half-duplex relay
channel (G-HD-RC): a channel model where a source transmits
a message to a destination with the help of a relay that can not
transmit and receive at the same time. It is shown that the cut-set
upper bound on the capacity can be achieved to within a constant
gap, regardless of the actual value of the channel parameters, by
either Partial-Decode-and-Forward or Compress-and-Forward.
The performance of these coding strategies is evaluated with
both random and deterministic switch at the relay. Numerical
evaluations show that the actual gap is less than what analytically
obtained, and that random switch achieves higher rates than
deterministic switch. As a result of this analysis, the generalized
Degrees-of-Freedom of the G-HD-RC is exactly characterized for
this channel. In order to get insights into practical schemes for
the G-HD-RC that are less complex than Partial-Decode-and-
Forward or Compress-and-Forward, the exact capacity of the
Linear Deterministic Approximation (LDA) of the G-HD-RC at
high-SNR is determined. It is shown that random switch and
correlated non-uniform inputs bits are optimal for the LDA. It is
then demonstrated that deterministic switch is to within one bit
from the capacity. This latter scheme is translated into a coding
strategy for the original G-HD-RC and its optimality to within
a constant gap is proved. The gap attained by this scheme is
larger than that of Partial-Decode-and-Forward, thereby pointing
to an interesting practical tradeoff between gap to capacity and
complexity.

Index Terms—Capacity to within a constant gap, Gaussian
relay channel, generalized degrees-of-freedom, half-duplex, inner
bound, outer bound.

I. INTRODUCTION

The performance of wireless systems can be enhanced by
enabling cooperation between the wireless nodes. The simplest
form of cooperation is modeled by the Relay Channel (RC)
where a source terminal communicates to a destination with
the help of a relay node. In this multi-hop system the relay
helps to increase the coverage and the throughput of the
network. Relays employed in practical wireless networks can
be classified into two categories: Full-Duplex (FD) and Half-
Duplex (HD). The relay is said to operate in FD mode if
it can receive and transmit simultaneously over the same
time-frequency resource, and in HD mode otherwise. There
are some relatively expensive relay devices which work in
FD, normally used in military communications. However, FD
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relaying in commercial wireless networks has practical restric-
tions such as self-interference, which make the implementation
of the decoding algorithm challenging. As a result HD relaying
proves to be a more practical technology with its relatively
simple signal processing. Thus, it is more realistic to assume
that the relay operates in HD mode, either in Frequency Di-
vision Duplexing (FDD) or Time Division Duplexing (TDD).
In FDD, the relay uses one frequency band to transmit and
another one to receive, while in TDD, the relay listens for
a fraction of time and then transmits in the remaining time.
From an application point of view, the HD model fits future 4G
networks with relays [3], where the relay communicates over-
the-air with the source base station connected to a network
infrastructure. We keep our focus on deployment scenarios
where the relay works in TDD HD mode.

HD relaying has received considerable attention lately. The
main results on this channel model are summarized next.

A. Related work

The RC was first introduced by van der Meulen [4] and
then thoroughly studied by Cover and El Gamal [5]. In [5],
the authors studied the general memoryless FD RC, derived
inner and outer bounds on the capacity and established the
capacity for some classes of channels. The proposed outer
bound is now known as the max-flow min-cut outer bound,
or cut-set for short, which can be extended to more general
memoryless networks [6]. Two relaying strategies were pro-
posed in [5], whose combination is still the largest known
achievable rate for a general RC, namely Decode-and-Forward
(DF) and Compress-and-Forward (CF). In DF, the relay fully
decodes the message sent by the source and then coherently
cooperates with the source to communicate this information to
the destination. In CF, the relay does not attempt to recover the
source message, but it just compresses the received signal and
then sends it to the destination. The capacity of the general
memoryless RC is known for some special classes of RCs.
For example, the cut-set upper bound is known to be tight for
the degraded RC, the reversely degraded RC and the semi-
deterministic RC [5]. Despite these results, it is known that
the cut-set upper bound is not tight in general [7].

The Gaussian half-duplex relay channel (G-HD-RC) was
studied in [8] where the author derived an upper and a lower
bound on the capacity. The former is based on a cut-set
argument, the latter uses Partial-Decode-and-Forward (PDF)
strategy1. In [8], the transmit- and receive-phases of the relay
were assumed fixed a priori and therefore known to all nodes.
We shall refer to this specific HD mode of operation as

1PDF is a generalization of DF where the relay only decodes part of the
message sent by the source.
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deterministic switch [9]. Other recent works on the G-HD-
RC with deterministic switch are: [10] where the authors
investigated the effect of noise correlation at the destination
and at the relay (both FD and HD); [11], where the authors
proved that the diversity multiplexing tradeoff of the G-HD-
RC meets the 2× 1-MISO bound; [12] where the problem of
minimizing the network energy consumption was considered.

In [9], Kramer showed that larger rates can be achieved
by randomly switching between the transmit- and receive-
phases at the relay. In this way, the randomness that lies into
the switch can be harnessed to transmit (at most one bit per
channel use of) information to the destination. We shall refer
to this specific HD mode of operation as random switch [9].
An important observation is that there is no need to develop
a separate theory for memoryless networks with HD nodes as
the HD constraints can be incorporated into the memoryless
FD framework [9]. In this work we shall adopt this approach
when specializing the FD-RC bounds of [6] to the HD-RC.

The exact characterization of the capacity region of a gen-
eral memoryless network is challenging. Recently, it has been
advocated that progress can be made towards understanding
the capacity region by showing that achievable strategies are
provably close to outer bounds [13]. In [13], the binary-valued
Linear Deterministic Approximation (LDA) of the Gaussian
noise channel at high Signal-to-Noise-Ratio (SNR) was pro-
posed. The LDA captures, in a simple deterministic way, the
interaction between interfering signals and neglects the noise.
In [13] it was shown that Quantize-Map-and-Forward (QMF)
is at most 5(N+2) bits away from the cut-set upper bound of
a FD relay network, where N denotes the number of relays. In
[14] it was shown that this 5(N +2) bits gap can be extended
to deterministic switch HD and/or fading relay networks. In
[15] it was shown that lattice codes are optimal to within a
gap of 5N for HD relay networks with random switch.

The gap result for the multi-relay network [15] gives a gap
of 5 bits for the G-HD-RC considered here. The goal of this
work is to show that this gap of 5 bits is too pessimistic and
that it can be reduced to 1 bit with PDF with random switch
[5]. In a companion paper we showed that Noisy Network
Coding (NNC), proposed in [16] to reduce the gap of wireless
FD multi-relay networks from 5(N + 2) [14] to 1.26(N + 2),
can be used in HD multi-relay networks with random switch
to reduce the gap from 5N [15] to 1.96(N + 2) [17].

B. Contributions

In this work we focus on the G-HD-RC whose exact
capacity is unknown. We make progress toward determining its
capacity by characterizing its generalized Degrees-of-Freedom
(gDoF) in closed-form and proving a constant gap result. We
also propose an achievable scheme inspired by the LDA, which
is provably asymptotically optimal. Our main contribution can
be summarized as follows:

1) We determine the exact capacity of the LDA channel:
we show that random switch and correlated non-uniform
input bits at the relay are optimal. To the best of our
knowledge, this is the first closed-form result where the
exactly optimal random switch policy is determined. We

also show that deterministic switch is at most 1 bit from
optimal.

2) We determine the gDoF of the G-HD-RC: we show
that both PDF and CF are gDoF optimal, either with
deterministic or random switch. We also show that a
scheme inspired by the LDA with deterministic switch
is gDoF optimal.

3) For the G-HD-RC, we prove that the above achievable
schemes are optimal to within a constant gap, uniformly
over all channel parameters. In particular, PDF is optimal
to within 1 bit, CF to within 1.61 bits, and the scheme
inspired by the LDA to within 3 bits. In all cases, the
gap is smaller than that available in the literature for the
case of one relay.

4) For the three coding schemes, we obtain a closed-form
expression for the approximately optimal schedule with
deterministic switch, i.e., duration of the transmit- and
receive-phases at the relay. This result sheds light on the
design of a HD relay node in future wireless networks.

5) We prove that PDF with random switch is exactly
optimal for the Gaussian line network, i.e., a G-HD-
RC without a direct link between the source and the
destination. A closed-form expression for the optimal
input distribution with random switch policy is however
not available.

C. Paper organization

The rest of the paper is organized as follows. Section II
describes the channel model and summarizes our main results.
Section III derives the gDoF in closed-form by adapting known
FD upper and lower bounds to the HD case. Section IV
characterizes exactly the capacity of the LDA and proposes
an achievable scheme with deterministic switch for the G-
HD-RC that is gDoF optimal (whose achievable rate has a
simple closed-form expression). Section V is devoted to the
proof that the capacity for the G-HD-RC is achievable to
within a constant gap, where more complex schemes achieve,
in general, lower gaps. In Section VI, several schemes are
numerically compared in terms of rates and gaps. Section VII
concludes the paper.

II. SYSTEM MODEL AND MAIN RESULTS

In the rest of the paper we adopt the notation convention of
[6]. We also use the subscript s for source, r for relay, and d
for destination.

A. General memoryless RC

A RC consists of two input alphabets (Xs,Xr), two output
alphabets (Yr,Yd) and a transition probability PYr,Yd|Xs,Xr .
The source has a message W ∈ [1 : 2NR] for the destination
where N denotes the codeword length and R the transmission
rate in bits per channel use2. At time i, i ∈ [1 : N ], the
source maps its message W into a channel input symbol
Xs,i(W ) and the relay maps its past channel observations into
a channel input symbol Xr,i(Y

i−1
r ). The channel is assumed

2Logarithms are in base 2.
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to be memoryless, that is, the following Markov chain holds
for all i ∈ [1 : N ]

(W,Y i−1r , Y i−1d , Xi−1
s , Xi−1

r )→ (Xs,i, Xr,i)→ (Yr,i, Yd,i).

At time N , the destination makes an estimate of the message
W based on all its channel observations Y Nd as Ŵ (Y Nd ). A
rate R is said to be ε-achievable if, for some block length
N , there exists a code such that P[Ŵ 6= W ] ≤ ε for any
ε > 0. The capacity is the largest nonnegative rate that is
ε-achievable.

In this general memoryless framework, the relay can listen
and transmit at the same time, i.e., it is a FD node. HD
channels are a special case of the memoryless FD framework
in the following sense [9]. With a slight abuse of notation
compared to the previous paragraph, we let the channel input
of the relay be the pair (Xr, Sr), where Xr ∈ Xr as before and
Sr ∈ {0, 1} is the state random variable that indicates whether
the relay is in receive-mode (Sr = 0) or in transmit-mode
(Sr = 1). The memoryless HD channel transition probability
is defined by

PYr,Yd|Xs,Xr,Sr=0 := P
(0)
Yr,Yd|Xs,Sr=0

PYr,Yd|Xs,Xr,Sr=1 := P
(1)
Yd|Xs,Xr,Sr=1P

(1)
Yr|Sr=1,

that is, when the relay is in receive-mode (Sr = 0) the
outputs Yr, Yd are independent of Xr and when the relay is in
transmit-mode (Sr = 1) the relay output Yr is independent of
everything else. In other words, the (still memoryless) channel
is now specified by the two transition probabilities one for each
mode of operation [9].

B. The Gaussian half-duplex RC (G-HD-RC)

The single-antenna complex-valued power-constrained G-
HD-RC is described by the input/output relationship

Yr =
√
CXs (1− Sr) + Zr ∈ C, (1a)

Yd =
√
SXs + ejθ

√
IXr Sr + Zd ∈ C, (1b)

where the real-valued and non-negative channel power gains
C, S, I and the phase θ are constant and therefore known to all
terminals. Since a node can compensate for the phase of one
of its channel gains, we can assume without loss of generality
that the channel gains from the source to the other two
terminals are real-valued and nonnegative. The channel inputs
are subject to unitary average power constraints without loss of
generality, i.e., E[|Xu|2] ≤ 1, u ∈ {s, r}. The switch random
variable Sr is binary. In our model, both Xr and Sr at any
given time, are functions of the past received channel outputs.
The noise (Zd, Zr) is a zero-mean proper-complex Gaussian
random vector with, without loss of generality, unit entries on
the main diagonal of the covariance matrix. In particular, but
not without loss of generality [10], in this work we assume
that Zd and Zr are independent. In the following we will only
consider the G-HD-RC for which C > 0 and I > 0, since for
either C = 0 or I = 0 the relay is disconnected from either the
source or the destination, respectively, so the channel reduces
to a point-to-point channel with capacity equal to the direct-
link capacity log(1 + S).

C. The linear deterministic approximation (LDA) of the G-
HD-RC at high SNR

The LDA approximates the G-HD-RC in (1) at high SNR.
It is a deterministic channel with input-output relationship

Yr = Sn−βsrXs (1− Sr), (2a)

Yd = Sn−βsdXs + Sn−βrdXr Sr, (2b)

for some non-negative integers βsr, βsd, βrd, where the vectors
Yr, Yd, Xr, Xs are of length n := max{βsr, βsd, βrd}, S is the
n×n shift matrix [13], and Sr is the relay binary-valued state
random variable.

D. Overview of main results

The capacity of the channel in (1) is unknown. Here we
make progress toward determining its capacity by first estab-
lishing its gDoF, i.e., an exact “pre-log” capacity characteriza-
tion in the limit for high SNR, and then by characterizing its
capacity to within a constant gap at any finite SNR. Consider
SNR > 0 and the parameterization

S := SNRβsd , source-destination link, (3a)

I := SNRβrd , relay-destination link, (3b)

C := SNRβsr , source-relay link, (3c)

for some non-negative real-valued triplet (βsd, βrd, βsr)
3. We

define:

Definition 1. The gDoF of the G-HD-RC is

d(HD−RC) := lim
SNR→+∞

C(HD−RC)

log(1 + SNR)
,

where C(HD−RC) is the capacity of the G-HD-RC.

Definition 2. The capacity C(HD−RC) is said to be known to
within GAP bits if one can show achievable rates R(in) and
outer bound R(out) such that

R(in) ≤ C(HD−RC) ≤ R(out) ≤ R(in) + GAP.

Our main results are summarized as follows:

Theorem 1. The gDoF of the G-HD-RC in (1) is given by (4)
at the top of next page. Moreover, the cut-set upper bound is
achieved to within the following number of bits

Achievable scheme LDAi CF PDF
analytical gap 3 1.61 1
numerical gap 1.32 1.16 1

where LDAi is an achievable scheme inspired by the LDA,
PDF is Partial-Decode-and-Forward and CF is Compress-
and-Forward.

Sections III and V are devoted to the proof of Theorem 1,
with an interlude in Section IV where the LDAi scheme is

3We use the symbols (βsd, βrd, βsr) for both the LDA in (2) and the
SNR parameterization in (3) for the channel power gains of the G-HD-RC
in (1). In the former case (βsd, βrd, βsr) ∈ N3, while in the latter case
(βsd, βrd, βsr) ∈ R3

+. This choice will not be confusing for the reader. We
decided so since the capacity of the LDA is related to the gDoF of the G-
HD-RC.
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d(HD−RC) =

{
βsd + (βrd−βsd)(βsr−βsd)

(βrd−βsd)+(βsr−βsd)
for βsr > βsd, βrd > βsd

βsd otherwise
(4)

C(HD) =

{
βsd + maxγ∈[0,1] min

{
A (γ) , γ(βsr − βsd)

}
for βsr > βsd, βrd > βsd

βsd otherwise
(5)

derived by mimicking a deterministic switch scheme that is
optimal to within 1 bit for the LDA.

The result of Theorem 1 should be compared to a similar
result for the FD case. The gDoF of the G-FD-RC is

d(FD−RC) = βsd + min{[βsr − βsd]+, [βrd − βsd]+}, (6)

and its capacity C(FD−RC) is achievable to within 1 bit by
either DF or CF [13]. We notice that HD achieves the same
gDoF of FD if min{βrd, βsr} ≤ βsd, in which case the RC
behaves gDoF-wise like a point-to-point channel from the
source to the destination with gDoF given by βsd. In both
FD and HD the gDoF has a routing interpretation [13]: if the
weakest link from the source to the destination through the
relay is smaller than the direct link from the source to the
destination, then direct transmission is optimal and the relay
can be kept silent, otherwise it is optimal to communicate with
the help of the relay, i.e., route part of the information through
the relay.

Regarding gaps, we notice that Theorem 1 improves on the
5 bits gap of [15]. Moreover, we notice a tradeoff between
the coding scheme complexity and the gap, with lower gaps
for more complex schemes (for example, compare the gap of
PDF with that of LDAi).

In an attempt to design simple and asymptotically optimal
achievable schemes for the G-HD-RC, by following the foot-
steps of [13], we study the capacity of the LDA. We show:

Theorem 2. The capacity of the LDA in (2) is given by (5)
at the top of the page, where

A (γ) := (1− θ∗ (γ)) log
1

1− θ∗ (γ)
+ θ∗ (γ) log

L− 1

θ∗ (γ)
,

θ∗ (γ) := 1−max

{
1

L
, γ

}
,

L := 2(βrd−βsd),

and is achieved with random switch and correlated non-
uniform input bits at the relay. Moreover, a scheme with
deterministic switch and i.i.d. Bernoulli(1/2) bits at the relay
is at most 1 bit from the capacity in (5).

Section IV is devoted to the proof of Theorem 2. To the
best of our knowledge, Theorem 2 is the first exact capacity
result for a HD-RC where the random switch policy and the
input distribution have been determined.

III. GDOF FOR THE G-HD-RC
In this section we derive the gDoF of the G-HD-RC in

(1). This is accomplished by adapting known bounds for the
general memoryless FD-RC [6] to the G-HD-RC by following
the methodology introduced by [9].

A. Cut-set upper bounds

This subsection is devoted to the proof of a number of upper
bounds that we shall use for the converse part of Theorem 1.
From the cut-set bound we have:

Proposition 1. The capacity of the G-HD-RC is upper
bounded as (7), (8) and (9) at the top of next page, where:
• In (7): the distribution P ∗Xs,Xr,Sr is the one that maximizes
the cut-set upper bound, i.e.,

P ∗Xs,Xr,Sr := arg max
PXs,Xr,Sr

min
{
I(Xs, Xr, Sr;Yd),

I(Xs;Yr, Yd|Xr, Sr)
}
.

• In (8): the parameter γ := P[Sr = 0] ∈ [0, 1] represents
the fraction of time the relay node listens, H(γ) is the binary
entropy function defined as

H(γ) := −γ log(γ)− (1− γ) log(1− γ), (13)

the maximization is over the set

γ ∈ [0, 1], (14)
|α1| ≤ 1, (15)

(Ps,0, Ps,1, Pr,0, Pr,1) ∈ R4
+

: γPu,0 + (1− γ)Pu,1 ≤ 1, u ∈ {s, r}, (16)

and the mutual information terms I1, . . . , I4 are defined as

I1 := log (1 + S Ps,0) , (17)

I2 := log
(

1 + SPs,1 + IPr,1 + 2|α1|
√
SPs,1 IPr,1

)
, (18)

I3 := log (1 + (C + S)Ps,0) , (19)

I4 := log
(
1 + (1− |α1|2)S Ps,1

)
. (20)

• In (9): the terms b1 and b2 are defined as

b1 :=
log
(

1 + (
√
I +
√
S)2
)

log (1 + S)
> 1 since I > 0, (21)

b2 :=
log (1 + C + S)

log (1 + S)
> 1 since C > 0. (22)

Proof: The proof can be found in Appendix A.
The upper bound in (7) will be used to prove that PDF with

random switch achieves capacity to within 1 bit, the one in (8)
to prove that PDF with deterministic switch also achieves
capacity to within 1 bit and for numerical evaluations (since
we do not know the distribution P ∗Xs,Xr,Sr that maximizes the
cut-set upper bound in (7)), and the one in (9) for analytical
computations such as the derivation of the gDoF.

With the upper bound in Proposition 1 we can show:
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C(HD−RC) ≤ min
{
I(Xs, Xr, Sr;Yd), I(Xs;Yr, Yd|Xr, Sr)

}∣∣∣
(Xs,Xr,Sr)∼P∗Xs,Xr,Sr

(7)

≤ max min
{
H(γ) + γI1 + (1− γ)I2, γI3 + (1− γ)I4

}
=: r(CS−HD) (8)

≤ 2 + log (1 + S)

(
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

)
(9)

C(HD−RC) ≥ min
{
I(U ;Yr|Xr, Sr) + I(Xs;Yd|Xr, Sr, U), I(Xs, Xr, Sr;Yd)

}∣∣∣ (Xs,Xr,Sr)∼P∗Xs,Xr,Sr
and U = Xr or U = XrSr +Xs(1− Sr)

(10)

≥ max min
{
I
(PDF)
0 + γI5 + (1− γ)I6, γI7 + (1− γ)I8

}
=: r(PDF−HD) (11)

≥ log (1 + S)

(
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

)
(12)

Proposition 2. The gDoF of the G-HD-RC is upper bounded
by the right hand side of (4).

Proof: The proof can be found in Appendix B.

B. PDF lower bounds

This subsection is devoted to the proof of a number of lower
bounds that we shall use for the direct part of Theorem 1. From
the achievable rate with PDF we have:

Proposition 3. The capacity of the G-HD-RC is lower
bounded as (10), (11) and (12) at the top of the page, where:
• In (10): we fix the input PU,Xs,Xr,Sr to evaluate the PDF
lower bound; in particular we set PXs,Xr,Sr to be the same
distribution that maximizes the cut-set upper bound in (7) and
we choose either U = Xr or U = XrSr +Xs(1− Sr).
• In (11): the parameter γ := P[Sr = 0] ∈ [0, 1] represents
the fraction of time the relay node listens, the maximization is
over the set (14)-(16) as for the cut-set upper bound in (8),
the mutual information terms I5, . . . , I8 are

I5 := I1 given in (17), (23)
I6 := I2 given in (18), (24)
I7 := log (1 + max{C, S}Ps,0) ≤ I3 given in (19), (25)
I8 := I4 given in (20), (26)

and I(PDF)
0 := I(Sr;Yd) is computed from the density

fYd(t) =
γ

πv0
e−|t|

2/v0 +
1− γ
πv1

e−|t|
2/v1 , t ∈ C, (27)

with v0 = 2I5 where I5 is given in (23), and v1 = 2I6 where
I6 is given in (24).
• In (12): the terms c1 and c2 are

c1 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0, (28)

c2 :=
log (1 + max{C, S})

log (1 + S)
> 1 since C > 0. (29)

Proof: The proof can be found in Appendix C.
The lower bound in (10) will be compared to the upper

bound in (7) to prove that PDF with random switch achieves
capacity to within 1 bit, the one in (11) with the one in (8)
to prove that PDF with deterministic switch also achieves

capacity to within 1 bit and for numerical evaluations, and
the one in (12) will be used for analytical computations such
as the evaluation of the achievable gDoF.

Remark 1. In Appendix C, we found that the approximately
optimal schedule for PDF with deterministic switch is

γ∗PDF :=
(c1 − 1)

(c1 − 1) + (c2 − 1)
∈ [0, 1],

where c1 is given in (28) and c2 is given in (29). The
expression for γ∗PDF can be understood as follows. Suppose
that min{C, I} ≥ S, otherwise the relay is not exploited
in the transmission and hence setting either γ∗PDF = 0 or
γ∗PDF = 1 is approximately optimal. Notice that γ∗PDF is a
decreasing function in C and increasing in I . This implies
that the stronger C compared to I the lesser the time the
relay needs to listen to the channel to (partially) decode the
source message – and thus the relay should allocate more time
to forward the message to the destination. On the other hand,
if C < I , more time is needed to learn the message and less
time to convey the message to the destination.

With the lower bound in Proposition 3 we can show:

Proposition 4. The gDoF of the G-HD-RC is lower bounded
by the right hand side of (4).

Proof: The proof can be found in Appendix D.
Propositions 2 and 4 prove that the gDoF of the G-HD-RC

is given by (4) and that PDF achieves the gDoF.
Fig. 1 shows the difference between the gDoF of the G-FD-

RC in (6) and that of the G-HD-RC in (4) as a function of βsr
and βrd, where without loss of generality we fixed βsd = 1.
This difference is zero when min {βrd, βsr} ≤ βsd = 1, in
which case both the FD and the HD channels are gDoF-wide
equivalent to a point-to-point channel without relay. When
min {βrd, βsr} > βsd = 1, the point-to-point communication
channel is outperformed by the RC since now using the
relay to convey the information is optimal. Moreover, as
expected, the difference is always greater than or equal to
zero because in the G-FD-RC the relay can simultaneously
listen and transmit; therefore, the G-FD-RC represents an outer
bound for the G-HD-RC. The largest difference occurs when
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C(HD) := max
PXs,Xr,Sr

min
{
I(Xs, Xr, Sr;Yd), I(Xs;Yr, Yd|Xr, Sr)

}
= max
PXs,Xr,Sr

min
{
H(Yd), H(Yr, Yd|Xr, Sr)

}
(30)

C(FD) := max
PXs,Xr

min
{
I(Xs, Xr;Yd), I(Xs;Yr, Yd|Xr)

}
= βsd + min{[βrd − βsd]+, [βsr − βsd]+} (31)
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Fig. 1: Difference between the gDoF of the G-FD-RC and of
the G-HD-RC, for βsd = 1, as a function of βsr and βrd.

βrd = βsr := βsdα in which case

d(FD−RC)

βsd
= max{1, α},

while
d(HD−RC)

βsd
= max

{
1,

1 + α

2

}
,

in other words, for α > 1 the rate difference between FD
and HD grows unboundedly as SNR increases. This might
motivate the use of more expensive FD relays in future
wireless networks in this regime.

IV. CAPACITY OF THE LDA AND A SIMPLE ACHIEVABLE
STRATEGY FOR THE GAUSSIAN NOISE CHANNEL

In the previous section we showed that PDF achieves the
gDoF of the G-HD-RC. PDF is based on block Markov
encoding and joint decoding [6], which can be too complex
to realize in practical systems. For this reason we seek now
schemes that are simpler than PDF and that are still gDoF
optimal. In order to do so, we consider the LDA in (2). Based
on the many recent success stories, such as [13], we first
determine the capacity achieving scheme for the LDA and we
then try to ‘translate’ it into a gDoF-optimal scheme for the G-
HD-RC. The rational is the “folk’s theorem” that the capacity
of the LDA gives the gDoF of the corresponding Gaussian
noise channel.

In Section IV-A we derive the exact capacity of the LDA
and then show an achievable strategy with deterministic switch
that is optimal to within 1 bit. In Section IV-B we then mimic
the latter to derive an achievable rate for the G-HD-RC at any
SNR; this achievable scheme will be referred to as the LDAi.

A. Capacity of the LDA

The capacity of the general memoryless deterministic RC is
given by the cut-set bound [5]. For the LDA the cut-set bound
evaluates to (5) in Theorem 2, which is proved next.

Proof: The capacity of a HD channel is upper bounded
by the capacity of the corresponding FD channel. Therefore
for the capacity of the LDA we have C(HD) ≤ C(FD) where
C(HD) and C(FD) are defined in (30) and (31), respectively,
at the top of the page and where C(FD) in (31) is achieved by
i.i.d. Bernoulli(1/2) input bits for both the source and the
relay [13]. In order to evaluate C(HD) we distinguish two
cases:

Regime 1: βrd ≤ βsd or βsr ≤ βsd in which case C(HD) ≤
C(FD) = βsd. Since the rate C(HD) = βsd can be achieved by
silencing the relay and using i.i.d. Bernoulli(1/2) input bits
for the source, we conclude that C(HD) = C(FD) = βsd in
this regime.

Regime 2: βrd > βsd and βsr > βsd. Here we need
to evaluate the expression in (30), for which we need to
determine the optimal H(Yd) and

H(Yr, Yd|Xr, Sr) = P[Sr = 0]H(Yr, Yd|Xr, Sr = 0)

+ P[Sr = 1]H(Yr, Yd|Xr, Sr = 1)

≤ γmax{βsr, βsd}+ (1− γ)βsd.

To upper bound H(Yd), we write Yd = [Yd,u, Yd,l], where
• Yd,l contains the lower βsd bits of Yd. These bits are a
combination of the bits of Xs and the lower bits of Xr.
The lower bits of Xr are indicated as Xr,l. With reference
to Fig 2(b), Yd,l corresponds to the portion of Yd containing
the “orange bits” labeled b1[2].
• Yd,u contains the upper βrd − βsd bits of Yd. These bits
only depend on the upper bits of Xr. The upper bits of Xr are
indicated as Xr,u. With reference to Fig 2(b), Yd,u corresponds
to the portion of Yd containing the “green bits” labeled a.
Hence we have

H(Yd) = H(Yd,u, Yd,l)

≤ H(Yd,u) +H(Yd,l)

≤ H(Yd,u) + βsd,

since Yd,l contains βsd bits and where H(Yd,u) is computed
from the distribution

P[Yd,u = y] = P[Sr = 0]P[Yd,u = y|Sr = 0]

+ P[Sr = 1]P[Yd,u = y|Sr = 1]

= γδ[y] + (1− γ)P[Xr,u = y|Sr = 1]

for y ∈ [0 : L − 1], L := 2βrd−βsd > 1, where δ[y] = 1 if
y = 0 and zero otherwise, and where γ := P[Sr = 0]. Let
P[Xr,u = y|Sr = 1] = py ∈ [0, 1] :

∑
y py = 1. Then, we
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H(Yd,u) = H
([
γ + (1− γ)p0, (1− γ)p1, . . . , (1− γ)pL−1

])

≤ H


γ + (1− γ)p0, (1− γ)

1− p0
L− 1

, . . . , (1− γ)
1− p0
L− 1︸ ︷︷ ︸

L− 1 times




= (1− θ) log
1

1− θ + θ log
L− 1

θ

∣∣∣∣
θ:=(1−γ)(1−p0)∈[0,1−γ]

(32)

C(HD) ≤ βsd + max
γ∈[0,1]

min
{

(1− θ∗) log
1

1− θ∗ + θ∗ log
L− 1

θ∗
, γ(βsr − βsd)

}
(33)

C(HD) = max
PXs,Xr,Sr

min
{
H(Yd), H(Yr, Yd|Xr, Sr)

}
≤ max
PXs,Xr,Sr

min
{
H(Yd|Sr), H(Yr, Yd|Xr, Sr)

}
+H(Sr)

≤ max
γ∈[0,1]

min{γβsd + (1− γ) max{βsd, βrd}, γmax{βsd, βsr}+ (1− γ)βsd}+ 1

= βsd + γ∗LDA[βsr − βsd]+ + 1 (34)

have that (32), at the top of the page, holds. The upper bound
on the entropy H(Yd,u) in (32) is maximized by

θ∗ = 1−max{1/L, γ} ⇐⇒ p∗0 =
[1/L− γ]+

1− γ . (35)

Therefore, collecting all the bounds, we have that C(HD)

in (30) is upper bounded as (33) at the top of the page.
In order to show the achievability of (33) consider the

following inputs: the state Sr is Bernoulli(1− γ) independent
of any other random variable, and Xs and Xr are independent.
The source uses i.i.d. Bernoulli(1/2) bits. The relay uses i.i.d.
Bernoulli(0) bits for Xr,l and P[Xr,u = y] = p∗0 if y = 0 and
P[Xr,u = y] = (1−p∗0)/(L−1) otherwise, for p∗0 in (35), i.e.,
the components of Xr,u are neither independent nor uniformly
distributed. Notice that the distribution of Xr,u in state Sr = 0
is irrelevant because its contribution at the destination is zero
anyway, so we can assume that the input distribution for Xr

is independent of the state Sr. It is straightforward to verify
that this choice of input distribution achieves the upper bound
in (33) thereby showing capacity in this regime.

Our motivation to determine the capacity of the LDA was
to get ‘inspiration’ to design a simple achievable scheme for
the G-HD-RC. Unfortunately, while proving Theorem 2 we
found that the capacity achieving distribution of the LDA has
two fundamental features that can not be straightforwardly
translated into a strategy for the G-HD-RC, namely: (i) the
relay employs random switch, and (ii) correlated non-uniform
inputs at the relay are optimal. Therefore next we further
upper bound the capacity in (33) in the hope to get finally
‘inspired’. Consider (34) at the top of the page, where γ∗LDA

is the optimal γ := P[Sr = 0] ∈ [0, 1] obtained by equating
the two arguments within the min and is given by

γ∗LDA:=

{
(βrd−βsd)

(βrd−βsd)+(βsr−βsd)
if βrd>βsd, βsr>βsd

0 otherwise.
(36)

Next we show that the upper bound in (34) is achievable
to within 1 bit. This 1 bit represents the maximum amount of
information I(Sr;Yd) that could be conveyed to the destina-
tion through a random switch at the relay. If we neglect this
1 bit we can achieve the upper bound in (34) with the scheme
shown in Figs. 2(a) and 2(b) for the case min{βsr, βrd} > βsd,
which is the case where the upper bound differs from direct
transmission and for which Xr 6= 0. In Phase I / Fig. 2(a)
the relay listens and the source sends b1 (of length βsd bits)
directly to the destination and b2 (of length βsr − βsd bits)
to the relay; note that b2 is below the noise floor at the
destination; the duration of Phase I is γ, hence the relay has
accumulated γ(βsr − βsd) bits to forward to the destination.
In Phase II / Fig. 2(b) the relay forwards the bits learnt in
Phase I to the destination by ‘repackaging’ them into a (of
length βrd − βsd bits); the source keeps sending a new b1 (of
length βsd bits) directly to the destination; note that a does not
interfere with b2 at the destination; the duration of Phase II is
such that all the bits accumulated by the relay in Phase I can
be delivered to the destination, that is, γ must solve

γ(βsr − βsd) = (1− γ)(βrd − βsd),

giving precisely the optimal γ∗LDA in (36). The total number
of bits decoded at the destination is

1 · βsd + γ∗LDA · (βsr − βsd),

which shows that the rate in (34) is achievable to within 1 bit.
Notice that the LDA-rate in (34), besides the 1 bit term, looks
formally the same as the gDoF in (4) after straightforward
manipulations.

The scheme that is optimal within 1 bit for the LDA
uses deterministic switch and i.i.d. Bernoulli(1/2) input bits,
similarly to the FD optimal scheme in [13]; therefore, similarly
to the FD case, we are now in the position to obtain a scheme
for the original G-HD-RC. Before we describe the scheme for
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b2
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(a) HD Phase I (Sr = 0).
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(b) HD Phase II (Sr = 1).
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(c) FD.

Fig. 2: An example of achievable strategy for the LDA with βsd ≤ βsr ≤ βrd. This strategy inspires the LDAi scheme for the
G-HD-RC. The HD case is in Figs. 2(a) and 2(b): the scheme uses deterministic switch and it is to within 1 bit of the

channel capacity. The FD case is in Fig. 2(c).
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Fig. 3: Comparison of the capacities of the LDA for both
HD and FD modes of operation at the relay.

the Gaussian noise channel, let us compare the results obtained
for the LDA. The HD optimal strategy in Figs. 2(a) and 2(b)
should be compared with the FD optimal strategy in Fig. 2(c).
In Fig. 2(c), in a given time slot t, the source sends b1[t] (of
length βsd bits) directly to the destination and b2[t + 1] (of
length at most βsr − βsd bits) to the relay; the relay decodes
both b1[t] and b2[t+ 1] and forwards b2[t+ 1] in the next slot;
in slot t the relay sends b2[t] (of length at most βrd − βsd
bits) to the destination; the number of bits the relay forwards
must be the minimum among the number of bits the relay
can decode (given by βsr − βsd) and the number of bits that
can be decoded at the destination without harming the direct
transmission from the source (given by βrd−βsd). Therefore,
the total number of bits decoded at the destination is

βsd + min{βrd − βsd, βsr − βsd},

which formally looks exactly as the optimal gDoF for the G-
FD-RC in (6) in the case the relay is actually used.

Fig. 3 compares the capacities of the FD and HD LDA
channels; it also shows some achievable rates for the HD

LDA channel. In particular, the capacity of the FD channel
is given by (6) (dotted black curve labeled “FD”), the ca-
pacity of the HD channel is given by (5) (solid black curve
labeled “HD” obtained with the optimal p∗0 in (35)) and its
upper bound by (34) (red curve labeled “HDlda upper”). For
comparison we also show the performance when the source
uses i.i.d. Bernoulli(1/2) bits and the relay uses one of the
following strategies: i.i.d. Bernoulli(q) bits and random switch
(blue curve labeled “HDiid q+rand” obtained by numerically
optimizing q ∈ [0, 1]), i.i.d. Bernoulli(1/2) bits and random
switch (green curve labeled “HDiid 1/2+rand” obtained with
p0 = 1/L in (32)), and i.i.d. Bernoulli(1/2) bits and deter-
ministic switch (magenta curve labeled “HDiid 1/2+det” and
given by βsd + min{γ[βsr−βsd]+, (1− γ)[βrd−βsd]+}). We
can draw conclusions from Fig. 3:
• With deterministic switch: i.i.d. Bernoulli(1/2) bits for the
relay are optimal but this choice is quite far from capacity
(magenta curve vs. solid black curve); this choice however is
at most 1 bit from optimal (magenta curve vs. red curve).
• With random switch: the optimal input distribution for the
relay is not i.i.d. bits; i.i.d. inputs incur a rate loss (blue
curve vs. solid black curve); if in addition we insist on i.i.d.
Bernoulli(1/2) bits for the relay we incur a further loss (green
curve vs. blue curve).

This shows that for optimal performance the relay inputs
are correlated and that random switch must be used.

B. LDAi: an achievable strategy for the G-HD-RC inspired by
the LDA

We mimic the LDA strategy with deterministic switch from
Section IV-A so as to get an achievable rate for the G-HD-RC.
We assume S < C, otherwise we use direct transmission to
achieve R = log(1 +S). The transmission is divided into two
phases (it might help to refer to Figs. 2(a) and 2(b)):
• Phase I of duration γ: the transmit signals are

Xs[1] =
√

1− δXb1[1] +
√
δXb2 , δ :=

1

1 + S
,

Xr[1] = 0.
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r(LDAi−HD) = log(1 + S) +
log
(

1 + I
1+S

) [
log
(

1 + C
1+S

)
− log

(
1 + S

1+S

)]+
log
(

1 + I
1+S

)
+
[
log
(

1 + C
1+S

)
− log

(
1 + S

1+S

)]+ (37)

The relay applies successive decoding of Xb1[1] followed
by Xb2 from

Yr[1] =
√
C
√

1− δXb1[1] +
√
C
√
δXb2 + Zr[1],

which is possible if (rates are normalized by the total duration
of the two phases)

Rb1[1] ≤ γ log (1 + C)− γ log

(
1 + C

1

1 + S

)
Rb2 ≤ γ log

(
1 + C

1

1 + S

)
. (38)

The destination decodes Xb1[1] treating Xb2 as noise from

Yd[1] =
√
S
√

1− δXb1[1] +
√
S
√
δXb2 + Zd[1],

which is possible if

Rb1[1] ≤ γ log (1 + S)− γ log

(
1 + S

1

1 + S

)
. (39)

Finally, since we assume S < C, Phase I is successful
if (38) and (39) are satisfied.
• Phase II of duration 1− γ: the transmit signals are

Xs[2] = Xb1[2]

Xr[2] = Xb2 ,

recall that the bits in a in Fig. 2(b) are the exact same bits in
b2 in Fig. 2(a) just ‘repacked’ to form a vector with different
length, which we mimic here by setting Xr[2] = Xb2 .

The destination applies successive decoding of Xb2 (by
exploiting also the information about b2 that it gathered in
the first phase) followed by Xb1[2] from

Yd[2] =
√
SXb1[2] + e+jθ

√
IXb2 + Zd[2],

which is possible if

Rb2 ≤ (1− γ) log

(
1 +

I

1 + S

)
+γ log

(
1 +

S

1 + S

)
(40)

Rb1[2] ≤ (1− γ) log(1 + S). (41)

• By imposing that the rate Rb2 is the same in both phases,
that is, that (38) and (40) are equal, we get that γ should be
chosen equal to γ∗

γ∗ =
log
(

1+ I
1+S

)
log
(

1+ I
1+S

)
+log

(
1+ C

1+S

)
−log

(
1+ S

1+S

) . (42)

Note that γ∗ in (42) tends to γ∗LDA in (36) as SNR increases
when using the parameterization in (3). Moreover we give here
an explicit closed form expression for the optimal duration of
the time the relay listens to the channel.

The rate sent directly from the source to the destination,
that is, the sum of (39) and (41), is

Rb1[1] +Rb1[2] = log(1 + S)− γ∗ log

(
1 +

S

1 + S

)
︸ ︷︷ ︸

∈[0,1]

. (43)

Therefore the total rate decoded at the destination through
the two phases is r(LDAi−HD) := Rb1[1] + Rb1[2] + Rb2 as in
Proposition 5 below:

Proposition 5. The capacity of the G-HD-RC is lower
bounded as C(HD−RC) ≥ r(LDAi−HD), where r(LDAi−HD) is
defined in (37) at the top of the page.

We notice that the rate expression for r(LDAi−HD) in (37)
(please notice the operator [·]+), which was derived under the
assumption C > S, is valid for all C since for C < S
it reduces to direct transmission from the source to the
destination. Moreover we can show that:

Proposition 6. The LDAi strategy achieves the gDoF upper
bound in (4).

Proof: The proof can be found in Appendix E.

Remark 2. The LDAi scheme can be seen as a specialization
of PDF with deterministic switch at the relay combined with
the scheduling and power splits inspired by the analysis of
the LDA channel. The specialization consists of the classical
PDF with sliding window decoding and without coherent
codebooks [6]. Thus, the same observations drawn for γ∗PDF

in Remark 1 also hold for the LDAi schedule γ∗ in (42).
We can also consider a simple one-shot decoding scheme,

where decoding at the destination is performed slot-by-slot
without sliding window decoding. Sliding window decoding
combines the received signals over two slots. In one such
slot, the desired signal is below the noise floor because of
our choice of power splits. If this signal is neglected, thereby
further simplifying the scheme, the achievable rate Rb2 in (40)
is without the term γ log

(
1 + S

1+S

)
. The simplified slot-by-

slot decoding scheme still achieves the optimal gDoF.

Before concluding this section, we point out some important
practical aspects of the LDAi that are worth noticing:

1) The proposed scheme is not the classical block Markov
encoding scheme with backward decoding; in particular,
the destination uses sliding window decoding, which
simplifies the decoding procedure and incurs no delay; a
further simplification would be to consider a slot-by-slot
decoding scheme.

2) The destination uses successive decoding, which is sim-
pler than joint decoding.

3) No power allocation is applied at the source or at
the relay across phases; this simplifies the encoding
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Fig. 4: Gap between the cut-set upper bound and PDF lower
bound with deterministic switch for different values of the
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procedure and can be used for time-varying channels as
well. The source uses superposition coding, i.e., power
split, only to ‘route’ part of its data through the relay.

V. ANALYTICAL GAPS

In Sections III and IV we described upper and lower
bounds to determine the gDoF of the G-HD-RC. Moreover
in Section IV we proposed a scheme inspired by the analysis
of the LDA channel that also achieves the optimal gDoF. We
now show that the same upper and lower bounds are to within
a constant gap of one another thereby concluding the proof
of Theorem 1. We consider both the case of random switch
and of deterministic switch for the relay. For completeness we
also consider the CF lower bound.

Proposition 7. PDF with random switch is optimal to within
1 bit.

Proof: The proof can be found in Appendix G.

Proposition 8. PDF with deterministic switch is optimal to
within 1 bit.

Proof: The proof can be found in Appendix H.
The intuition of why the gap does not improve with random

switch is that there exist channel parameters for which direct
transmission is approximately optimal (when min{C, I} ≤ S);
in the case of direct transmission there are no benefits to use
the relay at all and silencing the relay is a case of deterministic
switch. This agrees with the PDF result for the G-FD-RC [13]
and it is also supported by Fig. 4. Fig. 4 shows the gap between
the cut-set upper bound and PDF with deterministic switch as
a function of C

S

∣∣
dB

and I
S

∣∣
dB

. We see in Fig. 4 that the 1 bit
gap is attained only when either the link from the source to
the relay or the link from the relay to the destination have the
same strength as the direct link between the source and the
destination. For this set of parameters, the gDoF is that of a

point-to-point channel without a relay. Hence, for this set of
parameters the relay can only provide a power gain, which is
bounded by 1 bit.

Proposition 9. LDAi is optimal to within 3 bits.

Proof: The proof can be found in Appendix I.

For completeness, we conclude this section with a discus-
sion on the gap that can be obtained with CF. For the FD-RC,
it is known that CF represents a good alternative to PDF in the
case when the link between the source and the relay is weaker
than the direct link [6]. The CF achievable rate is presented
in Appendix F. By using Remark 5 in Appendix F we have:

Proposition 10. CF with deterministic switch is optimal to
within 1.61 bits.

Proof: The proof can be found in Appendix J.

Remark 3. In Appendix F, we found that the approximately
optimal schedule with CF and deterministic switch is given by

γ∗CF :=
(c5 − 1)

(c5 − 1) + (c6 − 1)
∈ [0, 1],

c5 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0,

c6 :=
log
(

1 + C
1+σ2

0
+ S

)
log (1 + S)

> 1 since C > 0.

Suppose, as in Remark 1 for PDF, that min{C, I} ≥ S,
otherwise setting either γ∗CF = 0 or γ∗CF = 1 is approximately
optimal. Notice that, although the same observations drawn
from the analysis of γ∗PDF in Remark 1 hold, γ∗CF here also
depends on the variance of the quantization noise at the relay,
i.e., σ2

0 . The schedule γ∗CF is an increasing function of σ2
0 ,

meaning that the higher σ2
0 the longer the time the relay

should listen to the channel. Therefore, differently from PDF,
the approximately optimal schedule does not only depend on
the channel gains, but also on the level at which the signal at
the relay is quantized.

Proposition 11. CF with random switch is optimal to within
1.61 bits.

Proof: Random switch improves on deterministic switch,
since at most 1 bit of further information may be conveyed to
the destination by randomly switching between the transmit-
and receive-phases. Thus, it follows that any rate achievable
with deterministic switch is also achievable with random
switch, i.e., random switch can not increase the gap.

Fig. 5 shows the gap between the cut-set upper bound and
CF with deterministic switch as a function of C

S

∣∣
dB

and I
S

∣∣
dB

.
Fig. 5 shows that the worst gap (of around 1.16 bits) is attained
when using the relay gives a rate gain with respect to the point-
to-point communication by using the direct link only. This
behavior is different from what we observed for PDF. This
suggests that if CF is employed the design of an achievable
scheme with random switch is more critical.
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r(CS−HD)|S=0 = max
γ∈[0,1]

min

{
H(γ) + (1− γ) log

(
1 +

I

1− γ

)
, γ log

(
1 +

C

γ

)}
(44)
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Fig. 5: Gap between the cut-set upper bound and the CF
lower bound with deterministic switch for different values of
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VI. NUMERICAL GAPS

In this section we show that the gap results obtained in
Section V are pessimistic and are due to crude bounding of
the upper and lower bounds, which was necessary in order
to obtain rate expressions that can be handled analytically. In
order to illustrate our point, we first consider a relay network
without the source-destination link, that is, with S = 0, in
Section VI-A and then we show that the same observations
are valid for any network in Section VI-B.

A. G-HD-RC without a source-destination link (single-relay
line network)

a) Upper Bound: We start by showing that the (upper
bound on the) cut-set upper bound in (8) can be improved
upon. Note that we were not able to evaluate the actual cut-
set upper bound in (7) so we further bounded it as in (8),
which for S = 0 reduces to (44) at the top of the page.

The capacity of the G-FD-RC for S = 0 is known exactly
and is given by the cut-set upper bound, i.e., C(FD)|S=0 =
log (1 + min{C, I}). C(FD) is a trivial upper bound for the
capacity of the G-HD-RC. Now we show that our upper bound
r(CS−HD)|S=0 can be larger than C(FD)|S=0. For the case
C = 15/2 > I = 3/2 we have

r(CS−HD)|S=0 ≥ min

{
H
(

1

2

)
+

1

2
log (1 + 2I) ,

1

2
log (1 + 2C)

}
= log(4) > C(FD)|S=0 = log (2.5) .

The reason why the capacity of the FD channel can be
smaller than our upper bound r(CS−HD)|S=0 is the crude
bound I(Sr;Yd) ≤ H(Sr) = H(γ). As mentioned earlier, we
needed this bound in order to have an analytical expression for
the upper bound. Actually for S = 0 the cut-set upper bound
in (7) is tight, as we show next.

b) Exact capacity with PDF:

Theorem 3. In absence of direct link between the source and
the destination PDF with random switch achieves the cut-set
upper bound.

Proof: With S = 0, the cut-set upper bound in (7) and the
PDF lower bound in (10) are the same (see also Appendix G
with S = 0).

c) Improved gap for the LDAi Lower Bound: Despite
knowing the capacity expression for S = 0 from Theorem 3,
its actual evaluation is elusive as it is not clear what the optimal
input distribution P ∗Xs,Xr,Sr in (7) is. For this reason we next
specialize the LDAi strategy to the case S = 0 and evaluate its
gap from the (upper bound on the) cut-set upper bound in (8).

The LDAi achievable rate in (37) with S = 0 is

r(LDAi−HD)|S=0 = max
γ∈[0,1]

min{γ log (1 + C) ,

(1− γ) log (1 + I)},
where we left intentionally explicit the optimization with re-
spect to γ, and where we note that r(LDAi−HD)|S=0 coincides
with the PDF lower bound with deterministic switch at the
relay and without optimizing the powers between the relay
transmit- and receive-phases.

The gap between the outer bound and r(LDAi−HD)|S=0 is
less than 3 bits since

GAP ≤ r(CS−HD)|S=0 − r(LDAi−HD)|S=0

≤ max
γ∈[0,1]

{
γ log

(
1 +

C

γ

)
− γ log (1 + C) ,

H(γ) + (1− γ) log

(
1 +

I

1− γ

)
− (1− γ) log (1 + I)

}
≤ max
γ∈[0,1]

{
γ log

(
1

γ

)
,H(γ) + (1− γ) log

(
1

1− γ

)}
= max
γ∈[0,1]

{
H(γ) + (1− γ) log

(
1

1− γ

)}
= 1.5112 bits.

Note that the actual gap is even less than 1.5 bits.
In fact, by numerically evaluating the difference between
the improved upper bound min{C(FD), r(CS−HD)}|S=0 and
r(LDAi−HD)|S=0 one can found that the gap is at most
1.11 bits.

d) Numerical gaps with deterministic switch: Similarly
to what done for the LDAi, by numerical evaluations one
can find that the PDF strategy with deterministic switch in
Remark 4-Appendix C and the CF strategy with deterministic
switch in Remark 5-Appendix F are to within 0.80 bits
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Fig. 6: Numerical evaluation of the various achievable schemes.

and 1.01 bits, respectively, of the improved upper bound
min{C(FD), r(CS−HD)}|S=0. Notice that in these cases there
is no information conveyed by the relay to the destination
through the switch. Further reductions in the gap with random
switch are discussed next for a general network with a direct
source-destination link.

Fig. 6(a) shows different upper an lower bounds for the G-
HD-RC for S = 0, C = 15, I = 3 versus γ = P[Sr = 0]. We
see that the cut-set upper bound (solid black curve) exceeds
the capacity of the G-FD-RC (dashed black curve). Different
achievable strategies are also shown, whose order from the
most performing to the least performing is: PDF with random
switch (red curve with maximum rate 1.916 bits/ch.use), PDF
with deterministic switch (blue curve with maximum rate
1.68 bits/ch.use), CF with random switch (cyan curve with
maximum rate 1.446 bits/ch.use), CF with deterministic switch
(magenta curve with maximum rate 1.403 bits/ch.use), and
LDAi (green curve with maximum rate 1.333 bits/ch.use). In
this particular setting, the maximum rate using the CF strategy

with random switch (cyan curve with maximum rate 1.446
bits/ch.use) is achieved for P[Q = 0, Sr = 0] = 0,P[Q =
0, Sr = 1] ≈ 0.33,P[Q = 1, Sr = 0] ≈ 0.45,P[Q = 1, Sr =
1] ≈ 0.22. This is due to the absence of the direct link (S = 0)
between the source and the destination. Actually, since the
source can communicate with the destination only through the
relay, it is necessary a coordination between the transmissions
of the source and those of the relay. This coordination is
possible thanks to the time-sharing random variable Q, i.e.,
when Q = 0 the source stays silent while when Q = 1 the
source transmits.

B. G-HD-RC with a source-destination link

Fig. 6(b) and Fig. 6(c) show the rates achieved by using the
different achievable schemes presented in the previous sections
for a channel with S > 0. In Fig. 6(b) the channel conditions
are such that PDF outperforms CF, while in Fig. 6(c) the
opposite holds. In Fig. 6(b) the PDF strategy with random
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switch (red curve with maximum rate 11.66 bits/ch.use) out-
performs both the CF with random switch (cyan curve with
maximum rate 11.11 bits/ch.use) and the PDF with determin-
istic switch (blue curve with maximum rate 11.4 bits/ch.use);
then the PDF with deterministic switch outperforms the CF
with deterministic switch (magenta curve with maximum rate
10.94 bits/ch.use), which is also encompassed by the CF with
random switch. Differently from the case without direct link,
we observe that the maximum CF rates both in Fig. 6(b) and
in Fig. 6(c) are achieved with the choice Q = ∅, i.e., the time-
sharing random variable Q is a constant. This is due to the
fact that the source is always heard by the destination even
when the relay transmits so there is no need for the source to
remain silent when the relay sends.

Fig. 6(d) shows, as a function of SNR and for βsd =
1, (βrd, βsr) ∈ [0, 2.4], the maximum gap between the cut-set
upper bound r(CS−HD) in (8) and the following lower bounds
with deterministic switch: the PDF lower bound obtained from
r(PDF−HD) in (11) with I

(PDF)
0 = 0, the CF lower bound

in Remark 5 in Appendix F, and the LDAi lower bound
in (37). From Fig. 6(d) we observe that the maximum gap
with PDF is 1 bit as in Proposition 8, but with CF the gap is
around 1.16 bits and with LDAi around 1.32 bits, which are
lower than the analytical gaps found in Propositions 10 and 9,
respectively.

The lower bounds can be improved upon by considering
that information can be transmitted through a random switch.
However, this improvement depends on the channel gains. If
the information can not be routed through the relay because
min{C, I} ≤ S, then the system can not exploit the random-
ness of the switch, and so IPDF

0 = 0 and ICF
0 = 0 are ap-

proximately optimal (in this case the relay can remain silent).
This behavior for the PDF strategy is represented in Fig. 7.
In this figure we numerically evaluate the difference between
the analytical gap, i.e., the one computed with IPDF

0 = 0,
and the numerical one, i.e., computed with the optimal IPDF

0

indicated as Iopt0 (i.e., Iopt0 is the actual value of IPDF
0 ), at a

fix SNR = 20 dB and by varying (βrd, βsr). We observe that
when the information can not be conveyed through the relay,
i.e., min {βrd, βsr} ≤ 1, then IPDF

0 = 0 is optimal, since the
information only flows through the direct link. On the other
hand, when min {βrd, βsr} > 1, random switch outperforms
deterministic switch. Moreover, from Fig. 7 we observe that,
the stronger the channel gains along the path through the relay
the larger the amount of information conveyed by random
switch.

In Fig. 8 the channel gains are set such that the use of
the relay increases the gDoF of the channel (βsd = 1 and
(βrd, βsr) ∈ [1.2, 2.4]). Here the relay uses PDF. We observe
that we have a further improvement in terms of gap by using
a random switch (blue curve) instead of using a deterministic
switch (red curve). We notice that at high SNR, where the
gap is maximum, this improvement is around 0.1 bits. As
mentioned earlier, the rate advantage of random switch over
deterministic switch depends on the channel gains.
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Fig. 8: Numerical evaluation of the maximum gap varying
the SNR for βsd = 1 and (βrd, βsr) ∈ [1.2, 2.4] with

deterministic (red curve) and random switch (blue curve).

VII. CONCLUSIONS

In this work we considered a system where a source
communicates with a destination across a Gaussian channel
with the help of a half-duplex relay node. We determined
the capacity of the linear deterministic approximation of the
Gaussian noise channel at high SNR, by showing that random
switch and correlated non-uniform input bits at the relay are
optimal. We then analyzed the Gaussian noise channel at finite
SNR; we derived its gDoF and showed several schemes that
achieve the cut-set upper bound on the capacity to within a
constant finite gap, uniformly for all channel parameters. We
considered both the case of deterministic switch and of random
switch at the relay. We showed that random switch is optimal
and for the case without a direct link it achieves the exact
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C(HD−RC) ≤ max
PXs,[Xr,Sr ]

min
{
I(Xs, [Xr, Sr];Yd), I(Xs;Yr, Yd|[Xr, Sr])

}
(45a)

= max
PXs,Xr,Sr

min
{
I(Sr;Yd) + I(Xs, Xr;Yd|Sr), I(Xs;Yr, Yd|Xr, Sr)

}
(45b)

≤ max
PXs,Xr,Sr

min
{
H(Sr) + I(Xs, Xr;Yd|Sr), I(Xs;Yr, Yd|Xr, Sr)

}
(45c)

≤ max min
{
H(γ) + γI1 + (1− γ)I2, γI3 + (1− γ)I4

}
=: r(CS−HD) (45d)

I(Xs, Xr;Yd|Sr = 0) ≤ log (1 + SPs,0) =: I1, (46a)

I(Xs, Xr;Yd|Sr = 1) ≤ log
(

1 + SPs,1 + IPr,1 + 2|α1|
√
SPs,1 IPr,1

)
=: I2, (46b)

I(Xs;Yr, Yd|Xr, Sr = 0) ≤ log
(
1 + (C + S)(1− |α0|2)Ps,0

)
≤ log (1 + (C + S)Ps,0) =: I3, (46c)

I(Xs;Yr, Yd|Xr, Sr = 1) ≤ log
(
1 + S(1− |α1|2)Ps,1

)
=: I4, (46d)

capacity. In general random switch increases the achievable
rate at the expense of more complex coding and decoding
schemes. For each scheme, we determined in closed form the
approximately optimal schedule, i.e., duration of the transmit-
and receive-phases at the relay, to shed light into practical HD
relays for future wireless networks.
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APPENDIX A
PROOF OF PROPOSITION 1

An outer bound on the capacity of the memoryless RC is
given by the cut-set outer bound [6, Thm.16.1] that specialized
to our G-HD-RC channel gives (45) at the top of the page,
where the different steps follow since:
•We indicate the (unknown) distribution that maximizes (45a)
as P ∗Xs,Xr,Sr in order to get the bound in (7).
• In order to obtain the bound in (45c) we used the fact that,
for a discrete binary-valued random variable Sr, we have

I(Sr;Yd) = H(Sr)−H(Sr|Yd) ≤ H(Sr) = H(γ)

for some γ := P[Sr = 0] ∈ [0, 1] that represents the fraction
of time the relay listens and where H(γ) is the binary entropy

function in (13). In (45d) the maximization is over the set
defined by (14)-(16) and is obtained as an application of
the ‘Gaussian maximizes entropy’ principle as follows. Given
any input distribution PXs,Xr,Sr , the covariance matrix of
(Xs, Xr) conditioned on Sr can be written as

Cov

[
Xs

Xr

]∣∣∣∣
Sr=`

=

[
Ps,` α`

√
Ps,`Pr,`

α∗`
√
Ps,`Pr,` Pr,`

]
,

with |α`| ≤ 1 for some (Ps,0, Ps,1, Pr,0, Pr,1) ∈ R4
+ satisfying

the average power constraint in (16). Then, a zero-mean jointly
Gaussian input with the above covariance matrix maximizes
the different mutual information terms in (45c). In particular,
we obtain (46) at the top of the page, as defined in (17)-(20)
thereby proving the upper bound in (8), which is the same as
r(CS−HD) in (45d).
• Regarding (9), the average power constraints at the source
and at the relay given in (16) can be expressed as follows.
Since the source transmits in both phases we define, for some
β ∈ [0, 1], the power split

Ps,0 =
β

γ
, Ps,1 =

1− β
1− γ .

Since the relay transmission only affects the destination output
for a fraction (1− γ) of the time, i.e., when Sr = 1, the relay
must exploit all its available power when Sr = 1; we therefore
split the relay power as

Pr,0 = 0, Pr,1 =
1

1− γ .

With this, the cut-set upper bound r(CS−HD) in (45d) can be
rewritten as (47) at the top of next page, where we defined b1
and b2 as in (21)-(22), namely

b1 :=
log
(

1 + (
√
I +
√
S)2
)

log (1 + S)
> 1 since I > 0,

b2 :=
log (1 + C + S)

log (1 + S)
> 1 since C > 0.
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r(CS−HD) = max
(γ,|α1|,β)∈[0,1]3

min
{
H(γ)+γ log

(
1+

Sβ

γ

)
+(1− γ) log

(
1+

I

1− γ+
S(1− β)

1− γ + 2|α1|
√

I

1− γ
S(1− β)

1− γ

)
,

γ log

(
1 +

Cβ

γ
+
Sβ

γ

)
+ (1− γ) log

(
1 + (1− |α1|2)

S(1− β)

1− γ

)}

≤ max
γ∈[0,1]

min
{
H(γ) + γ log

(
1 +

S

γ

)
+ (1− γ) log

1 +

(√
I

1− γ +

√
S

1− γ

)2
 ,

γ log

(
1 +

C

γ
+
S

γ

)
+ (1− γ) log

(
1 +

S

1− γ

)}
= max
γ∈[0,1]

min
{

2H(γ) + γ log (γ + S) + (1− γ) log

(
1− γ +

(√
I +
√
S
)2)

,

H(γ) + γ log (γ + C + S) + (1− γ) log (1− γ + S)}

≤ 2 + max
γ∈[0,1]

min

{
γ log (1 + S) + (1− γ) log

(
1 +

(√
I +
√
S
)2)

, γ log (1 + C + S) + (1− γ) log (1 + S)

}
= 2 + log (1 + S) max

γ∈[0,1]
min {γ + (1− γ)b1, γb2 + (1− γ)}

= 2 + log (1 + S)

(
1 + max

γ∈[0,1]
min {(1− γ)(b1 − 1), γ(b2 − 1)}

)
= 2 + log (1 + S)

(
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

)
(47)

Note that the optimal γ is found by equating the two arguments
of the min and is given by

γ∗CS :=
(b1 − 1)

(b1 − 1) + (b2 − 1)
.

APPENDIX B
PROOF OF PROPOSITION 2

The upper bound in (9) implies

d(HD−RC)

≤ lim
SNR→+∞

log (1 + S)

log (1 + SNR)

(
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

)
=βsd

(
1 +

[βrd/βsd − 1]+ [βsr/βsd − 1]+

[βrd/βsd − 1]+ + [βsr/βsd − 1]+

)
=βsd +

[βrd − βsd]+ [βsr − βsd]+

[βrd − βsd]+ + [βsr − βsd]+
,

since b1 → max{βsd, βrd}/βsd and b2 → max{βsd, βsr}/βsd
at high SNR, which is equivalent to the right hand side of (4)
after straightforward manipulations.

APPENDIX C
PROOF OF PROPOSITION 3

The PDF scheme in [6, Thm.16.3] adapted to the HD model
gives the following rate lower bound

C(HD−RC)

≥ max
PU,Xs,Xr,Sr

min
{
I(Sr;Yd) + I(Xs, Xr;Yd|Sr),

I(U ;Yr|Xr, Sr) + I(Xs;Yd|U,Xr, Sr)
}

≥max min
{
I
(PDF)
0 + γI5 + (1− γ)I6, γI7 + (1− γ)I8

}
=r(PDF−HD) in (11),

where for the last inequality we let γ := P[Sr = 0] ∈ [0, 1]
be the fraction of time the relay listens and, conditioned on
Sr = `, ` ∈ {0, 1}, we consider the following jointly Gaussian
inputs 

U
Xs√
Ps,`
Xr√
Pr,`


∣∣∣∣∣∣∣∣
Sr=`

∼ N

0,

 1 ρs|` ρr|`
ρ∗s|` 1 α`
ρ∗r|` α∗` 1



:

 1 ρs|` ρr|`
ρ∗s|` 1 α`
ρ∗r|` α∗` 1

 � 0.

In particular, we use specific values for the parameters
{ρs|`, ρr|`, α`}`∈{0,1}, namely

∠α1 + θ = 0, (48a)

α0 = 0 and either |ρs|0|2 = 1− |ρr|0|2 = 0

or |ρr|0|2 = 1− |ρs|0|2 = 0, (48b)
ρs|1 = α∗1, ρr|1 = 1. (48c)

With these definitions, the mutual information terms
I
(PDF)
0 , I5, . . . , I8 in (11) are

I(Xs, Xr;Yd|Sr = 0) = log (1 + SPs,0) =: I5,

I(Xs, Xr;Yd|Sr = 1)

= log
(

1 + SPs,1 + IPr,1 + 2|α1|
√
SPs,1 IPr,1

)
=: I6,

(note I5 = I1 and I6 = I2 because of the assumption in (48a));
next, by using the assumption in (48b), that is, in state Sr = 0
the inputs Xs and Xr are independent, and that either U = Xs
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r(PDF−HD) = max
γ∈[0,1],|α|≤1,β∈[0,1]

min
{
I
(PDF)
0 + γ log

(
1 +

βS

γ

)
+

+(1− γ) log

(
1 +

S(1− β)

1− γ +
I

1− γ + 2|α|
√
S(1− β)

1− γ
I

1− γ

)
,

γ log

(
1 +

1

γ
max {Cβ, Sβ}

)
+ (1− γ) log

(
1 + (1− |α|2)

S(1− β)

1− γ

)}
≥ max
γ∈[0,1],β∈[0,1]

min

{
γ log

(
1 +

βS

γ

)
+ (1− γ) log

(
1 +

S(1− β)

(1− γ)
+

I

1− γ

)
,

γ log

(
1 +

1

γ
max {βC, βS}

)
+ (1− γ) log

(
1 +

S(1− β)

(1− γ)

)}
≥ max
γ∈[0,1]

min {γ log (1 + S) + (1− γ) log (1 + S + I) ,

γ log (1 + max {C, S}) + (1− γ) log (1 + S)}
= log (1 + S) max

γ∈[0,1]
min {γ + (1− γ)c1, γc2 + (1− γ)}

= log (1 + S)

(
1 + max

γ∈[0,1]
min {(1− γ)(c1 − 1), γ(c2 − 1)}

)
= log (1 + S)

(
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

)
(49)

or U = Xr, we have: if U = Xs independent of Xr

I(U ;Yr|Xr, Sr = 0) + I(Xs;Yd|U,Xr, Sr = 0)

= I(Xs;
√
CXs + Zr|Xr, Sr = 0)

+ I(Xs;
√
SXs + Zd|Xs, Xr, Sr = 0)

= log (1 + CPs,0) ,

and if U = Xr independent of Xs

I(U ;Yr|Xr, Sr = 0) + I(Xs;Yd|U,Xr, Sr = 0)

= I(Xr;
√
CXs + Zr|Xr, Sr = 0)

+ I(Xs;
√
SXs + Zd|Xr, Sr = 0)

= log (1 + SPs,0) ;

therefore under the assumption in (48b) we have

I(U ;Yr|Xr, Sr = 0) + I(Xs;Yd|U,Xr, Sr = 0)

= log (1 + max{C, S}Ps,0) =: I7;

next, by using the assumption in (48c), that is, in state Sr = 1
we let U = Xr, we have

I(U ;Yr|Xr, Sr = 1) + I(Xs;Yd|U,Xr, Sr = 1)

= I(Xr;Zr|Xr, Sr = 1) + I(Xs;
√
SXs + Zd|Xr, Sr = 1)

= I(Xs;
√
SXs + Zd|Xr, Sr = 1)

= log
(
1 + S(1− |α1|2)Ps,1

)
=: I8,

(note I7 ≤ I3 and I8 = I4); finally

I(Sr;Yd) = E
[
log

1

fYd(Yd)

]
− [γ log(v0) + (1− γ) log(v1) + log(πe)] =: I

(PDF)
0 ,

where fYd(·) is the density of the destination output Yd, which
is a mixture of (proper complex) Gaussian random variables,

i.e.,

fYd(t) =
γ

πv0
e−|t|

2/v0 +
1− γ
πv1

e−|t|
2/v1 , t ∈ C,

v0 := Var[Yd|Sr = 0] = 2I5 ,

v1 := Var[Yd|Sr = 1] = 2I6 .

Note that I(PDF)
0 = I(Sr;Yd) ≤ H(Sr) = H(γ). This proves

the lower bound in (11).
Next we show how to further lower bound the rate in (11)

to obtain the rate expression in (12). With the same parame-
terization of the powers as in Appendix A, namely

Ps,0 =
β

γ
, Ps,1 =

1− β
1− γ , Pr,0 = 0, Pr,1 =

1

1− γ .

We have that (49) at the top of the page holds, where we
defined c1 and c2 as in (28)-(29), namely

c1 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0,

c2 :=
log (1 + max{C, S})

log (1 + S)
> 1 since C > 0.

Notice that ci ≤ bi, i = 1, 2, where bi, i = 1, 2, are defined
in (21)-(22). The optimal γ, indicated by γ∗PDF is given by

γ∗PDF :=
(c1 − 1)

(c1 − 1) + (c2 − 1)
∈ [0, 1].

Remark 4. A further lower bound on the PDF rate
r(PDF−HD) in (11) can be obtained by trivially lower bounding
I
(PDF)
0 ≥ 0, which corresponds to a fixed transmit/receive

schedule for the relay.
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C(HD−RC) ≥ max
PQPXs|QP[Xr,Sr ]|QPŶr|[Xr,Sr ],Yr,Q:|Q|≤2

min
{
I(Xs; Ŷr, Yd|[Xr, Sr], Q),

I(Xs, [Xr, Sr];Yd|Q)− I(Yr; Ŷr|Xs, [Xr, Sr], Yd, Q)
}

= max
PQPSr|QPXs|QPXr|Sr,QPŶr|Xr,Yr,Sr,Q:|Q|≤2

min
{
I(Xs; Ŷr, Yd|Q,Sr, Xr),

I(Sr;Yd|Q) + I(Xs, Xr;Yd|Sr, Q)− I(Yr; Ŷr|Xs, Xr, Yd, Sr, Q)
}

≥ r(CF−HD) in (51a) (50)

APPENDIX D
PROOF OF PROPOSITION 4

The lower bound in (12) implies

d(HD−RC)

≥ lim
SNR→+∞

log (1 + S)

log (1 + SNR)

(
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

)
=βsd

(
1 +

[βrd/βsd − 1]+ [βsr/βsd − 1]+

[βrd/βsd − 1]+ + [βsr/βsd − 1]+

)
=βsd +

[βrd − βsd]+ [βsr − βsd]+

[βrd − βsd]+ + [βsr − βsd]+
,

since c1 → max{βsd, βrd}/βsd and c2 → max{βsd, βsr}/βsd
at high SNR, which is equivalent to the right hand side of (4)
after straightforward manipulations.

APPENDIX E
PROOF OF PROPOSITION 6

The rate in (37) can be further lower bounded as

r(LDAi−HD) ≥ −1+log (1+S)

(
1 +

(c3 − 1)(c4 − 1)

(c3 − 1) + (c4 − 1)

)
,

where c3 := c1 = log(1+I+S)
log(1+S) and c4 := b2 = log(1+C+S)

log(1+S) .
The rate above implies

d ≥ lim
SNR→+∞

log (1 + S)

log (1 + SNR)

(
1 +

(c3 − 1)(c4 − 1)

(c3 − 1) + (c4 − 1)

)
= βsd

(
1 +

[βrd/βsd − 1]+ [βsr/βsd − 1]+

[βrd/βsd − 1]+ + [βsr/βsd − 1]+

)
= βsd +

[βrd − βsd]+ [βsr − βsd]+

[βrd − βsd]+ + [βsr − βsd]+
,

since c3 → max{βsd, βrd}/βsd and c4 → max{βsd, βsr}/βsd
at high SNR, which is equivalent to the right hand side of (4)
after straightforward manipulations.

APPENDIX F
ACHIEVABLE RATE WITH CF

Proposition 12. The capacity of the G-HD-RC is lower
bounded as

C(HD−RC) ≥ r(CF−HD)

:= max min
{
I
(CF)
0 +

∑
(i,j)∈[0:1]2

γijI9,ij ,
∑

(i,j)∈[0:1]2
γijI10,ij

}
,

(51a)

where the maximization is over

γij ∈ [0, 1] :
∑

(i,j)∈[0:1]2
γij = 1, (51b)

Ps,i ≥ 0 :
∑

(i,j)∈[0:1]2
γij Ps,i ≤ 1, (51c)

Pr,ij ≥ 0 :
∑

(i,j)∈[0:1]2
γij Pr,ij ≤ 1, (51d)

where the different mutual information terms in (51) are
defined next.

Proof: The CF scheme in [6, Thm 16.4] adapted to the
HD model gives the rate lower bound in (50) at the top of
the page, where the mutual information terms {I9,ij , I10,ij},
(i, j) ∈ [0 : 1]2 and I

(CF)
0 in (51a) are obtained as follows.

We consider the following assignment on the inputs and on
the auxiliary random variables for each (i, j) ∈ [0 : 1]2

P[Q = i, Sr = j] = γij such that (51b) is satisfied,(
Xs

Xr

)∣∣∣∣
Q=i,Sr=j

∼ N
(
0,

[
Ps,i 0
0 Pr,ij

])
such that (51c) and (51d) are satisfied,

Ŷr|Xr,Yr,Q=i,Sr=j = Yr + Ẑr,ij ,

Ẑr,ij ∼ N (0, σ2
ij) and independent of everything else,

and in order to meet the constraint that Xs can not depend on
Sr conditioned on Q we must impose the constraint that in
state Q = i, Sr = j the power of the source only depends on
the index i. Then for each (i, j) ∈ [0 : 1]2

I(Xs; Ŷr, Yd|Xr, Q = i, Sr = j)

= log

(
1 +

(
S +

C(1− j)
1 + σ2

ij

)
Ps,i

)
=: I10,ij , (53)

I(Xs, Xr;Yd|Q = i, Sr = j)+

− I(Yr; Ŷr|Xs, Xr, Yd, Q = i, Sr = j)

= log (1+SPs,i+IjPr,ij)−log

(
1 +

1

σ2
ij

)
=: I9,ij , (54)

I(Sr;Yd|Q) = −
∑
(i,j)

γij log(vij)− log(πe)

+ (γ00 + γ01) E
[

log
1

f0(Y )

∣∣∣∣Q = 0

]
+ (γ10 + γ11) E

[
log

1

f1(Y )

∣∣∣∣Q = 1

]
=: I

(CF)
0 ,
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r(CF−HD) ≥ max
γ∈[0,1],σ2

0≥0,β∈[0,1]
min

{
γ log

(
1 +

βS

γ

)
− γ log

(
1 +

1

σ2
0

)
+

+(1− γ) log

(
1 +

(1− β)S

1− γ +
I

1− γ

)
,

γ log

(
1 +

Cβ

(1 + σ2
0)γ

+
Sβ

γ

)
+ (1− γ) log

(
1 +

(1− β)S

1− γ

)}
β=γ

≥ max
γ∈[0,1],σ2

0≥0
min {γ log (1 + S) + (1− γ) log (1 + S + I) ,

γ log

(
1 +

C

1 + σ2
0

+ S

)
+ (1− γ) log (1 + S)

}
− γ log

(
1 +

1

σ2
0

)
= max
γ∈[0,1],σ2

0≥0

[
log (1 + S) min {γ + (1− γ)c5, γc6 + (1− γ)} − γ log

(
1 +

1

σ2
0

)]
γ=γ∗CF≥ max

σ2
0≥0

log (1 + S)

1 +
(c5 − 1)(c6 − 1)

(c5 − 1) + (c6 − 1)

1−
log
(

1 + 1
σ2
0

)
log
(

1 + C
(1+σ2

0)(1+S)

)


σ2
0=1

≥ − 1 + log (1 + S)

(
1 +

(c5 − 1)(c6 − 1)

(c5 − 1) + (c6 − 1)

)
(52)

where

Yd|Q=0 ∼ f0(t) :=
γ00

γ00 + γ01

1

πv00
e−|t|

2/v00

+
γ01

γ00 + γ01

1

πv01
e−|t|

2/v01 , t ∈ C,

Yd|Q=1 ∼ f1(t) :=
γ10

γ10 + γ11

1

πv10
e−|t|

2/v10

+
γ11

γ10 + γ11

1

πv11
e−|t|

2/v11 , t ∈ C,

vij := Var[Yd|Q = i, Sr = j] = 1 + S Ps,i + I j Pr,ij .

This proves the lower bound in (51) as a function of
σ2
ij , (i, j) ∈ {0, 1}2.
In order to find the optimal σ2

ij , (i, j) ∈ {0, 1}2 we reason
as follows. I10,ij in (53) is decreasing in σ2

ij while I9,ij in
(54) is increasing. At the optimal point these two rates are the
same. Let

Ci := 1 +
CPs,i

1 + SPs,i
, xi :=

1

σ2
i0

, I ′ := I(Sr, Xr;Yd|Q),

and rewrite the lower bound in (51) as

r(CF−HD) = (γ00 + γ01) log(1 + SPs,0)

+ (γ10 + γ11) log(1 + SPs,1)

− γ00 log (1 + x0)− γ10 log (1 + x1)

+ min
{
γ00 log (1 + x0C0) + γ10 log (1 + x1C1) , I ′

}
.

The solution of

min
(x0,x1)∈R2

+

{
γ00 log (1 + x0) + γ10 log (1 + x1)

}
subject to γ00 log (1 + x0C0) + γ10 log (1 + x1C1) = I ′

can be found to be

xi =
[ηCi − 1]+

(1− η)Ci
, i ∈ {1, 2},

with η ≤ 1 such that

γ00 log (1 + x0C0) + γ10 log (1 + x1C1) = I ′.

Remark 5. For the special case of Q = Sr, that is,
I
(CF)
0 = I(Sr;Yd|Q) = I(Q;Yd|Q) = 0, the achievable rate

in Proposition 12 reduces to

r(CF−HD) ≥ max
(γ,β)∈[0,1]2

min
{
γI9 + (1− γ)I10,

γI11 + (1− γ)I12

}
, (55a)

I9 := log (1 + SPs,0)− log

(
1 +

1

σ2
0

)
, (55b)

I10 := log (1 + SPs,1 + IPr,1)− log

(
1 +

1

σ2
1

)
, (55c)

I11 := log

(
1 + SPs,0 +

C

1 + σ2
0

Ps,0

)
, (55d)

I12 := log (1 + SPs,1) , (55e)

σ2
0 :=

B + 1

(1 +A)
1
γ−1 − 1

, σ2
1 = +∞, (55f)

A :=
IPr,1

1 + SPs,1
, B :=

CPs,0
1 + SPs,0

, (55g)

Ps,0 =
β

γ
, Ps,1 =

1− β
1− γ , Pr,1 =

1

1− γ , (55h)

where the optimal value for σ2
0 in (55f) is obtained by

equating the two expressions within the min in (55a).

Proposition 13. CF with deterministic switch achieves the
gDoF upper bound in (4).

Proof: With the achievable rate in Remark 5 (where here
we explicitly write the optimization with respect to σ2

0) we
have that (52) at the top of the page holds, where we defined
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c5 and c6 as

c5 = c1 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0 and as in (28),

c6 :=
log
(

1 + C
1+σ2

0
+ S

)
log (1 + S)

> 1 since C > 0,

and where

γ∗CF :=
(c5 − 1)

(c5 − 1) + (c6 − 1)
∈ [0, 1].

By reasoning as for the PDF in Appendix D, it follows from
the last rate bound that CF also achieves the gDoF in (4).

Remark 6. For the special case of Q = ∅, i.e., the time-
sharing variable Q is a constant, the achievable rate in
Proposition 12 reduces to

r(CF−HD) ≥ max
PXsPXr,SrPŶr|[Xr,Sr ],Yr

min
{
I
(
Xs; Ŷr, Yd|Sr, Xr

)
,

I (Xs, Xr, Sr;Yd)− I
(
Yr; Ŷr|Sr, Xr, Xs, Yd

)}
≥ max
γ∈[0,1],σ2

min

{
γ log

(
1+S+

C

1 + σ2

)
+(1−γ) log (1+S) ,

I (Sr;Yd) + γ log (1 + S)− γ log

(
1 +

1

σ2

)
+(1− γ) log

(
1 + S +

I

1− γ

)}
.

Note that with Q = ∅ the source always transmits with
constant power, regardless of the state of the relay, while
the relay sends only when in transmitting mode. Thus in this
particular setting there is no coordination between the source
and the relay.

APPENDIX G
PROOF OF PROPOSITION 7

Consider the upper bound in (7) and the lower bound in (10).
Since the term I(Xs, Xr, Sr;Yd) is the same in the upper and
lower bounds, the gap is given by 4

GAP ≤I(Xs;Yr, Yd|Xr, Sr)− I(U ;Yr|Xr, Sr)

− I(Xs;Yd|Xr, Sr, U).

Next we consider two different choices for U :

4Let a lower bound be minA{fl(A)} and an upper bound be
minA{fu(A)}. With the definition

Au,min := argmin
A
{fu(A)}, Al,min := argmin

A
{fl(A)},

we have fu(Au,min) ≤ fu(Al,min). This fact implies that the gap is upper
bounded as

GAP ≤ min
A
{fu(A)} −min

A
{fl(A)} = fu(Au,min)− fl(Al,min)

≤ fu(Al,min)− fl(Al,min) ≤ max
A
{fu(A)− fl(A)}.

• For C ≤ S we choose U = Xr and

GAP ≤ I(Xs;Yr, Yd|Xr, Sr)− I(Xs;Yd|Xr, Sr)

=I(Xs;Yr|Xr, Sr, Yd)

=P[Sr=0]I(Xs;
√
CXs+Zr|Xr, Sr=0,

√
SXs+Zd)

+ P[Sr = 1]I(Xs;Zr|Xr, Sr = 1,
√
SXs + Zd)

=P[Sr = 0] log

(
1 +

CPs,0
1 + SPs,0

)
+ P[Sr = 1] · 0

≤1 · log

(
1 +

SPs,0
1 + SPs,0

)
≤1 bit.

• For C > S we choose U = XrSr +Xs(1− Sr) and

GAP ≤ I(Xs;Yr, Yd|Xr, Sr)

− I(XrSr +Xs(1− Sr);Yr|Xr, Sr)

− I(Xs;Yd|Xr, Sr, XrSr +Xs(1− Sr))
=P[Sr = 0]

(
I(Xs;Yr, Yd|Xr, Sr = 0)

− I(Xs;Yr|Xr, Sr = 0)
)

+ P[Sr = 1]
(
I(Xs;Yr, Yd|Xr, Sr = 1)

− I(Xs;Yd|Xr, Sr = 1)
)

=P[Sr = 0] I(Xs;Yd|Xr, Sr = 0, Yr)

+ P[Sr = 1] I(Xs;Yr|Xr, Sr = 1, Yd)

=P[Sr=0]I(Xs;
√
SXs+Zd|Xr, Sr=0,

√
CXs+Zr)

+ P[Sr = 1] I(Xs;Zr|Xr, Sr = 1,
√
SXs + Zd)

=P[Sr = 0] log

(
1 +

SPs,0
1 + CPs,0

)
+ P[Sr = 1] · 0

≤1 · log

(
1 +

CPs,0
1 + CPs,0

)
≤1 bit.

APPENDIX H
PROOF OF PROPOSITION 8

Consider the upper bound in (8) and the lower bound in (11).
Recall that I1 = I5 I2 = I6 I3 ≥ I7 I4 = I8 and therefore

GAP ≤ max
{
H(γ) + γI1 + (1− γ)I2 − γI5 − (1− γ)I6,

γI3 + (1− γ)I4 − γI7 − (1− γ)I8

}
= max

{
H(γ), γ(I3 − I7)

}
≤ max

{
1, log

(
1 + CPs,0 + SPs,0
1 + max{C, S}Ps,0

)}
≤ max

{
1, log

(
1 + 2 max{C, S}Ps,0
1 + max{C, S}Ps,0

)}
≤ max

{
1, 1
}

= 1 bit.

APPENDIX I
PROOF OF PROPOSITION 9

Consider the upper bound in (9) and the lower bound in (37).
We distinguish two cases:
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GAP ≤ max
{
H(γ) + γI1 + (1− γ)I2 − γI9 − (1− γ)I10, γI3 + (1− γ)I4 − γI11 − (1− γ)I12

}
≤ max

{
H(γ) + γ log (1 + SPs,0) + γ log

(
1 +

1

σ2
0

)
− γ log (1 + SPs,0)

+ (1− γ) log
(

1 + (
√
SPs,1 +

√
IPr,1)2

)
− (1− γ) log (1 + SPs,1 + IPr,1) ,

γ log (1 + (C + S)Ps,0) + (1− γ) log (1 + SPs,1) +

− γ log

(
1 + SPs,0 +

CPs,0
1 + σ2

0

)
− (1− γ) log (1 + SPs,1)

}
≤ max

H(γ) + (1− γ) + γ log

(
1 +

1

σ2
0

)
, γ log

1 +

σ2
0

1+σ2
0
CPs,0

1 + SPs,0 + 1
1+σ2

0
CPs,0


≤ max

{
H(γ) + (1− γ) + γ log

(
1 +

1

σ2
0

)
, γ log

(
1 + σ2

0

)}
≤ 1.6081 bits (56)

• Case 1: S > C. In this case r(LDAi−HD) = log(1 + S).
The gap is

GAP ≤ r(CS−HD) − r(LDAi−HD)

≤ 2 + log (1 + S)
(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

≤ 2 + log (1 + S) (b2 − 1)

= 2 + log

(
1 +

C

1 + S

)
≤ 2 + log

(
1 +

S

1 + S

)
≤ 3 bits.

• Case 2: S ≤ C. First, by noticing that
log
(

1 + (
√
I +
√
S)2
)
≤ log (1 + I + S) + 1, we

further upper bound the expression in (9) as

r(CS−HD) ≤ 2 + log (1 + S)

+

(
log
(

1 + I
1+S

)
+ 1
)

log
(

1 + C
1+S

)
log
(

1 + I
1+S

)
+ 1 + log

(
1 + C

1+S

) .
Next we further lower bound r(LDAi−HD) in (37) as

r(LDAi−HD) ≥ log (1 + S)

+
log
(

1 + I
1+S

)(
log
(

1 + C
1+S

)
− 1
)

log
(

1 + I
1+S

)
+ log

(
1 + C

1+S

) .

Hence, with x = log
(

1 + I
1+S

)
, y = log

(
1 + C

1+S

)
,

we have

GAP ≤ r(CS−HD) − r(LDAi−HD)

≤ 2 +
(x+ 1)y

x+ 1 + y
− x(y − 1)

x+ y

= 2 +
x2 + y2 + xy + x

x2 + y2 + 2xy + x+ y

≤ 3 bits.

APPENDIX J
PROOF OF PROPOSITION 10

With CF we have that (56) at the top of the page holds,
where for σ2

0 we chose the value

σ2
0 = 2

H(γ)+(1−γ)
γ

by equating the two arguments of the max (this is so because
H(γ) + (1 − γ) + γ log

(
1 + 1

σ2
0

)
is decreasing in σ2

0 , while
log
(
1 + σ2

0

)
is increasing in σ2

0). Numerically one can find
that with the chosen σ2

0 the maximum over γ ∈ [0, 1] is 1.6081
for γ = 0.3855.

Note that by choosing σ2
0 = 1 the gap would be upper

bounded by 2 bits.
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