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Abstract

In next generation wireless communication systems, packet-oriented data transmission

will be implemented in addition to standard mobile telephony. We take an information-

theoretic view of some simple protocols for reliable packet communication based on \Hybrid-

ARQ", over a slotted multiple access Gaussian channel with fading and study their through-

put (total bit/s/Hz) and average delay under idealized but fairly general assumptions. As

an application of the renewal-reward theorem, we obtain closed-form throughput formulas.

Then, we consider asymptotic behaviors with respect to various system parameters. The

throughput of ARQ protocols is compared to that of CDMA with conventional decoding.

Interestingly, the ARQ systems are not interference-limited even if no multiuser detection or

joint decoding is used, as opposed to conventional CDMA.

Keywords. Packet radio, information theory, multiuser systems, wireless communications.

1 Introduction

In order to support new services (e.g., wireless mobile access to the Internet), next generation

wireless communication systems will implement packet-oriented data transmission in addition

to standard mobile telephony [60]. This implies bursty sporadic communication from a large

population of users, that may require instantaneous large data rates and very small error proba-

bilities for a short time. Motivated by the above consideration, we take an information-theoretic
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view of some simple protocols for reliable packet communication based on \Hybrid-ARQ", i.e.,

on combining channel coding and Automatic Retransmission reQuest (ARQ) [48, 6].

Several types of Hybrid-ARQ protocols have been proposed (see [48, 6] and references

therein). The throughput of ARQ schemes can be improved by packet combining, i.e., by

keeping the erroneous received packets and using them for detection. Packet combining can be

based on hard decisions [36, 16, 43, 51, 50] or on soft channel outputs [8, 3, 45]. In the latter

case, several noisy observations of the same packet obtained by retransmission are combined

by a suitable diversity technique (e.g., maximal-ratio, equal-gain or selection combining [29]).

Soft decoding of maximal-ratio combined packets can be seen as an elementary form of Hybrid-

ARQ, based on soft-decoding of a repetition code of variable length. This idea can be extended

to more general classes of codes. In [22, 45, 46], Rate Compatible Punctured Convolutional

(RCPC) codes are used in an incremental redundancy ARQ scheme. Transmission starts with

the highest rate code of the RCPC code family and additional redundancy bits are requested

whenever necessary. More recently, Turbo-codes [5] have been suggested as candidates for packet

combining, exploiting the fact that they are systematic and produce incremental redundancy by

puncturing the parity bits [62, 25].

Analysis of Hybrid-ARQ protocols in terms of throughput, error rates and delay can be found

in [34, 33, 31, 30, 47, 38, 37, 58, 55, 41, 20]. Most works carry out a \separated analysis", i.e.,

consider a completely symmetric system with respect to any user, and study the behavior of the

protocol for a particular reference user modeled as a Markov chain. In general, analysis depends

on the type of codes and decoding/error detection technique employed. Modelling the system by

a Markov chain might be complicated, since in each state one must convey all the information

about the memory of the system. In [32], Zorzi proposes the use of renewal theory [42] in order

to analyze ARQ protocols.

As remarkably well illustrated by Ephremides in [1], information theoretic techniques are

not yet of widespread use in the domain of networking with random user activity. Steps in this

direction are represented by the work of Shamai and Wyner on cellular systems [52, 53] and

of Telatar and Gallager [13]. In [13], the multiple access Gaussian channel is assimilated to a

processor-sharing system and is analyzed as a queue with single server and an in�nite bu�er.

The required service for each user is de�ned in terms of random coding bound on the error

probability. A code-independent analysis of the mean transmission duration is obtained as an
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application of Little's Theorem [7].

This paper is mainly inspired by the work of [13, 32]. We assume that users transmit their

signal bursts at high instantaneous power and in a completely uncoordinated way. The receiver

is formed by a bank of single-user decoders, and does not implement joint decoding, i.e., each

decoder treats the signals from other users as noise.1 We refer to this model as the Gaussian

collision channel [17]. The transmission of each user is governed by an Hybrid-ARQ protocol,

designed to cope with background noise, fading and interference (or \collisions") from other

users.

We study the system performance in terms of throughput (total bit/s/Hz) and average

delay for three simple idealized protocols: a coded version of Aloha, a repetition scheme with

maximal-ratio packet combining and an incremental redundancy scheme with general coding.

By applying the renewal-reward thereom [42], we obtain a closed-form throughput formula under

a delay constraint (time-out) and code rate constraint. Since we consider random coding and

typical set decoding, our results are independent of the particular coding/decoding technique

and should be regarded as a limit in the information theoretic sense.

The system throughput is compared to that of CDMA with conventional single-user detection

and decoding. Interestingly, the ARQ system is not interference-limited even if no multiuser

detection or joint decoding is used, i.e., arbitrarily high throughput can be obtained simply

by increasing the transmit power of all users, as opposed to conventional CDMA where the

throughput tends to a �nite limit as all users increase their transmit power [10, 56]. As a

byproduct of this analysis, we provide a stronger operational meaning to the information outage

probability of block-fading channels and we obtain the closed form probability distribution of

signal-to-interference plus noise ratio (SINR) with Rayleigh fading and a Poisson-distributed

number of interferers, extending the result of [53].

The paper is organized as follows: in Section II we describe the system model; in Section

III we deal with typical set decoding and error detection; in Section IV we carry out system

throughput analysis; in Section V we present some limiting behaviors and in Section VI we point

out our conclusions. The proofs of the results are provided in the Appendices.

1Even though any point in the capacity region of multiple access channels can be implemented with low

complexity by successive \stripping" [4], this requires a good deal of coordination among the users which must

allocate their rate and power in a proper way [9, 44, 27] and may not be suited to random user activity.
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2 The slotted Gaussian collision channel with feedback

In the system under investigation, Nu users share a common radio channel with complex base-

band equivalent bandwidth [�W=2;W=2] in order to transmit their information messages to a

single receiver. Users are provided with a common time reference. The time axis is divided

in slots of duration T and users transmit signal bursts of duration slightly less than T , aligned

with the slots. Apart from the slotted transmission mode, users are completely uncoordinated.

Each user can transmit about L = bWT c independent complex symbols over one slot (assuming

WT � 1 [59]).

A discrete-time signal model is adopted and slots are denoted by their index s. Let ys
�
=

(ys;1; : : : ; ys;L), xk;s
�
= (xk;s;1; : : : ; xk;s;L) and �s

�
= (�s;1; : : : ; �s;L) denote the received signal, the

transmitted signal from user k and the background noise during slot s, respectively. Noise is

assumed circularly-symmetric complex Gaussian, with i.i.d. components with variance N0. User

k transmits with constant average energy per symbol Ek

�
= E[jxk;s;`j2].

The propagation channel is assumed slowly time-varying and frequency-at for each user. In

particular, the complex channel gain ck;s of user k over slot s is assumed to be constant on the

whole slot (block-fading [26]). The received signal over slot s can be written as

ys =
X

k2K(s)
ck;sxk;s + �s (1)

where K(s) � f1; : : : ; Nug denotes the set of active users over slot s.

User k encodes its information messages, of b bits each, independently of other users, by

using a channel code with code book Ck � C
LM of length LM over the complex numbers, where

M is a given integer. Code words are divided into M subblocks of length L, each of which is

modulated into a signal burst and is transmitted over one slot. We let Ck;m, for m = 1; : : : ;M ,

denote the punctured code of length mL obtained from Ck by deleting the lastM�m subblocks.

Each user selects the slots for transmission according to its own time-hopping (pseudo-

)random sequence, independently of the other users [24]. Time-hopping sequences can be seen as

random \on-o�" processes, where a user can transmit only when it is \on". We assume that the

receiver knows a priori the time-hopping rule of all users in the system [24]. 2 Transmission is

2This assumption is not particularly restrictive, and is analogous to the standard assumption of CDMA with

pseudo-random \long" spreading [2], where the receiver is assumed to know the spreading sequences of all users
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governed by the following simple Hybrid-ARQ protocol, run in a decentralized way by each user

k. When a new code word is ready for transmission, user k sends the �rst L symbols on the �rst

allowed slot, say s1, according to its time-hopping rule. The receiver decodes the code Ck;1 by

processing the received signal ys1 . If decoding is successful, a positive acknowledgement (ACK)

is sent back to user k over an error free and delay free feedback channel and the transmission

of the current code word stops. On the contrary, if the receiver detects an error, a negative

acknowledgement (NACK) is sent. In this case, user k sends the second block of L symbols of

the same code word on the next allowed slot, say s2. Now, the receiver decodes the code Ck;2

by processing the received signal blocks fys1 ;ys2g. Again, if decoding is successful an ACK is

sent and the transmission of the current code word stops. On the contrary, if a decoding error

is detected, a NACK is sent back and user k transmits the third block of L symbols of the

same code word on the next allowed slot. The process goes on this way: after the transmission

of m bursts of the current code word, code Ck;m is decoded by processing the received signal

fys : s 2 Sk;mg, where Sk;m
�
= fs1; : : : ; smg denotes the sequence of slots where transmission of

user k took place. If successful decoding occurs at the m-th transmission, the e�ective coding

rate for the current code word is R=m bits/s/Hz, where R
�
= b=L. 3

In general, the slots s 2 Sk;m are non-adjacent. We let n denote the delay (expressed in

number of slots) between the instant where a code word is generated and the current time (time

ticks at the slot rate). Obviously, m � n (see example in Fig. 1). In any practical application,

an information message must be delivered to the receiver within a maximum delay of N slots,

where for simplicity N is assumed common to all users and all messages. If successful decoding

does not occur within delay N , the message becomes useless. Moreover, since the code words

of Ck have M subblocks, the same message can be transmitted in at most M signal bursts. If

successful decoding does not occur within M transmitted bursts, the message is lost. We shall

refer to N and M as the \delay" and \rate" constraints, respectively. The transmission of a

code word can stop in three cases: i) Successful decoding occurs at the m-th transmitted burst

it wishes to decode. In practice, we might think of an access mechanism, run at a much slower time-scale than

packet transmission, that assigns to new users entering the system a time-hopping sequence.
3For large WT , a complex symbol (or dimension) can be transmitted approximately in one second and one

Hz. More precisely, the spectral eÆciency expressed in bit/s/Hz can be obtained by multiplying the coding rate

(bit/complex symbol) by the modulation spectral eÆciency (expressed in complex symbols/s/Hz), that depends

on the modulation excess bandwidth [21].
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n = 8

m = 4

Code word
generation time

Current time

Figure 1: Example: m = 4 transmitted bursts (shadowed) over n = 8 slots since the current

code word generation.
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and in n slots, with m �M and n � N ; ii) No successful decoding occurs after M transmitted

bursts and n � N slots; ii) No successful decoding occurs after N slots and m �M transmitted

bursts.

There are several ways to handle transmission failures (cases (ii) and (iii) above). For

example, in the case of time-sensitive information, the current message is simply discarded.

In other applications, delay is not a strict requirement (N is very large) and the current message

may be kept in the transmission bu�er for a later attempt. Several practical ARQ protocols

have been proposed to handle transmission failures (see references in Section 1). The analysis

carried out in the rest of this paper considers the simpli�ed scenario where an in�nite sequence

of messages is available to all users and, in the case of transmission failure, the current message

is discarded and the next message is encoded and transmitted in exactly the same way. The

time-hopping sequence for slot selection is not modi�ed by transmission failures (e.g., there is no

idle state, waiting for better channel conditions). It is important to notice that each user runs

its own ARQ protocol independently of the other users. The only way in which users inuence

each others is through mutual interference (collisions) that occurs when several users transmit

their bursts over the same slot.

The single-user decoder for user k has perfect knowledge of the channel gain ck;s and of the

SINR

�k;s
�
=

�k;sEk

N0 +
P

j2K(s):j 6=k �j;sEj

(2)

for all s such that k 2 K(s), where �k;s
�
= jck;sj2 denotes the channel power gain. Estimation of

the channel gain and of the SINR can be achieved in practice by inserting training symbols into

each signal burst, as currently done in most CDMA and TDMA cellular standards [61].

The Hybrid-ARQ protocol described above is a general incremental redundancy scheme

(denoted by \INR" for brevity). We consider also the following particular cases.

Generalized Slotted Aloha. The slotted Aloha protocol [7] (denoted by \ALO" for

brevity) is obtained by assuming for each user k a suboptimal decoder that considers only the

last received signal block. In classical Aloha it is assumed that a decoding failure occurs (and

is detected) whenever a collision occurs. In mobile systems, users might be received at very

di�erent power levels because of fading, shadowing and di�erent distances from the receiver. In

this case, a packed can be decoded successfully even if a collision occurs (capture e�ect) [20].
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Here, we consider a generalized ALO where channel coding is used and messages may be decoded

correctly even in the presence of collisions, depending on the SINR.

Repetition time-diversity. A simple time-diversity scheme (denoted by \RTD" for brevity)

is obtained by repeating the same burst of L symbols [8, 3]. This is equivalent to construct the

user code Ck as a concatenated code, where Ck;1 � C
L is the outer code and a simple repetition

code of lengthM is the inner code. After the m-th transmission, the receiver performs Maximal-

Ratio Combining (MRC) [8] of the signals fys : s 2 Sk;mg and decodes the outer code Ck;1 based

on the combined signal y =
P

s2Sk;m c
�
k;s
ys. Because of the analogy with a rake receiver that

performs MRC of the di�erent multipath components of the received signal [21], this scheme is

sometimes referred to as \repetition rake" [28].

3 Coding, decoding and error detection

We assume that all code books Ck are generated randomly and independently, with i.i.d. com-

ponents, according to a given pdf q(x) over C with mean zero and variance Ek. For each user,

an encoding function  k : f1; : : : ; 2RLg ! Ck is de�ned and revealed to the receiver.

A key point of the ARQ schemes described in Section 2 is that decoding errors should be

detected. Any complete decoding function, based on a partition of the channel output space

into 2RL regions (e.g., MAP decoding or ML decoding), is not suited to this purpose, unless

an explicit error-detection stage after channel decoding is introduced (e.g., in many cellular

systems a CRC is inserted into the information message [6, 61]). This however is undesirable

since it decreases the throughput by adding extra redundancy. An alternative is the use of

possibly suboptimal decoders in terms of error probability, but featuring a built-in error detection

capability. Moreover, it is desirable to decode all punctured codes Ck;m, for m = 1; : : : ;M , by

the same decoder.

In particular, we examine the following error correction/detection scheme. Consider de-

coding for user k after m received blocks, and let x
(w)

k
=  k(w) be the transmitted code word

corresponding to information message w. The decoder adds to the received signal fys : s 2 Sk;mg

other M �m dummy signal blocks zi, generated independently of the received signal, 4 to form

4In practice, in decoding of punctured convolutional codes dummy symbols are set to zero, but in the limiting

case considered here it is suÆcient that they are statistically independent of the channel input.
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the observation Y = (ys1 ; : : : ;ysm ; z1; : : : ; zM�m) of length LM , and then decodes the \mother

code" Ck according to the typical set rule �k : C
LM ! f1; : : : ; 2RL; eg (see [59] and Appendix A

for details) de�ned as follows:

Let Ew be the event that x
(w)

k
is the unique code word jointly typical with Y. Then,

� �k(Y) = bw if, for some bw 2 f1; : : : ; 2RLg, the event E bw occurs.

� �k(Y) = e in any other case.

Since decoder k treats all other user signals as additive noise, it \sees" a virtual additive noise

channel given by

ys = ck;sxk;s + vk;s (3)

where vk;s = �s +
P

j2K(s):j 6=k cj;sxj;s is the interference plus noise vector. We let pk;s(yjx)

denote the single-letter transition pdf of the above channel, conditioned on the channel gains

fcj;s : j 2 K(s)g and on the set of active users K(s), and we de�ne I(q(x); pk;s(yjx)) to be the

mutual information (per letter) of channel (3), expressed as a functional of the pdfs q(x) and

pk;s(yjx). Obviously, I(q(x); pk;s(yjx)) varies randomly from slot to slot, since it depends on the

random set K(s) and on the random channel gains fcj;s : K(s)g.

We examine the behavior of codes Ck;m with decoder �k de�ned above, for a given sequence

of channel transition pdfs P
�
= fpk;s(yjx) : s 2 Sk;mg. The average error probability is de�ned

by

Pr(errorjP;Ck)
�
= 2�RL

2RLX
w=1

Pr(Ewjw;P;Ck) (4)

A decoding error when message w is transmitted is not detected if, for some bw 6= w, the event

E bw occurs. Then, the average probability of undetected error is de�ned by

Pr(undetected errorjP;Ck)
�
= 2�RL

2RLX
w=1

Pr

0@ [
bw 6=w

E bw

������w;P;Ck
1A (5)

The following results, proved in Appendix A, show that the typical set decoder de�ned above is

asymptotically optimal for both error and undetected error probabilities, for large burst length

L:

Lemma 1 (achievability). For all � > 0 there exist L and codes Ck 2 C
LM of size 2RL with

Pr(errorjP;Ck) < � for all m = 1; : : : ;M and channel sequences P such that
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P
s2Sk;m I(q(x); pk;s(yjx)) > R. }

Lemma 2 (converse). For all channel sequences P such that
P

s2Sk;m I(q(x); pk;s(yjx)) < R,

Pr(errorjP;Ck;m)! 1 for any code Ck;m 2 C
Lm of size 2RL as L!1. }

Lemma 3 (error detection). For all � > 0 and channel sequences P there exists L such that

any code Ck 2 C
LM of size 2RL satis�es Pr(undetected errorjP;Ck) < �. }

The optimal input distribution q(x) of the interference channel (3) is not known in general [59].

For the sake of mathematical tractability, we consider (somewhat arbitrarily) circularly-symmetric

complex Gaussian inputs for all users. Then, the mutual information
P

s2Sk;m I(q(x); pk;s(yjx))

takes the form

Ik;m
�
=

X
s2Sk;m

log2(1 + �k;s) (6)

From the above results we have that, by using Gaussian codes and typical set decoding at each

step m of the ARQ protocols of Section 2, the probability of decoding error is arbitrarily small

if R < Ik;m, very large if R > Ik;m and decoding errors are detected with arbitrarily large

probability, for suÆciently large L. Practical future system for mobile data transmission will be

characterized by a very large value of the product WT , in order to support large instantaneous

bit rates. This motivates a system analysis under the assumption of very large L. 5 In this

regime, we shall assume that, for all k and m, Pr(errorjR < Ik;m) = 0, Pr(errorjR � Ik;m) = 1

and Pr(undetected error) = 0.

Remark: Bounded distance and iterative decoding. Obviously, the typical set decoder

considered above is not suited for practical implementations. However, it is interesting to notice

that some non-ML practical decoding schemes show a behavior similar to the typical-set decoder.

For example, bounded-distance decoding [39] outputs the message w if the received signal falls

inside a sphere centered on the code word corresponding to w, while if the received signal is

not in any sphere, an error message e is declared. Another example is provided by the iterative

decoding scheme [23] used to decode Turbo-codes. The component codes of the Turbo-code are

individually decoded by symbol-by-symbol soft-in soft-out decoders sharing and updating some

common information about the reliability of the symbol-wise decisions. Typically, if the code

5For example, in the 3rd generation UMTS standard a packet-radio random access scheme is supported with

variable slot duration 0:625 � T � 10 ms, bandwidth W = 5 MHz [49] and modulation spectral eÆciency up

to 0:2, obtained by using direct-sequence spread-spectrum modulation with raised-cosine pulses with roll-o� 0:22

and spreading gain 4. This means that L = b0:2WT c is between 625 and 10000 complex symbols per slots.
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word is correctly decoded all component decoders agree on the symbol-wise decisions, while in

the presence of decoding errors the decoders keep on reversing the symbol decisions at each

iteration [11]. This ill behavior, as well as the low reliability for some symbols, can be used as

error indicators [14].

Remark: analogy with the block-fading channel. Under the assumption of Gaussian

user code made here, the channel model (3) is totally analogous to the block-fading AWGN chan-

nel with perfect channel state information at the receiver introduced in [26]. In [26], decoding

is always performed after M blocks and the probability of decoding failure for large L is given

by Pr(Ik;M � R), and is referred to as information outage probability. Outage probability �nds

a very natural interpretation as the limiting error probability for large block length averaged

over the random coding ensemble and over the fading states [18]. A question left open in [26]

and in many subsequent works is whether it exists a code sequence (for increasing values of the

block length L) with error probability arbitrarily small for all fading states such that Ik;M > R.

Notice that this is not a trivial question, since if the choice of the code sequence depends on

the particular fading state, outage probability would not be achievable (it would require side

information at the transmitter). The existence of codes asymptotically good for all fading states

satisfying Ik;M > R is given by Lemma 1 (see the details of the proof in Appendix A). In this

respect, information outage probability is not just an average probability of error over a code

ensemble, but it can be approached by a given (deterministic) sequence of codes.

ALO and RTD schemes. In analogy to what done above for the INR scheme, we can

de�ne random coding and typical-set decoding for ALO and RTD. For the sake of brevity,

we state without details that, as L ! 1, also for these schemes there exist codes for which

Pr(errorjR < Ik;m) and Pr(undetected error) vanish and Pr(errorjR � Ik;m) goes to 1, provided

that the correct expression for the mutual information is used. ALO takes into account only the

most recent received signal burst, therefore the corresponding Ik;m is given by

Ik;m = log2(1 + �k;sm) (7)

In RTD, the SINR after MRC of m received bursts is given by the sum
P

s2Sk;m �k;s [21],

therefore the corresponding Ik;m is given by

Ik;m = log2

0@1 + X
s2Sk;m

�k;s

1A (8)
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4 Throughput analysis

In this section we compute the throughput of the ARQ protocols of Section 2 with the coding

and decoding scheme of Section 3, in the limit for large L. Our analysis is valid under the

following idealized assumptions:

1. An in�nite number of information messages is available for each users. As soon as a user

stops the transmission of the current code word, it encodes the next packet and starts

its transmission in the next selected slot. As explained in Section 2, transmission of a

code word can stop either because successful decoding occurs, or because the delay or rate

constraints N and M are violated (decoding failure).

2. The ACK/NACK feedback channel is delay-free and error-free.

3. Users select slots for transmission so that the number of slots between two consecutive

transmissions of the same user is i.i.d., geometrically distributed with identical parameter

pt for all users. In order words, on each slot s each user transmits a signal burst with

probability pt and does not transmit with probability 1 � pt. The expected number of

users transmitting over a slot is G = ptNu (average channel load).

4. The channel power gains �k;s are i.i.d. random variables (RVs), for all users and slots.

5. All users have the same transmit SNR 
�
= E=N0 (i.e., Ek = E 8k = 1; : : : ; Nu).

Let t count the number of slots, bk(t) the number of information bits from user k successfully

decoded up to slot t and Rk(t)
�
= bk(t)=L the corresponding number of bit/s/Hz. The overall

throughput � measured in bit/s/Hz is given by

� = lim
t!1

1

tL

NuX
k=1

bk(t)

= Nu lim
t!1

1

t
R1(t) (9)

where the second line follows from the symmetry of the system with respect to any user.

Consider user 1 transmission. Under the above assumptions, the event that user 1 stops

transmitting the current code word is recognized to be a recurrent event [42]. A random reward

R is associated to the occurrence of the recurrent event. In particular, R = R bit/s/Hz if



G. Caire and D. Tuninetti: The throughput of Hybrid-ARQ protocols... 13

transmission stops because successful decoding, and R = 0 bit/s/Hz if transmission stops because

delay/rate constraint violation. We can apply the renewal-reward theorem [42] and get

lim
t!1

1

t
R1(t) =

E[R]

E[T]
with prob. 1 (10)

where T is the random time between two consecutive occurrences of the recurrent event (inter-

renewal time). Thus, the desired throughput general expression is

� = Nu

E[R]

E[T]
(11)

In order to evaluate E[R], the mean reward, and E[T], the mean inter-renewal time, we focus

on the transmission of a given code word of user 1 and we de�ne the auxiliary RV M to be

the number of transmitted bursts between the instant when the code word is generated and

the instant when its transmission is stopped (i.e., between two consecutive occurrences of the

recurrent event). We de�ne the event Am

�
= fI1;m > Rg, and the probability q(m) that the

random sequence I1;1; I1;2; : : : ; I1;m; : : : of mutual information at the user 1 decoder crosses level

R at the m-th step (and not before), or, in other words, the probability of having successful

decoding with m transmitted bursts. This is given by

q(m) = Pr(A1; : : : ;Am�1;Am)

= Pr(A1; : : : ;Am�1)� Pr(A1; : : : ;Am)

= p(m� 1)� p(m) (12)

where

p(m)
�
= Pr(A1; : : : ;Am) = 1�

mX
`=1

q(`) (13)

The joint probability distribution of T and M

fT;M(n;m)
�
= Pr(T = n;M = m)
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is obtained explicitly as follows (in the caseM � N otherwise the rate constraint is meaningless):

fT;M(n;m) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

(1� pt)
N n = N;m = 0

v(N;m) +

0B@N
m

1CA(1� pt)
N�mpmt p(m) n = N; 1 � m �M � 1

v(n;M) +

0B@ n� 1

M � 1

1CA(1� pt)
n�MpMt p(M) M � n � N;m =M

v(n;m) m � n � N � 1; 1 � m �M � 1

0 elsewhere

(14)

(we use the short-hand notation v(n;m) for

0@n� 1

m� 1

1A(1 � pt)
n�mpmt q(m)). In Appendix B we

show that (14) is a well-de�ned probability distribution for all 0 � pt � 1, N � M > 0 and

non-negative non-increasing sequence fp(m)g with p(0) = 1.

At this point, we are ready to compute E[R] and E[T]. A reward R is obtained for (T;M) =

(n;m) if successful decoding occurs in n slots with m transmitted bursts. This corresponds to

placing m� 1 transmissions in the �rst n� 1 slots without success, and the m-th transmission

in the n-th slot with success, which occurs with probability v(n;m). Therefore,

E[R] = R

MX
m=1

NX
n=m

v(n;m)

= R

241�M�1X
`=0

0@N
`

1A(1� pt)
N�`p`tp(`)�

NX
`=M

0@N
`

1A(1� pt)
N�`p`tp(M)

35 (15)

The average inter-renewal time is simply given by

E[T] =

MX
m=0

NX
n=1

nfT;M(n;m)

=

M�1X
m=0

1

pt
p(m)

241� mX
`=0

0@N + 1

`

1A(1� pt)
N+1�`p`t �

0@N
m

1A(1� pt)
N�mpm+1

t

35 (16)
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Finally, the desired closed-form expression for the system throughput is given by

�N;M = RG

241�M�1X
`=0

0@N
`

1A(1� pt)
N�`p`tp(`)�

NX
`=M

0@N
`

1A(1� pt)
N�`p`tp(M)

35
M�1X
m=0

p(m)

241� mX
`=0

0@N + 1

`

1A(1� pt)
N+1�`p`t �

0@N
m

1A(1� pt)
N�mpm+1

t

35 (17)

(we write �N;M in order to stress the dependence on N and M). Protocols INR, RTD and ALO

described before, for given parameters R, M , N , Nu and G, di�er in the probabilities p(m).

Consider �rst INR and RTD. These schemes have memory, since the receiver accumulates mutual

information, for INR, or SINR, for RTD, over the sequence of slots fs 2 S1;mg. From (6) and

(8), since �1;s is non-negative, it is apparent that the random sequence fI1;mg is non-decreasing

with probability 1. Then, A` � Am for all ` � m and we can write

p(m) = Pr(Am) = Pr(I1;m � R) (18)

For ALO, I1;m given by (7) has no particular monotone behavior. However, the receiver has no

memory of past signal bursts and the events Am are i.i.d.. Then, we can write

p(m) = Pr(A1; : : : ;Am)

=

mY
i=1

Pr(Ai) = Pr(A1)
m (19)

Finally, for all protocols examined we obtain a compact expression for p(m) as

p(m) =

8>>>>><>>>>>:
Pr
�P

s2S1;m log2(1 + �1;s) � R
�

INR

Pr
�
log2(1 +

P
s2S1;m �1;s) � R

�
RTD

Pr (log2(1 + �1;1) � R)m ALO

(20)

Some interesting properties of �N;M can be derived immediately from (17) and (20). It can be

easily shown that �N;M is a decreasing function of p(m) and that

Pr

0@ X
s2S1;m

log2(1 + �1;s) � R

1A � Pr

0@log2(1 + X
s2S1;m

�1;s) � R

1A � Pr (log2(1 + �1;1) � R)m

for all m = 1; : : : ;M . Then, as expected, the three protocols are related by

�
(INR)
N;M

� �
(RTD)
N;M

� �
(ALO)
N;M

(21)
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For ALO, we have that

�
(ALO)

N;M
= RG(1� p(1)) (22)

independently of N and M . This result is expected, since ALO has no memory and both delay

and rate constraints are irrelevant. It is easy to show that the sequence p(m) for both INR and

RTD is \sub-geometric", i.e., that p(m) � p(1)m for m = 1; 2; : : :, with equality only for m = 1.

From this observation, it is prossible to show that for, both INR and RTD, the throughput is

increasing in N and M , i.e., that

�N+`;M+r � �N;M (23)

for all `; r � 0, with equality for ` = 0; r = 0 only. This result is intuitive, since it makes sense

that the throughput is going to increase by relaxing the delay or the rate constraints. However,

it is not completely trivial since both the numerator (average reward) and the denominator

(average inter-renewal time) of (17) are increasing functions of N and M . As a matter of fact,

both the INR and the RTD protocols have the nice feature that \the longer we wait the more

we gain".

In classical Aloha analysis, it is customary to let Nu ! 1 while keeping G �xed and �nite

(in�nite population [7]). Since pt = G=Nu, this is equivalent to let pt ! 0 in (17). Interestingly,

for all �nite N , we have

lim
pt!0

�N;M = RG(1� p(1))

In other words, in the limit for in�nite population, the INR and RTD protocols with �nite delay

constraint are equivalent to ALO. In fact, in this case a large number of users transmit with

very small probability, and the probability that a user transmit more than once in any �nite

time N is negligible. Therefore, either the packet is successfully decoded at the �rst attempt,

or it is discarded, like in ALO. On the contrary, for N !1 the limit for in�nite population is

di�erent for the three protocols.

In the next section, we study some limiting behaviors of the throughput for an unconstrained

system, i.e., for N;M ! 1. We notice here that all three protocols without constraints yield

zero packet loss probability: the transmission of a code word ends only when it is correctly

decoded. The unconstrained throughput (denoted simply by � for the sake of brevity) is easily
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obtained from (17) as

� =
RG

1X
m=0

p(m)

=
RG

E[M]
(24)

where we used the fact that
P1

m=0 p(m) =
P1

m=1mq(m) = E[M], the average number of

transmitted bursts needed for successful decoding. In passing, we notice that E[M]=pt is the

mean delay (measured in slots) for the transmission of an information message (i.e., it is the

average number of slots between the generation of a code word and its successful decoding).

For ALO, � can be computed in closed form since p(1) = Pr(log2(1 + �1;1) � R) can be

obtained explicitly (see Appendix D). For the channel without fading we have

�(ALO) = RG

K(R;)�1X
`=0

0@Nu � 1

`

1A� G

Nu

�`�
1�

G

Nu

�Nu�1�`
(25)

where

K(R; ) =

�
1

2R � 1
�

1



�
+ 1 (26)

is the maximum number of simultaneous users in a slot that can be correctly decoded (notice

that, depending on R and , a collision does not correspond necessarily to an error, sinceK(R; )

might be larger than 1). For Nu !1, (25) yields

�(ALO) = RG

K(R;)�1X
`=0

e�G
G`

`!
(27)

that for K(R; ) = 1 reduces to the well-known result of classical slotted Aloha, � = RGe�G.

For the channel with Rayleigh fading we have

�(ALO) = RG

Nu�1X
`=0

0@Nu � 1

`

1A� G

Nu

�`�
1�

G

Nu

�Nu�1�`
e�(2

R�1)= 2�`R (28)

which for Nu !1 yields

�(ALO) = RGe�(2
R�1)=�(1�2�R)G

For the INR and RTD it is not possible to �nd closed-form expressions for the probabilities p(m).

However, these can be calculated easily for any m as follows. Let Z = �1;1 and I = log2(1+�1;1).

Then, from de�nitions (20) we see that for INR, p(m) is the cdf of the sum of m i.i.d. RVs

distributed as I, evaluated in R, and for RTD, p(m) is the cdf of the sum of m i.i.d. RVs
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distributed as Z, evaluated in 2R� 1. For small m, p(m) can be evaluated from the distribution

of �1;1 (e.g., by using the characteristic function). Since this approach involves discrete Fourier

transforms whose length increases withm, it cannot be applied for largem. In this case, from the

central limit theorem [35] we have that 1p
m

P
s2S1;m �1;s and

1p
m

P
s2S1;m log2(1+�1;s) are close

to Gaussian RVs, for large m. Therefore, p(m) can be easily evaluated from the Gaussian cdf.

For the sake of brevity, we skip the details of numerical calculations. However, it is interesting

to notice that none of the results of this paper are obtained by Monte Carlo simulation.

Figs. 2 and 3 show � vs. R, for the INR, RTD and ALO protocols, with  = 10dB, Nu = 50,

G = 1 and N = M ! 1 in AWGN and Rayleigh fading, respectively. For ALO on AWGN

channel, � is zero for R > log2 (1 + ) = 3:5 since for higher rates the SINR is not enough even in

the absence of interferers (the system becomes power-limited rather than interference-limited).

In the case of Rayleigh fading, � decreases with R but it is positive even for R > log2 (1 + ),

since there is a non zero probability that the fading gain is larger than one.

Fig. 4 shows � vs. R for  = 10dB, Nu = 50 and G = 1, N = 100 and increasing values of M

for INR on AWGN channel. As already pointed out, the curve for M = 1 coincides with ALO.

The di�erent curves overlap for small R since one transmitted burst is suÆcient to decode. For

M > 1 the throughput is non zero also for R larger than log2 (1 + ). For example, for M = 2

the maximum mutual information that can be accumulated is 2 log2 (1 + ) = 6:92.

5 Limiting behaviors

In this section we study the three protocols in terms of their unconstrained throughput � for

large R, G or .

5.1 Limits for large R

In Appendix C we show that

lim
R!1

� =

8>>>>><>>>>>:
GE[log2(1 + �1;1)] INR

0 RTD

0 ALO

(29)
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Figure 2: � vs. R for =10dB, Nu=50, G = 1 and N;M !1 on AWGN channel.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R

η

INR 

RTD 

ALO 

Figure 3: � vs. R for =10dB, Nu=50, G = 1 and N;M !1 on Rayleigh fading channel.
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Figure 4: � vs. R for =10dB, Nu=50, G = 1 and N = 100 for INR on AWGN channel.

ALO and RTD schemes. ALO and RTD involve strongly suboptimal coding schemes, for

which E[M] grows faster than R. Thus, the limiting � is zero. Since � = 0 for R = 0 and goes to

0 for large R, for both protocols there exist an optimal choice of 0 < R <1 maximizing � (see

Figs. 2 and 3). This optimal R depends, in general, on G and . From a practical system design

point of view, this shows that the burst spectral eÆciency R should be dimensioned according

to the channel load G and the SNR .

INR scheme. For INR, � < GE[log2(1 + �1;1)] for all �nite R. This fact is quite hard to

show directly by using (24), since the probabilities p(m) depend on R but a closed form is

not available. However, we can provide a simple indirect proof of the statement as follows. The

quantity C
�
= E[log2(1+�1;1)] is the capacity of the memoryless L-block interference channel [40]

given in (3), where the interference signal vk;s is circularly-symmetric complex Gaussian with

i.i.d. components and where �k;s is the SINR for block s. A well-known result states that

feedback does not increase the capacity of memoryless channels [59]. Then, even if the encoder

has available the sequence of past received vectors y1; : : : ;ys�1, the maximum transmissible



G. Caire and D. Tuninetti: The throughput of Hybrid-ARQ protocols... 21

rate for channel (3) is C. 6 Hence, we conclude that � = GC is actually the maximum

achievable throughput on this channel, irrespectively of the feedback and for any choice of R.

From a practical system design point of view, in the absence of rate and delay constraints it is

convenient to work with a very high burst spectral eÆciency R, irrespectively of the channel

load G and the SNR .

The maximum throughput is achieved for in�nite delay. It is interesting to notice that,

with in�nite delay, the same maximum throughput (with zero packet loss probability) can be

achieved by a system without feedback (just forward error correcting codes) [17]. It is natural

to ask why the ACK/NACK feedback channel should be implemented at all. The answer is

provided by closer examination of the average delay: the system without feedback needs a very

large (in�nite) delay in order to transmit with arbitrarily small packet loss probability for all

values of � [17]. On the contrary, the INR protocol achieves zero transmission failure probability

with �nite average delay for all � strictly less than GC.

Fig. 5 shows the average number of transmitted bursts E[M] vs. � for the ALO and INR

protocols in the case of Rayleigh fading, for  = 10dB, Nu = 50 and G = 1, N;M ! 1. The

corresponding average delay is given by NuE[M]=G.

5.2 Limits for large G

We consider an optimized system with respect to R and we let �� = supR �. In Appendix C, we

show that

lim
G!1

�� =

8>>>>><>>>>>:
log2(e) INR

log2(e) RTD

log
2
(e)
��

� ALO

(30)

where �� = E[�1;1], � = supu�0 u[1 � F�(u)] and F�(u)
�
= Pr(�1;1 � u) is the cdf of �1;1. For

AWGN, F�(u) is a step function with jump in u = 1, therefore � = �� = 1. For Rayleigh

6It is important to notice that (3) is memoryless at the block level, but not at the symbol level. Feedback

does not provide any capacity increase if the feedback channel works at the slot rate, i.e., it sends back the whole

received vector ys at the end of each s-th slot. This is precisely the way the ACK/NACK feedback works. On

the contrary, capacity would be clearly increased by a feedback working at faster rate, which sends back the

components of ys as soon as they are received, during each s-th slot.
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Figure 5: E[M] vs. � for  = 10dB, Nu = 50 and G = 1 and N;M ! 1 for ALO and INR on

Rayleigh fading channel.
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fading, F�(u) = 1 � e�u=��, therefore � = ��=e and limG!1 �� = log2(e)=e. This shows that for

large channel load G all schemes are equivalent in AWGN, while ALO performs worse than INR

and RTD in Rayleigh fading. In fact, ALO considers only the most recent received block for

decoding. Hence, there is no \averaging e�ect" with respect to the fading a�ecting the useful

signal over a long sequence of slots. Fig. 6 shows �� vs. G for ALO, =10dB on AWGN and

Rayleigh fading channel.

In order to gain insight in the behavior of the ALO protocol, it is useful to take a closer

look at the throughput curve in the case of AWGN. 7 This curve is obtained by noticing that

the supremum of �(ALO) given in (27) for �xed G and  is always obtained when R = log2(1 +

=(1 +K)) for some integer K, where K +1 is the maximum number of users that can collide

on the same slots without causing a decoding error. Therefore, maximizing with respect to

R (for given G) is equivalent to searching for the maximum of the expression log2(1 + =(1 +

K))G
P

K

`=0 e
�GG`=`! over the non-negative integersK. In particular, for smallG the maximum

is obtained by K = 0. In this case, the throughput is maximized by choosing the largest possible

R, i.e., R = log2(1 + ), and by letting the protocol alone to take care of collisions, like in

conventional Aloha. As G increases, the maximum is obtained by larger and larger K. In

this case, the throughput is maximized by choosing R in order to tolerate up to K interferers,

i.e., R = log2(1 + =(1 + K)) (a decoding error occurs only when there are more than K

interferers). In this way, the task of coping with collisions is shared by channel coding and by

the retransmission protocol: channel coding yields no errors for up to K + 1 active users in the

slot, while if the number of active users is larger than K + 1 retransmission is needed.

As G becomes large, a very large number of users transmit in every slot. In the limit, the

system is equivalent to a CDMA system with an in�nite number of usersK and in�nite spreading

gain N , such that the ratio K=N is equal to G [10, 56]. In fact, the channel load G is precisely

the (average) number of users per dimension (per chip). The throughput of such CDMA system

is given by [54, 12]

�(CDMA) = GE

�
log2

�
1 +

�1;1

1 +G��

��
(31)

Its maximum is log2(e) bit/s/Hz, obtained for G!1. Interestingly, the throughput of CDMA
7The throughput of ALO in AWGN converges to its limiting value log

2
(e) very slowly. Convergence can be

seen on a much larger scale of G. We chose this scale in order to better illustrate the behavior in a practical range

of G.



G. Caire and D. Tuninetti: The throughput of Hybrid-ARQ protocols... 24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

η

G

AWGN
Rayleigh
AWGN limit
Rayleigh limit

Figure 6: �� vs. G for ALO, =10dB in AWGN and Rayleigh fading.

is less than log2(e) for all �nite G, while for the INR, RTD and ALO schemes there might exist

a range of G for which �� > log2(e).

In the case of INR, �� is the limiting value for large R given by (29). Fig. 7 shows �� vs. G

for INR and CDMA, =10dB for AWGN and Rayleigh fading channel. Both the multiaccess

schemes have the same limiting throughput, equal to log2 (e), for G ! 1, however the INR

scheme tends to this limit from above while CDMA from below. Also, notice that for large G

the fading increases the throughput of the INR scheme, while it decreases the throughput of

CDMA. This can be interpreted in terms of the capture e�ect. With the bursty discontinuous

transmission of slotted INR, only a �nite number of users are going to collide on every slot,

for every �nite G. Because of fading, some of the interferers are received with low power and,

apparently, this provide a throughput increase for large G. On the contrary, in CDMA all users

transmit all the time and interference converges quickly to a deterministic average. Because of

the concavity of the logarithm, this provides a throughput decrease.
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Figure 7: �� vs. G for INR and CDMA, =10dB in AWGN and Rayleigh fading.

5.3 Limits for large 

In Appendix C we show that

lim
!1

�� =1 (32)

for all protocols examined, as opposed to CDMA, for which the limit of (31) for large  yields

G log2(1 + 1=G) for AWGN and GeGEi(1; G) in Rayleigh fading (Ei(1; z)
�
=
R1
1

e�zt=tdt).

This means that the ARQ system is not interference limited, even if no joint decoding is

implemented at the receiver: arbitrarily high throughput can be obtained by simply increasing

transmit SNR of all users, irrespectively of power control, fading, etc ... Intuitively, this is due

to the fact that there is a non-zero probability that only one user is active on any given slot,

and can transmit at very high instantaneous rate.
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6 Conclusions

Combined channel coding and retransmission protocols appear to be a viable and simple solution

for reliable packet-radio communication requiring high instantaneous rates and very low error

probability and characterized by bursty sporadic transmission and by mild delay contraints.

In this paper, we present an information-theoretic throughput analysis of some Hybrid-ARQ

protocols under idealized but fairly general conditions. We showed that typical set decoding has

very desirable properties for Hybrid-ARQ, in the limit for large slot dimension. From a renewal-

reward theory approach, we obtained closed-form throughput formulas for three simple protocols:

a generalization of slotted Aloha (ALO), a repetition time diversity scheme with maximal-

ratio packet combining (RTD) and an incremental redundancy scheme based on progressively

punctured codes (INR). We analyzed the e�ect of delay and rate constraints on the throughput,

as well as the limiting behavior with respect to the slot spectral eÆciency, the channel load and

the transmit SNR. Interestingly, all three protocols are not interference-limited, and achieve

arbitrarily large throughput by simply increasing the transmit power of all users.

We conclude by pointing out some future research directions inspired by this analysis.

� Practical coding and decoding schemes based on incremental redundancy and featuring

built-in error detection capability should be used with Hybrid-ARQ. Turbo-codes (or other

forms of concatenated coding) with iterative decoding appear to be a promising solution.

However, the behavior of iterative decoders in the presence of decoding errors should be

better characterized in order to exploit it for error detection.

� The assumption that the receiver knows exactly the time-hopping sequences of all users

might not be realistic. If user activity is random and not known to the receiver, our

results can be seen as an upperbound on the achievable throughput obtained by a geine-

aided receiver which knows a priori the active users in each slot. True random access,

where the receiver must also detect which users are active in order to make the approriate

packet combining, might be studied by inserting in our framework an active user detection

scheme.

� In this work, we concentrated on a very simple receiver that does not attempt to decode

the users jointly. A natural direction for future research is to consider joint decoding at
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the receiver (e.g., implemented by stripping). A theoretical diÆculty is represented by the

user random activity [1]. In fact, because of random access, the capacity region varies from

slot to slot and it is not known in advance, unless a complicated reservation/allocation

scheme is implemented. Also, the set of interfering users might be di�erent from slot to

slot, and it is not clear how to carry out joint decoding across the slots. First steps in this

direction are taken in [19, 27].

� In most practical applications, packet-radio networks must co-exist with other systems, as

for example a connection-oriented CDMA system where a large number of low-power low-

rate users transmit continuously. Quite a lot of work has been dedicated to the problem

of power control for bursty transmission, where closed-loop schemes are not e�ective, in

the fear that high-rate high-power bursty users might create too much interference to

an underlying CDMA system. An appealing consequence of our study is the following:

instead of trying to control bursty users, we can let them transmit at full-power. Thanks

to the ARQ protocol, the signal from all bursty users can be eventually decoded correctly

and subtracted from the received signal, so that the underlying CDMA system \sees" a

clean channel, as if the bursty users were not there. In this way, the two quite di�erent

system could be layered one on top of the other. Obviously, in order to make this claim

rigorous several issues must be addressed in the details: perhaps the most important of

which is the delay. In fact, CDMA users can be decoded only after the signal from bursty

users has been subtracted. Then, the variable decoding delay associated with the ARQ

protocol imposes a variable decoding delay also on the CDMA system. If CDMA users

have a strict delay constraint (e.g., due to real-time speech transmission, like in cellular

telephony), outages due to the occurrence of large decoding delay events must be taken

into account.
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A Proofs of Lemmas 1,2 and 3

Following standard continuity arguments [15], we consider a quantization of the input and a

partition of the output of (3) and we work on the resulting discrete channel. The results for the

continuous channel can be obtained by taking the supremum over all input quantizations and

output partitions. Fix a sequence of channel transition probabilities P = fpk;s(yjx) : s 2 Sk;Mg.

Let P (fxk;s;ys : s 2 Sk;mg), P (fxk;s : s 2 Sk;mg) and P (fys : s 2 Sk;mg) be the joint and the

marginal probability distributions induced by P and by the input distribution q(x). Since on

every slot s 2 Sk;m the quantized version of channel (3) is a time-invariant DMC, for the weak

law of large numbers [35] we have the following limits in probability:

lim
L!1

1

L
log2 P (fxk;s;ys : s 2 Sk;mg) = �

X
s2Sk;m

Hk;s(X;Y )

lim
L!1

1

L
log2 P (fxk;s : s 2 Sk;mg) = �mHk(X)

lim
L!1

1

L
log2 P (fys : s 2 Sk;mg) = �

X
s2Sk;m

Hk;s(Y ) (33)

where

Hk;s(X;Y )
�
= �

X
x;y

q(x)pk;s(yjx) log2 q(x)pk;s(yjx)

Hk(X)
�
= �

X
x

q(x) log2 q(x)

Hk;s(Y )
�
= �

X
x;y

q(x)pk;s(yjx) log2
X
x0

q(x0)pk;s(yjx0) (34)

are the joint, input and output entropies per letter in slot s. The typical set A�

k;m
is de�ned as

the set of all sequences fxk;s;ys : s 2 Sk;mg satisfying������ 1L log2 P (fxk;s;ys : s 2 Sk;mg) +
X

s2Sk;m

Hk;s(X;Y )

������ � �

���� 1L log2 P (fxk;s : s 2 Sk;mg) +mHk(X)

���� � ������� 1L log2 P (fys : s 2 Sk;mg) +
X

s2Sk;m

Hk;s(Y )

������ � � (35)

By letting I(q(x); pk;s(yjx))
�
= Hk(X) +Hk;s(Y )�Hk;s(X;Y ), and by following the same steps

in [59, Th. 8.7.1], we get that any rate less than 1
m

P
s2Sk;m I(q(x); pk;s(yjx)) is �-achievable. In
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particular, for m = M and given sequence of channels P, for suÆciently large L there exists

codes Ck of length LM and rate R=M with error probability (with typical set decoding) less

than � if

R <
X

s2Sk;M

I(q(x); pk;s(yjx)) (36)

In order to prove Lemma 1 we need to show that: i) there is a single code Ck having error

probability uniformly less than � over all sequences of channels P satisfying (36); ii) for all

1 � m �M , if R <
P

s2Sk;m I(q(x); pk;s(yjx)), then the punctured code Ck;m obtained from Ck

by taking the �rst m subblocks of length L has also error probability less than �.

From the random coding achievability part and from the strong converse (it holds for every

sequence of channels as shown by Lemma 2) we have that

EC[Pr(errorjP;C)]! 1f
P

s I(q(x);pk;s(yjx))�Rg

as L ! 1, where 1fAg denotes the indicator function of the event A and where EC denotes

expectation over the ensemble of all codes of size 2RL and block length LM generated according

to the input distribution q(x). By averaging also with respect to the sequence of channels and

exchanging expectations with respect to C and with respect to P (we can always do it, since the

integrand is non-negative and bounded by 1) we obtain

EC[EP[Pr(errorjP;C)]]! Pr

0@ X
s2Sk;M

I(q(x); pk;s(yjx)) � R

1A
Then, there exists a family of codes C� for increasing L such that

EP[Pr(errorjP;C�)] � Pr

0@ X
s2Sk;M

I(q(x); pk;s(yjx)) � R

1A (37)

for L suÆciently large. Because of the strong converse, Pr(errorjP;C�) ! 1 for all P such thatP
s2Sk;M I(q(x); pk;s(yjx)) � R. Then, in order to satisfy (37) it must be Pr(errorjP;C�)! 0 for

all channel sequences P such that
P

s2Sk;M I(q(x); pk;s(yjx)) > R. This shows that, asymptoti-

cally, there exist codes C� such that

Pr(errorjP;C�)! 1f
P

s I(q(x);pk;s(yjx))�Rg

for all channel sequences P.
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Now, let Ck;M = C
� and assume that for a given sequence of channels

R <
X

s2Sk;m

I(q(x); pk;s(yjx)) (38)

for some 1 � m � M . Then, we can extend the sequence of channels by adding to fpk;s(yjx) :

s 2 Sk;mg other M �m dummy useless memoryless channels whose output is independent of

the input. Since the mutual information on the last M �m blocks is zero and because of (38),

the resulting sequence of M channels P0 satis�es Pr(errorjP0;Ck;M )! 0. Notice that extending

the sequence of channels is equivalent to appending dummy output signal blocks zi independent

of the channel input to the received signal fys : s 2 Sk;mg, as described in Section 3. This

concludes the proof of Lemma 1.

In order to prove Lemma 2 we use the limit in probability

lim
L!1

1

L
log2

P (fxk;s;ys : s 2 Sk;mg)
P (fxk;s : s 2 Sk;mg)P (fys : s 2 Sk;mg)

=
X

s2Sk;m

I(q(x); pk;s(yjx)) (39)

where the LHS is the limiting normalized information density over the m slots and where, for a

�xed sequence of channels, the RHS is a constant. Therefore, the inf-information rate and the

sup-information rate (see de�nitions in [57]) coincide and, from [57, Th. 7], the strong converse

holds, conditionally on the sequence fpk;s(yjx) : s 2 Sk;mg.

In order to prove Lemma 3 we use the simple relation

[
bw 6=w

E bw �
n
fx(w)

k;s
;ys : s 2 Sk;mg =2 A�

k;m

o
8 w 2 f1; : : : ; 2RLg and for all m = 1; : : : ;M . This implies that

Pr(undetected errorjw;P;Ck;m) � Pr
�n

fx(w)
k;s
;ys : s 2 Sk;mg =2 A�

k;m

o���w�
< � (40)

where the second inequality holds for arbitrary � > 0 and suÆciently large L, since the probability

that the channel input and output sequences are not jointly typical vanishes as L!1 [59, Th.

8.6.1]. Then, Lemma 3 follows from averaging (40) over all transmitted messages.
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B Probability distribution of the inter-renewal time

The joint pdf of T and M can be expressed by

fT;M(n;m) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

(1� pt)
N n = N;m = 0

v(N;m) + g(N;m) n = N; 1 � m �M � 1

v(n;M) + r(n;M) M � n � N;m =M

v(n;m) m � n � N � 1; 1 � m �M � 1

0 elsewhere

(41)

where we de�ne

v(n;m) =

0@n� 1

m� 1

1A(1� pt)
n�mpmt q(m)

r(n;M) =

0@ n� 1

M � 1

1A(1� pt)
n�MpMt p(M)

g(N;m) =

0@N
m

1A(1� pt)
N�mpmt p(m)

where q(m) is de�ned in (12), p(m) in (13) and they are related by q(m) = p(m� 1)� p(m).

We show that (41) is a well-de�ned probability distribution for any N �M > 0, 0 � pt � 1

and non-negative decreasing sequence fp(m)g with p(0) = 1. Since all terms in (41) are non-

negative, it is suÆcient to show that their sum is 1. We use the identity

N�1X
n=k

0@n
k

1A an�k(1� a)k+1 = 1�
kX
`=0

0@N
`

1AaN�`(1� a)` (42)

(for 0 � a � 1) and write

X
n;m

fT;M(n;m) =

MX
m=1

NX
n=m

v(n;m) +

M�1X
m=0

g(N;m) +

NX
n=M

r(n;M) (43)

For the sake of brevity, we let s(`)
�
=

0@N
`

1A(1 � pt)
N�`p`t . The �rst, second and third terms in

the RHS of (43) are given by

MX
m=1

NX
n=m

v(n;m) = 1�
M�1X
`=0

s(`)p(`)� p(M)

 
1�

M�1X
`=0

s(`)

!
(44)
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by
M�1X
m=0

g(N;m) =

M�1X
m=0

s(m)p(m) (45)

and by
NX

n=M

r(n;M) = p(M)

 
1�

M�1X
`=0

s(`)

!
(46)

where we used the fact that
P

N

k=`+1 q(k) = p(`) � p(N). The result follows by noting that the

second and third term in the RHS of (44) are the opposite of the terms given in (45) and in

(46).

C Limits

C.1 Limits for large R

We want to establish the limiting behavior of the system throughput for large R, in the case of

N;M !1. To this purpose we consider limR!1 1=�, where � is given in (24).

We need the following lemmas:

Lemma C.1. Let X be a RV with cdf FX(x). Then, 8 y,

1fx�ygFX(y) � FX(x) � FX(y) + 1fx�yg(1� FX(y)) (47)

}

Lemma C.2. If an ! a as n!1, then for any non-negative �nite integer k

bn =
1

n+ k

nX
i=1

ai ! a for n!1 (48)

Proof. It follows immediately from the Cesaro's mean theorem [59]. }

Lemma C.3. Let X` be i.i.d. zero-mean RVs with variance �2
X
. For all � > 0, we have

lim
n!1

Pr

 
1

n

nX
`=1

X` < �

!
= 1

lim
n!1

Pr

 
1

n

nX
`=1

X` < ��

!
= 0 (49)

Moreover, for suÆciently large n we have

Pr

 
1
p
n

nX
`=1

X` < �
p
n�

!
� e�n�

2=(2�2
X
) (50)
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Proof. (49) follows immediately form the weak law of large numbers and (50) from the central

limit theorem [35], by using the bound on the Gaussian tail function Q(x) � exp(�x2=2). }

INR protocol. We let Xi

�
= log2(1 + �1;si) for si 2 S1;m and �X

�
= E[Xi]. Then, for �1 > 0

and b = �X + �1 we can write

lim
R!1

1

�
= lim

R!1

1 +
P1

m=1 Pr(
P

m

i=1Xi < R)

RG

(a)

� lim
R!1

1

RG

1X
m=1

1fR�mbgPr

 
1

m

mX
i=1

Xi � b

!
(b)

�
1

Gb
lim
R!1

1

bR=bc+ 1

bR=bcX
m=1

Pr

 
1

m

mX
i=1

Xi < b

!
(c)
=

1

G(�X + �1)
(51)

where (a) follows by applying Lemma C.1 to the RV
P

m

i=1Xi with x = R and y = mb; (b)

follows by noting that b=R � 1=(bR=bc+1); (c) follows from Lemma C.2 and Lemma C.3, since

limm!1 Pr( 1
m

P
m

i=1Xi � �X < �) = 1. Similarly, �2 > 0 and b = �X � �2 we can write

lim
R!1

1

�
= lim

R!1

1 +
P+1

m=1 Pr (
P

m

i=1Xi < R)

RG

� lim
R!1

1

RG

1X
m=1

"
Pr

 
1

m

mX
i=1

Xi < b

!
+ 1fR�mbg

#

� lim
R!1

1

GR

1X
m=1

Pr

 
1

m

mX
i=1

Xi < b

!
+

1

Gb
lim
R!1

1

bR=bc

bR=bcX
m=1

1

(a)
=

1

G(�X � �2)
(52)

In order to get (a), we use the fact that, by Lemma C.3, there exists n �nite and independent

of R such that

1X
m=1

Pr

 
1

m

mX
i=1

(Xi � �X) < ��2

!

=

nX
m=1

Pr

 
1

m

mX
i=1

(Xi � �X) < ��2

!

+

1X
m=n+1

Pr

 
1
p
m

mX
i=1

(Xi � �X) < �
p
m�2

!

�
nX

m=1

Pr

 
1

m

mX
i=1

(Xi � �X) < ��2

!
+

1X
m=n+1

e�m�
2

2
=(2�2X ) (53)
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Since the �rst sum contains a �nite number of terms and the second converges for all �2 > 0, we

have that

lim
R!1

1

R

1X
m=1

Pr

 
1

m

mX
i=1

Xi < b

!
= 0

and (a) follows.

Eventually, we get G (�X � �2) � limR!1 � � G(�X + �1) and by letting �i ! 0 for i = 1; 2

and recalling that, by de�nition, �X = E[log2(1 + �1;1)] we obtain the desired result.

ALO and RTD protocols. We let Xi

�
= �1;si for all si 2 S1;m and �X

�
= E[Xi]. Then, for

� > 0 and b = �X + � and by following the same steps of (51) for RTD we can write

lim
R!1

1

�
= lim

R!1

1 +
P1

m=1 Pr
�P

m

i=1Xi < 2R � 1
�

RG

� lim
R!1

1

Gb

2R � 1

R

1

b(2R � 1)=bc + 1

b(2R�1)=bcX
m=1

Pr

 
1

m

mX
i=1

Xi < b

!

=
1

Gb
lim
R!1

2R � 1

R

= 1 (54)

This shows that limR!1 �(RTD) = 0 and since �(ALO) � �(RTD), the same result holds for ALO.

C.2 Limits for large G

We need to consider the limiting behavior of the RV
P

K

j=1 �j whereK is the number of interfering

users in a given slot, binomially distributed and �j is the channel gain of user j, assumed to

be i.i.d. and independent of K with �nite mean �� and variance �2�. Since G = ptNu � Nu, as

G!1 also Nu !1. The mean and the variance of K are given by

�K = pt(Nu � 1) = G
Nu � 1

Nu

� G

�2K = (1� pt)pt(Nu � 1) � G=4 (55)

By iterating expectation, we obtain

E

24 KX
j=1

�j

35 = �� �K

Var

24 KX
j=1

�j

35 = �2K ��2 + �K�2� (56)



G. Caire and D. Tuninetti: The throughput of Hybrid-ARQ protocols... 35

Putting together (55) and (56) we conclude that 1
G

P
K

j=1 �j converges in probability to �� as

G!1, in fact

Var
hP

K

j=1 �j

i
G2

�
E[�2]

G
! 0

�K

G
= G

Nu � 1

Nu

1

G
! 1 (57)

From continuity of the functions 1=(1 + x) and log2(1 + x) for x > 0, the following limits for

G!1 hold in probability

G�1;1 !
�1;1

��

G log2 (1 + �1;1) ! log2 (e)
�1;1

��
(58)

By using (58), and the fact that, in the case of INR, �� = GE[log2(1 + �1;1)] (obtained for

R!1), we have

lim
G!1

�� = lim
G!1

GE[log2(1 + �1;1)]

= log2(e)E
h�1;1

��

i
= log2 (e) (59)

Notice that (58) implies
P

s2S1;m log2(1+�1;s)! log2(1+
P

s2S1;m �1;s) in probability, as G!1.

Then, the probabilities p(m) given in (20) for INR and RTD are equal in the limit for large G.

Since � depends on the particular protocol only through the probabilities p(m), we conclude

that limit (59) holds also for RTD.

For ALO we have

lim
G!1

sup
R

RG [1� Pr (log2 (1 + �1;1) � R)]

= lim
G!1

sup
R

RG [1� Pr (G log2 (1 + �1;1) � RG)]

= lim
G!1

sup
R

RG
h
1� Pr

�
log2 (e)

�1;1

��
� RG

�i
(a)
= lim

G!1

log2 (e)

��
sup
u�0

u(1� F�(u))

=
log2 (e)

��
� (60)

where we let �
�
= supu�0 u(1 � F�(u)), and where (a) follows by letting u = RG��= log2 (e) and

by noticing that the expression that must be maximized depends on the product RG and not

on G alone, therefore maximization with respect to R or with respect to u yields the same.
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C.3 Limits for large SNR

We want to show that the throughput can be made arbitrarily large by increasing the user

transmit SNR . Since the throughput for ALO is a lower bound for the other two protocols,

it is suÆcient to prove this statement for ALO. Let K be the number of interfering users. We

can write,

lim
!1

� = lim
!1

GR(1� p(1))

= lim
!1

GRPr(log2(1 + �1;1) > R)

= lim
!1

GR

Nu�1X
k=0

Pr
�
�1;1 > 2R � 1

��K = k)Pr(K = k)

� lim
!1

GRPr

�
�1;1 >

2R � 1



�
(1� pt)

Nu�1 (61)

Now, we choose � > 0 such that F�(�) < 1, and we let R = log2(1 + �). Finally, we obtain

lim
!1

� � lim
!1

G(1� pt)
Nu�1(1� F�(�)) log2(1 + �) =1

as desired.

D Some useful cdf's

In order to simplify the notation of (2), we indicate the active users on slot s by k = 0; 1; : : : ; jK(s)j�

1 (user 0 is the reference user) and we de�ne the following RVs:

� User k instantaneous SNR, Xk

�
= �k;s.

� The number of interfering users K
�
= jK(s)j � 1.

� The MAI instantaneous power-to-noise ratio Y
�
=
P

K

k=1Xk.

� The instantaneous SINR Z
�
= X0

1+Y
.

� The instantaneous mutual information (IMI) I
�
= log2(1 + Z).

K is binomially distributed as

Pr(K = u) =

0@Nu � 1

u

1A� G

Nu

�u�
1�

G

Nu

�Nu�u
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for u = 0; : : : ; Nu � 1. For Nu !1, this converges to the Poisson distribution

Pr(K = u) = e�G
Gu

u!

for u � 0.

Without fading, Xk is constant and equal to . Then, Y;Z and I takes on the values u,

=(1 + u) and log2(1 + =(1 + u)) with probability Pr(K = u) given above, for u = 0; 1; : : :.

In the case of (normalized) Rayleigh fading, Xk is exponentially distributed with mean ,

FX(x) = 1� e�x= (62)

The pdf of Y is readily obtained as a sum of u-fold convolutions of the pdf corresponding to (62),

weighted by Pr(K = u). This yields the cdf

FY (x) = 1�
Nu�1X
u=0

Pr(K = u)

u�1X
k=0

e�x=
(x=)k

k!
(63)

The derivation of the cdf for the SINR Z is more involved (the details are postponed to the end

of this Appendix). We obtain

FZ(x) = 1�
Nu�1X
u=0

Pr(K = u)
e�x=

(1 + x)u
(64)

Finally, the cdf of the IMI I is obtained from (64) by a simple change of variable as

FI(x) = 1�
Nu�1X
u=0

Pr(K = u)e�(2
x�1)= 2�xu (65)

(obviously, all the above cdfs are de�ned for x � 0 and are zero for x < 0).

Interestingly, in the limiting case of Nu !1 we can sum the series (63), (64) and (65) and

obtain closed forms. The pdf corresponding to (63) was found in [52], and it is given by

fY (x) = e�G

"
Æ(x) + e�x=

s
G

x
I1

 s
4xG



!#
where Æ(x) is the Dirac delta function and I1(x) is the �rst-order modi�ed Bessel function of

the �rst kind. The SINR cdf for in�nite users is given by

FZ(x) = 1�
1X
u=0

e�G
Gu

u!

e�x=

(1 + x)u

= 1� e�Ge�x=
1X
u=0

[G=(1 + x)]u

u!

= 1� e�Ge�x=e+G=(1+x)

= 1� exp

�
�
x


�

Gx

1 + x

�
(66)
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and the corresponding IMI cdf is obtained from (66) by a change of variable as

FI(x) = 1� exp

�
�
2x � 1


� (1� 2�x)G

�

Calculation of the SINR cdf conditioned on the number of interfering users. Let X

and Y be two independent RV's obtained as the sum of A and B i.i.d. exponentially distributed

RVs with mean 1=�, respectively. X and Y follow the Gamma cdf

F (x) = 1�
N�1X
k=0

(�x)k

k!
e��x (67)

for N = A and N = B, respectively.

For an arbitrary b � 0, consider the RV Z = X

b+Y
. This reduces to the SINR considered

above given K = u interferers by letting A = 1, B = u, b = 1 and � = 1=. The following

derivation generalizes the result obtained in [53]. The cdf of Z is given by

FZ(z) = PrfZ � zg = PrfX � (b+ Y )zg

=

Z +1

�1
dy

Z
z(b+y)

�1
dxfX(x)fY (y)

=

Z +1

0

fY (y)FX (z(b+ y)) dy

=

Z +1

0

�

(B � 1)!
(�y)B�1e��y

"
1�

A�1X
k=0

(�x)k

k!
e��x

#z(b+y)
x=0

dy

= 1�
A�1X
k=0

kX
`=0

Z +1

0

�(�y)B�1

(B � 1)!

(�zb)k�`

(k � `)!

(�zy)`

`!
e��y��zb��zy dy

= 1�
e��zb

(1 + z)B

24A�1X
k=0

kX
`=0

(�zb)k�`

(k � `)!

�
z

1 + z

�`0@B � 1 + `

B � 1

1A35 �
�
�Z +1

0

�(1 + z)

(B � 1 + `)!
e��(1+z)y[�y(1 + z)]B�1+` dy

�
where the integral in braces in the last line is equal to 1, since the integrand is a Gamma pdf.

For A = 1, the double summation in the last line of (68) reduces to a single term, and we

obtain

FZ(z) = 1�
e��zb

(1 + z)B
(68)
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