
2016-ENST-0016

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Sécurité et Réseaux »

présentée et soutenue publiquement par

Pasquale PUZIO
le 25 Février 2016

Déduplication des données chiffrées

dans le Cloud Computing

Directeur de thèse : Refik MOLVA
Co-encadrement de la thèse : Sergio LOUREIRO

Jury
Mme Nora CUPPENS, Directeur de Recherches, Telecom Bretagne Rapporteur
M. Bruno MARTIN, Professeur, Université de Nice Sophia Antipolis Rapporteur
Mme Isabelle CHRISMENT, Professeur, Université de Lorraine Examinateur
M. Abdelmadjid BOUABDALLAH, Professeur, UTC Compiègne Examinateur
M. Sergio LOUREIRO, PhD, SecludIT Examinateur
M. Refik MOLVA, Professeur, EURECOM Directeur de Thèse

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

TELECOM PARISTECH

Abstract

Computer Science and Networks

Eurecom

Doctor of Philosophy

Deduplication of Encrypted Data in Cloud Computing

by Pasquale PUZIO

In this manuscript we study in depth the problem of deduplicating encrypted

data without compromising users’ confidentiality. This problem has proved to

be challenging and to the best of our knowledge existing solutions suffer from

several drawbacks which make massive user adoption difficult. We first conduct a

comprehensive study on real datasets aimed at highlighting the best practices in

terms of data chunking and whether or not deterministic encryption may introduce

a weakness with respect to confidentiality. Moreover, we take advantage of these

findings in order to propose two novel and unique solutions to achieve secure data

deduplication. In particular, PerfectDedup manages to combine the best both

worlds, meaning that users can enjoy efficient client-side block-level deduplication

while the underlying system assures full confidentiality for sensitive data.

http://www.telecom-paristech.fr/
http://www/eurecom.fr
http://www.eurecom.fr
pasquale.puzio@gmail.com

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my

academic supervisor, Professor Refik MOLVA at EURECOM, for providing an

excellent guidance and a constant source of inspiration and motivation. Thanks

to the countless and fruitful discussions behind every new idea, he transferred to

me a bit of his knowledge, which I will proudly bring with me for the rest of my

career. He has taught me the methodology to carry out research and to present

the research works as clearly as possible. Regardless of the field in which I will

develop my career, these principles will always be fundamental. It was a rare

privilege and honor to work and study under his guidance.

I am very grateful to SecludIT, in particular to Sergio LOUREIRO and Frederic

DONNAT, for trusting me since the beginning and giving me the opportunity to

do research and express my value.

Furthermore, I desire to thank Melek ÖNEN, who has worked at my side on all

my publications and gave a great contribution to the ideas I developed during my

PhD thesis.

I would also like to thank the IT staff at EURECOM, in particular Jean-Christophe

DELAYE and Pascal GROS, who have always been very kind to me by allowing

me to have access to EURECOM users’ data and conduct the data study on it.

I am extremely grateful to my parents for their love and sacrifices for educating

me. Whatever I will manage to achieve in my life, it will be thanks to the good

example they gave me.

I am very much thankful to my girlfriend for her love, understanding and contin-

uing support to complete this thesis.

Finally, I would like to say thanks to all my friends and colleagues for their genuine

support throughout this experience.

ii

Résumé en Français

Déduplication

L’une des techniques qui ont été récemment adoptées par de nombreux fournisseurs

de stockage Cloud est la déduplication, qui permet de réaliser des importantes

économies d’espace de stockage, en particulier dans les applications de sauvegarde

[1], [2]. La déduplication est basée sur l’observation suivante: il est très fréquent

que les différents utilisateurs peuvent télécharger des fichiers identiques ou très sim-

ilaires. Dans ce cas, le stockage de copies multiples des mmes segments de données

générera un gaspillage inutile des ressources de stockage. Par conséquent, au lieu

de simplement stocker les données téléchargées par les utilisateurs, le fournisseur

de stockage Cloud peut d’abord vérifier si un segment particulier de données a déjà

été téléchargé dans le passé: cela se fait généralement en comparant son identifiant

avec une base de données contenant les identifiants de tous les segments de données

stockées au Cloud. Le cas échéant, il est inutile de le stocker à nouveau depuis le

fournisseur de stockage Cloud peut créer un lien logique pour le segment actuel de

données. Grâce à l’efficacité d’une telle idée, malgré sa simplicité, la déduplication

est devenu un standard de facto [3] dans tous les systèmes majeures de stockage

grâce à sa capacité de réduire considérablement l’empreinte de données, réduisant

ainsi les cots de stockage et de consommation de bande passante.

Déduplication des Données Chiffrées

Toutefois, comme indiqué ci-dessus, la demande des clients comprend également la

confidentialité, qui de jour en jour devient un problème urgent pour les entreprises

ainsi que pour les utilisateurs. Par conséquent, le principal défi dans le domaine

du stockage Cloud est de savoir comment répondre aux besoins contradictoires des

iii

iv

clients et des fournisseurs qui, d’un point de vue de la confidentialité, ont besoin de

moyens combinant en toute sécurité et efficacement le cryptage avec des techniques

d’optimisation du stockage telles que la déduplication. Bien qu’il puisse sembler

simple, mettre les deux techniques ensemble est loin d’être trivial: le résultat

souhaité du cryptage est de rendre les données chiffrées (le cryptogramme) illisibles

et impossibles à distinguer à partir des données d’origine (le texte en clair), alors

que la déduplication nécessite que le fournisseur de stockage Cloud soit en mesure

de comparer facilement deux segments de données (cryptées) et déterminer si elles

sont identiques. En d’autres mots, la déduplication de données chiffrées avec une

méthode standard ne sera pas possible, à moins que les clés de chiffrement sont

divulgués aux fournisseurs de stockage Cloud, ce qui leur donnerait le pouvoir de

lire les données des utilisateurs, donc compromettre la confidentialité des données.

De cette question, le problème suivant se pose: comment pouvons-nous préserver la

confidentialité des données sans empcher un fournisseur de stockage Cloud curieux

de détecter les doublons?

La réponse à cette question est loin dtre triviale. Dans un scénario commun, deux

utilisateurs qui ont les mmes données et que les souhaitez stocker en toute sécurité

dans le Cloud, vont crypter leurs données avant d’effectuer le téléchargement.

Malheureusement, une technique de cryptage standard rendrait la déduplication

impossible puisque deux utilisateurs différents utiliseront deux clés différentes,

résultant en deux cryptogrammes différents.

Chiffrement Convergent

Récemment, une contre-mesure simple mais efficace a été proposée comme une

solution immédiate à ce problème: la clé de cryptage peut en fait tre généré de

manière totalement déterministe et dépendant des données, de sorte que deux

utilisateurs avec les mmes données finiront pour générer le mme cryptogramme

sans avoir besoin d’un échange ou une coordination clé. Une telle solution est

connue comme Convergent Encryption (chiffrement convergent) [4], [5].

Dans le Chiffrement Convergent, la clé de chiffrement est habituellement générée

en calculant le hachage (sans clé) sécurisé des données. Une fois que la clé a bien été

générée, un algorithme de chiffrement déterministe et symétrique est exécuté sur

les données afin d’obtenir le cryptogramme. Bien qu’il semble tre un candidat idéal

pour combiner la confidentialité et la déduplication, le Chiffrement Convergent a

v

déjà prouvé tre vulnérable à plusieurs faiblesses qui ne font pas un choix approprié

pour garantir la confidentialité des données. Ces faiblesses sont inhérentes aux

fonctions de base du Chiffrement Convergent lui-mme. étant donné que la clé de

chiffrement est la sortie d’une fonction déterministe qui ne prend que les données à

chiffrer en entrée, le fournisseur de stockage Cloud peut exécuter l’attaque suivante:

étant donné un texte en clair, l’attaquant peut facilement générer la clé de cryptage

correspondante (le hachage sécurisé), produire le cryptogramme et la comparer

avec tous les cryptogrammes dans le stockage.

Approches Existantes pour la Déduplication des

Données Chiffrées

Les Solutions Basées sur le Secret

Certaines solutions atteignent la confidentialité totale grâce à un secret (par exem-

ple une clé de cryptage) stocké sur un composant de confiance. Selon le chemin,

le secret peut tre utilisé pour d’autres données à chiffrer (de manière déterministe,

de sorte que la capacité de détecter des doublons ne soit pas perdue) et donc ren-

dre impossible pour un attaquant de générer la clé de cryptage à partir du texte

en clair. Par conséquent, en utilisant un secret élimine la possibilité d’exploiter

la faiblesse en raison du déterminisme du Chiffrement Convergent. Dans le cas

de DupLESS, si un attaquant apprend le secret stocké sur le serveur de clés, la

confidentialité ne peut plus tre garantie.

Protocole Côté Client

Une approche intéressante pour faire face au conflit entre la déduplication et de

cryptage consiste à permettre aux utilisateurs de détecter de manière autonome

si un segment de données est populaire en exécutant un protocole préservant la

vie privée avec d’autres utilisateurs (peer-to-peer) ou le fournisseur de Stockage

Cloud. Sur la base du résultat obtenu après l’exécution du protocole, l’utilisateur

peut déterminer si un segment de données est un doublon et donc compléter la

procédure de téléchargement en conséquence.

vi

Au meilleur de notre connaissance, l’une des œuvres les plus récentes et pertinentes

qui font usage de ce type d’approche est PAKE [6], dans lequel les auteurs affir-

ment proposer le premier système qui permet d’obtenir la déduplication sécurisé

sans l’aide d’aucun serveur supplémentaire. Dans [6], les auteurs introduisent

un protocole de partage clé appelée PAKE visant à permettre aux utilisateurs

d’effectuer en collaboration avec d’autres utilisateurs la déduplication côté client

sans compter sur le soutien d’aucune entité de confiance.

Bien que les auteurs ont mis en œuvre et évalué un prototype de validation de

concept qui a prouvé tre très efficace, ce chemin a des limitations inhérentes qui

rendent son adoption en scénarios réels un vrai défis. En effet, comme tout autre

système peer-to-peer, PAKE nécessite d’un nombre suffisant d’utilisateurs simul-

tanément en ligne afin d’exécuter le protocole avec succès, sinon un potentiel

doublon ne peut pas tre détecté, ce qui entrane une diminution importante du

ratio de déduplication.

La Popularité des Données comme un Facteur de Différenciation

pour le Chiffrement

Certains solutions reposent sur l’hypothèse assez réaliste que les données popu-

laires, qui appartiennent à de nombreux utilisateurs et donc peuvent avoir un im-

pact important sur les économies d’espace de stockage lorsqu’elles sont dédupliquées,

sont peu susceptibles de contenir des informations sensibles. D’autre part, les

données impopulaires, qui sont rares ou appartiennent à un faible nombre d’utilisateurs

et ne doivent donc pas tre dédupliquées, peuvent contenir des informations sensi-

bles et doivent tre protégées par un cryptage plus puissant. Sur la base de cette dis-

tinction, un système peut utiliser des mécanismes de chiffrement différents (chacun

avec un compromis différent entre possibilité de dédupliquer et la confidentialité)

en fonction de la popularité d’un segment de données.

A titre d’exemple de cette approche, les auteurs de [7] ont proposé une solution

dans laquelle les données appartenant à plusieurs utilisateurs sont cryptés avec CE

afin de permettre au CSP d’effectuer la déduplication. D’autre part, les données

impopulaires sont plus susceptibles de contenir des informations sensibles, par

conséquent, il est plus sr de chiffrer avec un cryptage sémantiquement sécurisé.

Cependant, ce travail souffre de quelques inconvénients. Tout d’abord, le système

vii

souffre d’un surcot de stockage et de transmission important. Deuxièmement, le

système proposé dans [7] repose sur un composant de confiance qui fournit un

service d’indexation pour toutes les données, à la fois populaires et impopulaires.

Troisièmement, à la fois le client et le CSP doivent effectuer des opérations cryp-

tographiques complexes basées sur la ”threshold cryptography” sur potentielle-

ment très grandes quantités de données.

Deduplication au Niveau Fichier vs Deduplication au Niveau

Bloc

Enfin, un des critères essentiels qui joue un rôle important dans la détermination

de la faisabilité d’un système est la capacité de traiter efficacement la déduplication

au niveau bloc, ce qui signifie que la déduplication est réalisée avec une granularité

plus fine, qui est au niveau des blocs plutôt que des fichiers entiers. Bien que cela

puisse paratre simple, dans la pratique, ce n’est pas le cas pour tous les solutions

présentées jusqu’à présent.

Contributions

Étude sur la Déduplication

Cette étude a été réalisée avec deux principaux objectifs à l’esprit. Tout d’abord,

en raison de l’absence de telles études dans la littérature, nous voulions avoir une

preuve tangible de l’efficacité de la déduplication dans des environnements réels.

Par conséquent, nous avons mené une étude approfondie sur les différents ensem-

bles de données réelles qui visait à mettre en évidence les meilleures techniques de

déduplication et de fournir une bonne approximation des économies qui peuvent tre

potentiellement atteintes. Deuxièmement, nous voulions étudier les conséquences

en termes de confidentialité lorsque on utilise le chiffrement déterministe en con-

jonction avec la déduplication au niveau bloc. En particulier, nous nous sommes

intéressés à vérifier si une (très) petite taille de bloc pourrait réduire l’entropie

globale et donc accrôıtre la vulnérabilité aux attaques statistiques.

La raison pour laquelle nous avons concentré nos efforts sur le chiffrement déterministe

est double. Tout d’abord, la grande majorité des solutions qui ont été proposées

viii

dans la littérature, ainsi que dans l’industrie, sont basées sur ce type de cryptage,

donc l’étude aurait un impact plus important. Deuxièmement, comme mentionné

précédemment, le déterminisme est une exigence posée par la déduplication afin de

rendre les données identiques téléchargées par différents utilisateurs comparables

après avoir été chiffré.

Cependant, il est bien connu que le chiffrement déterministe souffre d’une limita-

tion inhérente qui l’empche d’atteindre la sécurité maxime (sémantique). Néanmoins,

en raison de la nécessité d’tre en mesure de comparer les segments de données

chiffrées et de détecter les doublons, le chiffrement déterministe reste une exigence.

à la suite de notre analyse, l’étude a fourni quelques indications précieuses par

rapport aux économies de stockage atteintes grâce a la déduplication au niveau

bloc et à la sécurité de la déduplication. Plus précisément, la déduplication au

niveau bloc avéré tre beaucoup plus efficace que la déduplication au niveau des

fichiers, mme en tenant compte du surcot de stockage pour les métadonnées. En

outre, sur la base de nos résultats, nous pensons que les attaques statiques basés

sur l’analyse de la fréquence restent peu probables, mme en utilisant des tailles de

bloc basses mais réalistes.

ClouDedup

Comme une première tentative pour surmonter les problèmes liés à sécuriser la

déduplication et de cryptage convergent, nous avons proposé ClouDedup [8], une

architecture de stockage en nuage dans laquelle la confidentialité et la déduplication

sont sous-traitées par des composants externes et le rôle du fournisseur de stockage

est limité au stockage brut de segments de données cryptées.

ClouDedup repose sur deux principaux composants uniques:

1. un composant de cryptage sécurisé (Gateway), déployé chez un tiers de con-

fiance ou, si le client est un organisme, dans les locaux du client et dans le

périmètre de sécurité du client;

2. un composant supplémentaire nommé Metadata Manager qui est responsable

de la gestion des clés et de déduplication.

ix

La protection des données est garantie grâce à la couche de chiffrement mis en place

par la Gateway, qui effectue un cryptage symétrique et déterministe sur le dessus

du cryptage convergent, qui est effectué par les clients avant le téléchargement. En

outre, ce cryptage est totalement transparent pour l’utilisateur final. En effet, dans

la pratique, la Gateway a été mis en œuvre en tant que proxy HTTPS situé comme

un ”man-in-the-middle” entre les utilisateurs finaux et le Metadata Manager.

En plus de nos composants uniques, nous comptons également sur un fournisseur

de Stockage Cloud. En ClouDedup nous transformons le fournisseur de stockage

en un composant qui s’occupe de manier extrmement simple du stockage brut de

segments de données chiffrées, alors que la déduplication et la gestion des clés

sont gérées par le Metadata Manager et le cryptage est effectué par la Gateway.

Afin de souligner l’indépendance entre le Metadata Manager et le fournisseur de

Stockage Cloud, la communication entre ces composants a été mis en œuvre de

façon à couplage lâche en utilisant des API basées sur le modèle REST.

La nécessité d’un composant dédié responsable de la gestion des clés (le Metadata

Manager) est soulevée par la nécessité de stocker efficacement et en toute sécurité

les clés de cryptage produites par la combinaison de la déduplication au niveau

du bloc et le chiffrement convergent. Dans notre implémentation, le Metadata

Manager utilise des technologies de pointe dans le domaine des bases de données

afin de traiter efficacement cette question. En particulier, nous utilisons une base

de données NoSQL open-source appelée REDIS [9] qui, selon notre analyse de la

performance, avérée extrmement efficace et fiable.

Cependant, en dépit de sa capacité à apporter le meilleur des deux mondes, soit

la confidentialité et des économies d’espace de stockage, ClouDedup nécessite de

maintenir et de surveiller une architecture complexe o la confidentialité peut tre

garantie tant que la clé secrète stockée sur la Gateway reste sre et n’est pas di-

vulguée à toute entité malveillante.

PerfectDedup

Afin d’atteindre toute confidentialité sans introduire une architecture complexe qui

découragerait l’adoption des utilisateurs, nous avons étudié la possibilité de réduire

au minimum l’utilisation de composants supplémentaires et utiliser différents niveaux

de protection en fonction de la popularité du segment de données. En effet, la

x

popularité est mesurée par le nombre de propriétaires d’un segment de données

donné, afin de déterminer le niveau de confidentialité: plus le nombre d’utilisateurs

possédant un segment de données est élevé, plus le segment est populaire.

Sur cette base, un seuil global de popularité est défini dans le système de sorte

que chaque fois que le nombre de propriétaires d’un segment de données dépasse

le seuil, le segment de données devient populaire. Nous supposons également que

si populaire, un segment de données est susceptible d’tre non-confidentiel, par

opposition à des segments de données rares qui peuvent contenir des informations

sensibles et donc très confidentielles. Une fois que l’état d’un segment de données a

été évalué, différentes techniques de cryptage sont utilisées, à savoir le chiffrement

convergent est utilisé pour les segments de données populaires (afin de permettre la

déduplication) et le cryptage sémantiquement sécurisé autrement (afin d’atteindre

le plus haut niveau de confidentialité).

Détecter les segments de données populaires d’une manière préservant la vie privée

oblige les utilisateurs à exécuter un protocole de recherche sécurisé avec un four-

nisseur de Stockage Cloud malveillant. Dans PerfectDedup [10], nous avons in-

troduit un nouveau protocole de recherche sécurisé basé sur une version sécurisée

de l’Hachage Parfait [11], grâce à laquelle l’utilisateur peut de manière autonome

et en toute sécurité de détecter si oui ou non un segment de données peut tre

dédupliquées par simple interroger le fournisseur de Cloud Storage. Une telle ap-

proche, qui nous appelons PerfectDedup, permet à l’utilisateur de détecter en toute

sécurité si un segment de données peut tre dédupliqué sans révéler aucune infor-

mation exploitable au fournisseur malveillant de stockage Cloud. Par conséquent,

en PerfectDedup nous réalisons la deduplication sécurisé côté client au niveau du

bloc, ce qui signifie que les utilisateurs peuvent également économiser en bande

passante.

En plus des économies de bande passante, un autre avantage majeur de PerfectD-

edup par rapport à ClouDedup est l’architecture beaucoup plus simple. En effet,

par opposition à ClouDedup, PerfectDedup ne nécessite pas de composants de

confiance en ce qui concerne les opérations de chiffrement et de déduplication,

car la déduplication des blocs est entièrement gérée côté client grâce à un nou-

veau protocole de recherche sécurisé et efficace basé sur une version sécurisée de

Hachage Parfait. Cependant, de façon similaire à ClouDedup, les deux solutions

sont construites sur le dessus de chiffrement convergent et visent à le renforcer en

xi

éliminant la possibilité d’une attaque de type dictionnaire par un fournisseur de

stockage Cloud curieux.

Étude sur la Déduplication

Chiffrement Déterministe Toute solution pratique pour la réalisation de la

déduplication sécurisée des données cryptées ont besoin du chiffrement déterministe

comme principal bloc de construction. Une telle exigence est soulevée par la

nécessité de générer des cryptogrammes identiques a partir de blocs identiques,

mme si le cryptage est effectué par les différents utilisateurs. Si une telle exigence

n’est pas remplie, la déduplication devient impossible en raison de l’incapacité du

fournisseur de Stockage Cloud de détecter que deux cryptogrammes différents sont

le résultat du chiffrement de la mme donnée.

Attaques Statistiques Malheureusement, l’application du chiffrement déterministe

sans aucune amélioration peut ouvrir la voie à une potentielle menace de confi-

dentialité qui nécessite d’tre évalué. En effet, un adversaire avec un accès direct à

la mémoire comme le fournisseur de Stockage Cloud, peut perpétrer une attaque

grâce à la connaissance d’un certain nombre d’informations qu’il peut obtenir sans

avoir besoin de décrypter les données des utilisateurs. Grâce à ces informations, un

attaquant peut tre en mesure d’exécuter des attaques statistiques, principalement

basées sur l’analyse de la fréquence, sur les cryptogrammes, afin de les lier aux

données en claire et ainsi briser la protection offerte par la couche de chiffrement.

Dans le cadre de la déduplication au niveau bloc, étant donné qu’une technique

de chiffrement totalement déterministe est nécessaire, une telle attaque peut per-

mettre à l’attaquant d’exploiter la présence de données statiques (par exemple, les

en-ttes prédéfinis) dans les données en claire afin de compromettre efficacement

le cryptage pour une partie des données chiffrées et essayer de deviner la partie

restante à travers une attaque de force brute de type dictionnaire. En outre, vue

que la faisabilité des attaques basées sur la fréquence est liée à la distribution

des segments de données, il pourrait y avoir une relation directe entre la taille de

segment de données et sa distribution, ce qui signifie qu’une taille de segment de

données trop faible peut rendre les attaques statistiques plus faciles. S’il existe

une telle relation, nous cherchons à déterminer si l’augmentation de la taille des

blocs peut atténuer ce problème et, si tel est le cas, quelle taille de bloc assure

xii

un compromis optimal entre la confidentialité, ce qui est notre objectif principal,

et le ratio de déduplication, qui devrait rester assez élevé pour ne pas perdre les

avantages de la déduplication au niveau bloc.

Notre étude Compte tenu de ces considérations sur la probabilité d’une attaque

statistique, nous avons décidé d’effectuer une étude approfondie afin d’évaluer si

l’information divulguée en raison de l’utilisation du chiffrement déterministe en

conjonction avec la déduplication peut effectivement mettre la confidentialité des

données à risque.

Afin d’atteindre cet objectif et rendre l’étude encore plus précieuse, nous avons

d’abord réalisé une série d’expériences avec deux principaux objectifs: d’abord,

nous voulions avoir une preuve tangible de l’efficacité de la déduplication dans des

scénarios réelles; deuxièmement, nous voulions mener notre étude de sécurité en

utilisant une configuration de déduplication réaliste, y compris la taille moyenne

d’un bloc pour la déduplication au niveau bloc. Ce dernier est un point de

départ fondamental pour l’étude de la sécurité car elle impacte la distribution des

fréquences des blocs et, en conséquence, la probabilité d’une attaque statistique.

Expériences et Résultats Pour les raisons mentionnées ci-dessus, nous avons

réalise un certain nombre d’expériences sur plusieurs jeux de données réelles ap-

partenant aux étudiants et le personnel de l’institut de recherche EURECOM.

Le but de ces expériences était double. Tout d’abord, nous avons voulu vérifier

les économies d’espace qui sont réalisables en mettant en place une solution de

déduplication des données. En particulier, nous avons voulu savoir quels types de

fichiers sont plus susceptibles de contenir des doublons et la technique de coupage

qui peut obtenir les économies d’espace les plus élevées. En outre, nous avons ef-

fectué la mme analyse avec des techniques différentes de coupage et en changeant

la taille des segments de données ainsi que la granularité.

Les résultats ont fourni le point de départ nécessaire pour l’étude de la sécurité,

c’est à dire la technique de coupage la plus efficace et des tailles moyennes réalistes.

À cet égard, une approche avec une taille variable et en moyenne de 4, 8 ou 16

KB avérée tre la stratégie la plus efficace. En outre, ces résultats ont fourni

des conseils intéressants qui peuvent tre utilisés comme un support d’information

supplémentaire lors de l’évaluation de la stratégie de déduplication qui doit d’tre

utilisés dans un contexte réel.

xiii

Nous avons ensuite utilisé cette configuration pour analyser la distribution des

segments de données popularité, mesurer l’entropie de l’ensemble des données et

observer son évolution à travers différentes tailles de blocs moyens. A partir de

cela, nous avons étudié l’existence des menaces à la confidentialité introduites

par la déduplication et vérifié si et quand les informations détenues par le four-

nisseur sont suffisantes pour effectuer une attaque statistique basée sur l’analyse

de la fréquence, qui a le pouvoir de causer la fuite d’informations sensibles sur les

données des utilisateurs. En bref, le résultat de cette analyse a prouvé que les

attaques statistiques basées sur la fréquence ne sont pas réalisables dans un tel

contexte.

Au meilleur de notre connaissance, ceci est la première étude qui a pris en con-

sidération les attaques statistiques sur les données dédupliquées. Sur la base des

résultats de cette étude, nous serons alors en mesure de concevoir des systèmes de

déduplication de données sécurisée.

ClouDedup

En ClouDedup nous envisageons le conflit inhérent entre le chiffrement et la

déduplication en concevant une nouvelle architecture, qui nous appelons de ClouD-

edup, o les fichiers sont protégés par deux couches de chiffrement déterministe: la

première couche est un chiffrement convergent et est appliquée par les utilisateurs

avant de télécharger le fichier; la deuxième couche est appliquée par un composant

de confiance qui fait usage d’une clé secrété stockée localement et jamais partagée

avec une autre entité. Une telle architecture vise également à déléguer différentes

tâches à différentes composantes d’une façon qu’un composant sans la coopération

d’un autre composant n’a pas de connaissances suffisantes pour compromettre la

confidentialité des données. En d’autres termes, ce système permet d’obtenir un

principe connu comme ”single point of failure”, qui dans ce contexte signifie que

la compromission d’un seul composant ne peut pas compromettre complètement

la sécurité de l’ensemble du système.

La sécurité de ClouDedup repose donc sur sa nouvelle architecture selon laque-

lle, en plus du fournisseur de stockage de base, un gestionnaire de métadonnées

(Metadata Manager) et un composant de cryptage supplémentaire, appelée Gate-

way, sont définis: la Gateway empche les attaques connues contre le chiffrement

xiv

convergent et aussi protège la confidentialité des données; d’autre part, le Meta-

data Manager est responsable de la tâche de gestion de clés à cause de la nécessité

de mémorisation d’un grand nombre de clés produites par la conjonction entre

la déduplication au niveau bloc et le chiffrement convergent. Par conséquent, la

déduplication est effectuée au niveau du bloc et nous définissons un mécanisme

très efficace de gestion des clés afin d’éviter aux utilisateurs de stocker une clé par

bloc.

Pour résumer les avantages de ClouDedup:

• ClouDedup assure la déduplication au niveau bloc et la confidentialité

des données. La déduplication au niveau bloc rend le système plus flexible

et efficace;

• ClouDedup préserve la confidentialité et la vie privée, mme contre les

fournisseurs de stockage Cloud potentiellement malveillants grâce

à une couche supplémentaire de chiffrement déterministe;

• ClouDedup offre une solution de gestion de clé efficace grâce au composant

Metadata Manager;

• La nouvelle architecture définit plusieurs composants et un seul composant

ne peut pas compromettre l’ensemble du système sans collusion avec

d’autres composants;

• ClouDedup fonctionne de manière transparente avec les fournisseurs de

stockage en nuage existants. En conséquence, ClouDedup est entièrement

compatible avec les API de stockage standard et nimporte quel fournisseur

de stockage Cloud peut tre facilement intégré dans notre architecture.

Évaluation

Fournisseur de Stockage Curieux Comme indiqué dans la section de modèle

de menace, nous supposons qu’un attaquant, comme un fournisseur de stockage

malveillant, dispose d’un accès complet au stockage. Si l’attaquant a seulement

accès à la mémoire, il ne peut obtenir aucune information. En effet, les fichiers

sont divisés en blocs et chaque bloc est tout d’abord chiffré avec un chiffrement

convergent et ensuite encore chiffré avec une ou plusieurs clés secrètes, toujours

xv

au moyen d’un mécanisme de chiffrement déterministe. Comme indiqué pendant

notre étude, le chiffrement déterministe peut effectivement fournir toute confi-

dentialité. De plus, aucune métadonnée (propriétaire du fichier, nom de fichier, la

taille du fichier, etc.) est stockée au niveau du fournisseur de stockage Cloud. Il est

clair que, grâce à cette configuration, l’attaquant n’est pas en mesure d’effectuer

une attaque de type dictionnaire sur les fichiers prévisibles.

Metadata Manager Compromis Un scénario pire est celui dans lequel l’attaquant

parvient à compromettre le gestionnaire de métadonnées et a donc accès à des

données, des métadonnées et aussi des clés cryptées. Dans ce cas, la confiden-

tialité sera toujours garantie puisque les clés des blocs sont cryptées avec les clés

secrètes des utilisateurs et la clé secrète de la Gateway. La seule information

que l’attaquant peut obtenir est la similitude des données et les relations entre

les fichiers, les utilisateurs et les blocs. Cependant, comme les noms de fichiers

sont cryptés par les utilisateurs, ces informations ne seraient d’aucune utilité pour

l’attaquant, à moins qu’il ne parvient à trouver une correspondance avec un fichier

prévisible en fonction de sa taille et popularité. En outre, comme indiqué dans

notre étude, le chiffrement déterministe assure la confidentialité mme lorsqu’il est

utilisé en conjonction avec la déduplication au niveau bloc. En effet, les attaques

uniquement basées sur l’analyse de la fréquence des blocs ne semblent pas tre

réalisables dans des scénarios réels.

Gateway Compromise Le système doit garantir la confidentialité mme dans le

cas improbable o la Gateway est compromise. Un cryptage supplémentaire effectué

par le Metadata Manager avant d’envoyer les données au fournisseur de stockage

sera alors appliqué afin de garantir la protection des données; grâce à cette couche

de cryptage donc la confidentialité est toujours garantie et les attaques de dictio-

nnaire hors ligne ne sont pas possibles. D’autre part, si l’attaquant compromet

la Gateway, seulement les attaques en ligne seraient possibles puisque ce com-

posant communique directement avec les utilisateurs. L’effet d’une telle violation

est limité puisque les données téléchargées par les utilisateurs sont cryptées avec

un chiffrement convergent, qui offre la confidentialité pour les fichiers imprévisibles

[5]. En outre, une stratégie de limitation du débit mis en place par le gestionnaire

de métadonnées peut limiter les attaques par force brute en ligne effectuées par la

passerelle.

Gateway et Metadata Manager Compromises Dans le pire scénario, l’attaquant

xvi

parvient à obtenir toutes les clés secrètes en compromettant la Gateway et le Meta-

data Manager. Dans ce cas, l’attaquant sera en mesure de supprimer les deux

couches supplémentaires de cryptage et d’effectuer hors attaques de type dictio-

nnaire sur les fichiers prévisibles. Cependant, puisque les données sont cryptées

avec le chiffrement convergent par les utilisateurs, la confidentialité des fichiers

imprévisibles est toujours garantie.

Attaquant externe Finalement, nous analysons l’impact d’un attaquant qui

tente de compromettre les utilisateurs mais n’a pas accès à la mémoire. Si un at-

taquant arrive à compromettre un ou plusieurs utilisateurs, il peut tenter d’effectuer

les attaques de type dictionnaire en ligne. Comme la Gateway et le Metadata Man-

ager n’ont pas été compromises, l’attaquant ne peut récupérer que des données ap-

partenant à l’utilisateur compromis grâce au mécanisme de contrôle d’accès. En

outre, comme mentionné ci-dessus, la passerelle peut limiter des telles attaques

en fixant un seuil maximal pour la vitesse avec laquelle les utilisateurs peuvent

envoyer des requtes.

PerfectDedup

ClouDedup obtient la déduplication sécurisée au niveau bloc au prix d’exiger une

architecture complexe o l’opération de chiffrement la plus cruciale est déléguée à un

composant de confiance. En outre, comme mentionné dans la section d’analyse de

la sécurité, un Metadata Manager peut coopérer avec un ou plusieurs utilisateurs

afin de contourner la protection garantie par la couche de cryptage supplémentaire

et exécuter avec succès des attaques de type COF et LRI.

A partir de ces deux inconvénients, nous visons à la conception d’un système,

appelé PerfectDedup, avec une architecture plus simple o les utilisateurs pourraient

évaluer de manière autonome si un bloc peut tre dédupliqué en exécutant un

protocole confidentiel auprès d’un fournisseur de stockage Cloud malveillant. Une

telle approche aurait l’avantage supplémentaire et non négligeable de permettre la

déduplication côté client, qui apporte des économies de bande passante en plus des

économies d’espace de stockage. Grâce a ce protocole, PerfectDedup combine en

toute sécurité et efficacement la déduplication au niveau bloc (parmi les fichiers de

tous les utilisateurs) et la confidentialité contre les fournisseurs de stockage Cloud

potentiellement malveillants. En outre, ces objectifs sont atteints sans compter

xvii

sur une entité de confiance à l’égard de l’opération de chiffrement. Contrairement

à ClouDedup, ce système permet également de bénéficier de la déduplication côté

client, ce qui signifie qu’un client peut en toute sécurité vérifier si un bloc est un

doublon avant de le télécharger et de le chiffrer.

Popularité des Données Dans PerfectDedup, nous proposons de régler les

vulnérabilités du chiffrement convergent en tenant compte de la popularité [7] des

données. Les données (blocs) stockées par un grand nombre d’utilisateurs, c’est à

dire les données populaires, sont protégées avec la mécanisme de chiffrement con-

vergent faible tandis que les données impopulaires, qui sont rares, sont protégés

par un chiffrement sémantiquement sécurisé. Cette déclinaison de mécanismes de

chiffrement se prte parfaitement à la déduplication efficace puisque les données

populaires qui sont cryptées sous le chiffrement convergent sont aussi ceux qui ont

besoin d’tre dédupliquées. Ce système assure également la sécurité des données

sensibles grâce à la protection forte fournie par le chiffrement sémantiquement

sécurisé alors que les segments de données populaires, qui souffrent des faiblesses

du chiffrement convergent, sont beaucoup moins sensibles car ils sont partagée par

plusieurs utilisateurs.

Néanmoins, cette approche pose un nouveau défi: les utilisateurs doivent décider

de manière autonome de la popularité de chaque bloc avant de le stocker et le

mécanisme par lequel la décision est prise ouvre la voie à une série de faiblesses très

similaires à ceux avec le chiffrement convergent. L’objectif des chemins basés sur

la popularité devient alors la conception d’un mécanisme sécurisé pour déterminer

la popularité des données.

Nous proposons un nouveau schéma pour la déduplication sécurisée des données

chiffrées, sur la base du principe de la popularité. Le principal composant de ce

système est un mécanisme original pour détecter la popularité des segments de

données d’une manière parfaitement sécurisée. Les utilisateurs peuvent rechercher

les données dans une liste de blocs populaires stockées par le fournisseur de stock-

age Cloud (CSP) sur la base des identifiants des blocs de données calculées avec

une fonction de hachage parfait (PHF). Grâce à cette technique, il n’y a aucune

fuite d’informations sur les données impopulaires et en mme temps les données

populaires sont très efficacement identifiés. Sur la base de cette nouvelle tech-

nique de détection de la popularité, notre système réalise la déduplication des

données chiffrées au niveau des blocs d’une manière parfaitement sécurisée.

xviii

Les avantages de notre système peuvent tre résumées comme suit:

• PerfectDedup permet d’obtenir la réduction de la taille par la déduplication

des données populaires;

• PerfectDedup repose sur des algorithmes de chiffrement symétrique, qui sont

connus pour tre très efficace, mme lorsqu’ils sont utilisés avec de volumétries

importantes;

• PerfectDedup atteint la déduplication au niveau des blocs, ce qui conduit

à une augmentation des économies d’espace de stockage par rapport à la

déduplication au niveau fichier [12];

• PerfectDedup ne nécessite aucune coordination ou initialisation entre les

utilisateurs;

• PerfectDedup ne comporte pas de surcot de stockage pour les données im-

populaires;

Analyse de Sécurité

Dans cette section, nous analysons la sécurité du schéma proposé, le CSP étant

considéré comme le principal adversaire. Le CSP est ”honnte, mais curieux”, ce

qui signifie qu’il effectue correctement toutes les opérations, mais il peut essayer

de découvrir le contenu original des données impopulaires. Nous ne considérons

pas les scénarios o le CSP se comporte d’une manière byzantine. Nous supposons

que CSP ne peut pas agir de concert avec l’IS vu que nous faisons confiance

à ce composant. étant donné que le but du CSP malveillant est de découvrir

le contenu des blocs impopulaires, nous analysons en détail si (et comment) la

confidentialité est garantie pour les données impopulaires pendant toutes les phases

du protocole. Enfin, nous analysons aussi des attaques qui peuvent tre perpétrées

par les utilisateurs eux-mmes et proposons des contre-mesures simples contre eux.

Sécurité des Blocs Stockés chez le CSP Par définition, un bloc impopu-

laire est crypté à l’aide d’un chiffrement symétrique sémantiquement sécurisé. La

confidentialité des données impopulaires est ainsi garantie grâce à la sécurité du

mécanisme de chiffrement utilisé.

xix

Sécurité pendant le Popularity Check Les informations échangées au cours de

la phase Popularity Check ne doivent pas révéler aucune information qui pourrait

fuir l’identité d’un bloc impopulaire appartenant à l’utilisateur. L’identité d’un

bloc impopulaire est protégée grâce à la propriété de One-Wayness de l’algorithme

de Hachage Parfait sécurisé (PHF: Perfect Hash Function): la requte générée par le

client ne contient pas l’ID de bloc impopulaire réel, mais un entier i qui est calculé

en évaluant le Hachage Parfait sécurisé sur l’ID du bloc. Essayer de deviner en

explorant tous les possibles résultats de la fonction de hachage sécurisée intégrée

dans e PHF n’est pas faisable grâce à la propriété de One-Wayness de la fonction

de hachage sécurisée (SHA-2 [13]). En plus de cela, lorsque le PHF est évalué sur

l’ID d’un bloc impopulaire, il y aura certainement une collision entre l’ID du bloc

impopulaire et l’ID d’un bloc populaire déjà stocké chez le CSP. Ces collisions

servent de contre-mesure principale à la divulgation de l’ID de bloc impopulaire

envoyé au CSP au cours de la recherche. Avec une hypothèse raisonnable, nous

pouvons aussi considérer que la sortie de la fonction de hachage sécurisée (SHA-

2) est aléatoire. Dans le cas d’une collision entre un ID de bloc impopulaire

et l’ID d’un bloc populaire stocké au CSP, grâce au caractère aléatoire de la

fonction de hachage sécurisée, la sortie d’un PHF fondé sur une telle fonction de

hachage est répartie uniformément entre 0 et m. En supposant que la cardinalité

de l’ensemble du domaine est beaucoup plus grande que la cardinalité de l’ensemble

des identifiants de blocs populaires (ce qui est le cas si les ID de blocs populaires

sont le résultat d’une fonction de hachage sécurisée), nous pouvons affirmer que

le nombre de collisions pour chaque position du tableau de hachage est assez

grande pour empcher un CSP malveillant d’inférer l’ID de bloc utilisé comme

entrée pour le PHF. D’o les collisions peuvent effectivement cacher l’identité de

blocs impopulaires auprès d’un fournisseur de stockage Cloud malveillant tout en

gardant le protocole de recherche extrmement efficace et léger pour les utilisateurs.

Sécurité contre les potentielles Vulnérabilités du Protocole Nous con-

sidérons maintenant quelques attaques supplémentaires qui peuvent tre perpétrées

par le CSP. Pour chacun d’eux, nous proposons des contre-mesures simples mais

efficaces, qui sont faciles à mettre en œuvre et n’augmentent pas de manière sig-

nificative le temps de calcul et de réseau.

Tout d’abord, nous considérons que le CSP peut pré-construire un PHF sur la

base de certaines données spécifiques (provenant par exemple d’un dictionnaire)

qui n’ont pas encore été téléchargées par les utilisateurs. Dans un tel scénario,

xx

les clients détecterons leur bloc demandé comme populaire mme si il n’a jamais

réellement été téléchargé par un utilisateur; un tel bloc sera ensuite stocké avec

un niveau de protection inférieur. En tant que contre-mesure à une telle attaque,

nous proposons que le IS attache une signature à chaque ID de bloc populaire sur

lors de transition de popularité. Par conséquent, l’IS signera l’ID du bloc populaire

avant d’tre stockés chez le CSP, permettant aux clients de vérifier l’authenticité

de ces blocs lors de l’exécution du contrôle de popularité (Popularity Check). Une

telle contre-mesure aurait un effet minimal sur les performances du système.

Une autre attaque que nous considérons est liée à l’attaque de confirmation de

fichier auquel le chiffrement convergent est également vulnérable [14]. En effet,

sur un Popularity Check, le CSP peut comparer la séquence des indices envoyés

par le client avec la séquence produite par un fichier populaire donné F. Si les deux

séquences correspondent, alors il y a une chance que le client est effectivement en

train de télécharger F. Dans afin de cacher cette information de la CSP, le client

peut ajouter un certain nombre d’indices aléatoires à la liste des indices étant

envoyés lors du Popularity Check. Grâce au bruit résultant inclus dans la liste

d’indices, l’identification du fichier cible par le CSP sera beaucoup plus difficile.

Cette contre-mesure empche également le CSP d’exécuter l’attaque connu avec

le nom ”learn-the-remaining-information”. En outre, le surcot généré par cette

contre-mesure est négligeable en termes de bande passante et de puissance de

calcul.

Conclusion

Étude sur la Deduplication

Tout d’abord, à partir de l’observation que la déduplication soulève une exigence

pour le chiffrement déterministe, nous avons évalué si et dans quels scénarios

la déduplication au niveau bloc peut ouvrir la voie à des attaques statistiques.

Afin de répondre à cette question, nous avons effectué une analyse complète sur

un ensemble de données réelles et représentatives qui a conduit à trois résultats

intéressants:

• Après avoir comparé les techniques de coupage les plus communs sur plusieurs

ensembles de données, les résultats montrent clairement que la déduplication

xxi

au niveau bloc atteint toujours les meilleurs ratios de déduplication. En

outre, le surcot pour les métadonnées générées par la déduplication au niveau

bloc ne supprime pas le gain en termes d’économies d’espace de stockage, ce

qui est remarquable.

• Lorsqu’on utilise des tailles de blocs réalistes (allant de 4Ko à 32Ko), l’entropie

globale ne semble pas diminuer quand on diminue la taille moyenne de bloc,

donc il n’y a aucune preuve concrète qu’une attaque statistique basée sur

l’analyse de fréquence peut tre réalisée avec succès. En outre, le nombre

total de blocs est tel qu’une attaque statistique devient extrmement difficile.

• Comme un résultat supplémentaire, nous avons également analysé la pop-

ularité de chaque bloc dans l’ensemble de données afin d’en savoir plus sur

la distribution de la popularité et trouver une valeur telle que les économies

d’espace de stockage restent élevées alors qu’il n’y a aucun risque pour la

confidentialité. Ceci est particulièrement utile pour les systèmes tels que

PerfectDedup qui sont basés sur un seuil de popularité. Comme prévu, la

distribution de popularité est loin d’tre uniforme. En effet, en augmentant

légèrement le seuil de popularité à 2 ou 3 provoque une chute des économies

d’espace de stockage de plus de 15 %, quelle que soit la technique de coupage

en blocs utilisée. Par conséquent, sur la base de ces données, nous suggérons

que le seuil de popularité ne devrait pas tre supérieur à 5.

Grâce à cette étude, d’un point de vue pratique, nous avons appris la difficulté de

construire un système qui vise à stocker les métadonnées et peut évoluer jusqu’à

très grandes volumétries de données, par exemple des milliers de Gigaoctets. Nous

avons prouvé que le recours au stockage clé-valeur est une solution très efficace.

Cependant, des contre-mesures supplémentaires doivent tre prises afin d’tre en

mesure de traiter de grandes quantités de métadonnées qui ne peuvent pas tenir

entièrement dans la mémoire.

ClouDedup

ClouDedup était notre première tentative de fournir une solution sre et pra-

tique pour atteindre la confidentialité avec déduplication au niveau bloc. Nous

avons conçu un système qui utilise un certain nombre de couches de chiffrement

déterministe et symétrique supplémentaires afin de faire face aux faiblesses du

xxii

chiffrement convergent. Des couches supplémentaires de cryptage sont ajoutés par

la Gateway et, éventuellement, par le Metadata Manager. Comme les cryptages

supplémentaires sont symétriques, l’impact sur les performances est négligeable.

En plus de cela, nous avons montré que c’est la peine d’effectuer la déduplication

au niveau bloc au lieu de la déduplication au niveau fichier vu que les gains en

termes d’espace de stockage ne sont pas impactés par le surcot de gestion des

métadonnées, ce qui est minime.

Nous avons également montré que notre conception, dans laquelle aucun com-

posant est complètement de confiance, empche tous les composants de compro-

mettre la sécurité du système sans coopérer avec un autre composant. Notre solu-

tion empche également les fournisseurs de stockage Cloud malveillants de déduire

le contenu original des données stockées en observant les accès ou en accédant à

des métadonnées. En outre, nous avons implémenté un prototype complet, qui a

montré que notre solution peut tre facilement et efficacement mise en œuvre avec

des technologies existantes et généralisées.

Dans le cadre des travaux futurs, ClouDedup peut tre étendu avec plus de fonc-

tionnalités de sécurité telles que les ”Proofs of Retrievability” [15], l’intégrité des

données [16], la recherche sur les données cryptées [17], [18] et le partage sécurisé

de fichiers [19], ce qui est une caractéristique très appréciée dans le stockage Cloud.

Dans un proche avenir, nous visons à compléter la mise en œuvre du prototype

actuel afin d’en faire un système de stockage Cloud prt à la production et le

déployer dans des scénarios réels. De plus, nous allons travailler sur la recherche

d’optimisations en termes de bande passante, d’espace de stockage et de calcul.

PerfectDedup

Sur la base de l’expertise gagnée au cours de la conception et le développement de

ClouDedup, nous avons décidé de travailler sur un nouveau projet visant à résoudre

le mme problème tout en faisant face aux lacunes existantes, parmi lesquelles il y

a:

• Pas de déduplication coté client: dans ClouDedup, les clients téléchargent

toutes les données vers la Gateway qui les crypte et les transmet au Metadata

Manager, o finalement la déduplication a lieu. Cela signifie que, le système

ne permet pas de réaliser des économies de bande passante.

xxiii

• Architecture complexe: ClouDedup nécessite de déployer une architec-

ture complexe dans laquelle un composant, qui est la porte d’entrée, doit

tre digne de confiance par rapport à l’opération de chiffrement. Cela signifie

que si la Gateway est compromise la confidentialité n’est plus garantie.

Sur la base de ces lacunes, nous avons conçu un système qui garantit une totale

confidentialité pour les fichiers confidentiels, tout en permettant à la déduplication

au niveau bloc à la source pour les fichiers populaires. La principale innovation de

notre système est un nouveau protocole de recherche sécurisée construit au sommet

d’une version améliorée de Hachage Parfait. Au meilleur de notre connaissance,

ceci est le premier travail qui utilise le Hachage Parfait pour un but différent de

l’indexation de bases de données. Un composant de semi-confiance est employé à

des fins de stockage des métadonnées concernant les données impopulaires et en

fournissant un support pour détecter les transitions de popularité, ce qui signifie

qu’un bloc vient d’atteindre le seuil de popularité.

Ce travail nous a permis d’explorer une approche inhabituelle mais intéressante

consistant en l’atteinte de la confidentialité en profitant des collisions. Plus précisément,

bien que les collisions sont généralement considérées comme un événement qui de-

vrait tre évité, dans nos cas les collisions sont utiles car elles fournissent la protec-

tion principale contre les attaques d’un fournisseur de stockage Cloud curieux et

permettent d’atteindre la confidentialité pour tous les utilisateurs. Par conséquent,

cette contribution peut ouvrir la voie à de nouvelles approches basées sur l’utilisation

de collisions comme un moyen de protéger les informations confidentielles.

Dans le cadre des travaux futurs, PerfectDedup peut tre optimisée afin de réduire

le surcot introduit par la génération de la fonction de Hachage Parfait et sa trans-

mission. En particulier, afin de réduire le temps de génération lorsqu’il s’agit de

très grandes volumétries de données, le PHF doit tre dynamique, ce qui signifie

qu’un ID d’un bloc peut tre inséré ou supprimé sans nécessairement générer de

nouveau le PHF à partir de zéro. En plus de cela, il serait utile de disposer d’une

solution qui permet à un utilisateur de mettre à jour de maniéré incrémentielle le

PHF sans avoir à le télécharger entièrement à chaque modification.

xxiv

Travaux Futurs

Au moment de l’écriture, la conception d’un système pleinement fonctionnel pour

le stockage sr et efficace reste un défi ouvert. Nous suggérons que l’extension de

l’un de nos programmes avec de nouveaux mécanismes visant à fournir des fonc-

tionnalités de sécurité manquantes peut tre une direction de recherche fructueuse.

Par exemple, étant donné un système de déduplication sécurisé comme ClouD-

edup ou PerfectDedup, il serait positif pour les utilisateurs d’intégrer un certain

nombre de fonctions de sécurité supplémentaires telles que les ”Proofs of Re-

trievability” (PoR) [15], l’intégrité des données [16], recherche sur des données

chiffrées [17], [18] et le partage sécurisé de fichiers [19]. Cependant, une telle

intégration peut présenter plusieurs défis en raison de l’utilisation du chiffrement

déterministe. En effet, la plupart des approches qui permettent d’atteindre les car-

actéristiques de sécurité mentionnées ci-dessus utilisent des techniques de chiffre-

ment sémantiquement sécurisés, qui sont connues pour tre incompatibles avec la

déduplication. En outre, bien qu’il existe certains solutions [18] basées sur le

chiffrement déterministe, ils comptent sur la cryptographie asymétrique, qui est

connue pour tre inefficace lors du chiffrement des fichiers volumineux.

En outre, en raison de contraintes pratiques, y compris les limites de stockage,

notre étude des données a été réalisée sur un seul cliché de stockage pris à un mo-

ment donné. Toutefois, il serait très intéressant d’étudier l’évolution de la confiden-

tialité et des économies d’espace de stockage au fil du temps. Plus précisément,

on pourrait prendre plusieurs clichés de stockage à des moments différents (par

exemple un cliché par semaine) et comparer leurs entropie et les économies qui

peuvent tre atteintes. Cela nous permettra d’observer si et comment les ratios

d’entropie et de déduplication changent au fil du temps.

Finalement, une autre option difficile pour les recherches futures est d’étudier

si et comment les approches de déduplication sécurisées existantes peuvent tre

appliquées dans le contexte des bases de données relationnelles, qui sont sou-

vent utilisés dans des applications à grande échelle. Dans un tel contexte, la

granularité et la taille des blocs changent, puisque dans les bases de données la

déduplication doit tre effectuée sur les champs au lieu des blocs. Cela pourrait

avoir des conséquences graves en ce qui concerne la confidentialité en raison du fait

que les blocs seront probablement beaucoup plus petits, à savoir quelques octets

au lieu de quelques kilooctets. En outre, afin de conserver les opérations qui sont

xxv

habituellement exécutées pendant des requtes à la base de données (par exemple

des comparaisons), la solution devrait permettre d’effectuer ces opérations sur les

données cryptées, en plus d’utiliser une méthode de chiffrement déterministe.

Contents

Abstract i

Acknowledgements ii

List of Figures xxx

List of Tables xxxii

1 Introduction 1

1.1 Cloud Computing . 1

1.2 Cloud Storage Security . 2

1.3 Secure Data Deduplication . 2

1.3.1 Deduplication . 2

1.3.2 Deduplication of Encrypted Data 3

1.3.3 Convergent Encryption . 4

1.4 Existing Approaches for Secure Data Deduplication 6

1.4.1 Solutions based on Convergent Encryption 6

1.4.2 Solutions based on Secrecy 7

1.4.3 Client-side Protocol . 7

1.4.4 Data Popularity as a differentiator for Encryption 8

1.4.5 File-level vs Block-level . 9

1.5 Contributions . 10

1.5.1 Study on Deduplication . 10

1.5.2 ClouDedup . 11

1.5.3 PerfectDedup . 13

2 State of the Art 15

2.1 Cloud Computing and Cloud Storage 15

2.2 Asymmetric vs Symmetric Cryptography 17

2.3 Probabilistic vs Deterministic Encryption 18

2.4 Data Compression . 21

2.4.1 Data Deduplication . 22

2.4.1.1 Source-based vs target-based Deduplication 22

xxvi

Contents xxvii

2.4.1.2 Inline vs Post-processing Deduplication 23

2.4.1.3 Single-user vs Cross-user Deduplication 23

2.4.1.4 File-level vs Block-level Deduplication 24

2.4.1.5 State-of-the-art in the Industry 24

2.5 Data-chunking Techniques . 27

2.5.1 Rabin Fingerprinting . 28

2.6 Convergent Encryption . 29

2.7 Existing Approaches for Secure Data Deduplication 32

2.7.1 Convergent Encryption . 32

2.7.2 DupLESS . 33

2.7.3 iMLE (Interactive message-locked encryption and secure dedu-
plication) . 34

2.7.4 Popularity-based Encryption 36

2.7.5 PAKE . 37

3 Study on Deduplication 40

3.1 Introduction . 40

3.2 Datasets . 44

3.2.1 Dataset 1 (Emails POP) . 45

3.2.2 Dataset 2 (Email IMAP) . 45

3.2.3 Dataset 3 (Users Homes) . 46

3.2.4 Dataset 4 (Research) . 47

3.2.5 Dataset 5 (Teaching) . 47

3.2.6 Dataset 6 (Linux VM images) 48

3.3 Technical Environment . 48

3.3.1 Performance Overhead . 50

3.4 Storage Space Savings . 52

3.5 Statistical Attacks . 55

3.6 Popularity . 59

3.7 Conclusions . 61

4 ClouDedup 63

4.1 Introduction . 63

4.2 The Idea . 64

4.2.1 The Gateway . 65

4.2.2 Block-level Deduplication and Key Management 66

4.2.3 Threat Model . 67

4.2.4 Security . 67

4.3 Components . 68

4.3.1 User . 68

4.3.2 Gateway . 69

4.3.3 Metadata Manager (MM) 69

4.3.4 Cloud Storage Provider (SP) 70

4.4 Protocol . 71

Contents xxviii

4.4.1 Storage . 71

4.4.2 Retrieval . 73

4.5 Prototype Implementation . 75

4.5.1 Client . 75

4.5.2 Gateway . 76

4.5.3 Metadata Manager . 76

4.5.4 Access Control . 77

4.5.4.1 Client Access Control 78

4.5.4.2 Gateway Access Control 78

4.5.4.3 Metadata Manager Access Control 79

4.5.5 Prototype Credential Management 79

4.5.5.1 Key Management 79

4.5.5.2 Credentials and Key Rotation 80

4.5.6 Technical Challenges . 80

4.5.6.1 Fast Upload of Large Files 80

4.5.6.2 Disaster Recovery 81

4.5.6.3 Upload Buffer . 82

4.6 Evaluation . 85

4.6.1 Complexity . 85

4.6.1.1 Storage . 85

4.6.1.2 Retrieval . 86

4.6.2 Performance and Overhead 86

4.6.2.1 Throughput . 86

4.6.2.2 Libcloud Upload Performance 87

4.6.2.3 Upload Throughput vs File Size 88

4.6.2.4 Upload Buffer vs Response Time 90

4.6.2.5 Network Overhead 91

4.6.2.6 Metadata Storage Overhead 93

4.6.2.7 Data Storage Overhead 95

4.6.3 Deduplication Rate . 95

4.6.4 Security . 95

5 PerfectDedup 98

5.1 Introduction . 98

5.2 Secure Deduplication Based on Popularity 100

5.3 Basic Idea: Popularity Detection Based on Perfect Hashing 102

5.4 Background . 104

5.4.1 Perfect Hashing . 104

5.4.1.1 CHD Algorithm 105

5.5 The system . 107

5.5.1 Overview . 107

5.5.2 Popularity Check (Scenarios 1, 2 and 3) 108

5.5.3 Popularity Transition (Scenarios 1 and 2) 109

5.5.4 Data Upload (Scenarios 1, 2 and 3) 109

Contents xxix

5.6 Security Analysis . 110

5.7 Performance Evaluation . 113

5.7.1 Prototype Implementation 113

5.7.2 Computational Overhead . 114

5.7.2.1 Conclusion . 117

5.7.3 Communication Overhead 118

6 Conclusions and Future Work 120

6.1 Study on Deduplication . 120

6.2 ClouDedup . 121

6.3 PerfectDedup . 122

6.4 Future Work . 124

Bibliography 126

Publications 126

List of Figures

1.1 Illustration of data deduplication. 4

1.2 Example of the conflict between deduplication and encryption. . . . 5

2.1 Cloud Computing growth in France according to the study con-
ducted by cloudindex.fr. 16

2.2 Example of weak deterministic encryption 19

2.3 Diagram showing how AES works in CBC mode 21

3.1 Composition of Dataset 3 (Users Homes) 46

3.2 Composition of Dataset 4 (Research) 47

3.3 Composition of Dataset 5 (Teaching) 48

3.4 Diagram summarizing the main steps of the data analysis 50

3.5 Storage space savings achieved with different data-chunking tech-
niques . 53

3.6 Distribution of duplicate blocks by file type 54

3.7 Global entropy with varying average block size 56

3.8 Decrease of storage space savings when increasing the popularity
threshold . 60

4.1 High-level view of ClouDedup . 65

4.2 Storage Protocol . 72

4.3 Retrieval Protocol . 73

4.4 Results of Libcloud parallel uploads experiments 88

4.5 Results of Upload Throughput vs File Size experiments 89

4.6 Results of Upload Buffer vs Response Time experiments 90

4.7 Results of the Network Overhead Experiments 92

4.8 Metadata Storage Overhead . 93

5.1 Our approach: popular data are protected with CE whereas unpop-
ular data are protected with a stronger encryption 102

5.2 The secure PHF allows users to detect popular blocks while pre-
venting the CSP from discovering unpopular blocks 104

5.3 Portion of the total computation time spent at each component in
each scenario . 114

5.4 Total time spent during each phase of the protocol in each scenario 115

5.5 Analysis of PHF generation time with varying parameters for a set
containing 106 elements . 116

xxx

List of Figures xxxi

5.6 Analysis of PHF size with varying parameters for a set containing
106 elements . 116

5.7 Performance comparison of Jenkins, SHA-2 (SHA256) and Blake2
hash functions . 117

5.8 Total time spent by all components when uploading a file (including
Popularity Check) in each scenario 118

List of Tables

2.1 List of existing commercial solutions for data deduplication 26

2.2 Summary of the relevant related work 32

3.1 Description of datasets used for this analysis 45

4.1 Metadata structure in REDIS . 77

4.2 A memory optimized metadata structure 94

5.1 Communication overhead (in MB) introduced by each operation . . 119

xxxii

To my family, who have always believed in me and did
everything to help me reach this important milestone. . .

To my girlfriend, who made the last three years the
most beautiful of my life. . .

To all my friends and colleagues, who in different times
and different ways have contributed to my success. . .

xxxiii

Chapter 1

Introduction

1.1 Cloud Computing

Since 2006, that is when Amazon introduced Elastic Simple Storage Service (Ama-

zon S3) [20], Cloud Computing adoption has been constantly and exponentially

rising. According to the predictions based on the most recent studies [21], this

trend does not seem to be slowing down, rather it is expected to keep growing in

the next years. What makes Cloud Computing extremely attractive to customers

is the possibility of enjoying a resource with the maximum flexibility, hence min-

imizing the startup and setup cost and time. Cloud Computing leverages the

advantages of virtualization technologies in order to build platforms which can

satisfy customers’ needs while eliminating the complexity of managing complex

software and hardware infrastructures. The main reason behind the success of

Cloud Computing can thus be linked to the following factors: flexibility, elasticity,

low ownership costs and pay-per-use economic model.

Cloud providers can be classified depending on the level at which they provide

services and resources. Traditionally, according to the taxonomy defined by NIST

[22], Cloud providers are classified into IaaS (Infrastructure as a Service), PaaS

(Platform as a Service) and SaaS (Software as a Service). IaaS providers are fo-

cused on providing low-level infrastructure services such as virtual servers, storage

and network. For instance, this is the case of Amazon EC2 and Amazon S3. PaaS

providers are focused on services that are mainly intended for developers. More

precisely, ”Platform” stands for the set of tools allowing developers to deploy appli-

cations without taking care of the underlying infrastructure, which is provisioned

1

Chapter 1. Introduction 2

by the Cloud provider. Last but not least, SaaS providers usually offer a service

through an application hosted on a remote server and accessible on the Internet.

Most of the time, the application is a web application and the remote server is a

web server.

1.2 Cloud Storage Security

Cloud storage certainly is one of the most attractive opportunities offered by Cloud

Computing. Indeed, both standard users and enterprises need a way to safely

and securely store their data without having to maintain complex and expensive

infrastructures on their premises. Also, with the widespread adoption of portable

devices (e.g. smartphones and tablets), users need to ubiquitously access their

data from any location and on any device. Cloud storage brings what is needed

to provide the above-mentioned features. However, recent data leaks [23] and

security incidents have introduced a general concern about Cloud Storage security

and drawn attention to an urgent need for solutions that can effectively guarantee

data confidentiality and protect users’ data from malicious entities. For instance,

thanks to the recent revelations of Edward Snowden [24] and other recent scandals,

everyone is now aware of the potential threats posed by secret agencies, crackers,

insiders and malicious users in general. Therefore, this is one more reason why we

cannot rely on the assumption that Cloud storage providers are trusted entities,

since they are vulnerable to several, either internal or external, threats which are

not under the control of the user. In addition to that, a ”curious” Cloud provider

may use customers’ data in order to perform lucrative activities such as data

mining or any other activity involving direct access to stored data. An effective

solution for data confidentiality must protect users’ data against any external or

internal threat and unauthorized access.

1.3 Secure Data Deduplication

1.3.1 Deduplication

Along with security and confidentiality, users also demand low ownership costs

and high quality of service. On the other hand, Cloud storage providers constantly

Chapter 1. Introduction 3

look for techniques aimed at optimizing communication overhead, improving per-

formance and most importantly reducing operational costs in order to increase

their profit.

When it comes to cloud storage, these requirements can be met by reducing data

footprint both in transit and at rest. In this regard, Cloud Storage providers have

observed that users tend to upload a non-negligible amount of redundant data.

That is the reason why all major Cloud storage providers have put in place several

strategies aimed at detecting redundant data in order to save storage space and

speed up data transfers between clients and cloud storage servers.

One of the techniques that has recently been adopted by many Cloud storage

providers is deduplication, which has proved to achieve significant storage space

savings, especially in backup applications [1], [2]. Deduplication arises from the

following observation: it is very common that different users may upload identical

or very similar files. In this case, storing multiple copies of the same data segments

would be a useless waste of storage resources. Therefore, instead of merely storing

data uploaded by users, the Cloud storage provider may first check whether a

particular data segment has already been uploaded in the past: this is usually

done by comparing its ID with a database containing the IDs of all data segments

stored at the Cloud. If so, there is no need to store it again since the Cloud

storage provider may create a logic link to the actual data segment, as illustrated

in Figure 1.1. Thanks to the effectiveness of such an idea, despite its simplicity,

deduplication has become a de-facto standard [3] in all major massive storage

systems thanks to its ability of greatly reducing data footprint, hence reducing

storage costs and bandwidth consumption.

1.3.2 Deduplication of Encrypted Data

However, as stated above, customers’ demand also includes confidentiality, which

day by day is becoming a pressing issue for enterprises as well as for standard

users. Therefore, the main challenge in Cloud Storage becomes how to meet the

conflicting needs of customers and providers which, from a confidentiality point of

view, means securely and efficiently combining encryption with storage optimiza-

tion techniques such as deduplication. Although it may seem straightforward,

putting the two techniques together is far from being trivial: the desired result

Chapter 1. Introduction 4

Figure 1.1: Illustration of data deduplication.

of encryption is to make encrypted data (the ciphertext) unreadable and indistin-

guishable from original data (the plaintext), whereas deduplication requires the

Cloud storage provider to be able to easily compare two (encrypted) data segments

and determine whether they are identical. In other words, as illustrated in Figure

1.2, in a standard scenario deduplication of encrypted data will not be feasible,

unless encryption keys are leaked to the Cloud storage providers, which would give

them the power to read users’ data, hence compromise data confidentiality. From

this issue, the following problem arises: how can we preserve data confidentiality

without preventing an untrusted Cloud storage provider from detecting duplicate

data? The answer to this question is not trivial. In a common scenario, two users

who have the same data and want to securely store it in the Cloud, will encrypt

their data before performing the upload. Unfortunately, a standard encryption

technique would make deduplication impossible since two different users would

use two different keys, resulting in two different ciphertexts.

1.3.3 Convergent Encryption

Recently, a simple but effective countermeasure has been proposed as a solution to

this problem: the encryption key may be generated in a completely deterministic

and data-dependent way, so that two users with the same data will end up with

generating the same ciphertext without needing any key exchange or coordination.

Such a solution is known as Convergent Encryption [4], [5] and is illustrated in

Figure 1.2. In Convergent Encryption, the encryption key is usually generated by

calculating the secure unkeyed hash of the data. Once the key has been generated,

Chapter 1. Introduction 5

Figure 1.2: Example of the conflict between deduplication and encryption.

a symmetric deterministic encryption algorithm is executed over the data in order

to obtain the ciphertext.

Although it seems to be an ideal candidate for combining confidentiality and dedu-

plication, Convergent Encryption has proved to be vulnerable to several weak-

nesses which do not make it a suitable choice to guarantee data confidentiality.

These weaknesses are inherent to the basic features of Convergent Encryption it-

self. Since the encryption key is the output of a deterministic function which only

takes the data to encrypt as input, anyone, including the Cloud storage provider,

may run the following attack: given a plaintext, the attacker may easily generate

the corresponding encryption key (the secure hash), produce the ciphertext and

Chapter 1. Introduction 6

compare it with all ciphertexts in storage. Such an attack, which can be seen as

an instance of the brute-force/dictionary attack, may effectively reveal whether

a plaintext is already stored. Clearly, such a weakness is not acceptable since it

severely undermines data confidentiality.

1.4 Existing Approaches for Secure Data Dedu-

plication

As explained earlier, Convergent Encryption leverages determinism in both key

generation and encryption in order to solve the conflict between deduplication and

confidentiality. However, the weaknesses from which it suffers are not acceptable

and need to be addressed.

Recently, several solutions have been proposed in both the literature and the

industry. We now review the most relevant ones and categorize them according

different criteria while briefly explaining their drawbacks. More details on each of

these solutions will be given in next chapter.

1.4.1 Solutions based on Convergent Encryption

The first criteria we use for categorizing existing solutions is whether Convergent

Encryption, or a slightly different variant, is involved in the data protection pro-

cess. More precisely, some solutions may still rely on Convergent Encryption as a

first layer of encryption or by changing the key generation mechanism.

As an example, this is the case of DupLESS [25] and Tahoe-LAFS [26], which is

based on a privacy-preserving protocol based on pseudo-random functions running

between the user and a trusted key server. Thanks to this protocol a user can

generate a deterministic and data-dependent encryption key without disclosing

any information on the file being encrypted, so that all users will encrypt the

same file with the same key, resulting in the same ciphertext that can be easily

deduplicated by the untrusted Cloud Storage Provider.

Chapter 1. Introduction 7

1.4.2 Solutions based on Secrecy

Some solutions achieve full confidentiality thanks to a secret (e.g. an encryption

key) stored on a trusted component. Depending on the scheme, the secret can

be used to further encrypt data (in a deterministic manner, so that the ability of

detecting duplicates is not lost) or make impossible for an attacker to generate the

encryption key starting from the plaintext. Therefore, using a secret eliminates

the possibility of exploiting the weakness due to the determinism of Convergent

Encryption. In the case of DupLESS, if an attacker learns the secret stored at the

key server, confidentiality can no longer be guaranteed. Also, if the attacker has

access to the storage (e.g. the Cloud Storage Provider), all stored files are subject

to the same attacks to which Convergent Encryption is vulnerable.

1.4.3 Client-side Protocol

An interesting approach to cope with the conflict between deduplication and en-

cryption consists of enabling users to autonomously detect whether a data segment

is popular by running a privacy-preserving protocol with other users (peer-to-peer)

or the Cloud Storage Provider. Based on the result obtained after the execution

of the protocol, the user can assess whether a data segment is a duplicate and thus

complete the upload procedure accordingly.

To the best of our knowledge, one of the most recent and relevant works that

makes use of this kind of approach is PAKE [6], in which the authors claim to

propose the first scheme that achieves secure deduplication without the aid of any

additional independent servers. In [6], authors introduce a novel oblivious key-

sharing protocol called PAKE aimed at allowing users to collaboratively perform

client-side cross-user deduplication without relying on the support of any trusted

entity. More precisely, before uploading a file the user runs this protocol with other

users in order to autonomously discover whether a file is a duplicate and, if this

is the case, securely obtain the encryption key with which it has been previously

encrypted, so that the encrypted file can be deduplicated.

Interestingly, in order to reduce the number of users involved in the protocol,

the authors introduce an optimization which implies a relaxed security definition.

Indeed, each file is also associated to a short hash, namely 20 bits. Thanks to

such a short hash, the user can select the subset of users with whom to run the

Chapter 1. Introduction 8

protocol. This set includes all users for whom there is a non-negligible chance

that one of them uploaded the same file in the past. Disclosing such a short hash

to the Cloud Storage Provider does not weaken confidentiality since the hash is

short enough to provide no useful information to the Cloud Storage Provider. In

practical terms, the collision rate is so high to make the complexity of such an

attack comparable to guessing.

Although the authors implemented and evaluated a proof-of-concept prototype

which proved to be both effective and efficient, the scheme presents am inherent

limitation which makes its adoption in real scenarios challenging. Indeed, as any

other peer-to-peer scheme, PAKE requires a sufficient number of users to be si-

multaneously online in order to run the protocol, otherwise a potentially duplicate

may not be detected, resulting in a decrease of the deduplication ratio. In order to

prove that this does not severely impact deduplication ratios, the authors assume

that users stay online long enough and their status (offline/online) is uniformly

distributed over the time. However, it is well-known that in real scenarios users

have more irregular and hardly predictable behaviors, therefore it is unrealistic to

make such an assumption on the distribution of users’ statuses and predict that a

given number of users will be online at a given time.

Another relevant work in this regard is iMLE [27], which proposes an elegant

scheme for secure data deduplication based on an interactive protocol between the

user an the cloud storage provider, in which the former is able to detect whether a

file is a duplicate and the latter does not learn anything about the content of the

file. However, as stated by the authors, the scheme is purely theoretical and its

performance is far from being practical, hence this scheme cannot be adopted yet

in real scenarios. The main reason behind this limitation is the extensive use of

fully homomorphic encryption [28] in all phases of the interactive protocol, which

is well-known to be still unpractical due to the prohibitive overhead in terms of

computation and increase of data size.

1.4.4 Data Popularity as a differentiator for Encryption

Some schemes rely on the realistic assumption that popular data, which belong to

many users and thus can have an important impact on storage space savings when

being deduplicated, are unlikely to contain any sensitive information. On the other

hand, unpopular data, which are unique or belong to a low number of users hence

Chapter 1. Introduction 9

do not necessarily have to be deduplicated, may contain sensitive information and

must be protected with a stronger encryption. Based on this distinction, a scheme

can use different encryption mechanisms (each with a different tradeoff between

deduplicability and confidentiality) depending on the whether a data segment is

considered to be popular.

As an example of this approach, authors in [7] proposed a scheme in which data

belonging to multiple users are be encrypted with CE in order to enable the CSP

to perform deduplication. On the other hand, unpopular data is more likely to

contain sensitive information, hence it is safer to encrypt with a semantically-

secure encryption. In order to implement this idea, this scheme makes use of a

mixed cryptosystem combining convergent encryption and a threshold encryption

scheme. However, this work suffers from a few drawbacks. First, the system suffers

from a significant storage and bandwidth overhead. Indeed, for each unpopular file

the user uploads two encrypted copies, one encrypted with a random symmetric

key and one encrypted with the mixed encryption scheme. In scenarios with a

high percentage of unpopular files, the storage overhead will be significant and

nullify the savings achieved thanks to deduplication. Second, the system proposed

in [7] relies on a trusted component which provides an indexing service for all data,

both popular and unpopular. Third, both the client and the CSP have to perform

complex cryptographic operations based on threshold cryptography on potentially

very large data.

1.4.5 File-level vs Block-level

Finally, a crucial criteria which plays an important role in determining the prac-

ticality of a scheme is the ability of efficiently handling block-level deduplication,

meaning that deduplication is performed with a finer granularity, that is at the

level of blocks instead of whole files. Although this may seem straightforward, in

practice this is not the case for all the schemes presented so far.

Indeed, in DupLESS, since the generation of the encryption key requires to run

an interactive protocol between the user and the key server, extending the scheme

to block-level deduplication would introduce a severe performance issue due to

the need to run the protocol once per block, meaning that uploading a file may

potentially require to run the protocol thousands of times. Similarly, in PAKE,

since the user needs to run an instance of protocol for each file and each user,

Chapter 1. Introduction 10

extending this scheme to block-level deduplication would be unpractical. Also,

in [7], because of the dependency on the indexing service, the effectiveness of the

system is limited to file-level deduplication, which is known to achieve lower space

savings than block-level deduplication.

1.5 Contributions

Starting from the aforementioned challenges, we aimed at achieving a compre-

hensive understanding of the scenario and then propose suitable approaches for

the targeted problem. In order to do so, we first analyzed the results of various

widespread deduplication techniques and most importantly their implications in

terms of data confidentiality when combined with solutions that rely on determin-

istic encryption techniques.

Based on the indications provided by this study, we then designed and prototyped

two secure yet efficient solutions in order to provide users and providers with

practical mechanisms that effectively solve the aforementioned problem and are

easy to integrate in real production environments. Also, for each prototype we

conducted a deep performance analysis in order to compare them with traditional

Cloud Storage solutions and assess their practicality in real environments. In

particular, the first solution, which goes by the name of ClouDedup, led to the

development of a fully-featured Cloud Storage system which is close to be proposed

in the market.

1.5.1 Study on Deduplication

This study was conducted with two main objectives in mind. First, due to the

lack of such studies in the literature, we wanted to have a tangible proof of the

effectiveness of deduplication in real environments. Therefore, we conducted a

comprehensive study on various real datasets which was aimed at highlighting the

best deduplication technique(s) and providing a close approximation of the savings

that can be potentially achieved. Second, we wanted to study the consequences in

terms of confidentiality when using deterministic encryption in conjunction with

block-level deduplication. In particular, we were interested in verifying whether

Chapter 1. Introduction 11

a (very) small block size could reduce the global entropy and thus increase the

vulnerability to attacks.

The reason why we focused our efforts on deterministic encryption is twofold.

First, the vast majority of the solutions that have been proposed in the literature

as well as in the industry are based on this kind of encryption, therefore the

study would have a bigger impact. Second, as mentioned earlier, determinism is a

requirement raised by deduplication in order to make identical plaintexts uploaded

by different users comparable after being encrypted.

However, it is well-known that deterministic encryption suffers from an inherent

limitation which prevents it from achieving semantic security. In other words, a

secure deduplication solution relying on deterministic encryption cannot provide

the highest level of confidentiality at which we aim. Nevertheless, due to the

necessity of being able to compare encrypted data segments and detect duplicates,

randomness cannot be introduced in the encryption process, hence deterministic

encryption remains a hard requirement and the conflict between deduplication and

confidentiality arises.

Based on such a challenging scenario, we decided to study in depth the depen-

dencies between deterministic encryption and block-level deduplication and assess

whether and in which scenario a confidentiality threat may arise. In other words,

we performed block-level deduplication on a real dataset using various realistic

block sizes and for each of them we measured the difficulty of running a statistical

attack.

As a result of our analysis, the study provided a few valuable indications with

respect to block-level deduplication savings and security. More precisely, block-

level deduplication proved to be much more effective than file-level deduplication,

even taking into account the additional overhead. Also, based on our results, we

argue that statistical frequency-based attacks remain unlikely even when using low

yet realistic block sizes.

1.5.2 ClouDedup

As a first attempt to overcome the issues related to secure deduplication and con-

vergent encryption, we proposed ClouDedup [8], a novel cloud storage architecture

Chapter 1. Introduction 12

in which the core confidentiality and deduplication features are outsourced to ex-

ternal components and the role of the Cloud Storage provider is limited to the

storage of raw encrypted data segments.

ClouDedup is based on two main unique components:

1. a trusted encryption component (Gateway), deployed at a trusted third party

or, if the customer is an organization, on the customer premises and within

the security perimeter of the customer;

2. an additional component named Metadata Manager which is responsible for

key management and deduplication.

Data protection is guaranteed thanks to the encryption layer introduced by the

Gateway, which performs a symmetric and deterministic encryption on top of

convergent encryption, which is performed by clients before the upload. Also,

this encryption is totally transparent to the end user. Indeed, in practice the

Gateway has been implemented as a HTTPS proxy located as a ”man-in-the-

middle” between end users and the Metadata Manager.

In addition to our unique components, we also rely on a Cloud Storage Provider. In

ClouDedup we turn the Cloud Storage provider into an extremely simple compo-

nent taking care of the raw storage of encrypted data segments, whereas deduplica-

tion and key-management are managed by the Metadata Manager and encryption

is performed by the Gateway. In order to emphasize the independence between the

Metadata Manager and the Cloud Storage Provider, the communication between

these components has been implemented in a loosely coupled fashion by leveraging

modern REST HTTPS-based APIs.

The need for a dedicated component responsible for key-management (the Meta-

data Manager) is raised by the necessity of efficiently and securely storing the

encryption keys produced by the combination of block-level deduplication and

convergent encryption. In our implementation, the Metadata Manager makes use

of cutting-edge technologies in the field of databases together with and a very

efficient implementation in order to effectively address this issue. In particular we

use an open-source NoSQL database known as REDIS [9] which, according to our

performance analysis, proved to be extremely efficient and reliable.

Chapter 1. Introduction 13

However, despite its ability to bring the best of both worlds, that is full confiden-

tiality and storage space savings, ClouDedup requires to maintain and monitor

a complex architecture in which confidentiality can be guaranteed as long as the

secret key stored at the Gateway remains safe and is not disclosed to any mali-

cious entity. Therefore, we aimed at finding a more advanced solution having the

advantage of requiring a simpler architecture and directly involving the users in

the deduplication operation.

1.5.3 PerfectDedup

In order to achieve full confidentiality without introducing a complex architecture

which would discourage user adoption, we investigated the possibility of minimiz-

ing the use of additional components and using different levels of protection based

on the popularity of the data segment. Indeed, we leverage popularity, which is

measured as the number of owners of a given data segment, in order to determine

the level of confidentiality: the higher the number of users owning a data segment,

the higher its popularity. Based on that, a global popularity threshold is set in the

system so that whenever the number of owners of a given data segment exceeds

the threshold, the data segment becomes popular. We also assume that if popular,

a data segment is likely to be non-confidential, as opposed to rare and unique data

segments which may contain sensitive information and thus be confidential. Once

the status of a data segment is assessed, different encryption techniques are em-

ployed, namely convergent encryption is used for popular data segments (in order

to allow for deduplication) and semantically-secure encryption otherwise (in order

to achieve the highest level of confidentiality).

Detecting popular data segments in a privacy-preserving manner requires users

to run a secure lookup protocol against an untrusted Cloud Storage Provider. In

PerfectDedup [10], we introduced a novel secure lookup protocol based on a secure

version of Perfect Hashing [11], thanks to which the user can autonomously and

securely detect whether or not a data segment can be deduplicated by simply

querying the Cloud Storage Provider. Such an approach, which goes by the name

of PerfectDedup, allows the user to securely detect whether a data segment can

be deduplicated without revealing any exploitable information to the untrusted

Cloud storage provider. Therefore, in PerfectDedup we achieve secure client-side

Chapter 1. Introduction 14

(our source-based) block-level deduplication, meaning that users can also save

bandwidth.

In addition to bandwidth savings, another main advantage of PerfectDedup with

respect to ClouDedup is the simpler architecture. Indeed, as opposed to ClouD-

edup, PerfectDedup does not require any trusted or independent servers with

respect to the encryption and deduplication operations, since deduplication of

blocks is entirely managed at client-side thanks to a novel, secure and lightweight

lookup protocol based on a secure version of Perfect Hashing. However, similarly

to ClouDedup, both solutions are built on top of convergent encryption and aim

at strengthening it by eliminating the possibility of a dictionary attack by an

untrusted Cloud storage provider.

To summarize, we designed, developed and analyzed the performance and the

security of the two following solutions: ClouDedup and PerfectDedup. Both so-

lutions share a very unique and valuable feature, that is the combination of full

confidentiality and block-level deduplication, meaning that users and cloud storage

providers can enjoy the advantages of deduplication without negatively affecting

confidentiality. In the following chapters, after introducing a few concepts that

are extensively mentioned in this thesis and comparing our work with existing

approaches, for each solution we describe in detail the idea, the architecture, the

protocol and finally we fully analyze its performance and security.

Chapter 2

State of the Art

In this chapter, we first introduce a few concepts that are mentioned through-

out this manuscript and are the basis of the work conducted during this thesis.

Later, we analyze in detail the most relevant approaches in the literature and thus

compare our work with them.

2.1 Cloud Computing and Cloud Storage

As mentioned in the previous chapter, Cloud Computing providers leverage virtu-

alization technologies in order to offer services and resources at different level of

abstraction. What made Cloud Computing emerge was the innovative economic

model proposed by Amazon. Cloud Computing comes with a ”pay-as-you-go”

model, meaning that customers only pay for the resources they actually use. In

other words, as soon as a resource is dismissed or deactivated, it is not billed any-

more. Such a feature gives customers the highest level of flexibility and scalability.

According to a recent market study performed in France [29], the Cloud Comput-

ing market has already exceeded the symbolic threshold of 1 billion Euros and its

adoption is expected to keep growing exponentially in the next few years. Simi-

lar trends have been observed in other countries, especially in the United States

where the adoption rate is currently close to 93% [30]. As shown in Figure 2.1, the

study also takes into account Private Clouds, that is the set of Cloud-based infras-

tructures hosted on non-public platforms. Private Clouds are meant for providing

the same benefits of Public Clouds (scalability, flexibility, lower costs, etc.) along

15

Chapter 2. State of the Art 16

Figure 2.1: Cloud Computing growth in France according to the study con-
ducted by cloudindex.fr.

with a better isolation and a finer control on the whole platform. For instance,

this is often the case of those enterprises that decide to deploy their own Cloud

platform on their premises in order to have more control and higher security as-

surance. Indeed, all studies [31] confirm that security and confidentiality concerns

are the main reasons that refrain companies from outsourcing their infrastructures

to Cloud Computing platforms.

In this thesis, we focus on Cloud storage, which belongs to the services usually of-

fered by IaaS providers and arguably is the cloud service with the highest adoption

rate. Cloud storage gives customers the attractive opportunity of using a remote

and reliable storage for storing their data. In addition to that, data stored in the

Cloud are accessible at anytime, on any device and from any location. This is

made possible thanks to a set of different applications running on most of the ex-

isting devices (smartphones, tablets, laptops, web, etc.). Moreover, on top of these

features, providers usually offer additional functionalities in order to facilitate file

sharing and real-time collaboration. Among others, some of the major actors in

this field are Dropbox [32], Box [33], Google Drive [34], OneDrive [35] and Amazon

Cloud Drive [36]. Cloud storage is also a popular solution among developers. In

fact, a growing number of applications (e.g. websites and mobile applications) are

making use of Cloud storage containers in order to persistently store files (e.g.

images) and databases. Most importantly, thanks to this strategy, developers can

delegate the delicate task of providing a reliable storage and enjoy crucial features

such as automatic backup, disaster recovery and geographical replication. In this

Chapter 2. State of the Art 17

field, some of the major providers are Amazon S3 [20], Google Cloud Storage [37],

Rackspace [38], Microsoft Azure [39] and OpenStack SWIFT [40].

Despite the high and increasing adoption rate, standard Cloud storage does not

satisfy the needs of all customers. As an example, many enterprises explicitly

require to be the only entity able to access and read their data, which may contain

confidential and sensitive information. That is the main motivation behind the

high number of Cloud storage providers that have recently proposed solutions

that specifically address security, in particular confidentiality and privacy. These

solutions achieve security thanks to encryption and other protocols aiming at

protecting customers’ data during all phases of the system life. As this field is

constantly growing, it is not easy to point out an exhaustive list of the major

providers. However, at the time of writing, some of the most noteworthy are

Tresorit [41], Spideroak [42] and McAfee Personal Locker [43].

2.2 Asymmetric vs Symmetric Cryptography

Since the first contributions of Shannon [44] in 1949 and Hellman and Diffie [45] in

1979 (which introduced for the first time the concept of public-key cryptography),

cryptography has constantly been an hot topic which has caught the attention of

both research and industry. Nowadays, the systems that provide confidentiality

and other security-related features are countless, and they are all based on cryp-

tographic techniques that can be connected to two main categories: asymmetric

and symmetric cryptography.

Generally, the main difference between the two categories lies on the fact that

asymmetric encryption uses a pair of mathematically related keys, each of which

decrypts the encryption performed using the other, whereas symmetric encryption

requires the same key to be used for both encryption and decryption.

Asymmetric encryption is usually based on the hardness of some mathematical

problem which cannot be efficiently solved in polynomial time. This is the reason

why asymmetric cryptography has traditionally been labeled as more costly (in

terms of computational load) than symmetric cryptography. Due to this differ-

ence, asymmetric cryptography found its success in applications based on digital

signature, integrity verification and emails, whereby the ”sender” does not need

to share a secret with the ”recipient” in order to send him an encrypted message

Chapter 2. State of the Art 18

that only the recipient can decrypt. As an example, RSA [46] is an asymmetric

encryption algorithm which is among the most widespread nowadays.

In contrast, symmetric cryptography can be considered the de-facto standard for

guaranteeing data confidentiality, due to its better performance even when deal-

ing with large amounts of data. In symmetric encryption, the same cryptographic

key is used with the underlying algorithm (cipher) to encrypt and decrypt data,

hence it must be kept secret and securely shared between the sender and the recip-

ient. As opposed to asymmetric cryptography, in symmetric cryptography data

are encrypted and decrypted by applying some sequence of complex operations

which, chained together, have the property of making the final output impossible

to invert, meaning that the original input cannot be obtained. As an example,

AES (Advanced Encryption Standard) [47] a block-cipher which is the standard

encryption method in data encryption, belongs to this family.

In the solutions we describe in this manuscript, when encrypting users’ data we

always refer to symmetric encryption, due to the necessity of being able to encrypt

and decrypt large files as well as minimizing the performance impact for users.

2.3 Probabilistic vs Deterministic Encryption

In addition to the distinction between symmetric and asymmetric, an encryption

algorithm can also be classified as probabilistic or deterministic. An encryption

algorithm is probabilistic when it uses randomness while producing the ciphertext.

More precisely, given a plaintext message M and an encryption key K, multiple

executions of the encryption algorithm will yield different ciphertexts which, given

the decryption key, can all be decrypted to the same plaintext M . On the other

hand, deterministic encryption by definition does not involve any randomness,

meaning that given a plaintext message M and an encryption key K, multiple

executions of the encryption algorithm will always yield the same ciphertext.

This distinction implies that regardless of being symmetric or asymmetric, the de-

gree of secrecy provided by an encryption algorithm may be affected by whether

it is probabilistic or not. Indeed, a ciphertext encrypted with a pure determin-

istic encryption algorithm may leak some information to an attacker (e.g. an

eavesdropper) who may be able to recognize known ciphertexts and perform a

ciphertext-only attacks such as statistical or brute-force. The former, as shown in

Chapter 2. State of the Art 19

the explicative example of Fig. 2.2, consists of finding patterns in the frequency

of ciphertexts that can be linked to the frequency of known plaintexts. The latter

would consist of encrypting random or chosen plaintexts and checking whether the

resulting ciphertext matches the target ciphertext.

Figure 2.2: Example of weak deterministic encryption

The property that determines whether an encryption algorithm is vulnerable to

this kind of leakage is known as semantic security. In short, semantic security

requires that given the encryption of any message M and its size, an attacker

cannot determine any partial information on the original message.

More formally, such a property can be defined as follows:

• The adversary (attacker) chooses two messages: M0 and M1.

• We encrypt one of these messages: c = E(K,Mb). Given the ciphertext c,

the adversary has to guess which message was ciphered.

• We define the following event: Mb = { adversary A decides that Mb is ciphered}.

• The encryption function E is semantically secure if for all computationally

bounded adversaries A the advantage |Pr(M0)Pr(M1)| is negligible.

Depending on the family to which the encryption algorithm belongs, this require-

ment may have different implications. In asymmetric cryptography, semantic secu-

rity means that it must be unfeasible for a computationally bounded (with respect

to the hardness of the underlying mathematical problem) adversary to derive sig-

nificant information about the plaintext when given only its ciphertext and the

corresponding public encryption key. On the other hand, in symmetric cryptog-

raphy semantic security implies that an adversary must not be able to compute

Chapter 2. State of the Art 20

any function on the plaintext from its ciphertext. Such a requirement can also

be seen as an adversary that given two plaintexts of equal length and their two

respective ciphertexts, cannot determine which ciphertext belongs to which plain-

text. In other words, the knowledge of a ciphertext and its size do not reveal any

additional information on the plaintext. This concept is equivalent to the concept

of perfect secrecy introduced by Shannon [44].

As an example of probabilistic encryption algorithm, it is worth mentioning the

well-known ElGamal [48] asymmetric cryptographic scheme, which introduces ran-

domness in the encryption process by encrypting the plaintext with the public key

to the power of a random number. More precisely, given a message M and a

public key defined by the tuple (G, q, g, h), the ciphertext (C1, C2) is calculated as

gy,M ′ · hy and is equivalent to (gy,M ′ · (gx)y), where x is the private key of the

recipient (therefore it is kept secret), M ′ is the element corresponding to M in the

group G and y is a random value chosen by the sender at encryption time. When

it comes to decryption, the recipient is given a tuple (C1, C2), hence he first calcu-

lates the shared secret s = C1
x and then M ′ = C2 ·s−1 which can be converted back

to the original message M . In such a scheme, the use of the random y improves

security since allows to generate different ciphertexts for the same plaintext. Most

important, y is not needed by the recipient for decrypting a ciphertext.

On the other hand, a classic example of a pure deterministic encryption algorithm

is AES in ECB [49] mode. Indeed, when AES, which is a block cipher, is used in

ECB mode, each block of the plaintext is encrypted independently of the other

blocks. Despite the block cipher algorithm being recognized as secure, such a

configuration raises the critical issue of allowing for statistical frequency-based

attacks due to the limited size of each block, namely 16 bytes in AES.

Fortunately, in symmetric encryption algorithms that are based on block ciphers,

a similar property can be achieved by employing a widespread technique known as

block chaining. More precisely, some sort of pseudo-randomness can be introduced

by re-using the output of the encryption of block i− 1 as input for the encryption

of the block i. As an example of this principle, AES when used in Cipher Block

Chaining (CBC) [49] mode uses block chaining in order to make the encryption

more secure, as shown in Fig. 2.3. In practice, each ciphertext Ci is calculated as

the result of the following operation EK(Pi ⊕Ci−1), except C0 which is the result

of EK(P0⊕ IV), where IV is a random initialization vector. In other words, each

block of the plaintext is first XORed with the encryption of the previous block

Chapter 2. State of the Art 21

and then encrypted using the encryption key. This way, the same block will yield

different ciphertexts depending on its location, resulting in pseudo-randomness

being achieved.

Figure 2.3: Diagram showing how AES works in CBC mode

2.4 Data Compression

In both network and storage applications, performance is often improved by em-

ploying data compression techniques. Such techniques are based on the objective

of encoding a given data segment with a lower number of bits than the origi-

nal representation. As a straightforward example, by doing that an application

can speed up the transfer of a file over the network. Depending on the strategy

adopted, compression can be lossy or lossless.

A compression technique is defined as lossy when some information, that are con-

sidered unimportant, are actually removed from the original data segment in a

way that the final quality of the resulting compressed data is not affected. As

an example, this kind of compression techniques is very common in multimedia

scenarios such as audio and video encoding formats (e.g. MP3 [50], DVD [51])

where the compression algorithm is based on the assumption that human beings’

senses are not developed enough to perceive all details.

On the other hand, a compression technique is defined as lossless when the pro-

cess is fully reversible, meaning that no information is lost during the compression

phase. Therefore, upon a decompression, that is the inverse operation of compres-

sion, the original data segment can be fully recovered. This family of compression

techniques exploit the high presence of redundancy in real data in order to rep-

resent information more concisely by eliminating redundancy. These techniques

Chapter 2. State of the Art 22

have become very common in a variety of daily life applications. As an example,

the widespread ZIP method is based on the compression algorithms family known

as LZ (Lempel-Ziv) [52]. Also, similar methods are used in other popular data

formats such as PNG [53] and GIF [54].

2.4.1 Data Deduplication

Data deduplication can be seen as a special kind of lossless compression technique

applied with a higher level of granularity. Instead of individually compressing

the data segment itself by trying to represent it with a lower number of bits, in

a cloud storage environment redundancy may likely be found globally, meaning

across all users’ files. Therefore, a significant amount of storage space may be

saved by simply storing only unique data segments and, upon an upload or during

a postponed batch process, checking whether a given data segment has already

been stored in the past.

The global redundancy assumption can be easily verified in the reality. Indeed,

in a scenario where many, potentially thousands of users store their files in the

Cloud, chances are good that the same file, or a very similar one, will be up-

loaded by two or more users. In an era where companies and, more in general,

users want to enjoy all the benefits of Cloud Storage along with low costs, great

performance and usability, deduplication has become a de-facto standard for the

majority of the Cloud Storage providers. We will now describe all possible variants

of deduplication.

2.4.1.1 Source-based vs target-based Deduplication

The first differentiator is represented by where deduplication takes place. Indeed,

deduplication can be performed either locally, meaning on the device of the user,

or remotely, meaning on the Cloud Storage servers. For instance, the latter is often

the case for personal Cloud Storage. Deduplicating data locally brings the useful

advantage of being able to save not only storage space but also the consumption

of network bandwidth. However, as explained in [55], such a system would easily

allow a malicious user to play with the storage system in order to learn whether

a file was already stored, which may represent a serious confidentiality threat.

Indeed, in some contexts, a malicious user may exploit such a weakness in order

Chapter 2. State of the Art 23

to obtain very sensitive and confidential information. Such an attack would not

be easy to detect since it does not incur any violation of the underlying protocol.

Data can also be deduplicated remotely, meaning that users will upload their data

as usual while the Cloud Storage provider will take care of performing the actual

deduplication operation, which consists of looking for an identical copy of the data

segment and decide whether it needs to be physically stored or not.

2.4.1.2 Inline vs Post-processing Deduplication

Depending on the moment at which deduplication is performed, it can be either

inline or post-processing. When the inline approach is adopted, data is dedupli-

cated immediately, meaning that the storage server checks whether a data segment

is already stored as soon as it is uploaded by the user. This approach is quite com-

mon in most of the file storage systems, whereby saving bandwidth in addition

to storage space is crucial from a performance standpoint. On the other hand,

when post-processing deduplication is chosen, data deduplication takes place after

the upload. Usually, post-processing deduplication takes place at regular intervals

(e.g. once a day). Therefore, this approach lends itself very well to backup applica-

tions, whereby snapshots are submitted at regular intervals and can be processed

in batch mode after being submitted.

2.4.1.3 Single-user vs Cross-user Deduplication

Data deduplication solutions can also be classified according to their scope, mean-

ing the set of users whose files can be deduplicated. In real scenarios, cross-user

deduplication, that is deduplication across multiple users, certainly is the most

popular configuration. Indeed, enabling deduplication across all users of the sys-

tem greatly increases the chances of finding redundant data, hence achieve sig-

nificant storage space savings. However, making cross-user deduplication secure

raises the issue of putting in place a mechanism to enable users to use the same

encryption key for a given data segment without compromising confidentiality,

that is the problem we tried to solve in ClouDedup and PerfectDedup. Moreover,

cross-user deduplication may occur across users belonging to the same organization

(e.g. employees of a company) or a much larger set of unrelated users such as all

clients of a public cloud storage service. On the other hand, when deduplication is

performed only on the data of a single user (single-user deduplication), encryption

Chapter 2. State of the Art 24

can be safely added without negatively affecting deduplication effectiveness, as

long as the same key is used to encrypt all data segments. Nowadays, single-user

deduplication is far from being widespread because of its poor effectiveness, which

depends on the fact that the degree of redundancy within files of a single user is

usually low.

2.4.1.4 File-level vs Block-level Deduplication

Finally, based on the data segment granularity, deduplication can be either file-

level or block-level. As the same suggests, block-level deduplication is more fine-

grained with respect to file-level deduplication. Indeed, in block-level deduplica-

tion a file is first split into blocks and then each block is deduplicated individually.

The size of a block can be either fixed or variable, depending on the chunking

method that is adopted (see section 2.5 for further details). According to re-

cent studies [12], block-level deduplication achieves higher storage space savings,

therefore it is recommended in order to maximize the benefits of deduplication.

However, the drawback of this technique resides in the fact that handling multi-

ple blocks per file (potentially thousands) may introduce a significant overhead in

terms of metadata storage. Indeed, the deduplication server has to keep track of

the links between logical blocks and the corresponding physical copies as well as

the structure of each file, so that when a file is requested by its owner, the file can

be correctly reconstructed by merging its blocks. Also, upon checking whether a

block was already stored, the deduplication server should compare a block (or its

ID) with all blocks previously stored, which may lead to a non-negligible compu-

tational overhead. For these reasons, a system meant for block-level deduplication

should be carefully designed with scalability as a primary design goal.

2.4.1.5 State-of-the-art in the Industry

As stated above and shown in Table 2.1, deduplication has become a de-facto

standard in the industry: most of the major vendors of large-scale storage sys-

tems employ deduplication in order to improve performance and save significant

amounts of storage space. From our study, as a confirmation of our statements,

we found out that the vast majority of the commercial systems currently avail-

able make use of inline source-based block-level deduplication, which clearly is the

Chapter 2. State of the Art 25

configuration that brings the best results in terms of storage space savings. Un-

fortunately, as introduced above, such a configuration may present a few security

issues that need to be addressed in order to guarantee data confidentiality.

C
h
ap

ter
2.

S
tate

of
the

A
rt

26

Enterprise Product Name In-line / Post-process Target-based / Source-based Block level / File Level Variable length / Fixed Length Cross-site Deep / ID Comparison Enterprise Backup VM Backup Personal use Mean space saving Platform

Nine Technology - In-line Source-based Block level - - - Yes No Yes - -

Opendedup - In-line Both Block level Fixed No - - Yes Yes 90-95% Windows and Linux

DELL DR4000 In-line Both Both Variable Yes - Yes Yes - - Intel-based servers

Napatech - In-line Source-based Block-level - Yes - Yes - No - -

ASIGRA Asigra Cloud Backup In-line Source-based Block-level - Yes - Yes - Yes - -

AVAMAR - In-line Source-based Block-level Variable No - Yes Yes No - -

NETAPP - - - - - - - - - - - -

Oracle ZFS Deduplication Both Both Both - No Just Hash - - Yes ? ZFS volumes

CommVault Simpana Software In-line Source-based - - Yes - Yes - No 90,00% -

HP HP StoreOnce In-line Source-based Block-level - Yes - Yes Yes - - HP Cloud

Microsoft Windows Server 2012 Post-process Source-based Block-level Variable No - - - Yes - Windows Server

QUANTUM DXi disk-based deduplication In-line Source-based Block-level Variable - - Yes - - - -

StarWind iSCSI SAN storage In-line Source-based Block-level - No - Yes Yes - - Windows

VMWare vSphere Post-process Target-based / Source-based Block-level - Yes - Yes Yes - - VMWare

EMC EMC VNX In-line Source-based Block-level Variable - - Yes Yes No - EMC Products

IBM IBM System Storage N series Deduplication In-line Source-based Block-level Variable Yes Deep Yes Yes No - IBM Backup

EXAGRID - Post-process Target-based - - - - Yes Yes - - Several backup softwares

SYNCSORT Data Protection for Reduction and Deduplication In-line Source-based Block-level Variable - - Yes - No - -

SYMANTEC NetBackup and Backup Exec In-line Both Block-level Variable Yes - Yes Yes - - Symantec Backup Products

Table 2.1: List of existing commercial solutions for data deduplication

Chapter 2. State of the Art 27

2.5 Data-chunking Techniques

As stated above, there has been concrete evidence that block-level deduplication

outperforms file-level deduplication, meaning that it achieves higher storage space

savings. However, when dealing with block-level deduplication, it is crucial to

decide at which points a file can be split into chunks, since a good or bad choice

of a block boundary may have a high impact on the ability of detecting duplicate

blocks, hence on the final deduplication ratio. For instance, splitting a file into

fixed-size blocks has proved to achieve low savings due to a phenomenon known

as ”boundary shifting”: if a file F is modified by inserting even a single byte in

the middle of a sequence of blocks, all block boundaries will be shifted, resulting

in a new sequence of different blocks. For this reason, the algorithm used for

the detection of block boundaries plays an important role, hence it needs to be

properly chosen and then tuned.

Content-based data-chunking algorithms Nowadays, all major data-chunking

algorithms share the following objective: the boundary shifting problem can be

avoided by making chunk boundaries self-adapting and dependent on the content

of the block, instead of its position. This can be achieved by employing a principle

known as ”sliding window”, which requires to scan the entire file by moving a

window by one byte at a time. At each iteration of the scan, the algorithm

computes a fingerprint (or a checksum or a hash) of the current window and, if

the fingerprint meets a given property, the current block boundary is determined

and the algorithm starts looking for next block boundary.

More precisely, algorithms based on the sliding window principle work as follows:

a pre-determined integer I is defined, a sliding window of a pre-defined width is

moved across the file, and at every position in the file, the fingerprint of the bytes

within this window is calculated. A position k is declared to be a chunk boundary

if the fingerprint computed on that position matches with the integer I at position

k. Such an algorithm assures that a chunk boundary is selected according to some

property no matter where the chunk is located in the file.

For efficiency reasons, fingerprints are usually calculated with a particular family of

hash functions which goes by the name of ”Rolling Hashes”: the main advantage

of this family of hash functions is the ability of computing the hash value of a

sequence of bytes (sliding window) in a very efficient way, which consists of reusing

the previously calculated hashes. This is possible thanks to a special property: a

Chapter 2. State of the Art 28

rolling hash function can quickly compute the hash value of the new window by

taking as input the old hash value, the byte removed from the window and the

byte that has just been added.

It is worth pointing out that the solutions we propose in this manuscript are

completely independent from the underlying data-chunking algorithm, meaning

that they are fully compatible with any algorithm. Therefore, this problem is out

of the scope of our work.

2.5.1 Rabin Fingerprinting

To the best of our knowledge, a commonly used and very efficient rolling hash

algorithm for generating variable-size blocks is Rabin Fingerprinting [56], that was

introduced by Michael O. Rabin in 1981. This scheme is based on polynomials

over a finite field. More precisely, given a message of n bits m0, ...,mn−1, it is

represented as a polynomial of degree n− 1 over the finite field GF (2) [57].

f(x) = m0 +m1x+ ...+mn−1x
n−1 (2.1)

A random irreducible polynomial p(x) of degree k over GF (2) is picked, and the

fingerprint of the message m is defined as the remainder r(x) obtained after the

division of f(x) by p(x) over GF (2), which is a message of k bits, with k ≤ n.

In practice, depending on how the algorithm is configured, Rabin Fingerprint-

ing makes use of a 48 byte sliding window which is moved over the file in order

to compute the Rabin fingerprint of the current window. Given the fingerprint,

the algorithm computes the modulo (the remainder r(x)) between the fingerprint

(f(x)) and the expected average size of a block (p(x), set to 8 KB by default),

which is a constant value. If the result is equal to a pre-defined prime number (set

to 3 by default), then a block boundary is determined and a new block begins.

Also, a maximum block size is defined so that a block boundary is determined even

when no match has been found. Since the output of Rabin fingerprints are pseudo-

random, the probability of any given chunk of 48 bytes hitting a block boundary

is very low, therefore this has the effect of producing variable size blocks which

are resistant to the aforementioned boundary shifting phenomenon.

Chapter 2. State of the Art 29

An accurate C implementation of the Rabin Fingerprint scheme is publicly avail-

able and released as open-source code [58].

2.6 Convergent Encryption

As mentioned above, Convergent Encryption (CE) is a deterministic and sym-

metric encryption technique that has been proposed long ago [4] as a simple but

effective solution to cope with the conflict between deduplication and encryption.

The novelty of CE resides in the way the encryption key is generated: instead

of using a random key or a user’s password-dependent key, the encryption key

is deterministically derived from the data segment that is being encrypted (the

plaintext). The key is usually obtained by calculating the unkeyed secure hash of

the data, optionally concatenated to some additional information. This feature

enables all users to easily generate the same encryption key for the same data

segment, resulting in the same ciphertext. Therefore, an untrusted Cloud Stor-

age provider will be able to compare two encrypted data segments and determine

whether they are identical or not, without having access to the original content of

the data segment or requiring any extra information. Moreover, users do not need

to put in place any coordination in order to agree on the key to be used for the

encryption.

More formally, CE can be described as follows: Alice wants to encrypt her mes-

sage M , hence derives a key K = H(M) and then encrypts the message as

C = E(K,M) = E(H(M),M), where H is an unkeyed secure hash function

and E is a symmetric block cipher. C is the ciphertext that will be uploaded to

the Cloud and Alice retains the decryption key K. Bellare et al. [5] have formal-

ized this concept and named it as Message-Locked Encryption (MLE). They also

introduced a number of variants of MLE, which differ from each other in the way

the encryption key K is generated and how the decryption process takes place.

Because of its simplicity and effectiveness, CE has been widely adopted in the

industry and exploited in several commercial products [26]. For instance, Bitcasa

[59] not long ago launched an offer based on an enhanced version of CE, called zero-

knowledge encryption, and unlimited storage space. However, after CE has been

massively adopted in the industry, researchers have conducted in-depth studies [5]

Chapter 2. State of the Art 30

aimed at demystifying CE and bringing to light the existing weaknesses of this

approach.

The common versions of CE are vulnerable to attacks that can compromise data

integrity. As an example, an adversary A may run a duplicate-faking attack by

uploading random fake ciphertexts to the Cloud. Whenever a user U will upload a

valid ciphertext C, generated from a message M , such that its hash H(C) matches

the hash of one of the random fake ciphertexts previously uploaded by A, the valid

ciphertext C will be deduplicated and thus will not be stored. Upon retrieving

the ciphertext C, the user U will decrypt it and obtain an error or a message

different than M , resulting in data integrity being compromised. As a solution,

the user U may pre-compute a tag T and upload it along with the ciphertext

C as follows: C||T , where || denotes the concatenation operator. This way, upon

retrieving the ciphertext C, the user U will be able to verify whether the decrypted

data segment corresponds to the retrieved tag. If not, the user U will be aware of

the duplicate-faking attack attempt and raise an error. However, such a solution

is not complete since it does not protect against erasure attacks, meaning that

duplicate-faking attacks can be successfully detected but not prevented. Indeed,

achieving protection against erasure attacks is far from being straightforward.

Most importantly, the authors in [5] give a formal proof of the fact that all CE

scheme cannot achieve semantic security [60] for all messages. In short, if the

message M belongs to a finite domain S of size s, then an adversary A given a

ciphertext C can always recover M in at most s trials. This is possible thanks to

the fact that both the encryption and the key are fully deterministic. Therefore,

a CE scheme can only achieve semantic security for unpredictable messages (high

entropy), meaning that the encryptions of two unpredictable messages must be

indistinguishable. On the other hand, this implies that if an adversary A has

sufficient knowledge to narrow down the set of possible values of M to a small

enough subset of S (predictable messages), semantic-security cannot be guaranteed

anymore. This crucial limitation is due to the close relation between the data and

the encryption key, which makes CE vulnerable to a category of attacks known

as ”dictionary attacks”. As an example, a malicious Cloud Storage provider (the

adversary) without any knowledge on the original content of users’ data may try

to perpetrate a dictionary attack whose steps can be summarized as follows:

• given a target file F, guess its content either randomly or by using a template;

Chapter 2. State of the Art 31

• if block-level deduplication is used, split F into blocks using the same method

used by clients;

• encrypt data segments with CE in order to obtain the ciphertexts;

• compare each ciphertext with all encrypted data segments in storage (by

using their hash as unique identifier or by performing a deep comparison);

• if there is a match for all data segments, then the attack has been perpetrated

with success, hence the content of the file has been revealed; if not, repeat the

previous steps by re-using the data segments for which a match has already

been found.

Such a simple attack is also known as ”confirmation-of-a-file” (COF) attack and

can allow an adversary who has direct access to the storage, such as the Cloud

Storage provider or a malicious insider, to easily check whether a file has been

stored or not. Also, such an attack may be extremely effective in those scenarios

where the adversary has some pre-knowledge on victim’s data. In other words, the

adversary may know most of the content of the file (e.g. the template) and try to

guess the missing parts (e.g. the security code in a letter from a bank). This can

be done by running a brute-force attack which, although it would be costly and

time-consuming, will eventually reveal the content of the whole file. Such an at-

tack is known as ”Learn-the-remaining-information” (LRI). These two weaknesses

are both strictly related to the nature of CE itself, which by definition links the

encryption key to the data that is being encrypted. This proves that CE cannot

be used as-is in order to protect users’ data and guarantee full confidentiality.

A simple solution to overcome this severe weakness of CE would consist of intro-

ducing a secret, known only by a set of users, upon generating the encryption key

for a given data segment. For instance, this may be achieved by using a secure

keyed hash function with a key shared across all users willing to enable deduplica-

tion of their files. However, such a solution would present the severe drawback of

greatly decreasing deduplication effectiveness, which would be possible only across

the files of those users that share the secret.

In addition to the security issues introduced by the encryption layer, deduplication

may introduce additional security issues that may further weaken data confiden-

tiality, no matter what encryption technique is used. More precisely, the fact that

Chapter 2. State of the Art 32

Solution CE-based Client-side Popularity Distinction Block-level No Secret TTP
[4] X X X X X X
[26] X X X X X X

DupLESS X X X X X X
iMLE X X X X X X

[7] X X X X X Semi-trusted
PAKE X X X X X X

ClouDedup X X X X X X
PerfectDedup X X X X X Semi-trusted

Table 2.2: Summary of the relevant related work

the Cloud Storage provider knows the structure of a file, its owners, the access pat-

terns and the frequency of each data segment may give him the ability of inferring

some information on the file and revealing, at least in part, its original content,

even when data segments are securely encrypted. We studied this problem and

show our results in next chapter.

2.7 Existing Approaches for Secure Data Dedu-

plication

In this section, we review the most relevant research contributions targeting the

problem of secure data deduplication. For each them, we summarize the main

characteristics and point out the drawbacks which prevent it from being a suitable

solution and motivated us to propose ClouDedup and PerfectDedup. Also, in Table

2.2 we summarize the main features of each solution in order to make comparison

easier.

2.7.1 Convergent Encryption

As mentioned earlier in this manuscript, Convergent Encryption seemed to be a

good candidate to achieve both confidentiality and deduplication thanks to its

ease of implementation and high practicality. However, researchers showed that

it suffers from critical weaknesses which do not ensure protection of predictable

files against dictionary attacks [14]. In a scenario where sensitive data must be

protected (e.g. payslips, emails and letters with passwords, etc.), such a weakness

is too severe to be tolerated.

Chapter 2. State of the Art 33

In order to overcome this issue in a simple way and without losing the advantages

of CE, Warner and Pertula [14] have proposed a simple workaround which consists

of adding a secret value S to the encryption key. Deduplication will thus be applied

only to the files of those users that share the secret. The new definition of the

encryption key is K = H(S|M) where | denotes an operation between S and M .

However, this solution overcomes the weaknesses of convergent encryption at the

cost of dramatically limiting deduplication effectiveness, which is known to become

more effective when expanding its scope. Most importantly, confidentiality may

be broken by just learning the secret, which would compromise the security of the

system.

As opposed to this workaround, the work behind ClouDedup and PerfectDedup,

and more generally behind the whole thesis, has been conducted with more ad-

vanced goals in mind. Our main goal was to come up with a secure yet practical

solution capable of providing both full confidentiality and the highest deduplica-

tion ratios. Indeed, any solution that partially satisfies these two requirements or

fully satisfies just one of them, would far from being suitable for real scenarios,

therefore its impact and relevance would be rather limited.

In both ClouDedup and PerfectDedup, we propose two different approaches to

achieve full confidentiality of sensitive data without decreasing the deduplication

ratios that are normally achievable. Indeed, we keep enjoying the advantages of

Convergent Encryption while protecting sensitive data by adding a deterministic

encryption layer which is not vulnerable to dictionary attacks, hence cannot be

broken by malicious entities.

2.7.2 DupLESS

A relevant contribution on secure deduplication is DupLESS [25] which, similarly

to ClouDedup and PerfectDedup, makes use of deterministic encryption. More

precisely, DupLESS uses a slightly modified version of Convergent Encryption in

which the novelty is introduced in the key generation process. In DupLESS, the

encryption key is still generated as the result of a deterministic function calculated

on the data segment to be encrypted, however this is done with the aid of a

trusted key server storing a secret value. The role of this key server is to run a

privacy-preserving protocol with the user who wishes to upload a file. The privacy-

preserving protocol allows the user to compute a pseudo-random function using as

Chapter 2. State of the Art 34

input the hash of the file being uploaded and the secret value stored at the trusted

key server. However, the computation is carried out in a way that both inputs

are not disclosed to the other party. In practice, during the computation the user

cannot learn the secret stored at the key server and the key server cannot learn

the hash of the file being uploaded.

Thanks to such a protocol a user can generate a deterministic and data-dependent

encryption key without disclosing any information on his file, so that all users will

encrypt the same file with the same key, resulting in the same ciphertext that can

be easily deduplicated by the untrusted Cloud Storage Provider. However, this

scheme presents a few drawbacks. First, if an attacker learns the secret stored at

the key server, confidentiality can no longer be guaranteed. Also, if in addition to

discovering the secret the attacker has also access to the storage (e.g. the CSP),

all stored files are subject to the same attacks to which CE is vulnerable, that

is dictionary attacks. Second, DupLESS suffers from a severe scalability issue.

Indeed, since the generation of the encryption key requires to run an interactive

protocol, consisting of multiple round-trips between the user and the key server,

extending the scheme to block-level deduplication would introduce a severe per-

formance issue due to the high latency introduced by the need to run the protocol

once per block, meaning that uploading a file may potentially require to run the

protocol thousands of times.

As opposed to DupLESS, both ClouDedup and PerfectDedup aim at secure yet

efficient cross-user block-level deduplication. Indeed, the solutions we introduced

in this manuscript have been designed with the support to block-level deduplica-

tion as a design goal. Also, PerfectDedup does not rely on any trusted component

with respect to the storage of any secret, resulting in a scheme much more robust

against compromised components.

2.7.3 iMLE (Interactive message-locked encryption and se-

cure deduplication)

Another relevant and recent work in this field is iMLE [27], which proposes an

elegant scheme for secure data deduplication based on an interactive protocol

running between the user an the untrusted cloud storage provider, in which the

former is able to detect whether a file is a duplicate (it has already been stored

Chapter 2. State of the Art 35

in the past) while the latter does not learn anything about the content of the

file. The interaction occurring between the user and the cloud storage provider

is a fundamental ingredient to achieve full confidentiality for all files, including

the predictable and correlated ones. Differently from traditional approaches, the

main novelty that has been introduced by this scheme is the fact that the user can

determine whether a file can be deduplicated based on the result of an interactive

protocol, meaning that the Cloud Storage Provider does not need to have access to

the file in order to compare it with the other files currently in storage. This idea is

similar to the one behind PerfectDedup, where the user determines the popularity

of a data block through the execution of a secure lookup protocol based on Perfect

Hashing.

Interestingly, an additional novelty introduced by this scheme is incremental up-

dates. As opposed to any other scheme that has been proposed so far, iMLE

allows to update a previously uploaded and encrypted file without re-encrypting

and re-uploading the entire file from scratch, meaning that the cost (in terms of

computational and network overhead) of an update is proportional to the distance

between the previous version of the file and the current one.

However, as acknowledged by the authors themselves, this scheme suffers from a

critical drawback in terms of computational and network overhead. In other words,

this scheme is purely theoretical and its performance is far from being practical,

hence this scheme cannot be adopted yet in real scenarios. The main reason

behind this limitation is the extensive use of fully homomorphic encryption [28] in

all phases of the interactive protocol, which is well-known to be still unpractical

due to the prohibitive overhead in terms of computation and increase of data size.

As opposed to iMLE, both ClouDedup and PerfectDedup have been designed

with efficiency and practicality in mind. Moreover, the performance analysis that

have been conducted on their prototypes have clearly shown storage, network and

computational overhead are affordable and not far from real production systems.

This is also due to the use of symmetric cryptography and the absence of any

encryption technique based on asymmetric cryptography.

Chapter 2. State of the Art 36

2.7.4 Popularity-based Encryption

Recently, authors in [7] proposed a scheme which is based on the novel idea of

differentiating data protection depending on its popularity degree. More precisely,

the authors claim that in standard scenarios data belonging to several users is

very unlikely to contain sensitive data, while unpopular data, which belong to a

low number of users, might contain sensitive data. Starting from this simple yet

realistic assumption, authors also observe that popular data are those data that

we wish to deduplicate since they can bring higher storage space savings, while un-

popular data, for which there is a non-negligible probability of also being sensitive,

should rather be protected in order to keep them confidential. This being said, a

straightforward yet effective solution consists of encrypting popular data with con-

vergent encryption and unpopular data with a stronger encryption technique (e.g.

semantically-secure encryption). Such a solution would bring the advantage of

achieving almost optimal deduplication ratios (popular data can be easily dedu-

plicated) without decreasing the level of confidentiality for unpopular and thus

potentially sensitive data. The only price to pay is to lower the confidentiality of

popular data. However, in most scenarios such a risk is acceptable since popular

data hardly contain sensitive information, therefore even in the unfortunate case

of an attack there would be no serious data leak.

Authors in [7] tried to implement the aforementioned idea by proposing a scheme

that makes use of a mixed cryptosystem combining convergent encryption and a

threshold encryption scheme [61]. More precisely, a trusted server takes care of

keeping track of data popularity (based on updates sent by users) and notifying

users as soon as a file becomes popular and thus needs to be re-encrypted with

convergent encryption in order to enable cross-user deduplication. At the begin-

ning of the system life, every file is considered unpopular and encrypted with two

encryption layers: the first one is convergent encryption while the second one is an

ad-hoc threshold cryptosystem based on asymmetric cryptography. As soon as a

file reaches the popularity threshold (a pre-defined number of users uploaded the

same file), the Cloud Storage Provider has enough information (keys) to remove

the threshold cryptosystem layer and obtain the file encrypted with convergent

encryption.

Unfortunately, this scheme suffers from a few drawbacks that have been addressed

in PerfectDedup, which is also based on the popularity distinction idea. First,

Chapter 2. State of the Art 37

the system suffers from a significant storage and bandwidth overhead. Indeed, for

each unpopular file the user uploads two encrypted copies, one encrypted with

a random symmetric key and one encrypted with the mixed encryption scheme.

In scenarios with a high percentage of unpopular files, the storage overhead will

be significant and nullify the savings achieved thanks to deduplication. Second,

the system proposed in [7] relies on a trusted component which provides an in-

dexing service for all data, both popular and unpopular. Third, because of the

aforementioned reasons, the effectiveness of the system proposed in [7] is limited

to file-level deduplication, which is known to achieve lower space savings than

block-level deduplication. Fourth, both the client and the CSP have to perform

complex cryptographic operations based on threshold cryptography on potentially

very large data. Fifth, the scheme proposed in [7] requires an initialization phase

in order to setup and distribute key shares among users.

As opposed to [7], although PerfectDedup also differentiates the encryption tech-

nique based on the popularity of the data segment, our scheme proved to achieve

the same advantages in terms of data confidentiality with a much better per-

formance. First, at any point of the system life only one version of each data

segment is stored, resulting in a negligible (almost null) storage overhead. Second,

PerfectDedup also makes use of a trusted component for indexing data segments,

however the required amount of storage is much lower than [7]. Third, PerfectD-

edup has been designed to be efficient when implementing cross-user block-level

deduplication which is known to achieve the highest deduplication ratios. Finally,

the computational overhead for all components of the system is extremely low,

even when performing the cryptographic operations, which are all based on sym-

metric cryptography.

2.7.5 PAKE

To the best of our knowledge, one of the most recent and relevant works in the

field of secure data deduplication is PAKE [6], in which the authors claim to

propose the first scheme that achieves secure deduplication without the aid of any

additional independent servers. In [6], authors introduce a novel oblivious key-

sharing protocol called ”PAKE”, which aims at allowing users to collaboratively

perform client-side cross-user deduplication without relying on the support of any

trusted entity.

Chapter 2. State of the Art 38

Similarly to iMLE and PerfectDedup, in this scheme the Cloud Storage Provider

is not responsible for determining whether or not a file can be deduplicated, hence

it does not need to compare the new encrypted file with the ones already in

storage. Rather, this operation is entirely handled by users and the Cloud Storage

Provider is left with raw storage and coordination responsibilities. To give more

details, before uploading a file the user collaboratively runs the protocol with

other users in order to autonomously discover whether a file is a duplicate and,

if this is the case, securely obtain the encryption key with which it has been

previously encrypted by the first user who uploaded it. This way, the user can

encrypt the file using the same key and thus get the same ciphertext (assuming

that a deterministic encryption algorithm is used), which finally enables him to

successfully perform client-side deduplication without exposing the original file to

the potentially untrusted Cloud Storage Provider.

Although the application of the PAKE protocol in the field of secure data dedu-

plication can be considered an important novelty, the algorithms behind the pro-

tocol itself cannot be considered as such. Indeed, PAKE stands for Password

Authenticated Key Exchange and corresponds to a family of protocols [62] that

is well-known in the literature. In short, the purpose of such protocols is to pro-

vide an interactive and secure method to allow two or more parties to establish

a cryptographic key based on the knowledge of a password, or more generally a

secret, without disclosing the secret to the other party in case of mismatch. The

idea behind PAKE is thus to employ a revised version of such a protocol to let

a user collaboratively retrieve (with the aid of the other users in the system and

the Cloud Storage Provider) the encryption key that has been previously used to

encrypt a popular file, using the hash of the file as password. Of course, this is

the case whenever the file is actually a duplicate. If it is not, the protocol returns

a random key. This means that if a file is a duplicate then it will be successfully

deduplicated since it will be encrypted with the same encryption key that has just

been retrieved through PAKE, otherwise it will be encrypted with a random key

and stored normally.

It is worth pointing out that in order to reduce the number of users involved in the

protocol, the authors introduce a relaxed security definition by associating a short

hash to each file. Thanks to this short hash, the user can select the subset of users

with whom to run the protocol, as there is a non-negligible chance that one them

uploaded the same file in the past. Most importantly, such a leak does not weaken

Chapter 2. State of the Art 39

confidentiality since the hash is short enough to provide no useful information to

the Cloud Storage Provider due to huge number of collisions.

Although the authors implemented and evaluated a proof-of-concept prototype

which proved to be both effective and efficient, the scheme presents a few limi-

tations which makes its adoption in real scenarios challenging. First, the scheme

requires a sufficient number of users to be simultaneously online in order to run

the protocol, otherwise a potentially duplicate may not be detected, resulting in a

decrease of the deduplication ratio. In order to prove that this does not severely

impact deduplication ratio, the authors assume that users stay online long enough

and their status (offline/online) is uniformly distributed over the time. However,

it is well-known that in real scenarios users have more irregular and hardly pre-

dictable behaviors [63], therefore it is unrealistic to make such an assumption on

the distribution of users’ statuses and predict that a given number of users will

be online at a given time. Second, once again, since the user needs to run an in-

stance of protocol for each file and each user, extending this scheme to block-level

deduplication would be unpractical.

Similarly to PAKE, PerfectDedup also leverages a secure client-side protocol in

order to enable the users to determine whether or not a data segment can be

deduplicated. Also, although in a very different way, PerfectDedup relies on col-

lision rates in order to guarantee confidentiality. More precisely, PerfectDedup

uses collision rates in order to assure that lookup queries issued by users do not

reveal the content of users’ data blocks. However, thanks to the use of a client-

server architecture, PerfectDedup proved to be much more scalable and easy to

integrate with real production environments. Indeed, PerfectDedup can easily

support block-level deduplication.

Chapter 3

Study on Deduplication

3.1 Introduction

Conflict between Encryption and Deduplication The main reason behind

the growing interest for secure data deduplication among security researchers is the

challenging research question due to the difficulty of solving the inherent conflict

between encryption and deduplication. Indeed, encryption and deduplication are

two techniques that are based on different foundations and do not share the same

goals. Encryption has the primary goal of making a ciphertext unlinkable to the

plaintext that originated id, especially when the same plaintext is encrypted by

different users. By contrast, deduplication requires a potentially untrusted entity

such as the Cloud Storage Provider to be able to compare data segments and

detect whether a given data segment is already in storage. When dealing with

encrypted data segments, perhaps encrypted by different users at different points

in time, this requirement implies that the Cloud Storage Provider must be able to

detect whether they were originated from the same plaintext.

Deterministic Encryption as a main building block Any practical solution

achieving secure deduplication of encrypted data requires deterministic encryption

as a main building block. Such a strict requirement is raised by the necessity of

generating identical ciphertexts for identical plaintexts, even when the encryption

is performed by different users. If such a requirement is not met, deduplication

becomes unfeasible due to the inability of the Cloud Storage Provider to detect

that two different ciphertexts are the result of the encryption of the same plaintext.

40

Chapter 3. Study on Deduplication 41

It is worth pointing out that the use of deterministic encryption does not only in-

clude Convergent Encryption. Indeed, deterministic encryption includes all those

solutions that are based on Convergent Encryption (which serves as a first encryp-

tion layer) and on top of which one or more deterministic encryption layers are

added. This is the case for many existing solutions including ClouDedup, which

is presented in next chapter.

However, we observed that even when data confidentiality is apparently guaranteed

by a strong form of deterministic encryption, the main requirement for secure data

deduplication, that is allowing the Cloud Storage provider to detect whether or

not two encrypted data segments are identical, may introduce a new potential

weakness which may lead to new kinds of attacks, such as statistical attacks, from

the Cloud Storage provider.

More precisely, this new weakness arises from the necessity of always encrypting

the same data segment using the same key material and the same input no matter

where (what file and what position in that file) the data segment is located. Such

a restriction is applied in order to always generate the same ciphertext and thus

make data segments deduplicable.

In practice, this scenario can be seen as a generalization of the well-known phe-

nomenon that occurs in symmetric block ciphers: to avoid statistical attacks, block

ciphers usually apply some kind of chaining between blocks in order to introduce

entropy even in those files with a potentially high level of redundancy. For in-

stance, this is the case of AES in Cipher Block Chaining (CBC) mode where a

random initialization vector is XORed with the first plaintext block and then every

encrypted block is XORed with the next plaintext block. Unfortunately, apply-

ing a similar technique in the context of the deduplication would negatively and

severely affect the deduplication ratio, therefore such an approach is not suitable.

Statistical Attacks Unfortunately, applying deterministic encryption without

any improvements may pave the way for a potential confidentiality threat that

needs to be assessed. Indeed, an adversary with direct access to the storage such

as the Cloud Storage Provider, may perpetrate an attack thanks to the knowledge

of a number of information that he can get without needing to decrypt users’ data.

More precisely, we can consider this kind of attack as a particular instance of a

practical ciphertext-only attack, where the attacker, that in this case may be the

Cloud Storage provider or a malicious insider, does not know how to break the

Chapter 3. Study on Deduplication 42

encryption algorithm, hence obtain the plaintext given a ciphertext, but he has

full access to the ciphertexts and an a priori knowledge of the plaintexts such

as their distribution, their size or their format. Thanks to these information, an

attacker may be able run statistical attacks, mainly based on frequency analysis,

on the ciphertexts in order to link them back to the plaintexts and thus break the

protection provided by the encryption layer.

In the context of block-level deduplication, since a fully deterministic encryption

technique is required, such an attack may allow the attacker to exploit the presence

of static data (e.g. predefined headers) in the plaintexts in order to efficiently

revert encryption for part of the encrypted data and try to guess the remaining

part through a brute-force dictionary attack. Moreover, since the feasibility of

frequency-based attacks is related to the underlying distribution of data segments,

there might be a direct relation between the data segment size and its distribution,

meaning that a low data segment size may make statistical attacks easier. If such

a relation does exist, we aim at determining whether increasing the block size can

alleviate this problem and, if this is the case, what block size assures an optimal

tradeoff between confidentiality, which is our primary goal, and deduplication

ratio, which should remain high enough not to lose the advantages of block-level

deduplication.

We aim at investigating this relation and the feasibility of frequency-based attacks

in real scenarios. The outcome of this study may have a crucial impact on the

security of the existing and future solutions. Indeed, in the worst case, this study

may reveal that deterministic encryption in block-level deduplication enables an

attacker with access to the storage to perpetrate frequency-based attacks, hence

introduces a potentially severe confidentiality threat affecting most of the solutions

based on deterministic encryption. On the other hand, in the best case, this study

may assess that frequency-based attacks are not feasible. Also, there might be

a tradeoff between deduplication savings and confidentiality, hence in this case

we aim at finding an operational point at which deduplication savings are still

significant and confidentiality is guaranteed.

Our Study Given these considerations regarding the likelihood of a statistical

attack, we decided to perform an in-depth study in order to assess whether the

information leaked because of the use of deterministic encryption in conjunction

with deduplication may actually put confidentiality at risk.

Chapter 3. Study on Deduplication 43

In order to do so and make the study even more valuable, we first ran a series of

experiments with two main goals in mind: first, we wanted to have a tangible proof

of the effectiveness of deduplication in real scenarios; second, we wanted to conduct

our security study using a realistic deduplication setup, including the average

block size for block-level deduplication. The latter is a fundamental starting point

for the security study since it affects the block frequency distribution and, as a

consequence, the likelihood of a statistical attack.

In addition to that, we also observed that none of the studies currently available in

the literature was comprehensive enough to answer our questions. This lack was

mainly due to the fact that all of them were conducted on experimental datasets

or particular datasets containing only specific kinds of data, which cannot be

considered as good candidates for representing real use-cases.

Experiments and Results For the above-mentioned reasons, we ran a number of

experiments on several real datasets belonging to the students and the staff of the

EURECOM research institute, whereby each dataset corresponds to a different

Cloud Storage use-case. The goal of these experiments was twofold. First, we

wanted to verify the space savings that are achievable by putting in place a data

deduplication solution. In particular, we wanted to find out what kinds of files

are more likely to contain duplicate segments and which data-chunking technique

achieves higher space savings. Also, we performed the same analysis with different

data-chunking techniques and varying data segment size and granularity.

The results provided the needed starting point for the security study, that is the

most effective data-chunking technique and the realistic average block-sizes. In

this regard, variable-size block-level deduplication with an average block size of

4, 8 or 16 KB proved to be the most effective strategy. Also, they provided

interesting hints and may be used as an additional informative support when

evaluating the right deduplication strategy to be used in a given context. A

comprehensive analysis along with an explanatory discussion can be found in next

sections.

We then used this setup to analyze the distribution of data segments popularity,

measure the entropy of the whole dataset and observe its evolution across differ-

ent average block sizes. Starting from that, we investigated the existence of the

potential confidentiality threats introduced by deduplication and verified whether

and when the information possessed by the Cloud Storage provider are sufficient

Chapter 3. Study on Deduplication 44

to perform a statistical attack based on frequency analysis, which would leak sen-

sitive information on users’ data. In short, the outcome of this analysis proved

that frequency-based statistical attacks are not feasible in such a context. More

details are provided in next sections.

To the best of our knowledge, this is the first study that has taken into considera-

tion statistical attacks on deduplicated data. Based on the findings of this study,

we will then be able to design schemes for secure data deduplication.

3.2 Datasets

Deduplication may bring different storage space savings depending on the compo-

sition of the dataset on which it is performed. Indeed, as our study shows, some

particular kinds of files are more likely to contain duplicates, whereby other kinds

of files usually contain a lower percentage of duplicate blocks. Also, an important

factor that may lead to lower or higher storage space savings is the data-chunking

technique used for splitting a file into blocks. The first goal of our experiments

was to clarify these two aspects and give useful recommendations with respect to

the proper strategy to adopt in order to maximize the storage space savings for a

given dataset. The datasets we analyzed are the following:

• Dataset 1: a POP Email Server containing all emails of 1078 users;

• Dataset 2: an IMAP Email Server containing all emails of 1571 users;

• Dataset 3: the home folders of 117 users containing more than 2M files;

• Dataset 4: a repository of data related to the research activity containing

more than 4,5M files;

• Dataset 5: a repository of data related to the teaching activity containing

more than 1,6M files;

• Dataset 6: a set of 7 Linux VM images.

Table 3.1 provides further details about the characteristics of each dataset. More

importantly, we also analyzed the composition of each dataset, meaning the most

common file types present in each of them. This information is shown in Figures

Chapter 3. Study on Deduplication 45

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
Number of users 1078 1571 117 - -
Number of files - - 2074955 4516911 1615286
Percentage of identical files 0 12,15 49,98 17,24 45,77
Mean file size (in MB) 8,36 0,08 0,01 0,09 0,33
Total size (in GB) 9,35 153,52 209,87 391,82 519,19

Table 3.1: Description of datasets used for this analysis

3.1, 3.2 and 3.3 and is crucial in order to determine whether a dataset, given

his composition, is likely to have a high rate of duplicate content, hence is a

good candidate for performing data deduplication. Our analysis also includes the

mean file size per dataset which confirms a widespread and well-known trend:

the majority of files are very small (a few KB) and most of the storage space

is consumed by a few very large files. As a confirmation of this statement, the

cumulative density function of file sizes shows that in all datasets, except Dataset

1, more than 98% of files are smaller than 1MB. At a first glance, one may think

that very small files are unlikely to contain duplicate content. However, the results

illustrated in this chapter show that despite this trend the storage space savings

are still very high, thanks to the frequent redundancy in larger files.

3.2.1 Dataset 1 (Emails POP)

This dataset consisted of one single file (aggregating all messages) per user. There-

fore, we may consider it as a set of text files. This dataset represents the common

use-case of POP server backup, which consists of storing a backup copy of all

messages of an internal email server. This use-case is extremely interesting since

emails are likely to contain high amounts of redundant data due to attachments,

therefore they are one of the most suitable candidates for data deduplication.

3.2.2 Dataset 2 (Email IMAP)

This dataset consisted of approximately 1000 files per user. All of them were text

files containing one or more messages. As above, deduplicating the backup of an

email server can lead to high storage space savings.

Chapter 3. Study on Deduplication 46

3.2.3 Dataset 3 (Users Homes)

This dataset includes file system contents from a large set of users composed by

students, professors, researchers, engineers and other members of the EURECOM

staff. The vast majority of these file systems were based on either Linux distribu-

tions such as Fedora, Debian and Ubuntu or Windows 7. As shown in Figure 3.1,

the set of file types was quite diverse, resulting in a highly fragmented dataset.

However, a significant fraction of this dataset was composed by source-code (re-

search and student projects), SVN repositories and images. Thanks to its very

diverse composition, this dataset is suitable for approximating the kind of data

that are often stored in the Cloud by standard users. Therefore, this dataset may

be seen as a good approximation of the scenario corresponding to major Cloud

Storage Providers such as Dropbox, Google Drive, etc.

Figure 3.1: Composition of Dataset 3 (Users Homes)

Chapter 3. Study on Deduplication 47

3.2.4 Dataset 4 (Research)

This dataset consisted of a set of files used for backup, collaboration and develop-

ment in research projects. Once again, the set of file types was quite diverse, as

shown in Figure 3.2. This dataset can be appropriate to represent the use-case of

a company that needs a shared storage space as a support for internal projects.

Figure 3.2: Composition of Dataset 4 (Research)

3.2.5 Dataset 5 (Teaching)

This dataset consisted of a set of files used as a support for the teaching activity

within the EURECOM institute across several years. The composition of this

dataset is shown in Figure 3.3. Since the class material does not always change

from one year to another, this dataset can effectively represent the use-case of a

company with many employees that often store high amounts of redundant data

(documents).

Chapter 3. Study on Deduplication 48

Figure 3.3: Composition of Dataset 5 (Teaching)

3.2.6 Dataset 6 (Linux VM images)

This dataset consisted of 7 different Linux VM images, with a size varying from

10GB to 30GB. All VM images were in vmdk format. VM images are usually

likely to contain a high fraction of redundant data, especially when they are based

on the same operating system. This dataset is perfectly suited for proving data

deduplication effectiveness in the widespread use-case of backup and the storage

of VM images.

3.3 Technical Environment

Deduplicating data at the level of the blocks requires to store the identifier of each

block and also keep track of the structure of each file. In order to perform this

Chapter 3. Study on Deduplication 49

kind of analysis on such large datasets containing millions of files, we needed to

employ extremely efficient tools through which we could store massive amounts of

metadata in a very short period of time. Also, block-level deduplication raises the

requirement of being able to quickly check whether a block was already stored.

This quick lookup operation is done by using the unique block identifier, which

is usually obtained by calculating an unkeyed secure hash of the block content.

Given these two critical requirements, we identified a lightweight NoSQL database

as the right software component to fulfill the aforementioned requirements. In

particular, we decided to use REDIS [9], a well-known and widely used key-value

store which provides the following features ”out of the box”:

• efficient (constant time) lookup of complex data structures through a unique

key thanks to the internal data structure based on an hash table;

• storage of complex data structures such as lists, hash tables, sets, etc.;

• great performance when storing massive amounts of data in a very short

period of time;

• in-memory storage with optional backup copy on disk.

These features enabled us to quickly scan all files in the aforementioned datasets,

process them as shown in Figure 3.4 and finally collect the results shown in next

section. In particular, for each dataset, we used REDIS to store the set of block

IDs composing each file and also keep track of the popularity (number of copies)

of each block in the current dataset. Thanks to these information, we could

easily compute the amount of deduplicated data blocks, hence the percentage of

storage space saved thanks to deduplication. REDIS allowed us to efficiently detect

whether a given block was already stored by checking whether or not a given key

was stored in REDIS. Indeed, REDIS maintains an internal hash table in memory,

hence it is possible to retrieve or check the existence of a data structure (through

its unique key) in a very efficient way.

We analyzed the datasets using different data-chunking techniques. In particular,

we measured the storage space savings both in case of block-level deduplication

and file-level deduplication. Block-level deduplication was implemented with two

different data-chunking techniques: fixed-size and variable-size blocks. The latter

was tested against three different configurations with an expected average block

Chapter 3. Study on Deduplication 50

size of 4KB, 8KB and 16KB respectively. The technique we adopted to determine

block boundaries, that is the point at which the current block is cut and next

block starts, was based on the rolling-hash algorithm Rabin fingerprint [56], which

is widely used and known to be both efficient and effective.

Figure 3.4: Diagram summarizing the main steps of the data analysis

It is worth pointing out that as opposed to the study conducted in [12], our study

was conducted offline on a single snapshot of the file system contents, hence we

measured the amount of data that may be deduplicated at a given point in time.

Of course, performing the same kind of analysis on a series of consecutive snap-

shots of the same file systems, which corresponds to a backup scenario, would have

given even better results. Indeed, backup is one of the most attractive scenarios for

deduplication, due to the likelihood of finding duplicate content between consec-

utive snapshots. More precisely, backup, which can be either full or incremental,

is traditionally accomplished by periodically storing a snapshot of file system con-

tents: since file systems do not tend to significantly change from one snapshot to

another, two consecutive snapshots are very likely to contain a large amount of

unchanged and thus identical data.

3.3.1 Performance Overhead

Intuitively, the lower the average block size is, the higher the obtained storage

space savings are. However, reducing too much the mean block size introduces the

Chapter 3. Study on Deduplication 51

drawback of increasing the number of blocks stored in the system, hence the over-

head due to the fragmentation of a file and the storage of the resulting metadata.

For instance, when dealing with very large datasets (millions of files), the storage

of the metadata may require tens of GBs: if the deduplication system does not

have enough resources, the overall performance may be negatively affected.

In our experiments, we tried to minimize the amount of metadata by only storing

those information that were strictly required to effectively calculate storage space

savings, individual block popularity and block popularity distribution per file type.

Of course, in a real storage system for production environments, more fine-grained

data would be needed.

Furthermore, we used SHA256 as hash function to calculate global and unique

block identifiers. Since REDIS, as many other NoSQL databases, requires the

key to be a UTF8-encoded string, the output (a raw sequence of 32 bytes) pro-

duced by the hash function was encoded into a Base64 string. As opposed to

to the traditional hexadecimal encoding, the efficiency of this encoding method

allowed us to save a non-negligible amount of memory, namely 33.5%. The de-

cision of using SHA256 as block identifier function was not motivated by a need

for security, rather, it was pondered taking into consideration the high number

of different blocks in each dataset: using a hash function with a shorter output

or a less uniform distribution could negatively affect the precision of the results

due to the presence of a non-negligible number of false matches, meaning different

blocks being mapped to the same ID. In addition to that, by using such a reliable

hash function we could greatly improve the performance of the analysis thanks

to the elimination of the need for a deep comparison, meaning the byte-by-byte

comparison of blocks.

Regarding the metadata storage overhead and the lack of resources, in the case of

REDIS, when the currently available memory is not sufficient, part of the dataset

is stored on disk, which causes a considerable performance deterioration due to

the rise of the time needed to read the internal hash table, resulting in a very poor

performance of the deduplication operation. Generally, other kinds of metadata

storage technologies such as relational databases suffer from similar performance

issues when dealing with huge datasets without having been properly configured.

Therefore, the recommended practice is to set the mean block size to a value such

that there is a good compromise between the deduplication ratio, which should be

Chapter 3. Study on Deduplication 52

as high as possible, and the amount of metadata to be stored, which should not

exceed the available resources.

3.4 Storage Space Savings

File-level vs Block-level Figure 3.5 shows the percentage of storage space sav-

ings obtained on each dataset by using different data-chunking techniques. As

shown in Figure 3.5, although datasets were quite different, all of them contained

a non-negligible percentage of redundant data blocks, hence for all of them block-

level deduplication proved to be beneficial. In particular, in our experiments,

an average block size of 8KB appeared to provide both high deduplication ratios

and an affordable and scalable metadata management. On the other hand, as

expected, file-level deduplication proved to be way less effective than block-level

deduplication and completely ineffective when applied on some datasets, leading

to storage space savings lower than 1%.

The VM images use-case As an example of the ineffectiveness of file-level

deduplication, performing it on VM images is likely to bring no storage space

savings, whereas in our experiments block-level deduplication was able to detect

a high percentage of duplicate blocks (more than 70%). The reason for the high

presence of redundant data in that dataset is twofold: first, all VM images were

based on a Linux distribution, hence they have the same kernel; second, VM

images are very likely to contain a high percentage of identical ”zero” blocks,

which are blocks that have only zeros written into them or sequences of identical

bytes, hence, all zero blocks can be easily deduplicated by storing only one copy

of them.

Another trend that can be easily observed is that the amount of deduplicated data

seems to be directly proportional to the percentage of duplicate files: this is due

to the simple fact that, even in the worst case, block-level deduplication always

achieves a deduplication ratio which is not lower than the one achieved with file-

level deduplication. Indeed, if two files are identical, block-level deduplication,

which is a deterministic technique, will definitely split them into the same set of

blocks and all of them will be successfully deduplicated.

Dataset diversity Moreover, it is worth pointing out why the teaching dataset,

despite a similar percentage of identical files, contains many more duplicate blocks

Chapter 3. Study on Deduplication 53

compared to the users homes dataset. This remarkable difference is due to the

degree of diversity of the dataset: as discussed and shown in Figures 3.1, 3.2

and 3.3, the teaching dataset has a more homogeneous composition, meaning that

there a few file types that represent the vast majority of the dataset, whereas the

users homes dataset contains files belonging to many users and thus has much

more diverse composition. In addition to that, as we pointed out earlier, the

teaching dataset includes teaching material of several years, which is unlikely to

significantly variate from one year to another.

Fixed-size vs Variable-size As expected, the results prove that splitting files

into variable-size blocks (using Rabin fingerprinting) allows to achieve higher stor-

age space savings with respect to fixed-size blocks. Also, the results confirm an

expected trend: the smaller the block is, the higher is the chance of finding dupli-

cate blocks, thus increasing the space savings.

Figure 3.5: Storage space savings achieved with different data-chunking tech-
niques

Redundancy based on file type Figure 3.6 shows the distribution by file ex-

tension of duplicate blocks detected through the Rabin fingerprinting algorithm

with a mean block size of 8KB, where duplicate blocks are those blocks that are

encountered at least twice, even in the same file. As Figure Figure 3.6 shows,

duplicate blocks are quite fragmented, meaning that they are distributed across

a very diverse set of file types. However, it is easy to see that the majority of

duplicate blocks belong to VM images (vmdk), uncompressed media files (mpg,

ppm, bmp), repositories (svn-base) and documents (pdf, txt, doc, ppt). What

Chapter 3. Study on Deduplication 54

all these file types have in common is the high presence of redundant content.

Therefore, these results give an important hint: block-level deduplication can be

extremely effective not only in those datasets containing identical copies of the

same files shared between multiple users, but also in those datasets containing a

high percentage of uncompressed data. Surprisingly, a big fraction of all dupli-

cate blocks is due to compressed archives, namely zip, jar and tar files. Although

this may sound counterintuitive since compression is usually employed to remove

redundant content, we speculate that archives may contain predefined headers

and other static metadata which are common to all of them. Hence, the Rabin

fingerprinting algorithm may be able to find these blocks and deduplicate them.

Figure 3.6: Distribution of duplicate blocks by file type

Chapter 3. Study on Deduplication 55

3.5 Statistical Attacks

In order to assess the feasibility of statistical attacks, we conducted a number of

experiments in order to collect information on the number and the frequency du-

plicate blocks and, more generally, the evolution of the set of data segments when

varying the average block size. Based on the findings of the study on storage

space savings, all experiments were conducted using three different data-chunking

configurations, namely Rabin fingerprinting with three average block size values:

4KB, 8KB and 16KB, which proved to provide an affordable tradeoff between

metadata storage overhead and deduplication ratios. As stated above, these exper-

iments were aimed at assessing whether block-level deduplication combined with

deterministic encryption may pose a threat with respect to confidentiality. More

precisely, the goal of these experiments was to assess whether a malicious Cloud

Storage provider, aiming at discovering (part of) the original content of users’

encrypted data, may be able to perpetrate a successful and practical ciphertext-

only attack based on the analysis of the ciphertext frequency. Also, we wanted to

investigate the relationship between the data segment size and the feasibility of

such an attack. Indeed, intuitively, a low average block size reduces the number

of possible blocks, hence may increase the chance of associating a ciphertext to a

plaintext by analyzing its frequency.

Block Frequency Distribution and Entropy The first finding worth pointing

out concerns the distribution of duplicate blocks. The frequency of each block was

determined by dividing the number of occurrences of that block across all stored

files (including multiple occurrences within the same file) by the total number of

blocks in all stored files (without filtering out non-unique blocks).

As pointed out in previous works such as [6], we found out that the frequency

distribution of duplicate blocks is far from being uniform, meaning that there are

a few blocks that are much more frequent than the others. More generally, this

confirms that data segments are not uniformly distributed. We also noticed that

apart from the few very frequent blocks, all other duplicate blocks were somewhat

uniformly distributed and had a very low and similar frequency, namely lower than

0.01%.

As previously stated in this chapter, we aim at assessing whether block-level dedu-

plication can somehow weaken data confidentiality when used in conjunction with

deterministic encryption. Therefore, in order to have a more relevant evaluation of

Chapter 3. Study on Deduplication 56

the overall distribution of blocks, we decided to compute the global entropy of the

whole dataset (after performing block-level deduplication) for each data segment

size. The global entropy E was computed using the following formula:

E = −
∑

pi · log2 pi

where pi is the frequency of the block i across the whole dataset, that is the number

of its occurrences divided by the total number of blocks stored in the system.

Measuring the entropy and its evolution when decreasing the average block size

allowed us to determine the impact in terms of confidentiality of block-level dedu-

plication across different data-chunking scenarios. More intuitively, entropy is

traditionally used to measure the degree of uncertainty of a dataset. In our sce-

nario, entropy could be used to assess whether or not guessing becomes easier

when decreasing the block size. Therefore, observing the variation of the entropy

does not give us a measure of the level of confidentiality in absolute terms, rather

it provides an indication on how the likelihood of a statistical attack changes when

varying the average block size. For instance, if by decreasing the block size the

global entropy significantly decreases, it means that the chances of a successful

statistical attack are increasing accordingly. On the other hand, if decreasing the

block size does not have any significant impact of the entropy, it means that the

risk of a successful statistical attack is not affected by the smaller block size.

Figure 3.7: Global entropy with varying average block size

Chapter 3. Study on Deduplication 57

Surprisingly, as shown in Fig. 3.7, the experiments conducted with different av-

erage block sizes led to very similar results. Regardless of the configuration being

used, the entropy values were very close and the distributions of duplicate blocks

were almost identical. More precisely, decreasing the average block size up to 4KB,

which is already a very low value in real systems, slightly increases the entropy

instead of decreasing it, as we supposed when describing our motivations behind

this study. Such a behavior is apparently counterintuitive. Indeed, intuitively,

decreasing the block size should cause an increase in the level of redundancy that

can be found and thus reduce the number of all possible values that a data segment

can take. Instead, in our experiments the inverse phenomenon occurred. In fact,

we observed that due to the large increase of the total number of data segments in

the system, the resulting entropy also increases. Of course, by further decreasing

the block size (e.g. lower than 1KB) the entropy will certainly drop at some point,

however we decided to only focus on realistic configurations, therefore we did not

take into account these extreme cases which are out of the scope of our study.

Content of popular blocks Starting from the distribution of duplicate blocks,

we decided to analyze the content of the most frequent blocks in order to assess

whether their presence may leak some sensitive information to the Cloud Storage

provider. We found out that independently of the data-chunking technique being

used, the most frequent data block is always the so-called ”zero” block, as we

introduced in the previous sections. Indeed, this result is a consequence of the

fact that VM image files are the ones with the highest percentage of duplicate

content. Moreover, we analyzed the content of other duplicate blocks in order of

frequency, and we found out that the vast majority of duplicate blocks included

headers, metadata (in particular SVN repositories) and other kinds of blank blocks,

that are those unused blocks filled with identical sequences of bytes.

Feasibility of statistical attacks Based on these two findings, that are the

distribution of duplicate blocks and the variation of the global entropy, we can

state that there is no concrete evidence of a correlation between the data segment

size used in block-level deduplication and the likelihood of a successful ciphertext-

only attack. Indeed, contrarily to our initial hypothesis, decreasing the block size

does not seem to negatively impact the global entropy and the distribution of

duplicate blocks. Of course, this conclusion remains true only when using realistic

block sizes: if a too small block size is mistakenly chosen (e.g. a few tens of bytes),

such a statement may not be true anymore.

Chapter 3. Study on Deduplication 58

Therefore, assuming that the deterministic encryption layer is strong enough not

to be broken and the average block size is not extremely small (at least 4KB),

these results show that ciphertext-only attacks based on content frequency are

unlikely to be successful in the context of block-level deduplication and thus can

hardly lead to the leakage of sensitive information, even when using a very small

average block size such as 4KB.

Indeed, a frequency-based attack in order to be successful would require a more

characteristic distribution and a low entropy. The first requirement is raised by

the necessity of being able to precisely identify a block starting from its frequency.

The second requirement implies that the degree of variety in the dataset is low,

hence an attacker may be able to run more targeted attacks on a lower number

of blocks. Fortunately, according to our studies, both requirements seem to be

missing when using a realistic average block size.

However, as introduced by the intuition behind this study, the Cloud Storage

provider has access to a non-negligible knowledge base including file size, file access

patterns and file owners which, together with our findings on duplicate blocks

frequency, may disclose the type of content stored in a given encrypted file. Of

course, this information alone is not sufficient to be considered as a serious threat

to the confidentiality of users’ data, even though it may be helpful for the attacker.

For instance, if the attacker knew that a given encrypted file is likely to be a SVN

repository, he may run a brute-force attack trying to generate content in a known

format, instead of merely generating random content: this is what researchers

mean by ”predictable files” [5], for which CE cannot guarantee confidentiality.

However, we assume that a deterministic encryption mechanism stronger than CE

is employed. Therefore, although such a knowledge on the victim’s data may help

the attacker to reduce the complexity of brute-force attacks in some particular

scenarios, it would only allow the attacker to concentrate his energies on a specific

format, which does not eliminate the protection provided by the encryption layer

and thus still makes such an attack very difficult if not unfeasible.

Recommended block size As an additional result provided by this study, it is

worth pointing out that since there is no visible correlation between the average

block size and the increase of the risk for ciphertext-only attacks, using a low

block size such as 4KB seems to be the recommended approach since it allows

to achieve the best storage space savings without apparently compromising data

confidentiality. Besides the security considerations, since reducing the block size

Chapter 3. Study on Deduplication 59

raises the overhead due to metadata management, performance and scalability are

also very important factors that should be taken into account.

3.6 Popularity

In addition to the aforementioned findings on storage space savings and statistical

attacks, we decided to take advantage of such a comprehensive analysis on real

datasets in order to dig into another important aspect of deduplication schemes,

that is popularity. Indeed, some secure data deduplication schemes, such as Per-

fectDedup and [7], apply a different treatment to data segments based on their

popularity. More precisely, data segments are labeled as either popular or unpop-

ular and based on their label a different encryption mechanism is used, namely

convergent encryption for popular data segments and a semantically-secure en-

cryption for the others. Besides the security considerations on the encryption

mechanisms being used, another crucial question arises: how can we determine

whether a data block is popular? In more practical terms, if we assume that pop-

ularity of a data segment is given by the number of occurrences or users owning

it, the question becomes: what is the best popularity threshold?

In order to answer this question, which is far from being trivial, we analyzed in

depth the frequency of duplicate blocks with a precise goal in mind: finding a

popularity threshold allowing to achieve a good tradeoff between storage space

savings and confidentiality. Ideally, the popularity threshold should be chosen

in a way that storage space savings remain high while there is no confidential

data segment that is considered popular and encrypted with a weaker encryption

mechanism. In other words, if the popularity threshold was set to a too high

value, the storage space savings would drastically drop. making the whole system

unbeneficial. On the other hand, setting it to a too low value would bring higher

storage space savings at the cost of potentially increasing the risk of labeling a

data segment containing sensitive information as popular and thus protecting it

with a weaker encryption mechanism.

Of course, a straightforward strategy would consist of setting the popularity thresh-

old to the lowest value possible, that is 2, and thus deduplicating every data seg-

ment belonging to more than one user. Unfortunately, in some particular cases,

this may have the unfortunate effect of opening a confidentiality breach. For

Chapter 3. Study on Deduplication 60

instance, if a confidential file was shared between multiple users, it would be con-

sidered popular, hence encrypted with convergent encryption, which would make

it vulnerable to dictionary attacks.

Figure 3.8: Decrease of storage space savings when increasing the popularity
threshold

In order to have a clearer idea of how negatively the increase of the popularity

threshold affects the storage space savings, we decided to measure the percentage of

storage space savings that can be achieved with an increasing popularity threshold

value going from 3 to 7 and a varying average block size going from 4KB to 16KB.

As shown in Fig. 3.8, a small increase of the popularity threshold corresponds to

a remarkable decrease in the amount of storage space savings. As an example, no

matter what average block size is being used, slightly increasing the popularity

threshold from 2, which is the minimum, to 3, causes a decrease of more than

15% in the total amount of storage space savings. Also, this trend seems to be

independent of the average block size. Furthermore, the storage space savings

keep decreasing when further increasing the popularity threshold to higher values.

For instance, when setting the popularity threshold to 7, the storage space savings

drop by almost 40%.

These measurements confirm the intuition that the popularity threshold should

remain low enough not to lose the advantages of block-level deduplication. Also,

to answer our initial question, that is the popularity threshold value that assures a

good compromise between savings and confidentiality, it is hard to give a general

Chapter 3. Study on Deduplication 61

answer since it strictly depends on the scenario and the composition of the dataset.

For instance, considering our dataset, in a scenario where storage space savings

have higher priority, even a slight decrease of 15% would not be acceptable. On

the other hand, in a scenario where very confidential files are frequently stored, a

decrease up to 30% in storage space savings may be accepted in favor of better

security, therefore the popularity threshold may be set to 5.

3.7 Conclusions

The reason behind this comprehensive study on practical deduplication was twofold.

First, we wanted to make sure that deduplication is effective and beneficial in real

scenarios and figure out the best setup in terms of storage space savings. Also,

we wanted to determine what type of content is more likely to contain redun-

dancy, hence we collected a number of real datasets and performed an extensive

analysis comparing the storage space savings across different data-chunking tech-

niques. Second, we wanted to assess whether performing block-level deduplication

could realistically pose a threat with respect to data confidentiality. More pre-

cisely, we were interested in verifying whether deterministic encryption, which is

a requirement for deduplication, could pave the way for ciphertext-only attacks

based on the knowledge of duplicate blocks frequency. As mentioned earlier, the

answer to this question is crucial for any scheme aiming at providing secure data

deduplication.

Storage space savings Our experimental results prove that deduplication, espe-

cially when performed at level of blocks and with a variable block size, can bring

significant storage space savings in real scenarios. Depending on the scenario,

that is the nature of data stored by users, storage space savings may be greater

than 70%. Moreover, we point out that in backup scenarios, where redundancy is

extremely high, storage space savings may be even higher.

Statistical attacks We studied the distribution of duplicate blocks and measured

the global entropy in order to assess whether statistical attacks such as frequency

analysis are likely to be successful, hence enable a malicious Cloud Storage provider

to (partially) discover the content of encrypted data stored by users. Our experi-

mental results show that the number of duplicate blocks is extremely high and their

distribution, apart from a few very popular blocks, is not characteristic enough to

Chapter 3. Study on Deduplication 62

allow for a statistical attack based on frequency analysis. Also, the global entropy

does not decrease when decreasing the average block size, which means that using

relatively low average block sizes (e.g. 4KB) does not negatively affect the degree

of confidentiality provided by the scheme.

However, as we pointed out above, the presence of one of the very popular blocks

together with the knowledge of file size, file owners, access patterns and file struc-

ture may leak the type of content stored in the file, which is far from being a

sensitive information and alone is not sufficient to break or weaken the protection

provided by the encryption and put data confidentiality at risk. From a research

standpoint, these results are very promising since they show that the combination

of block-level deduplication with deterministic encryption does not pave the way

for statistical attacks. Therefore, schemes based on deterministic encryption can

effectively address secure block-level data deduplication and do not suffer from

this hypothesized inherent weakness that was one of the main motivations behind

our study.

Chapter 4

ClouDedup

4.1 Introduction

Thanks to our study on the security of block-level deduplication schemes based on

deterministic encryption, we can now start from the assumption that deterministic

encryption itself does not introduce any confidentiality threat. Therefore, as long

as the encryption algorithm is secure, a scheme aiming at secure block-level dedu-

plication can safely employ deterministic encryption as a main building block. It

is worth pointing out that in this scenario deterministic encryption refers to the

use of the latter on top of convergent encryption.

In this chapter, we cope with the inherent conflict between encryption and dedu-

plication by designing a novel architecture, which goes by the name of ClouDedup,

where files are protected by two layers of deterministic encryption: the first layer is

convergent encryption and is applied by users before uploading the file; the second

layer is applied by a trusted component which makes use of secret keying mate-

rial stored locally and never stored with any other entity. Such an architecture

also aims at delegating different tasks to different components in a way that any

component alone does not have sufficient knowledge to compromise data confiden-

tiality. In other words, this scheme achieves a principle known as ”no single point

of failure”, which in this context means that the compromise of a single component

cannot completely undermine the security provided by the whole system.

The security of ClouDedup thus relies on its new architecture whereby in addition

to the basic storage provider, a metadata manager and an additional encryption

63

Chapter 4. ClouDedup 64

component, called gateway, are defined: the gateway prevents well-known attacks

against convergent encryption and thus protect the confidentiality of the data;

on the other hand, the metadata manager is responsible of the key management

task since block-level deduplication requires the memorization of a huge number

of keys. Therefore, the underlying deduplication is performed at block-level and

we define an efficient key management mechanism to avoid users to store one key

per block.

To summarize the advantages of ClouDedup:

• ClouDedup assures block-level deduplication and data confidentiality.

Block-level deduplication renders the system more flexible and efficient;

• ClouDedup preserves confidentiality and privacy even against poten-

tially malicious cloud storage providers thanks to an additional layer

of deterministic encryption;

• ClouDedup offers an efficient key management solution through the meta-

data manager;

• The new architecture defines several different components and a single com-

ponent cannot compromise the whole system without colluding with

other components;

• ClouDedup works transparently with existing cloud storage providers. As

a consequence, ClouDedup is fully compatible with standard storage APIs

and any cloud storage provider can be easily integrated in our architecture.

4.2 The Idea

As discussed in previous chapters, using a deterministic encryption layer on top

of convergent encryption provides full confidentiality for all data while allowing

for deduplication by an untrusted party. The idea we develop in this chapter

consists of delegating a trusted component to perform the additional deterministic

encryption right after clients have already encrypted data blocks using convergent

encryption. This way, data blocks encrypted with a weaker encryption mechanism,

that is convergent encryption, will not be exposed to untrusted and potentially

malicious components such as the Cloud Storage Provider.

Chapter 4. ClouDedup 65

The scheme proposed in this chapter aims at deduplication at the level of blocks

of files encrypted with convergent encryption while guaranteeing confidentiality

against an untrusted Cloud Storage Provider. The scheme consists of two basic

components: an encryption gateway that is also in charge of access control and that

achieves the main protection against COF and LRI attacks; another component,

named as metadata manager (MM), is in charge of the actual deduplication and

key management operations.

Figure 4.1: High-level view of ClouDedup

4.2.1 The Gateway

An effective and practical solution to prevent the attacks against convergent en-

cryption (CE) consists of encrypting the ciphertexts resulting from CE with an-

other encryption algorithm using the same keying material for all input. This

solution is compatible with the deduplication requirement since identical cipher-

texts resulting from CE would yield identical outputs even after the additional

Chapter 4. ClouDedup 66

encryption operation. Yet, this solution will not suffer anymore from the attacks

targeting CE such as COF and LRI.

We suggest to combine the access control function with the mechanism that

achieves the protection against CE through an additional encryption operation.

Indeed, access control is an inherent function of any storage system with reasonable

security assurance. Enhancing the trusted component of the storage system, that

implements access control, with the new mechanism against COF and LRI attacks,

seems to be the most straightforward approach. The core component of ClouD-

edup is thus an encryption gateway that implements the additional encryption

operation to cope with the weaknesses of CE, together with a user authentication

and an access control mechanism embedded in the data protection mechanism.

Each data segment is thus encrypted by the gateway in addition to the convergent

encryption operation performed by the user. As to the data access control, each

encrypted data segment is linked with a signature generated by its owner and

verified upon data retrieval requests. The gateway relies on the signature of each

segment to properly identify the recipient.

4.2.2 Block-level Deduplication and Key Management

Even though the mechanisms of the encryption gateway cope with the security

weaknesses of CE, the requirement for deduplication at block-level further raises

an issue with respect to key management. As an inherent feature of CE, the fact

that encryption keys are derived from the data itself does not eliminate the need

for the user to memorize the value of the key for each encrypted data segment.

Unlike file-level deduplication, in case of block-level deduplication, the requirement

to memorize and retrieve CE keys for each block in a secure way, calls for a fully-

fledged key management solution. We thus suggest to include a new component,

the metadata manager (MM), in the new ClouDedup system in order to imple-

ment the key management for each block together with the actual deduplication

operation.

Chapter 4. ClouDedup 67

4.2.3 Threat Model

The goal of the system is to guarantee data confidentiality without losing the

advantage of deduplication. Confidentiality must be guaranteed for all files, in-

cluding the predictable ones. The security of the whole system should not rely on

the security of a single component (single point of failure), and the security level

should not collapse when a single component is compromised. We consider the

encryption gateway as a trusted component with respect to user authentication,

access control and additional encryption. The gateway is not trusted with respect

to the confidentiality of data stored at the cloud storage provider. Therefore, the

gateway is not able to perform offline dictionary attacks. Anyone who has access

to the storage is considered as a potential attacker, including employees at the

cloud storage provider and the cloud storage provider itself. In our threat model,

the cloud storage provider is honest but curious, meaning that it carries out its

tasks but might attempt to decrypt data stored by users. We do not take into ac-

count cloud storage providers that can choose to delete or modify files and, more

generally, behave in a byzantine way and not perform the operations requested

by users. The motivation behind this choice is related to the economic model of

Cloud Computing: a cloud provider which does not provide a sufficient quality of

service would likely lose all customers and be out of the market very soon, hence

we do not focus on this kind of edge cases. Our scheme might be extended with

additional features such as data integrity [16] and proofs of retrievability [15].

Among the potential threats, we identify also external attackers. An external at-

tacker does not have access to the storage and operates outside the system. This

type of attacker attempts to compromise the system by intercepting messages be-

tween different components or compromising a user’s account. External attackers

have a limited access to the system and can be effectively neutralized by putting

in place strong authentication mechanisms and secure communication channels.

4.2.4 Security

In the proposed scheme, only one component, that is the gateway, is trusted with

respect to a limited set of operations, therefore we call it semi-trusted. Once the

gateway has applied the additional encryption, data are no longer vulnerable to CE

weaknesses. Indeed, without possessing the keying material used for the additional

Chapter 4. ClouDedup 68

encryption, no component can perform dictionary attacks on data stored at the

cloud storage provider. The gateway is a simple semi-trusted component that is

deployed on the user’s premises and is in charge of performing user authentication,

access control and additional symmetric encryption. The primary role of the

gateway is to securely retain the secret key used for the additional encryption.

In a real scenario, this goal can be effectively accomplished by using a hardware

security module (HSM) [64], thanks to which secret keys can be generated in

a hardware-dependent way by the device itself, which will not share them with

anyone else. In order to guarantee data confidentiality even in the unfortunate case

the server is compromised, an additional symmetric encryption can be applied by

the MM before uploading blocks to the Cloud. When data are retrieved by a

user, the gateway plays another important role. Before sending data to a given

recipient, the gateway must verify if block signatures correspond to the public key

of that recipient. The metadata manager (MM) and the cloud storage provider

are not trusted with respect to data confidentiality, indeed, they are not able to

decrypt data stored at the cloud storage provider. We do not take into account

components that can spontaneously misbehave and do not accomplish the tasks

they have been assigned.

4.3 Components

In this section we describe the role of each component.

4.3.1 User

The role of the user is limited to splitting files into blocks, encrypting them with

the convergent encryption technique, signing the resulting encrypted blocks and

creating the storage request. In addition, the user also encrypts each key derived

from the corresponding block with the previous one and his secret key in order to

outsource the keying material as well and thus only store the key derived from the

first block and the file identifier. For each file, this key will be used to decrypt and

re-build the file when it will be retrieved. Instead, the file identifier is necessary

to univocally identify a file over the whole system. Finally, the user also signs

each block with a special signature scheme. During the storage phase, the user

computes the signature of the hash of the first block: S0 = σPKu(H(B0)). In

Chapter 4. ClouDedup 69

order not to apply costly signature operations for all blocks of the file, for all the

following blocks, a hash is computed over the hash of the previous block and the

block itself: Si = H(Bi|Si−1). The high-level view of ClouDedup’s architecture is

illustrated in Figure 4.1.

4.3.2 Gateway

The gateway has three main roles: authenticating users during the storage/re-

trieval request, performing access control by verifying block signatures embedded

in the data, encrypting/decrypting data traveling from users to the cloud and

viceversa. The gateway takes care of adding an additional layer of encryption to

the data (blocks, keys and signatures) uploaded by users. Before being forwarded

to MM, data are further encrypted in order to prevent MM and any other compo-

nent from performing dictionary attacks and exploiting the well-known weaknesses

of convergent encryption. During file retrieval, blocks are decrypted and the gate-

way verifies the signature of each block with the user’s public key. If the verification

process fails, blocks are not delivered to the requesting user.

4.3.3 Metadata Manager (MM)

MM is the component responsible for storing metadata, which include encrypted

keys and block signatures, and handling deduplication. Indeed, MM maintains a

small database in order to keep track of file ownerships, file composition and avoid

the storage of multiple copies of the same data segments. The data structures

used for this purpose contain information on files, pointers and signatures. With

respect to file structure and blocks, from a logical point of view, the data structures

stored at the MM can be seen as a linked list that is structured as follows:

• Each node in the linked list represents a data block. The identifier of each

node is obtained by hashing the encrypted data block received from the

server.

• If there is a link between two nodes X and Y, it means that X is the prede-

cessor of Y in a given file. A link between two nodes X and Y corresponds

to the file identifier and the encryption of the key to decrypt the data block

Y.

Chapter 4. ClouDedup 70

The other data structures used by MM are structured as follows:

• File. The file data structure contains the file id, file name, user id and the

id of the first data block.

• Pointer. The pointer data structure contains the block id and the id of the

block stored at the cloud storage provider.

• Signature. The signature data structure contains the block id, the file id

and the signature.

In addition to the access control mechanism performed by the gateway, when

users ask to retrieve a file, MM further checks if the requesting user is authorized

to retrieve that file. This way, MM makes sure that the user is not trying to

access someone else’s data. This operation can be considered as an additional

access control verification, since an access control verification already takes place

at the gateway. Another important role of MM is to communicate with cloud

storage provider (SP) in order to actually store and retrieve the data blocks and

get a pointer to the actual location of each data block.

4.3.4 Cloud Storage Provider (SP)

SP is the most simple component of the system. The only role of SP is to physically

store encrypted data blocks. SP is not aware of the deduplication and ignores any

existing relation between two or more blocks. Indeed, SP does not know which

file(s) a block is part of or if two blocks are part of the same file. This means that

even if SP is malicious, meaning that he wants to access users’ data in clear, it

has no way to infer the original content of an encrypted data block and rebuild

the files uploaded by the users. It is worth pointing out that potentially any

cloud storage provider would be able to operate as SP. Indeed, ClouDedup is

completely transparent from SP’s perspective, which does not collaborate with

MM for deduplication. The only role of SP is to store data blocks coming from

MM, which can be considered as files, or objects in the case of object storage,

of small size. Therefore, it is possible to make use of well-known and widespread

cloud storage providers or technologies such as Amazon S3 [20], OpenStack SWIFT

[40] and Microsoft Azure [39].

Chapter 4. ClouDedup 71

4.4 Protocol

In this section we give a high-level overview of the protocol regulating the two

main operations of ClouDedup: storage and retrieval. The description of other

operations such as removal, modification and search are out of the scope of this

chapter.

Notation

EK encryption function with key K

H hash function

Bi ith block of a file

B′i ith block of a file after convergent encryption

B′′i ith block of a file after encryption

at the server

Ki key generated from the ith block of a file

K ′i Ki after encryption at the server

KA secret key of server

KUj secret key of user j

PKUj private key of the certificate of user j

Si signature of ith block of a file with PKUj

4.4.1 Storage

During the storage procedure, a user uploads a file to the system. As an example,

we describe a scenario in which a user Uj wants to upload the file F1.

USER User Uj splits F1 into several blocks. For each block Bi, Uj generates a

key by hashing the block and uses this key to encrypt the block itself. Therefore

B′i = EKi
(Bi) where Ki = H(Bi). Uj stores K1 and encrypts each following key

with the key corresponding to the previous block: EKi−1
(Ki). Uj further encrypts

each key (except K1) with his own secret key KUj
: EKUj

(EKi−1
(Ki)). Uj computes

the block signatures as described in 4.3.1. Uj sends a request to the server in order

to upload file F1. The request is composed by:

• Uj’s id : IDUj
;

• the encrypted file name;

Chapter 4. ClouDedup 72

Figure 4.2: Storage Protocol

• file identifier : Fid1;

• first data block : EK1(B1);

• for each following data block Bi (i ≥ 2): key to decrypt block Bi, that is

EKUj
(EKi−1

(Ki)); signature of block Bi, that is Si; data block B′i : EKi
(Bi);

In order to improve the level of privacy and reveal as little information as possible,

Uj encrypts the file name with his own secret key. File identifiers are generated

by hashing the concatenation of user ID and file name H(user ID | file name).

GATEWAY The gateway receives a request from user Uj and runs SSL in order to

securely communicate with Uj. Each key, signature and block are encrypted under

KA (gateway’s secret key): B′′i = EKA
(EKi

(Bi)), K
′
i = EKA

(EKUj
(EKi−1

(Ki))),

S ′i = EKA
(Si). The only parts of the request which are not encrypted are user’s

id, the file name and the file identifier. The gateway forwards the new encrypted

request to MM.

MM MM receives the request from the gateway and for each block B′′i contained

in the request, MM checks if that block has already been stored by computing its

hash value and comparing it to the ones already stored. If the block has not been

stored in the past, MM creates a new node in the linked list, the identifier of the

node is equal to H(B′′i). MM updates the data structure by linking each node

(block) of file F1 to its successor. A link from block B′′i−1 to block B′′i contains

the following information: {Fid1, EKA
(EKUj

(EKi−1
(Ki)))}. It is worth pointing out

Chapter 4. ClouDedup 73

that each key is encrypted with the key of the previous block and users retain the

key of the first block, which is required to start the decryption process. This way, a

chaining mechanism is put in place and the key retained by the user is the starting

point to decrypt all the keys. Moreover, MM stores the signature of each block

in the signature table, which associates each block of each user to one signature.

For each block B′′i not already stored, MM sends a storage request to SP which

will store the block and return a pointer. Pointers are stored in the pointer table,

which associates one pointer to each block identifier.

SP SP receives a request to store a block. After storing it, SP returns the pointer

to the block.

MM MM receives the pointer from SP and stores it in the pointer table.

4.4.2 Retrieval

During the retrieval procedure, a user asks to download a file from the system. As

an example, we describe a scenario in which a user Uj wants to download the file

F1.

Figure 4.3: Retrieval Protocol

Chapter 4. ClouDedup 74

USER User Uj sends a retrieval request to the gateway in order to retrieve file

F1. The request is composed by the user’s id IDUj
, the file identifier Fid1 and his

certificate.

GATEWAY The gateway receives the request, authenticates Uj and if the au-

thentication does not fail, the gateway forwards the request to MM without per-

forming any encryption.

MM MM receives the request from the server and analyzes it in order to check if

Uj is authorized to access Fid1 (Uj is the owner of the file). If the user is authorized,

MM looks up the file identifier in the file table in order to get the pointer to the

first block of the file. Then, MM visits the linked list in order to retrieve all the

blocks that compose the file. For each of these blocks, MM retrieves the pointer

from the pointer table and sends a request to SP.

SP SP returns the content of the encrypted blocks to MM. B′′i = EKA
(EKi

(Bi)).

MM MM builds a response which contains all the blocks, keys and signatures

of file F1. Signatures are retrieved from the signature table. The response is

structured as follows:

• file identifier: Fid1;

• first data block : EKA
(EK1(B1));

• for each following data block Bi(i ≥ 2): key to decrypt block Bi, that is

EKA
(EKUj

(EKi−1
(Ki))); signature of block Bi, that is EKA

(Si); data block

B′′i : EKA
(EKi

(Bi));

MM sends the response to the gateway.

GATEWAY The gateway decrypts blocks, signatures and keys with KA. If the

signature verification does not fail, the gateway sends a response to Uj. Each key-

block pair received by the user, will be structured as follows: {EKUj
(EKi−1

(Ki)), EKi
(Bi)}.

USER Uj can finally decrypt blocks and keys. Uj already knows the key corre-

sponding to the block B1. For each data block Bi, Uj decrypts block B′i using Ki

and Ki+1 using KUj
and Ki. Uj can finally rebuild the original file F1.

Chapter 4. ClouDedup 75

4.5 Prototype Implementation

This section gives a comprehensive overview of the prototype architecture and

presents the implementation choices that were made for each component. More-

over, we describe the technical challenges we faced and explain the solutions we

adopted and their corresponding motivations. Also, we point out the current

known limitations of the prototype and discuss possible solutions to overcome

them in the future.

The prototype aims at providing a comprehensive block-level deduplication sys-

tem respecting the design goals and the specifications introduced in the previous

sections. The prototype consists of three components: the client, the gateway and

the metadata manager. Intentionally, the prototype does not include all features

described in this chapter. In fact, we focused on those features that we considered

crucial and necessary for a cloud storage system, leaving the rest as future work.

The implementation language is Python.

4.5.1 Client

The most important software component of the client is a Windows process taking

care of the synchronization of a local folder, a functionality similar to the one

provided by the Dropbox desktop application [32]. Synchronization stands for

the background and ”real-time” replication process of all files in the local folder

towards the Cloud Storage provider. More precisely, in order to optimize the

synchronization process and not to replicate temporary changes to the files, a

change is reflected to the remote side after a given period of inactivity, which we

set to 2 seconds. The remote side also internally reflects the file system structure of

each synchronization folder, so that upon a download operation the files are placed

in the correct folders. To improve user experience, all files in the synchronization

folder are decorated with an overlay icon representing the current synchronization

status of a given file. For example, when a new file is added to the folder, it is

decorated with a blue synchronization icon. After the background upload of the

new file is complete, the icon is changed to a green ok sign. Interestingly, the actual

operation that occurs upon file modification is that the entire file is uploaded to

the MM, but most of the blocks are deduplicated, resulting in the generation of a

very low amount traffic towards the cloud.

Chapter 4. ClouDedup 76

The client also keeps a local plaintext copy of all files that is accessible by the

current user at any time. This may be seen as a security risk in the sense that

anyone that potentially has access to someone else’s computer, may easily have

access to the files. On the other hand, not storing a local copy requires the sys-

tem to download and decrypt files on the fly upon access. In systems intended to

provide access to documents and other kinds of personal files, usability is usually

considered as a higher priority goal. As a result, the files are stored in the syn-

chronization folder in clear and made available to the user without any particular

constraint.

4.5.2 Gateway

The gateway has been implemented as a plug-in for the Squid open-source web

proxy. In practice, the gateway is a reverse proxy which works as an intermediate

entity between clients and the Metadata Manager, so that users only have to

communicate with the local and unique gateway which takes care of handling the

communication with the remote components, namely the MM. Thanks to this

setup, users can enjoy the functionalities provided by the system without having

to deal with the complexity of the architecture. The role of the gateway is to

receive requests from clients and forwarding them to the Metadata Manager after

encrypting users’ data when necessary. Similarly, the gateway is responsible for

receiving responses from the Metadata Manager and forwarding them to clients

after decrypting users’ data. In order to assure data confidentiality, the gateway

keeps one secret key, which is randomly generated and securely stored upon the

first execution of the gateway.

4.5.3 Metadata Manager

The Metadata Manager runs a web service offering storage functionalities to

clients. The Metadata Manager receives the encrypted blocks and the correspond-

ing keys from the gateway and uploads only unique blocks into the cloud storage.

Internally, the Metadata Manager consists of three separate entities. To commu-

nicate with the gateway, the metadata manager runs a Tornado web server [65].

The core application that performs deduplication is based on REDIS [9], which is

Chapter 4. ClouDedup 77

Symbol Dataset index Key structure Value structure
F 0 F:user id:file id * {’name’:fname} *
K 0 K:file id * [key1, key2,...]
FB 0 FB:file id * [b id0,b id1,...]
B 0 B:block id {’storage container’:p.container.name ’storage-object’:pointer.name ’counter’:number of owners}
U 1 U:uid {’password’:pwd}
U 1 U:uid:session key session key with expiration

Table 4.1: Metadata structure in REDIS

an in-memory key-value store providing excellent performance along with flexibil-

ity and robustness. To communicate with different cloud storage providers, the

Metadata Manager relies on an internal component based on Libcloud [66], which

is a multi-cloud open-source library.

The structure of the REDIS database is presented in Table 4.1.

For each file, the filename (that is the full file path, relative to the path of the

local synchronization folder), the block keys and block identifiers are stored. The

filename contains the path information so that the file system structure can be

safely constructed at the client side. The block identifiers are 256-bit hashes of

the blocks and are stored in order to know which blocks belong to the file. For

each block, the storage information is stored so that the block can be retrieved

from the cloud. A block is considered as a duplicate, hence not stored, if it has

an identifier that already exists in the system. In that case the reference counter,

which counts number of occurrences of the block across all files in the system,

is increased by one. Correspondingly, when a block is deleted from a file, the

corresponding counter is decreased, and the block is actually removed from the

cloud only if the counter value reaches 0.

4.5.4 Access Control

The previously introduced security features provide confidentiality and deduplica-

tion by design. In other words, they prevent anyone other than users, including a

curious Cloud Storage provider, from accessing the files in the system by decrypt-

ing them.

This section presents how access control has been enforced thanks to the introduc-

tion of authentication and authorization features, like credential-based authentica-

tion. As opposed to data confidentiality by encryption, access control mechanisms

aim at verifying the identity of a user (who the user is) in order to determine

Chapter 4. ClouDedup 78

whether he is authorized to access a given resource, such as a file or an encryp-

tion key. ClouDedup’s scheme proposes a particular and original authentication

method, which consists of appending signatures to each block and checking them

upon data retrieval. According to the design, this operation is performed by the

gateway in order to verify ownership. However, for the sake of simplicity, we de-

cided not to implement this feature in the first version of the prototype. Indeed, as

long as the Metadata Manager correctly implements its access control mechanism,

this feature is not crucial.

Considering the prototype, the goal was to build a robust yet efficient access

control mechanism without negatively affecting performance or restricting the set

of desired features.

4.5.4.1 Client Access Control

The synchronization folder client only allows a single user at a time. It is not

possible for multiple users to operate on the same desktop client. The access

control is enforced by encrypting the block encryption keys with the user’s secret

key, which is then protected by symmetrically encrypting it using the hash of the

user’s password as a key. The hash is securely computed by using the well-known

SCRYPT key derivation function [67], which has been designed to be resistant

against brute-force attacks. This way, traditional brute-force attacks aimed at

obtaining the value of the secret key by simply trying all possible values of user’s

password will not be feasible.

4.5.4.2 Gateway Access Control

The prototype provides no built-in authentication between the clients and the

gateway. However, if the component is located in a company’s premises, it can

be easily configured to accept requests issued only from the local area network.

Furthermore, SQUID already provides an extensive set of authentication modules

supporting the most common interfaces. Therefore, the organization can easily

configure the authentication at the level of the gateway to reflect their policies by

properly tuning SQUID configuration.

Chapter 4. ClouDedup 79

4.5.4.3 Metadata Manager Access Control

The Metadata Manager implements a simple yet robust credential-based authenti-

cation. Upon user registration, the hash of the new user’s password is stored among

the metadata. When a user logs in from his device, an authentication request is

made by submitting the username and the hash of the password computed with

SCRYPT. As a response, the user receives a session key (authentication token)

which expires after a pre-defined period of time. The Metadata Manager keeps

track of active session keys in order to validate any user request: if the session

key provided by the user is wrong or expired, the request is not performed and an

authentication error is returned, inviting the user to re-enter his credentials.

4.5.5 Prototype Credential Management

This section presents the solutions concerning the secure management of the secret

keys and the credentials of the users stored at client-side.

4.5.5.1 Key Management

A recommended and widely accepted practice for key management consists of

delegating this task to external and independent components. In practice, this

implies that users, or an organization on their behalf, should take care of safely

and securely storing their keys and making them available when necessary. In real

scenarios, such a solution is quite common since IT companies are already used

to putting in place centralized systems for storing passwords, hard-drive encryp-

tion keys and other sensitive information. Hence, integrating the backup of the

user’s secret key with the existing systems seems to be a reasonable solution that

presents the desirable advantage of being compliant with organization’s policies.

Furthermore, in the case of ClouDedup, it is crucial to make sure that the backup

system with which encryption keys are stored is reliable. Indeed, accidentally los-

ing the secret key would mean for all users to definitely lost their files too, without

any chance of getting them back.

Chapter 4. ClouDedup 80

4.5.5.2 Credentials and Key Rotation

The prototype allows the user to change his password from the client. In order to

do so, the user selects a new password, and sends a request containing both the

old and the new secure password hashes to the metadata manager. If the request

is performed successfully by the Metadata Manager, the secret key is re-encrypted

with the new password and rewritten on disk. In addition to that, the prototype

allows the administrator of the Metadata Manager to force a user to change the

password. If password change is forced, the user is prompted for a new password

as a response to an authentication request. Such a mechanism is required in order

to be compliant with the security policies of most of the companies, which usually

encourage users to often change their password (e.g. every 6 months).

Regarding the secret key rotation, the first version of the prototype does not

handle this directly. Rather, this task is delegated to users. In order to change

their secret key, users are required to remove their files from the synchronization

folder, generate a new key and put the files back. The performance cost of lacking

a specific key rotation feature is that the users need to re-upload also the data,

instead of just uploading the re-encrypted block keys. However, such a feature

would be beneficial from the security point of view, therefore it has been planned

as near future work.

4.5.6 Technical Challenges

4.5.6.1 Fast Upload of Large Files

When dealing with cloud storage solutions, depending on the use-case, one of

the most important requirements from a user standpoint is great performance.

In practice, a system is considered to perform well when users experience low

latencies when uploading or downloading very large files, even simultaneously. In

a first proof-of-concept implementation, our prototype suffered from high latencies,

especially when uploading very large files (tens of MBs). This issue was caused

by the way the upload of blocks was handled: instead of processing a data block

as soon as it was received, the Metadata Manager waited for the whole request

to be received before processing any data block. This suboptimal behavior was

due to the default behavior of the HTTP servers: indeed, by default a request can

Chapter 4. ClouDedup 81

be handled only when it has been fully received. However, the HTTP protocol

optionally provides the possibility of treating the request as a set of separate blocks,

called ”chunks”, which can be processed separately. We enabled this option in our

system in order to allow both the Gateway and the Metadata Manager to process

data blocks individually in a streaming fashion and thus greatly improve the overall

performance.

4.5.6.2 Disaster Recovery

In order to preserve the integrity of users’ data, in ClouDedup it is fundamental

to safely protect metadata stored at the Metadata Manager. Without these in-

formation, it would be impossible to recover users’ files from the encrypted data

blocks stored at the Cloud Storage Provider. Therefore, a mechanism aimed at

protecting the Metadata Manager against any potential event that may cause the

loss of metadata and all users’ data is needed. Such a mechanism should also

guarantee the availability of the Metadata Manager service, meaning that in case

of an unfortunate event such as a crash, users should not hopefully notice any

downtime.

The solution we adopted makes use of the built-in master-slaves architecture avail-

able in REDIS. Thanks to this architecture, the main Metadata Manager (the

master) is replicated in real-time over one or more replicas (the slaves) which

store an exact copy of the same database. If for any reason the current master

becomes unavailable (e.g. because of a crash or a network problem), all sentinels,

that are special processes running on all replicas, start a ”voting” process aimed

at electing the new master. As soon as the majority quorum is reached, a new

master is elected and the Metadata Manager service is fully functioning again.

This process happens very quickly, namely in a couple of seconds at most, hence

users are unlikely to notice any downtime. In the unlikely case a user sends a re-

quest during the downtime period, the request will be rejected and automatically

re-issued after a few seconds, meaning that no data will be lost and the impact

on the quality of service will be minimal. In order to make the Gateway aware

of the new master, an additional sentinel process runs on the Gateway as well, so

that it can be notified as soon as the address of the current Metadata Manager

changes. This notification is necessary due to the fact that the Gateway operates

Chapter 4. ClouDedup 82

as a reverse proxy between users and the Metadata Manager, therefore the Gate-

way needs to be aware of the identity (IP address) of the current master in order

to correctly forward requests and responses.

Of course, this solution incurs a non-negligible network overhead due to the need of

communicating all metadata changes to each replica. However, we point out that

metadata do not contain raw data blocks but only IDs and encrypted keys, which

take a few KBs per file. Also, we assume that the link between the master and its

slaves is fast and reliable enough to allow for instantaneous metadata replication.

4.5.6.3 Upload Buffer

This section presents a solution that was added to reduce the latency of upload

requests experienced by clients when the metadata manager’s upload link to the

cloud is the throughput bottleneck. The decrease in latency is achieved by storing

the received data blocks in a local buffer stored at the Metadata Manager and

sending a response immediately after all data blocks have been received, as op-

posed to responding after all data blocks have been uploaded to the Cloud Storage

Provider. Sending the confirmation to the client before all data blocks have fin-

ished uploading leaves a possibility of losing some blocks in the unfortunate case

the Metadata Manager stops functioning (e.g. crash) before the buffer is flushed.

Different approaches to buffer implementation are presented, along with corre-

sponding pros and cons in terms of disaster recovery. Finally, a known security

weakness of the buffer solution is discussed.

The upload link from Metadata Manager to the Cloud Storage Provider is the

throughput bottleneck of the system, so if the blocks are buffered and uploaded in

the background, it is possible to respond to the client faster than if one would have

to wait until every block has been uploaded. From a security standpoint, as an

additional bonus, such operation would make the upload response time depend on

the data buffering time instead of the actual upload time, which would remove the

client’s ability to detect deduplication by timing upload requests. Furthermore, in

case of an unavailability period of the Cloud Storage Provider, the buffer could be

used a temporary storage replacement, within its storage limits. This would result

in higher availability, but only until the buffer becomes full. However, buffering

the blocks introduces a replication problem in case the buffer is a local database,

or a memory problem, if the blocks are kept in memory.

Chapter 4. ClouDedup 83

Considering the architecture of ClouDedup, the most straightforward solution

would be to buffer the blocks in REDIS, meaning that blocks will be stored in

memory. This has the advantage of being disaster-safe without any additional im-

plementation effort, as REDIS already provides a master-slave replication mech-

anism, as explained above. However, storing the blocks in memory, especially in

multiple replicas, is memory-expensive and incurs a significant network overhead.

Indeed, depending on the size of the buffer, it would require potentially gigabytes

of additional memory in every replica. Also, the current master would need to

send blocks to every replica, in addition to the Cloud Storage Provider.

An alternative solution consists of storing blocks in a local database. This way, the

blocks are stored on disk instead of memory, which guarantees their persistence

and protection against crashes. Of course, such a solution requires the disk to be

faster than the Metadata Manager’s upload link, which is a realistic assumption.

Otherwise the disk may become the bottleneck of the system. Besides providing

the ability to preserve data blocks upon a crash, the local database solution intro-

duces a problem with respect to disaster recovery: if the upload confirmation has

been sent to the user and then the entire machine is destroyed, the blocks in the

local database will be lost, while the user will assume that his file is safely stored

in the system. The most straightforward way of addressing the disaster recovery

problem is to replicate the local database to the slaves. Despite the fact that the

cost of this operation is actually the same than the cost of uploading the data

directly to the cloud, the solution is viable if the master has a faster connection to

the slaves than to the Cloud Storage Provider. Obviously, uploading the database

to the slaves is not a good option if it is not much more efficient than uploading the

blocks directly to the Cloud Storage Provider. A possible way of decreasing the

cost of the local database replication would consist of putting a place a mechanism

to incrementally update the database on all replicas. However, this optimization

would still require the master to send new blocks to all replicas.

In the current implementation of ClouDedup, the Metadata Manager uses a local

SQLITE database. In order to address the replication problem, the Metadata

Manager may replicate the database to a slave in the same network, and then

send the positive response to the client. As a result, the system would have been

disaster-safe, but the response time would have been extended by the replication

time. Currently, we decided not to replicate the database. The reason for this

decision is that losing the blocks stored in the buffer is in our case very unlikely

Chapter 4. ClouDedup 84

to happen, as the synchronization folder at the client always keeps a local copy

of users’ files. In the event of Metadata Manager crashes or is destroyed, one of

the slaves takes over. The new master will not be aware of the pending files in

the previous master’s local buffer, however this is not an issue, as the client will

start a synchronization process with the new master. The synchronization process

will make sure that any files that are only present in the client synchronization

folder will be pushed to the Metadata Manager and then to the Cloud Storage

Provider. In other words, user’s files are only lost if the client’s computer and

the Metadata Manager are both simultaneously destroyed. We considered that

risk very unlikely to happen, but moderately severe. As a final result, we decided

that the reductions in internal network load and user-visible response latency are

worth taking the risk, and did not replicate the local database. As a result, the

system imposes only very low latency to the users as long as the buffer is not full.

Also, the solution allows the maximum buffer size to be very large, as it is only

bound by the available disk space on the Metadata Manager machine. In addition

to that, this solution makes the system resistant to timing-based deduplication

detection at the clients, denying them the possibility to perform COF attacks.

In a buffered system, a file upload latency remains low as long as the buffer does

not become full. This attribute can be exploited with a certain accuracy in order

to perform a timing-based attack aimed at detecting whether a file has been stored.

In order to do so, an adversary is required to measure the time a packet spends in

the buffer. This information may be obtained by uploading data to the Metadata

Manager and measuring the response time when the buffer becomes full. Once the

adversary knows how long a packet stays in the buffer, he can detect duplicates

by measuring the difference between response time and the time spent in the

buffer. Depending on the size of the buffer and the variance of the upload rate

of the metadata manager upload link, the measurement may be fairly accurate.

Protection against timing-based detection of deduplication in buffered systems

can be improved by adding random variance to the upload rate of the metadata

manager. Such addition would randomize the time the packet spends in the buffer.

However, this may not be sufficient as the adversary might succeed by repeating

the experiments multiple times and measuring the average. In the prototype, this

is a known weakness which has not been addressed yet.

Chapter 4. ClouDedup 85

4.6 Evaluation

In this section we show and discuss the results of the evaluation of the proposed

scheme, from both the performance and security point of view. Regarding the

performance, we analyze both the theoretical complexity of the proposed scheme

and the actual performance of the implemented prototype. In particular, we fo-

cus on the analysis of the storage (upload) and retrieval (download) operations,

which are the most common operations in cloud storage. Regarding the security,

we consider all most likely scenarios and evaluate ClouDedup’s resilience against

potential attacks.

4.6.1 Complexity

We analyze the computational complexity of the two most important operations:

storage and retrieval. N is the mean number of blocks per file and M the total

number of blocks in the system.

Storage Retrieval

Encryption O(N) O(N)

Hash O(N) O(N)

Lookup in data structures O(N) O(N)

Other O(N) O(N)

4.6.1.1 Storage

The first step of the storage protocol requires the gateway to encrypt Bi, Ki and

Si. As the encryption is symmetric, the cost of each encryption can be considered

constant, so for N blocks the total cost is O(N). The second step of the protocol

requires the metadata manager to hash each block in order to compare it with the

ones already stored. As for symmetric encryption, the total cost is O(N). In order

to perform deduplication, MM has to check if a block has already been stored. In

order to do so, he searches for a given hash in a hash table containing the hash

of all stored blocks. As calculating the candidate position of a hash and checking

whether it is stored can be done in constant time, the cost of this operation is

constant, that is O(1), and it is performed for each block. The cost of the update

of the data structures can be considered constant. The last (optional) step of the

Chapter 4. ClouDedup 86

protocol is the additional encryption performed by the MM, which symmetrically

encrypts at most N blocks. The total cost of the storage operation is linear for

the encryption operations and almost linear for the lookup in data structures,

therefore the metadata management is scalable.

4.6.1.2 Retrieval

The first step of the retrieval protocol requires the metadata manager to compute

a hash of the concatenation of user id and file name. The cost of this operation

can be considered constant. Even the lookup in the file data structure, in order

to get the pointer to the first block of the file, has a constant cost. Visiting the

linked list, searching in the data structures and sending a request to the cloud

storage provider, have a constant cost and are repeated N times. Once again, the

cost of the symmetric decryptions is constant, hence the complexity remains linear.

The signature verification process requires the gateway to verify one signature and

compute N − 1 hashes, hence the cost of this operation is linear. The total cost

of the retrieval operation is linear, therefore the system is scalable for very large

datasets.

4.6.2 Performance and Overhead

4.6.2.1 Throughput

In a cloud storage solution, from a performance standpoint the highest priority

is to achieve a very high upload throughput. The objective in throughput op-

timization is that the actual throughput should be bounded only by the user’s

or the Metadata Manager’s upload links. In other words, there should not be

any software component causing a non-negligible decrease of the final throughput.

As an example, an inefficient encryption mechanism at the client or the Gateway

would negatively impact the overall performance and decrease the final through-

put. Similarly, at the Metadata Manager the performance would not be optimal

if the deduplication mechanism built on top of REDIS would incur a significant

computational overhead, resulting in a decrease of the upload throughput. On the

client-side, we can safely assume that unless the client has a very slow CPU and

an exceptional upload bandwidth, the symmetric encryption and data-chunking

operations are fast enough not to cause any bottleneck.

Chapter 4. ClouDedup 87

The theoretical throughput bottleneck for upload is the upload link capacity be-

tween the Metadata Manager and the Cloud Storage Provider. In order to prove

that, we measured the actual time required to upload data blocks to the Cloud.

As expected, the result was that the upload link is not only the main bottleneck, it

also severely handicaps the upload performance. Indeed, the results showed that

Libcloud, which is the library we used for handling the communication with Cloud

Storage Providers APIs, incurs a significant overhead to the overall upload time

of each file. The explanation of this issue is simple: when uploading single data

blocks, Libcloud does not seem to re-use the same connection, hence establishing a

new connection for the upload of every single block introduces the observed severe

delay.

As a solution to this serious performance issue, we explored the possibility of

taking advantage of parallelization. In order to do so, we conducted a series

of experiments with simultaneous file upload requests to the Amazon S3 Cloud

Storage Provider. The results of these experiments are shown in next section.

4.6.2.2 Libcloud Upload Performance

The efficiency of making parallel upload requests with Libcloud was measured by

uploading a 1 MB file with different number of parallel requests. In the experi-

ments, the file was uploaded when using a number of threads from 1 to 10. Each

experiment was executed 10 times and the average block upload time and the total

upload time were calculated. The final results were the average of those two values

in the 10 different executions. Double standard deviation of the different round

averages was used as error margin for both values. The machine used for the tests

was an Amazon EC2 M3 (large) instance with 2 CPUs, 7.5 GB of RAM and a

Gigabit upload link. Figure 4.4 presents the results of our experiments which show

the efficiency of Libcloud when uploading a 1 MB file, split into 99 blocks.

Surprisingly, the results indicate that increasing the number of parallel block up-

load requests also increases the time that each of the requests takes to complete.

This behavior is due to the internal implementation of Python, which does not

handle native parallel threads. As a conclusion, increasing the number of threads

beyond 5 does not improve performance significantly. To confirm this result, the

same experiment was performed with 100 parallel threads. The total time mea-

sured was 3.53 seconds with an error margin of 0.23 seconds. Thus, the results

Chapter 4. ClouDedup 88

Figure 4.4: Results of Libcloud parallel uploads experiments

indicate that even though all data blocks of a given file are uploaded in parallel,

the upload rate will be limited to 2.27 Mbps, that in this case is about 0.2% of

the available bandwidth.

In order to overcome this bottleneck, several steps may be taken. In order to find

out whether the cause is Libcloud or Amazon S3, an alternative interface can be

built from scratch in order to directly communicate with the Amazon S3 API.

Both are very efficient when uploading one single file, but when uploading many

small blocks as different files the performance seems to be significantly lower. By

implementing our own interface we could directly measure the performance when

directly using the Amazon S3 API and other providers’ APIs. Also, in order to get

the most out of parallelization, a different language or framework may be used for

creating parallel upload threads or processes. This way, the Metadata Manager

may take advantage of truly parallel threads and maximize the bandwidth usage.

If none of these approaches succeeds, the ultimate solution would be to make use

of a local Cloud Storage Provider such as a local OpenStack SWIFT appliance.

4.6.2.3 Upload Throughput vs File Size

Ideally, an optimal cloud storage solution should not let the file size affect the

throughput of the system. In other words, the upload time should grow linearly

Chapter 4. ClouDedup 89

with respect to the size of the file being uploaded. In order to verify whether

our current implementation of ClouDedup is compliant with this principle, up-

load, download and deduplication times were measured for 1, 5, 10, 20 and 50

MB files. In particular, the deduplication time is the time required to upload a

file that already exists in the system since it has already been uploaded in the

past. Of course, the deduplication time is expected to much lower than the up-

load time. During our experiments, the client machine was a Amazon EC2 M3

medium instance. The Metadata Manager machine was the same as in the upload

parallelization experiments. Each experiment was executed 10 times, and average

upload, download and deduplication times were measured. The error margins,

counted as double standard deviations of the values during the 10 executions, are

not presented, as they were all less than a second. In terms of parallelization the

system was configured to 100 simultaneous block uploads and downloads. The

results are presented in Figure 4.5.

Figure 4.5: Results of Upload Throughput vs File Size experiments

The results confirm that the upload, download and deduplication times increase

linearly as file size increases. In other words, the transfer rate is independent of

the file size. For the 50 MB file, the upload, download and deduplication rates

were 2.0 Mbps, 43.2 Mbps and 6.2 Mbps respectively. These values define the

system performance with sufficient accuracy.

Chapter 4. ClouDedup 90

4.6.2.4 Upload Buffer vs Response Time

As described in the implementation of the prototype, the upload latency visible

by the client can be greatly decreased by putting in place a buffering solution

at the Metadata Manager. In practice, when a client uploads a file, a positive

acknowledgment will be returned to the client as soon as all data blocks have

been successfully received and stored in the buffer. If the buffer is temporarily

full or there is not enough space to store all data blocks, the client has to wait

until enough blocks are uploaded to the Cloud Storage Provider. To confirm

that the response time decreases as a function of the proportion of the file that

immediately fits in the buffer, experiments were conducted. The upload response

time of a 1 MB file was measured with different buffer sizes. The buffer size is

presented as the percentage of the file that fits into the buffer. For client and the

Metadata Manager, the same machines were used as in the previous experiments.

Parallelization was configured to allow for the execution of at most 10 simultaneous

threads, which corresponds to about 10% of the file being simultaneously uploaded,

as the total number of blocks in the file was 99. The experiments were executed

10 times and the values presented in this section are the averages of the response

times in different executions. The error margins are doubled standard deviations

between the values of different executions. Figure 4.6 presents the results.

Figure 4.6: Results of Upload Buffer vs Response Time experiments

Chapter 4. ClouDedup 91

As expected, the results indicate that the response time indeed decreases linearly

as the level of space in the buffer increases. The average response time for 0%

buffering (no buffering) was 4.2 s and for 100% buffering 0.3 s. The times cor-

respond to the upload rates of 1.9 Mbps without buffering and 24.7 Mbps with

complete buffering. The round trip time between the client and the Metadata

Manager was ignored in the rate calculations, as it was less than 20 ms.

4.6.2.5 Network Overhead

The network overhead caused by the system was measured by monitoring the

amount of data transferred between the client and the Metadata Manager, and di-

viding that amount by the actual data that needed to be uploaded to the Cloud. In

this case the actual data means the encrypted data blocks, including padding due

to symmetric encryption, but excluding encoding overhead and all the metadata

such as encrypted symmetric keys. As shown in the results, most of the network

overhead is due to base64 encoding of the encrypted binary data, which cannot be

transferred in raw format over HTTP(S). As the base64 algorithm encodes every

3 characters as 4, and occasionally applies one or two characters of padding, the

overhead for an encrypted block is between 33.3% and 33.4%. The overhead is

slightly increased by the transferred encrypted filename and the encrypted block

keys, which are also base64-encoded. The impact of filename is negligible, as it

takes only a few bytes and is transferred only once per file. The encrypted block

keys, however, impose an overhead of 64 bytes per block. As the mean block size

for the rabin fingerprint data-chunking method has been configured to 8 KB, the

mean overhead caused by the encrypted block keys is about 0.8%. Moreover, a

fraction of the overhead depends on the fact that we decided to pack every en-

crypted block along with its corresponding attributes (e.g. encrypted key) into a

JSON object, which is the chunk that is actually sent to the Metadata Manager.

However, JSON proved to be very space efficient, therefore its overall impact on

the network overhead is negligible. The network overhead between the client and

the Metadata Manager was measured for three files of 10 KB, 1 MB and 5 MB

respectively. The results are presented in Figure 4.7.

The total overhead was between 33.4% and 33.6% for all the files. As expected,

this confirms that unless the file is extremely small, the amount of overhead is

linear with respect to the file size. Also, we point out that since the main source

Chapter 4. ClouDedup 92

Figure 4.7: Results of the Network Overhead Experiments

of overhead is the method used for encoding the encrypted binary data, we plan to

investigate the possibility of using a more efficient encoding method such as Z85

which introduces an overhead of 25%, meaning that it would reduce the network

overhead by more than 8%. In addition to that, we point out that for the sake

of simplicity and to speed-up the development we decided to use HTTP(S) as

protocol, which introduces a space efficiency problem due to the nature of HTTP

itself. Indeed, HTTP was designed as a text protocol, meaning that even though it

can be used to send binary files, a binary protocol would always be way more space

efficient than HTTP. Therefore, we also plan to investigate the possibility of using

a more efficient protocol, namely a binary protocol, for uploading encrypted data

blocks. Also, as we mentioned earlier, we used JSON as data serialization format

in order to pack encoded encrypted blocks and related attributes into single textual

chunks. Although JSON is a de-facto standard and known to be very efficient,

there are a few alternatives such as MessagePack [68] that may be even more

efficient. Finally, since encrypted data blocks are encoded into long ASCII strings,

we plan to test the effect of gzip compression in order to further reduce the size

of upload and download requests and responses.

Chapter 4. ClouDedup 93

4.6.2.6 Metadata Storage Overhead

The metadata storage overhead consists of the amount of memory required to

store all metadata, which consist of the information needed to keep track of all

blocks, files and users. This quantity was measured by monitoring the memory

usage of REDIS, which is the software component used for storing all metadata,

with different amounts of data in the system. The results are presented in Figure

4.8.

Figure 4.8: Metadata Storage Overhead

The results clearly indicate that the memory required for metadata is about 5%

of the data stored in the system, which can be considered as a reasonable and

affordable overhead. However, we remind that our implementation is not yet

production ready, therefore we investigated the possibility of further reducing the

metadata footprint by removing redundant information.

We started from the observation that the Metadata Manager currently requires

more memory than what would be needed to store the encrypted block keys.

Therefore, this paves the way to further optimizing the memory usage at the

Metadata Manager.

Chapter 4. ClouDedup 94

Key Value
F:file id ’user id’:user id,’filename’:filename,’block keys’: [k0, k1,...]
B block id ’storage info’:block storage information,’owner counter’: number of owners

Table 4.2: A memory optimized metadata structure

As shown in Table 4.1, the current implementation stores the metadata as partially

redundant key-value entries in REDIS. In this context, partially redundant means

that some pieces of information appear multiple times either as a key or as a value.

Ideally, a fully optimized solution would contain each unique piece of information

only once, either as a key, as a value or as a part of a value. However, as a

block may appear in multiple files, a distinction between per-block and per-file

information is necessary. A memory optimized metadata structure is presented in

Table 4.2.

Unfortunately, REDIS does not allow complex types like lists as values of a hash

table. A possible workaround to this limitation would consist of serializing complex

values that cannot be directly handled by REDIS and store them as simple strings,

which would bring the additional overhead of deserializing these complex values

before accessing them, resulting in an increase of the access time. However, this

overhead would not seriously impact the performance of the system since some

entries are only searched when a client is downloading a file. As the download

occurs rarely, the priority of the access time is low for certain entries, like the

encrypted block keys or the cloud storage coordinates.

As a more complex alternative, the memory consumption at the metadata manager

could be further reduced by encrypting all the metadata that do not need to be

accessed often and outsourcing it to the cloud. As an example, the encrypted

block keys are data bound, as they need to be accessed only upon a download

or a file update. More precisely, they are subject to change only when a file

modification or deletion occurs. Therefore, encrypted block keys could be safely

outsourced to the Cloud Storage Provider. Also, from a security standpoint, this

solution would not introduce any additional threat with compared to the current

solution, considering that the encrypted block keys would still be protected against

a malicious Cloud Storage Provider unless the Gateway is compromised. In order

to store the encrypted block keys in the cloud, each file entry would require to

contain the necessary storage information to retrieve them. However, the storage

info is of constant size, as opposed to a block keys that depend on the number of

blocks in the file. Also, if the block keys are not further encrypted by the Metadata

Chapter 4. ClouDedup 95

Manager, or if the Metadata Manager already performs an extra encryption for

data blocks, this operation does not impose any additional cost with respect to

key management. Otherwise the additional cost would be to store one symmetric

encryption key at the Metadata Manager.

4.6.2.7 Data Storage Overhead

In this section we discuss the storage overhead caused by ClouDedup at the Cloud

Storage Provider. We remind that in our current implementation the only data

that is stored at the Cloud Storage Provider is the encrypted blocks, which are

about the same size as the original unencrypted files. Indeed, the base64 encoding

method is only applied when transferring data from one component to another.

More precisely, the only overhead introduced at this point is due to symmetric

encryption padding. However, even in the worst case the client applies a padding

of 31 bytes which, assuming a mean block size of 8KB, is about the 0.4% of the

original data.

4.6.3 Deduplication Rate

Our proposed solution aims at providing a robust security layer which provides

confidentiality and privacy without impacting the underlying deduplication tech-

nique. Each file is split into blocks by the client, who applies the best possible

chunking algorithm. When encrypted data blocks are received by the MM, a hash

of each block is calculated in order to compare them to the ones already stored.

This task is completely independent from the chunking technique used by clients.

Also, all the encryptions performed in the system do not affect the deduplication

effectiveness since the encryption is fully deterministic. Therefore, ClouDedup

provides additional security properties without having an impact on the dedupli-

cation rate. Users can thus benefit from the additional security provided by the

system without affecting the deduplication rate.

4.6.4 Security

We explained the main security benefits of our solution in section 4.2.4. We now

focus on potential attack scenarios and possible issues that might arise.

Chapter 4. ClouDedup 96

Curious Cloud Storage Provider As stated in the threat model section, we

assume that an attacker, like the malicious storage provider, has full access to

the storage. If the attacker has only access to the storage, he cannot get any

information. Indeed, files are split into blocks and each block is first encrypted

with convergent encryption and then further encrypted with one or more secret

keys using a deterministic encryption mechanism. As discussed in Chapter 3,

deterministic encryption can effectively provide full confidentiality. Moreover, no

metadata (file owner, file name, file size, etc.) are stored at the cloud storage

provider. Clearly, thanks to this setup, the attacker cannot perform any dictionary

attack on predictable files.

Compromised Metadata Manager A worse scenario is the one in which the

attacker manages to compromise the metadata manager and thus has access to

data, metadata and encrypted keys. In this case, confidentiality and privacy would

still be guaranteed since block keys are encrypted with users’ secret keys and the

gateway’s secret key. The only information the attacker can get are data similar-

ity and relationships between files, users and blocks. However, as file names are

encrypted by users, these information would be of no use for the attacker, unless

he manages to find a correspondence with a predictable file according to its size

and popularity. Also, as discussed in Chapter 3, deterministic encryption assures

confidentiality even when used in conjunction with block-level deduplication. In-

deed, ciphertext-only attacks based on the analysis of block frequency do not seem

to be feasible in real scenarios.

Compromised Gateway The system must guarantee confidentiality and privacy

even in the unlikely event where the gateway is compromised. An additional en-

cryption performed by the metadata manager before sending data to the storage

provider will then enforce data protection since it also offers another encryption

layer; therefore confidentiality is still guaranteed and offline dictionary attacks

are not possible. On the other hand, if the attacker compromises the gateway,

only online attacks would be possible since this component directly communicates

with users. The effect of such a breach is limited since data uploaded by users

are encrypted with convergent encryption, which achieves confidentiality for un-

predictable files [5]. Furthermore, a rate limiting strategy put in place by the

metadata manager can limit online brute-force attacks performed by the gateway.

Compromised Gateway and Metadata Manager In the worst scenario, the

attacker manages to obtain all secret keys by compromising both the gateway

Chapter 4. ClouDedup 97

and the metadata manager. In this case, the attacker will be able to remove

the two additional layers of encryption and perform offline dictionary attacks on

predictable files. However, since data are encrypted with convergent encryption

by users, confidentiality for unpredictable files is still guaranteed.

Malicious Users colluding with Metadata Manager Another interesting

scenario that we discuss is the case in which one or more users collude with the

metadata manager in order to circumvent the gateway and compromise confiden-

tiality. In such a scenario a dictionary attack would work as follows: the malicious

user generates a plaintext, encrypts it with convergent encryption and uploads it

as usual. The gateway receives the upload request and encrypts all data blocks

with its secret key. At this point, the metadata manager can easily check whether

the file has already been stored, as it would do for deduplication, and send a

feedback to the user. If the file exists, then the user knows that a given file has

already been uploaded by another user. Such a simple attack may prove to be

extremely effective since it may be used for discovering confidential information

such as the pin code in a letter from a bank or a password in an email. However,

we argue that this kind of attacks would not have a severe impact in real scenarios,

the reason is twofold. First, such an attack would be perpetrated online, which

means that the attack rate would be limited by the upload capacity of the user.

Moreover, similarly to the metadata manager, the gateway may easily prevent

these attack by putting in place a rate limiting strategy. Second, in a real scenario

all users would belong to the same organization and be authenticated using an

internal and trusted strong authentication mechanism. In addition to that, due

to the high number of upload requests, such an attack would likely leave traces

and be detected promptly, therefore a potentially malicious user would be strongly

discouraged.

External Attacker Finally, we analyze the impact of an attacker who attempts

to compromise users and have no access to the storage. If an attacker only com-

promises one or more users, he can attempt to perform online dictionary attacks.

As the gateway and the metadata manager are not compromised, the attacker will

only retrieve data belonging to the compromised user thanks to the access control

mechanism. Furthermore, as mentioned above, the gateway can limit such attacks

by setting a maximum threshold for the rate with which users can send requests.

Chapter 5

PerfectDedup

5.1 Introduction

ClouDedup achieves secure block-level deduplication at the cost of requiring a

complex architecture where the most crucial encryption operation is delegated

to a trusted component. Also, as discussed in the security analysis section, a

Metadata Manager colluding with one or more users may easily circumvent the

protection guaranteed by the additional encryption layer and successfully perform

COF and LRI attacks.

Starting from these two drawbacks, we aim at designing a scheme, called PerfectD-

edup, with a simpler architecture where users could autonomously assess whether

a data block can be deduplicated by running a privacy-preserving protocol with an

untrusted Cloud Storage Provider. Such an approach would have the additional

and non-negligible benefit of allowing for client-side (source-based) deduplication,

which brings bandwidth savings in addition to storage space savings. Thanks to

the privacy-preserving protocol, PerfectDedup securely and efficiently combines

client-side cross-user block-level deduplication and confidentiality against poten-

tially malicious (curious) cloud storage providers without relying on a trusted

entity with respect to the encryption operation. Unlike ClouDedup, this scheme

also allows for client-side deduplication, meaning that a client can securely check

whether a block is a duplicate before uploading and encrypting it.

Data Popularity In PerfectDedup, we propose to counter the weaknesses due

to convergent encryption by taking into account the popularity [7] of the data

98

Chapter 5. PerfectDedup 99

segments. Data segments stored by several users, that is, popular ones, are only

protected under the weak CE mechanism whereas unpopular data segments that

are unique in storage are protected under semantically-secure encryption. This

declination of encryption mechanisms lends itself perfectly to efficient deduplica-

tion since popular data segments that are encrypted under CE are also the ones

that need to be deduplicated. This scheme also assures proper security of stored

data since sensitive thus unpopular data segments enjoy the strong protection

thanks to the semantically-secure encryption whereas the popular data segments

do not actually suffer from the weaknesses of CE since the former are much less

sensitive because they are shared by several users. Nevertheless, this approach

raises a new challenge: the users need to decide about the popularity of each data

segment before storing it and the mechanism through which the decision is taken

paves the way for a series of exposures very similar to the ones with CE. The focus

of schemes based on popularity then becomes the design of a secure mechanism to

determine the popularity of data segments.

We suggest a new scheme for the secure deduplication of encrypted data, based on

the aforementioned popularity principle. The main building block of this scheme is

an original mechanism for detecting the popularity of data segments in a perfectly

secure way. Users can lookup for data segments in a list of popular segments

stored by the Cloud Storage Provider (CSP) based on data segment identifiers

computed with a Perfect Hash Function (PHF). Thanks to this technique, there is

no information leakage about unpopular data segments and popular data segments

are very efficiently identified. Based on this new popularity detection technique,

our scheme achieves deduplication of encrypted data at block level in a perfectly

secure manner.

The advantages of our scheme can be summarized as follows:

• PerfectDedup allows for storage size reduction by deduplication of popular

data;

• PerfectDedup relies on symmetric encryption algorithms, which are known

to be very efficient even when dealing with large data;

• PerfectDedup achieves deduplication at the level of blocks, which leads to

higher storage space savings compared to file-level deduplication [12];

• PerfectDedup does not require any coordination or initialization among users;

Chapter 5. PerfectDedup 100

• PerfectDedup does not incur any storage overhead for unpopular data blocks;

5.2 Secure Deduplication Based on Popularity

Given the inherent incompatibility between encryption and deduplication, existing

solutions suffer from different drawbacks. CE was considered to be the most

convenient solution for secure deduplication but it has been proved that is is

vulnerable to various types of attacks [14]. Hence, CE cannot be employed to

protect data confidentiality and thus stronger encryption mechanisms are required.

We point out that data may need different levels of protection depending on its

popularity [7] a data segment becomes ”popular” whenever it belongs to more

than t users (where t is the popularity threshold). The ”popularity” of a block is

viewed as a trigger for its deduplication. Similarly, a data segment is considered

to be unpopular if it belongs to less than t users. This is the case for all highly

sensitive data, which are likely to be unique and thus unlikely to be duplicated.

Given this simple distinction, we observe that popular data do not require the

same level of protection as unpopular data and therefore propose different forms

of encryption for popular and unpopular data. For instance, if a file is easily ac-

cessible by anyone on the Internet, then it is reasonable to consider a less secure

protection. On the other hand, a confidential file containing sensitive information,

such as a list of usernames and passwords, needs much stronger protection. Popu-

lar data can be protected with CE in order to enable source-based deduplication,

whereas unpopular data must be protected with a stronger encryption. Whenever

an unpopular data segment becomes popular, that is, the threshold t is reached,

the encrypted data segment is converted to its convergent encrypted form in order

to enable deduplication.

However, this approach, which consists of using popularity as an indicator for

determining whether or not a file is confidential, may fail in some extreme cases.

For instance, if a confidential file is distributed to a number of users higher than

the current threshold t, it will be encrypted with CE, resulting in a severe exposure

to the well-known weaknesses of CE. As a simple solution to this issue, we point

out that when the user wants to keep a file confidential even when it becomes

popular, he may encrypt the file with a standard encryption solution and then

upload it. This way, even though the file will reach the threshold and thus become

Chapter 5. PerfectDedup 101

popular, CE will be applied on top of the existing user encryption layer, resulting

in confidentiality still being guaranteed. Alternatively, the system may provide

an option for allowing the user to define a file as non-deduplicable and never get

it encrypted with CE. As opposed to simply increasing the popularity threshold,

both approaches would guarantee full confidentiality of the most sensitive data

without negatively affecting storage space savings. Indeed, as shown in the study

of Chapter 3, increasing the global popularity threshold for all files would likely

imply the loss of the ability of detecting a non-negligible fraction of the redundant

blocks, resulting in a performance degradation of the whole system.

We propose to encrypt unique and thus unpopular data blocks (which cannot be

deduplicated) with a symmetric encryption scheme using a random key, which

provides the highest level of protection while improving the computational cost at

the client. Whenever a client wishes to upload a data segment, we propose that

she should first discover its popularity degree in order to perform the appropri-

ate encryption operation. The client may first lookup for a convergent encrypted

version of the data stored at the CSP. If such data segment already exists, then

the client discovers that this data segment is popular and hence can be dedu-

plicated. If such data segment does not exist, the client will encrypt it with a

symmetric encryption scheme. Such a solution would greatly optimize the encryp-

tion cost and the upload cost at the client. However, a standard lookup solution

for the convergent encrypted data segment would reveal the convergent encrypted

data segment ID, that is the digest of the data computed under an unkeyed hash

function like SHA-2, which would be a serious breach. Secure lookup for a data

segment is thus a delicate problem since the ID used as the input to the lookup

query can lead to severe data leakage as explained in [5] and [14]. Therefore, in

such a scenario the main challenge becomes how to enable the client to securely

determine the popularity of a data segment without leaking any exploitable in-

formation to the CSP. Also, the client needs to securely handle the ”popularity

transition”, that is the phase triggered by a data segment that has just reached

the popularity threshold t. More formally, the popularity detection problem can

be defined as follows: given a data segment D and its ID IDD, the client wants to

determine whether IDD belongs to the set P of popular data segment IDs stored

at an untrusted CSP. It is crucial that if IDD /∈ P , no information must be leaked

to the CSP. More generally, this problem can be seen as an instance of the Private

Set Intersection (PSI) problem [69]. However, existing solutions are known to be

costly in terms of computation and communication, especially when dealing with

Chapter 5. PerfectDedup 102

Figure 5.1: Our approach: popular data are protected with CE whereas un-
popular data are protected with a stronger encryption

very large sets. Private Information Retrieval (PIR) [70] may also be a solution

to this problem. However, using PIR raises two main issues: first, it would incur

a significant communication overhead; second, PIR is designed to retrieve a single

element per query, whereas an efficient protocol for the popularity check should

allow to check the existence of multiple data segment IDs at once. Hence instead

of complex cryptographic primitives like PSI and PIR we suggest a secure mecha-

nism for popularity detection based on a lightweight building block called Perfect

Hashing [11]. We aim at solving this problem by designing a novel secure lookup

protocol, which is defined in next section, based on Perfect Hashing [11].

5.3 Basic Idea: Popularity Detection Based on

Perfect Hashing

The popularity detection solution we propose makes use of the Perfect Hashing

process which, given an input set of n data segments, finds a collision-free hash

function, called the perfect hash function (PHF), that maps the input set to a

set of m integers (m being larger than n by a given load factor). The CSP can

run this process in order to generate the PHF matching the IDs of the convergent

encrypted popular blocks that are currently stored at the CSP. The resulting PHF

can be efficiently encoded into a file and sent to the client. Using the PHF received

Chapter 5. PerfectDedup 103

from the CSP, the client can lookup for new blocks in the set of encrypted popular

block IDs stored at the CSP, as illustrated in Figure 5.2. For each new block D,

the client first encrypts the block to get CE(D), he then computes the ID thereof

using an unkeyed hash function h like SHA-2. Finally, by evaluating the PHF over

ID, the client gets the lookup index i for the new block. The integer i will be the

input of the lookup query issued by the client. Once the CSP has received the

lookup query containing i, he will return to the client the convergent encrypted

popular block ID stored under i. At this point, the client can easily detect the

popularity of his data segment by comparing the ID he computed with the one

received from the CSP: if the two IDs match, then D is popular. As mentioned

above, it is a crucial requirement to prevent the CSP from discovering the content

of the block D when it is yet unpopular. We achieve so by introducing an enhanced

and secure version of Perfect Hashing, which makes the generated PHF one-way,

meaning that the CSP cannot efficiently derive the input of the PHF from its

output i. This also implies that the PHF must yield well-distributed collisions for

unpopular blocks.

However, even though the client is now able to securely detect the popularity of

a block, he still needs to handle the popularity transition, that is the phase in

which a block reaches the threshold t and the convergent encrypted block needs

to be uploaded to the CSP. Since the client cannot be aware of other copies of

the same block previously uploaded by other users, a mechanism to keep track of

the unpopular data blocks is needed. Clearly, the client cannot rely on the CSP

for this task, as the CSP is not a trusted component. Therefore, we propose to

introduce a semi-trusted component called Index Service (IS), which is responsible

for keeping track of unpopular blocks. If the result of a popularity check is negative,

then the client updates the IS accordingly by sending the popular convergent

encrypted block ID and the ID of the symmetrically encrypted block. As soon as

a block becomes popular, that is reaches the threshold t, the popularity transition

is triggered and the client is notified in order to let him upload the convergent

encrypted block, which from now on will be deduplicated by the CSP. Upon a

popularity transition, the IS will delete from its storage any information related

to the newly popular block. Regarding the popularity threshold, we point out

that users do not have to be aware of its value, since the popularity transition is

entirely managed by the IS, that is responsible for determining the current value

for t. For instance, the value of t may be either static or dynamic, as proposed

Chapter 5. PerfectDedup 104

Figure 5.2: The secure PHF allows users to detect popular blocks while pre-
venting the CSP from discovering unpopular blocks

in [7]. Indeed, our scheme is completely independent of the strategy used for

determining the value of the popularity threshold.

5.4 Background

5.4.1 Perfect Hashing

A Perfect Hash Function (PHF) maps a set of arbitrary entries into a set of integers

without collisions. Authors in [11] proposed a new algorithm that allows finding a

perfect mapping for very large sets in a very efficient way. This algorithm, which is

called CHD (Compress, Hash and Displace), has been designed with scalability as a

main design goal. Indeed, even when dealing with datasets of millions of elements,

it achieves linear space and computational complexities (with respect to the size of

the set). The main idea behind this algorithm is to split the input set into several

buckets (subsets), each containing a few elements, and find a collision-free mapping

for each of these buckets separately. This approach has proved to be much more

scalable than previous approaches. The mean number of elements per bucket is a

parameter that can be tuned upon executing the generation algorithm. CHD also

allows choosing a load factor, which is the fraction of non-empty positions in the

hash table.

Chapter 5. PerfectDedup 105

Although perfect hashing is widely adopted for efficient indexing in the field of

relational databases [71], it has some desirable properties which make it an ap-

propriate building block for our scheme. First, the computational complexity to

build the PHF is linear and the PHF can be evaluated in constant time. Thanks to

these properties, the system is scalable since the PHF generation remains feasible

when dealing with very large datasets. In addition to that, the main computa-

tional load is outsourced to the CSP, while the client only has to perform very

simple and lightweight operations such as evaluating the PHF on block IDs and

symmetrically encrypting data blocks. Second, thanks to a special encoding and

compression mechanism, the size of the PHF file is small and therefore it can easily

be transferred to the client. Therefore, the performance impact is minimal and this

approach can easily scale up to sets of millions of elements. Third, the resulting

hash table is collision-free with respect to the elements of the input set (popular

block IDs), meaning that any index is associated to at most one element of the

input set. On the other hand, if the PHF is evaluated over the rest of the domain

(unpopular block IDs) then collisions are well-distributed. This property is an im-

portant starting point to build our secure lookup protocol which must guarantee

that an attacker is not able to determine on what input the PHF has been eval-

uated. Indeed, while an index in the hash table corresponds to a unique popular

block ID, many unpopular block IDs are mapped to the same index. Therefore,

given an index in the hash table, the CSP cannot determine the corresponding

block ID. In our solution we propose to extend the existing PHF by replacing the

underlying hash function with a one-way secure hash function such as SHA-2 [13].

Indeed, for the security of the scheme, it is crucial that the hash function used by

the algorithm is one-way, meaning that it is easy to compute on a given input, but

hard to invert given the image of a random input.

5.4.1.1 CHD Algorithm

In this section we explain in more detail how the CHD algorithm works and why it

is currently considered as the fastest and most scalable perfect hashing algorithm.

To start with, it is worth pointing out that CHD requires to configure two param-

eters, the load factor and the mean bucket size, which need to be chosen carefully

since they can significantly affect the tradeoff between the generation time and

the size of the file representing the PHF. The load factor is a value between 0 to

1 (in practice it is set between 0.5 to 0.99) which represents the fraction of empty

Chapter 5. PerfectDedup 106

positions in the final hash table. Intuitively, the lower this value is, the easier

(faster) will be to find a perfect mapping for all the elements of the input set. On

the other hand, the mean bucket size also plays a crucial role in the performance

of the generation process and the size of the PHF file. More precisely, as men-

tioned earlier, CHD splits the input set into multiple buckets, where the number

of buckets is chosen as the result of the size of the input set divided by the mean

bucket size. The smaller a bucket is, the easier is to find a mapping (unallocated

positions in the hash table) for all elements in the bucket. However, since the PHF

file stores information for each bucket, a low mean bucket size will increase the

number of buckets and thus the size of the PHF file.

We now have a closer look at the algorithm in order to understand the idea behind

it and the structure of the resulting PHF, which can be encoded in a file and

decoded by users. The data structures used to represent the PHF are two: the

first data structure uses a hash function h in order to map each element x of the

input set S to a bucket Bi; the second data structure associates a hash function

gi to each bucket Bi. For the sake of simplicity, we can assume to have a family

of hash functions which can be enumerated and from which we can pick a hash

function based on its index. In practice, the authors in [11] suggest that this can be

efficiently achieved by using two hash functions and a pair of displacement factors.

As an example, a hash function gi can be built on top of two hash functions as

follows: gi)(x) = h1(x)+a∗h2(x)+b. Given the input set S and the two parameters

mentioned above, the goal of the CHD algorithm is to find for each bucket Bi a

hash function gi such that all elements are mapped to a unique and unallocated

position in the final hash table. More formally, as a result of this split operation

we have r buckets such that

Bi = {x ∈ Ss.t.h(x) = i} (5.1)

For each bucket Bi we have a second hash function gi that is found thanks to the

algorithm. Therefore, the mapping for an element x is defined as follows:

f(x) = gh(x)(x) (5.2)

that is perfect over the whole input set S. Given these definitions, the main steps

of the algorithm can be described as follows

Chapter 5. PerfectDedup 107

CHD Algorithm

Split S into r buckets Bi using h

Initialize array T[0, ..., m1] with 0’s;

for all i from 0 to r do

for l = 1,2, ... repeat forming Ki = {gl(x) | x in Bi}

until |Ki| = |Bi| and INTERSECTION(Ki, {j | T[j] = 1}) = {}

let gi = the successful l

for all j in Ki let T[j] = 1

where m is the size of the resulting hash table that is calculated by dividing the

size of the input set by the load factor. As we can see, the result of this algorithm is

a sequence of indices where each index corresponds to the hash function mapped

to the corresponding bucket. In order to get this result, the algorithm iterates

over each bucket and for each of them aims at finding a hash function that maps

all elements in the bucket to empty positions in the hash table. The authors in

[11] prove that the indices do not diverge, therefore both the generation time and

the size of the PHF file are linear with respect to the cardinality of the input

set. Also, since the indices are bounded they can be represented with a lower

number of bits. In the current implementation, the resulting sequence of indices is

further compressed by using the method proposed in [72] which allows to retrieve

an element from the list in constant time. Thanks to this compression mechanism

and other low-level optimizations, with a load factor of 0.81, CHD is able to

represent a perfect hash function using only 1.40 bits per element of the input set.

5.5 The system

5.5.1 Overview

We consider a scenario where users want to store their data (files) on a potentially

untrusted Cloud Storage Provider (CSP) while taking advantage of source-based

block-level deduplication and protecting the confidentiality of their data at the

same time. Users run a client C which is a lightweight component with respect

to both storage and computational capacity. CSP is assumed to be honest-but-

curious and thus correctly stores users’ data while trying to disclose the content

Chapter 5. PerfectDedup 108

thereof. Prior to uploading its data, C runs a secure lookup protocol to check

whether the data are popular. The CSP is responsible for the generation of the

PHF over the popular blocks and the storage of the resulting collision-free hash

table. The proposed protocol introduces a trusted third party called Index Ser-

vice (IS) which helps the client to discover the actual number of copies of a yet

unpopular block. We stress the fact that IS only stores information on unpopular

blocks and once a block becomes popular, all corresponding information are re-

moved from its database, hence this component does not need to have a significant

storage capacity.

The proposed solution is described under three different scenarios:

• Unpopular data upload (Scenario 1): if C finds out that the data is yet

unpopular, it performs the upload to the CSP and updates the IS;

• Popularity transition (Scenario 2): if C finds out that the popularity degree

of the data is t − 1 (where t is the popularity threshold), then it performs

the appropriate operations to upload the newly popular data. IS removes

all information with respect to this specific data and CSP deletes all the

encrypted copies previously stored;

• Popular data upload (Scenario 3): C only uploads metadata since it has

detected that the requested data is popular, therefore deduplication can

take place.

CSP stores a hash table for popular block IDs which is constructed with the

previously introduced PHF. Each element of the hash table is defined by the couple

(PHF (h(CE(bi))), h(CE(bi))) where h(CE(bi)) is the unkeyed secure hash of the

convergent encrypted block. Before any operation, given the current set of popular

blocks, CSP creates a corresponding secure PHF. This PHF is updated only when

CSP needs to store new popular blocks. In the next sections, we first present the

popularity check phase which is common to all three scenarios and then explain

the following phases.

5.5.2 Popularity Check (Scenarios 1, 2 and 3)

Before uploading a file F , C splits F into blocks F = {bi}, encrypts each of them

with CE and computes their IDs. We point out that our scheme is completely

Chapter 5. PerfectDedup 109

independent of the underlying data-chunking strategy used for determining block

boundaries, which is a problem that is out of the scope of this work. The client

fetches the PHF from the CSP and evaluates it over {h(CE(bi))}. The result of this

operation is a set of indices I = {PHF (h(CE(bi)))}, where each index represents

the position of the potentially popular block ID in the hash table stored at the

CSP. These indices can be used to perform the popularity check without revealing

the content of the blocks to the CSP. Indeed, given a set of indices obtained as

above, the client can retrieve the corresponding block IDs stored in the hash table

and then compare them with his own block IDs. Any block bi such that h(CE(bi))

is equal to the popular block ID retrieved from the CSP, is considered as popular,

hence will be deduplicated. The index does not reveal any exploitable information

on the block.

5.5.3 Popularity Transition (Scenarios 1 and 2)

If the popularity check reveals that a block is not popular, C needs to check

whether it is going to trigger a popularity transition. A block becomes popular as

soon as it has been uploaded by t users. In order to enable C to be aware of the

change of the popularity status and perform the transition, C sends an update to

the IS whenever the popularity check has returned a negative result for a given

block ID. IS stores a list of block IDs and owners corresponding to each encrypted

copy of the yet unpopular block. When the number of data owners for a particular

block reaches t, the popularity transition protocol is triggered and IS returns to

C the list of block IDs. In order to complete this transition phase, CSP stores

the convergent-encrypted copy, removes the corresponding encrypted copies and

updates the PHF. From now on, the block will be considered popular, therefore

it will be deduplicated. We point out that this operation is totally transparent

to the other users who uploaded the same block as unpopular. Indeed, during

their upload phase, users also keep encrypted information about the convergent

encryption key. This allows them decrypting the block when it becomes popular.

5.5.4 Data Upload (Scenarios 1, 2 and 3)

Once the client has determined the popularity of each block, he can send the

actual upload request. The content of the request varies depending on the block

Chapter 5. PerfectDedup 110

status. If the block is unpopular, C uploads the block symmetrically encrypted

with a random key. If the block is popular, C only uploads the block ID, so that

the CSP can update his data structures. Optionally, in order to avoid to manage

the storage of the encryption keys, C may rely on the CSP for the storage of the

random encryption key and the convergent encryption key, both encrypted with a

secret key known only by the client.

5.6 Security Analysis

In this section, we analyze the security of the proposed scheme, the CSP being

considered the main adversary. The CSP is ”honest-but-curious”, meaning that it

correctly performs all operations but it may try to discover the original content of

unpopular data. We do not consider scenarios where the CSP behaves in a byzan-

tine way. We assume that CSP cannot collude with the IS since this component is

trusted. Since the goal of the malicious CSP is to discover the content of unpopu-

lar blocks, we analyze in detail whether (and how) confidentiality is guaranteed for

unpopular data in all phases of the protocol. Finally, we also analyze some attacks

that may be perpetrated by users themselves and propose simple countermeasures

against them.

Security of blocks stored at the CSP By definition, an unpopular block is

encrypted using a semantically-secure symmetric encryption. The confidential-

ity of unpopular data segments thus is guaranteed thanks to the security of the

underlying encryption mechanism.

Security during Popularity Check The information exchanged during the Pop-

ularity Check must not reveal any information that may leak the identity of an

unpopular block owned by the user. The identity of an unpopular block is pro-

tected thanks to the one-wayness of the secure PHF: the query generated by the

client does not include the actual unpopular block ID but an integer i that is

calculated by evaluating the secure PHF on the block ID. Simple guessing by ex-

ploring the results of the secure hash function embedded in the PHF is not feasible

thanks to the one-wayness of the underlying secure hash function (SHA-2 [13]). In

addition to that, when the PHF is evaluated over an unpopular block ID, there is

definitely a collision between the ID of the unpopular block and the ID of a pop-

ular block stored at the CSP. These collisions serve as the main countermeasure

Chapter 5. PerfectDedup 111

to the disclosure of the unpopular block ID sent to the CSP during the lookup.

With a reasonable assumption, we can also consider that the output of the un-

derlying secure hash function (SHA-2) is random. In case of a collision between

an unpopular block ID and the ID of a popular block stored at the CSP, thanks

to the randomness of the underlying secure hash function, the output of a PHF

based on such a hash function is uniformly distributed between 0 and m. In the

case of such a collision, the probability that the CSP guesses the unpopular block

ID used as input to the PHF by the client thus is:

m∣∣P̄ ∣∣ =
|P |∣∣P̄ ∣∣ ∗ α (5.3)

where P is the set of popular block IDs stored at the CSP, P̄ is the rest of the

block ID domain including all possible unpopular block IDs, α is the load factor

of the PHF such that m = |P |
α

.

Assuming that the cardinality of the entire domain is much larger than the cardi-

nality of the set of popular block IDs (which is the case if popular block IDs are

the result of a secure hash function), we can state that the number of collisions

per index is large enough to prevent a malicious CSP from inferring the actual

block ID used as input to the PHF. In a typical scenario using a PHF based on

a secure hash function like SHA-2, whereby the complexity of a collision attack

would be 2256, and a popular block ID set with 109 elements, this probability will

be (α = 0.81):

109

(2256 − 109) ∗ 0.81
≈ 1.06 ∗ 10−68 (5.4)

Hence collisions can effectively hide the identity of unpopular blocks from an un-

trusted cloud provider while keeping the lookup protocol extremely efficient and

lightweight for the users.

Security against potential protocol vulnerabilities We now consider a few

additional attacks that may be perpetrated by the CSP. For each of them, we

propose simple but effective countermeasures, which are easy to implement and

do not significantly increase the computational and network overhead. First, we

consider that the CSP may pre-build a PHF based on some specific data (derived

for example from a dictionary) which have not been yet uploaded by users. Within

Chapter 5. PerfectDedup 112

such a scenario, clients would detect their requested block to be popular although it

has never actually been uploaded by any user; such a block will then be stored with

a lower level of protection. As a countermeasure to such an attack, we propose

that the IS attaches a signature to each popular block ID upon the Popularity

Transition. Therefore, the IS will sign popular block IDs before being stored at

the CSP, enabling clients to verify the authenticity of these blocks when running

the popularity check. Such a countermeasure would have a minimal impact on

the performance of the system. Another attack we consider is related to the

confirmation-of-file attack to which convergent encryption is also vulnerable [14].

Indeed, upon a Popularity Check, the CSP may compare the sequence of indices

sent by the client with the sequence produced by a given popular file F. If the two

sequences match, then there is a chance that the client is actually uploading F.

In order to hide this information from the CSP, the client may add a number of

random indices to the list of indices being sent upon the Popularity Check. Thanks

to the resulting noise included in the index list, the identification of the target file

by the CSP will be prevented. This countermeasure also prevents the CSP from

running the learn-the-remaining-information attack. Moreover, the overhead due

to this countermeasure is negligible both in terms of bandwidth and computation.

Security against users Users may force a popularity transition by repeatedly

uploading random or targeted blocks. As a countermeasure, the popularity thresh-

old may be set to a value t′ = t + u, where u is the expectation of the maximum

number of malicious users. As opposed to the proposal of [7], the threshold can

be dynamically updated at any time of the system life. Indeed, this parameter

is transparent to both users and the CSP, hence the Index Service can update

it depending on the security needs. For instance, in a scenario where all users

are trusted (u = 0) and thus no collisions will ever occur, t′ may be set to 2.

Moreover, we assume that users can only have a unique authenticated identity

and hence cannot impersonate other existing users or create fake identities with

the aim of increasing the popularity of a block artificially.

However, as we discussed in Chapter 3, globally increasing the popularity threshold

can cause a significant decrease in the storage space savings. Fortunately, since in

PerfectDedup the popularity threshold can be dynamic and transparent to users,

we can propose a more advanced and fine-grained solution. For instance, we may

put in place a strategy aimed at using a different popularity threshold per file,

based on the likelihood of presence of confidential content. As an example, upon

Chapter 5. PerfectDedup 113

the upload of a file, the user may be asked to assign a level of confidentiality.

Based on this attribute, the IS can transparently set a different threshold for each

file: the higher the confidentiality requested for a file, the higher the popularity

threshold applied to its blocks.

Users may also perpetrate a DoS attack by deleting random blocks stored at the

cloud. This may happen upon a popularity transition: the client is asked to

attach a list of block IDs that may not be the actual encrypted copies of the block

being uploaded. We suggest making the Index Service sign the list of block IDs

to be deleted so that the cloud can verify whether the request is authentic. This

signature does not significantly increase the overhead since several schemes for

short signatures [73] have been proposed in the literature.

5.7 Performance Evaluation

5.7.1 Prototype Implementation

In order to prove the feasibility of our approach, we implemented a proof-of-concept

prototype consisting of the three main components, namely, the Client, the IS and

the CSP. All components have been implemented in Python. Cryptographic func-

tions have been implemented using the pycrypto library [74]. Both the Client and

the IS run on an Ubuntu VM hosted on our OpenStack platform, while the CSP

runs on an Ubuntu VM hosted on Amazon EC2 (EU Region). Additionally, the

Index Service runs a server based on the tornado web framework [65], and uses RE-

DIS [9] in order to efficiently store the information on unpopular blocks, which are

encoded as lists. The CSP also runs a server based on tornado. Metadata (block

IDs, file IDs, files structures, encrypted keys) are stored in a MySQL database,

which is considered as one of the most reliable software components for storing

large scale metadata. Perfect Hashing has been implemented using the CMPH

library [75] at both the Client and the CSP. In order to achieve one-wayness, we

customized CMPH by replacing the internal hash function with SHA256 [13]. We

stress the fact that this is a proof-of-concept implementation, therefore for the

sake of simplicity the CSP has been deployed on a VM where data blocks are

stored locally. In a production environment, the CSP service may be deployed on

a larger scale and any storage provider such as Amazon S3 [20] may be employed

to physically store blocks.

Chapter 5. PerfectDedup 114

Figure 5.3: Portion of the total computation time spent at each component
in each scenario

We consider a scenario where the client uploads a 10MB file to the CSP pre-

filled with 106 random blocks. We propose to first evaluate the computational

overhead of each single component and measure the total time a client needs to

wait during each phase until the data upload has been completed. We then analyze

the network overhead of the proposed solution. Our analysis considers the three

previously described scenarios:

• Scenario 1 (Unpopular File): the file to be uploaded is still unpopular;

• Scenario 2 (Popularity Transition): the file has triggered a popularity tran-

sition hence is going to become popular;

• Scenario 3 (Popular File): the file to be uploaded is already popular.

For the sake of consistency, all experiments have been repeated 10 times and the

results shown in this section are mean values.

5.7.2 Computational Overhead

In this section we present our measurements of the computational overhead at each

component and then show the total time a client takes to upload a file. Figure 5.3

shows an aggregate measure of all computation-intensive operations each compo-

nent performs. The results prove that, as expected, the computational overhead

Chapter 5. PerfectDedup 115

Figure 5.4: Total time spent during each phase of the protocol in each scenario

introduced in the CSP is much higher than the one affecting the client. Also,

since the operations performed by the IS are extremely simple, its computational

overhead is negligible.

Figure 5.4 shows more detailed results by highlighting which operations introduce

a higher computational overhead. The results prove that:

• Symmetric encryption introduces a negligible computational overhead, hence

it does not affect the system performance;

• The client-side Popularity Check is extremely lightweight and thus intro-

duces a negligible computational overhead;

• The most computation-intensive operations (PHF generation, hash table

storage, upload processing) are performed by the CSP, hence a big fraction

of the computational overhead is outsourced to the CSP.

Figures 5.5 and 5.6 show the results of an in-depth study on the performance of

the Perfect Hashing algorithm, both in terms of storage space and computation

time for the generation of the PHF. The generation time also includes the time

needed to store the hash table. We measured these quantities on a dataset of 106

random block IDs while varying the load factor and the bucket size. The former

is a coefficient indicating the fraction of non-empty positions in the final collision-

free hash table; the latter is the mean number of elements in each subset of the

input set (see [11] for further details). As we can observe from Figures 5.5 and

Chapter 5. PerfectDedup 116

Figure 5.5: Analysis of PHF generation time with varying parameters for a
set containing 106 elements

Figure 5.6: Analysis of PHF size with varying parameters for a set containing
106 elements

5.6, the optimal bucket size is between 3 and 4 and the load factor should not be

greater than 0.8. These parameters can be tuned depending on the scenario (e.g.

bandwidth) in order to achieve the best performance.

Furthermore, as mentioned earlier, in order to improve the security of our novel

lookup protocol, we replaced the default hash function employed by the CMPH

library (Jenkins [76])) with a secure hash function such as SHA-2. This improve-

ment is required for the following reason: using a non-secure hash function would

allow an adversary such as the CSP to easily enumerate all block IDs mapped

to a given index of the hash table. Such a threat may compromise the security

Chapter 5. PerfectDedup 117

Figure 5.7: Performance comparison of Jenkins, SHA-2 (SHA256) and Blake2
hash functions

of the whole system and make the popularity check protocol insecure. In Figure

5.7 we show the result of the comparison of the performance of three hash func-

tions: Jenkins (insecure), SHA-2 (secure) and Blake2 [77] (secure and optimized).

We decided to include Blake2 in this analysis in order to prove that an efficient

yet secure hash function does not dramatically increase the computational over-

head compared to the original implementation. As an example, Blake2 achieves

performance close to Jenkins thanks to the use of parallelization and hardware

acceleration.

5.7.2.1 Conclusion

Figure 5.8 summarizes all measurements by showing the total time spent during

each phase of the upload protocol within the three scenarios. These results show

that despite the delay introduced by the Popularity Check phase, the user achieves

a throughput of approximately 1MB per second even when a file does not contain

any popular block.

Chapter 5. PerfectDedup 118

Figure 5.8: Total time spent by all components when uploading a file (includ-
ing Popularity Check) in each scenario

5.7.3 Communication Overhead

In this section we analyze the communication overhead of our scheme considering

the same scenarios. The upload has been split into multiple sub-operations: PHF

Download, Popularity Check, Index Service Update (not performed in Scenario 2)

and the Upload. For each of these operations we analyze the size of all messages

exchanged (both requests and responses). Table 5.1 regroups all the results ex-

pressed in MB. The PHF Download response size is linear with respect to the set

of popular block IDs. The larger the set, the larger the response will be. However,

as shown in [11], the size of PHF file is about 1.4 bits per popular block ID; hence

this operation does not introduce a significant delay even when dealing with very

large datasets. We point out that the PHF file does not have to be downloaded

at every request, since the user can cache it. Furthermore, the size of the Popu-

larity Check request and response is linear with respect to the number of blocks

in the file that is being uploaded. The Popularity Check request contains a list

of indices (one integer per block), while the response contains a list of block IDs

(one per index) of 32 bytes each. The Index Service Update request is only sent

for unpopular blocks. The request consists of two block IDs (32 bytes each) per

block. The response size varies depending on whether the popularity transition

occurs. If the file has triggered a popularity transition, then the response includes

Chapter 5. PerfectDedup 119

a list of block IDs, otherwise it is empty. As we can see from Table 5.1, requests

and responses of the Popularity Check and the Index Service Update operations

have a negligible size with respect to the file size. Finally, the size of the Upload

request varies depending on the block status. If a block is popular, the request

only consists of the block ID and one key (32 bytes). If a block is not popular,

the request contains the encrypted data, two keys (32 bytes each) and a few fields:

the file ID (32 bytes), the user ID and the block status (1 byte). As shown in

Table 5.1, the overhead introduced by the Upload is minimal and mainly depends

on the encoding method used to transfer the encrypted binary data. For sim-

plicity, we used JSON objects to pack encrypted blocks and keys and Base64 to

encode binary data, which increases the size of the data by 1/3. To summarize,

the preliminary operations performed in our scheme before the Upload introduce

a negligible communication overhead. In addition, the scheme does not affect the

gains in terms of storage space and bandwidth achieved thanks to deduplication.

SCENARIO 1 SCENARIO 2 SCENARIO 3
PHF DOWNLOAD IN 0.67 0.67 0.67
POPULARITY CHECK REQUEST 0.004 0.004 0.004
POPULARITY CHECK RESPONSE 0.02 0.02 0.02
INDEX SERVICE UPDATE REQUEST 0.1 0.1 -
INDEX SERVICE UPDATE RESPONSE 0.009 0.04 -
UPLOAD REQUEST 13.51 13.47 0.09

Table 5.1: Communication overhead (in MB) introduced by each operation

Chapter 6

Conclusions and Future Work

6.1 Study on Deduplication

First of all, based on the observation that deduplication raises a requirement for

deterministic encryption, we assessed whether and in which scenarios block-level

deduplication may pave the way for statistical attacks. In order to answer this

question, we conducted a comprehensive analysis on a real and representative

dataset which led to three interesting results:

• After comparing the most common data-chunking techniques on several

datasets, the results clearly show that block-level deduplication always achieves

the best deduplication ratios. Furthermore, the overhead due to the meta-

data generated by block-level deduplication does not nullify the gain in terms

storage space savings, which is remarkable.

• When using realistic block sizes (going from 4KB to 32KB), the global en-

tropy does not seem to decrease when decreasing the average block size,

therefore there is no concrete evidence that a statistical attack based on fre-

quency analysis can be successfully carried out. Also, the total number of

blocks is such that a statistical attack becomes extremely difficult.

• As an additional result, we also analyzed the popularity of each block within

the dataset in order to learn more about the popularity distribution and

find a value such that storage space savings remain high while there is no

risk for confidentiality. This is particularly useful for those systems such

120

Chapter 6. Conclusions and Future Work 121

as PerfectDedup that are based on a popularity threshold. As expected,

the popularity distribution is far from being uniform. Indeed, slightly in-

creasing the popularity threshold from 2 to 3 causes a drop in the storage

space savings of more than 15%, regardless of the data-chunking technique

being used. Therefore, based on these data, we suggest that the popularity

threshold should not be higher than 5.

Thanks to this study, we also learned that redundant data blocks in real datasets

are distributed in a way that is clearly non-uniform. This property may be used,

in both industry and research, as an important criteria when designing or tuning

a solution for storage or network optimization. For instance, when designing a

caching algorithm, being able to make some assumptions on the distribution of

redundant data blocks may help achieve higher cache hit rates. Also, if an organi-

zation wants to put in place a solution aimed at optimizing storage performance

through caching, knowing that redundant data is not distributed uniformly can

help build more effective caching policies and mechanisms.

In addition to that, from a practical point of view, we also learned about how

challenging and demanding it is to build a system that is aimed at storing metadata

and can scale up to very large datasets of thousands of Gigabytes. We proved

that relying on key-value storage is a very efficient solution. However, additional

countermeasures have to be taken in order to be able to handle large amounts of

metadata that cannot fit entirely in memory.

6.2 ClouDedup

ClouDedup was our first attempt to provide a secure yet practical solution to

achieve confidentiality together with block-level deduplication. We designed a

system which makes use of a number of additional deterministic and symmetric

encryption layers in order to cope with the weaknesses of Convergent Encryption.

Additional layers of encryption are added by the Gateway and, optionally, by

the Metadata Manager. As the additional encryptions are symmetric, the impact

on performance is negligible. In addition to that, we showed that it is worth

performing block-level deduplication instead of file-level deduplication since the

gains in terms of storage space are not affected by the overhead of metadata

management, which is minimal.

Chapter 6. Conclusions and Future Work 122

We also showed that our design, in which no component is completely trusted, pre-

vents any single component from compromising the security of the whole system.

Our solution also prevents curious cloud storage providers from inferring the orig-

inal content of stored data by observing access patterns or accessing metadata.

Furthermore, we implemented a full prototype, which showed that our solution

can be easily and efficiently implemented with existing and widespread technolo-

gies. Also, our solution is fully compatible with standard cloud storage APIs and

transparent for the cloud storage provider, which does not have to be aware of the

running deduplication system. Therefore, any potentially untrusted cloud storage

provider such as Amazon S3 may be a good candidate to play the role of storage

provider.

Finally, we performed a comprehensive performance analysis on the implemented

prototype aimed at measuring the current performance of the system, especially

when uploading a file, and pointing out any existing performance issue. In addition

to that, for each component we measured the theoretical and practical overhead in

terms of computation, network and storage. The results of the analysis show that

although there is a potential bottleneck between the Metadata Manager and the

Cloud Storage Provider, thanks to our improvements the current implementation

achieves great performance along with affordable network and storage overheads.

Also, we pointed out a few practical optimizations that may further decrease

storage and network overheads.

As part of future work, ClouDedup may be extended with more security features

such as proofs of retrievability [15], data integrity checking [16], search over en-

crypted data [17], [18] and secure file sharing [19], which is a very valued feature in

cloud storage. In the near future we aim at completing the implementation of the

current prototype in order to make it a production-ready cloud storage system and

start deploying it in real scenarios. Furthermore, we will work on finding possible

optimizations in terms of bandwidth, storage space and computation.

6.3 PerfectDedup

Based on the expertise earned during the design and development of ClouDedup,

we decided to work on a new scheme aimed at solving the same problem while

coping with the existing shortcomings, among which there is:

Chapter 6. Conclusions and Future Work 123

• No source-based deduplication: in ClouDedup, clients upload all data

to the Gateway which encrypts and forwards it to the Metadata Manager,

where finally deduplication takes place. This means that, the scheme does

not allow for bandwidth savings.

• Complex architecture: ClouDedup requires to deploy a complex archi-

tecture in which a component, that is the Gateway, needs to be trusted

with respect to the encryption operation. This means that if the Gateway

is compromised confidentiality is no longer guaranteed.

Based on these shortcomings, we designed a system which guarantees full confiden-

tiality for confidential files while enabling source-based block-level deduplication

for popular files. The main building block of our system is a novel secure lookup

protocol built on top of an enhanced version of Perfect Hashing. To the best of

our knowledge, this is the first work that uses Perfect Hashing for a different pur-

pose other than database indexing. A semi-trusted component is employed for the

purpose of storing metadata concerning unpopular data and providing a support

for detecting popularity transitions, meaning that a data block has just reached

the popularity threshold.

Once again, we implemented a prototype of the proposed solution. Our measure-

ments show that the storage, network and computational overhead is affordable

and does not affect the advantage of deduplication. Also, we showed that most

of the computational overhead is moved to the CSP, while the client only has to

perform very lightweight operations.

This work allowed us to explore an unusual yet interesting approach consisting of

achieving confidentiality by leveraging collisions. More precisely, although colli-

sions are usually seen as an event that should be avoided, in our case collisions are

useful since they provide the main protection against attacks from a curious Cloud

Storage Provider and allow to achieve confidentiality for users. Therefore, this con-

tribution may pave the way for new approaches based on the use of collisions as a

mean for protecting confidential information.

As part of future work, PerfectDedup may be optimized in order to reduce the

overhead due to the PHF generation and transmission. In particular, in order

to reduce the generation time when dealing with very large datasets, the PHF

should be dynamic, meaning that a block ID can be inserted or deleted without

Chapter 6. Conclusions and Future Work 124

necessarily generating the PHF from scratch. In addition to that, it would be

beneficial to have a solution that allows a user to incrementally update the PHF

without having to download it entirely at every update.

6.4 Future Work

At the time of the writing, designing a fully-featured scheme for secure and efficient

storage remains an open challenge. We suggest that extending one of our schemes

with new mechanisms aimed at providing missing security features can be a fruitful

research direction.

For instance, given a secure deduplication scheme such as ClouDedup and Per-

fectDedup, it would be beneficial for users to integrate a number of additional

security features such as such as proofs of retrievability (PoR) [15], data integrity

checking [16], search over encrypted data [17], [18] and secure file sharing [19].

However, such an integration may present several challenges due to the use of

deterministic encryption. Indeed, most of the approaches that achieve the afore-

mentioned security features make use of semantically-secure encryption techniques,

which are known to be incompatible with deduplication. Also, although there ex-

ist some schemes [18] based on deterministic encryption, they rely on asymmetric

cryptography, which is known to be inefficient when encrypting large files.

As a more explanatory example, in the case of PoR, many of the existing ap-

proaches require users to modify the original file by injecting additional pieces of

information and then encrypt the whole file with a semantically-secure encryp-

tion. These extra blocks, which go by the name of secure tags, erasure codes or

sentinels, allow users to remotely and securely query the Cloud Storage Provider,

make it run some computation on the file and return a compact (much smaller

than the file itself) value which can be finally used by the user to run a verifica-

tion process and determine whether or not the file has been altered. On the other

hand, the extra encryption step is required in order to make the extra blocks in-

distinguishable from the the rest of the file. Unfortunately, this kind of approach,

which is widespread in the literature, will certainly cause a drop in deduplication

ratios since it requires to change the original content of files through encryption,

which lowers redundancy and increases entropy, hence undermines the ability of

detecting duplicate blocks.

Chapter 6. Conclusions and Future Work 125

Furthermore, due to practical constraints including storage limitations, our data

study was conducted on a single storage snapshot taken at a given point of time.

However, it would be interesting to study the evolution of both confidentiality

and storage space savings over time. More precisely, one could take multiple stor-

age snapshots at different times (e.g. one snapshot per week) and compare their

entropy and storage space savings. This would allow us to observe whether and

how entropy and deduplication ratios change over time. For instance, since users

tend to consume a constantly increasing amount of storage space, a potential

outcome of such a study might lead to the conclusion that the dataset eventu-

ally reaches a steady state where most of the newly stored blocks are duplicates.

As a consequence, the global entropy may decrease and the deduplication ratios

may increase. Moreover, measuring deduplication ratios across consecutive stor-

age snapshots would give useful indications on the impact of deduplication in a

very popular scenario in cloud storage, that is backup.

Last but not least, another challenging option for future research is to study

whether and how existing secure deduplication approaches can be applied in the

context of relational databases, which are often employed in widespread applica-

tions. In such a context, the granularity and the size of data segments change,

since in databases deduplication should be performed on records and fields instead

of blocks. This might have serious implications with respect to confidentiality due

to the fact that data segments will probably be much smaller, namely a few bytes

instead of a few kilobytes. Also, in order to preserve standard operations that are

usually performed in database queries (e.g. comparisons), the underlying encryp-

tion technique should allow for such operations to be carried out on encrypted

data, in addition to being deterministic.

Publications

1. PerfectDedup: Secure Data Deduplication

Pasquale Puzio (SecludIT EURECOM), Refik Molva (EURECOM), Melek

Önen, (EURECOM), Sergio Loureiro (SecludIT)

10th DPM International Workshop on Data Privacy Management

2. ClouDedup: Secure Deduplication with Encrypted Data for Cloud

Storage

Pasquale Puzio (SecludIT & EURECOM), Refik Molva (EURECOM), Melek

Önen, (EURECOM), Sergio Loureiro (SecludIT)

Delivery and Adoption of Cloud Computing Services in Contemporary Or-

ganizations, IGI Global

3. Block-level De-duplication with Encrypted Data

Pasquale Puzio (SecludIT & EURECOM), Refik Molva (EURECOM), Melek

Önen, (EURECOM), Sergio Loureiro (SecludIT)

OJCC 2014, 1(1), Pages 10-18

4. ClouDedup: Secure Deduplication with Encrypted Data for Cloud

Storage

Pasquale Puzio (SecludIT & EURECOM), Refik Molva (EURECOM), Melek

Önen, (EURECOM), Sergio Loureiro (SecludIT)

IEEE CloudCom 2013

5. Elastic SIEM: Elastic Detector integrated with OSSIM

Pasquale Puzio (SecludIT & EURECOM), Sergio Loureiro (SecludIT)

RaSIEM Workshop, ARES 2013

126

Bibliography

[1] http://www.acronis.com/fr-fr/backup-recovery/

deduplication-roi-calculator.html.

[2] http://opendedup.org/.

[3] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin

Sadre, and Aiko Pras. Inside dropbox: understanding personal cloud storage

services. In Proceedings of the 2012 ACM conference on Internet measurement

conference, pages 481–494. ACM, 2012.

[4] John R Douceur, Atul Adya, William J Bolosky, Dan Simon, and Marvin

Theimer. Reclaiming space from duplicate files in a serverless distributed file

system. In Distributed Computing Systems, 2002. Proceedings. 22nd Interna-

tional Conference on, pages 617–624. IEEE, 2002.

[5] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-

locked encryption and secure deduplication. In Advances in Cryptology–

EUROCRYPT 2013, pages 296–312. Springer, 2013.

[6] Jian Liu, N Asokan, and Benny Pinkas. Secure deduplication of encrypted

data without additional independent servers.

[7] Jan Stanek, Alessandro Sorniotti, Elli Androulaki, and Lukas Kencl. A secure

data deduplication scheme for cloud storage. In Financial Cryptography and

Data Security, pages 99–118. Springer, 2014.

[8] Pasquale Puzio, Refik Molva, Melek Onen, and Sergio Loureiro. Cloudedup:

secure deduplication with encrypted data for cloud storage. In Cloud Com-

puting Technology and Science (CloudCom), 2013 IEEE 5th International

Conference on, volume 1, pages 363–370. IEEE, 2013.

[9] http://redis.io/.

127

http://www.acronis.com/fr-fr/backup-recovery/deduplication-roi-calculator.html
http://www.acronis.com/fr-fr/backup-recovery/deduplication-roi-calculator.html
http://opendedup.org/
http://redis.io/

Bibliography 128

[10] Pasquale Puzio, Refik Molva, Melek Onen, and Sergio Loureiro. Perfectdedup:

Secure data deduplication.

[11] Djamal Belazzougui, Fabiano C Botelho, and Martin Dietzfelbinger. Hash,

displace, and compress. In Algorithms-ESA 2009, pages 682–693. Springer,

2009.

[12] Dutch T Meyer and William J Bolosky. A study of practical deduplication.

ACM Transactions on Storage (TOS), 7(4):14, 2012.

[13] PUB FIPS. 180-4. Federal Information Processing Standards Publication,

Secure Hash, 2012.

[14] https://www.tahoe-lafs.org/hacktahoelafs/drew_perttula.html.

[15] Ari Juels and Burton S. Kaliski, Jr. Pors: proofs of retrievability for large files.

In Proceedings of the 14th ACM conference on Computer and communications

security, CCS ’07, pages 584–597, New York, NY, USA, 2007. ACM.

[16] Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability and

integrity layer for cloud storage. In Proceedings of the 16th ACM conference

on Computer and communications security, CCS ’09, pages 187–198, New

York, NY, USA, 2009. ACM.

[17] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques

for searches on encrypted data. In Security and Privacy, 2000. S&P 2000.

Proceedings. 2000 IEEE Symposium on, pages 44–55. IEEE, 2000.

[18] Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and

efficiently searchable encryption. In Advances in Cryptology-CRYPTO 2007,

pages 535–552. Springer, 2007.

[19] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin

Fu. Plutus: Scalable secure file sharing on untrusted storage. In Fast, vol-

ume 3, pages 29–42, 2003.

[20] https://aws.amazon.com/s3/.

[21] Roundup of cloud computing forecasts and market estimates q3 update, 2015.

[22] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.

https://www.tahoe-lafs.org/hacktahoelafs/drew_perttula.html
https://aws.amazon.com/s3/

Bibliography 129

[23] http://www.informationisbeautiful.net/visualizations/

worlds-biggest-data-breaches-hacks/.

[24] http://www.bbc.com/news/world-us-canada-23123964.

[25] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Dupless: Server-

aided encryption for deduplicated storage. In Proceedings of the 22nd USENIX

conference on security, pages 179–194. USENIX Association, 2013.

[26] Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: the least-authority filesys-

tem. In Proceedings of the 4th ACM international workshop on Storage secu-

rity and survivability, pages 21–26. ACM, 2008.

[27] Mihir Bellare and Sriram Keelveedhi. Interactive message-locked encryption

and secure deduplication. In Public-Key Cryptography–PKC 2015, pages 516–

538. Springer, 2015.

[28] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In

STOC, volume 9, pages 169–178, 2009.

[29] http://www.cloudindex.fr/.

[30] http://www.rightscale.com/lp/2015-state-of-the-cloud-report.

[31] Jon Brodkin. Gartner: Seven cloud-computing security risks. Infoworld,

2008:1–3, 2008.

[32] https://dropbox.com/.

[33] https://box.com/.

[34] https://drive.google.com/.

[35] https://onedrive.com/.

[36] https://www.amazon.com/clouddrive/home.

[37] https://cloud.google.com/.

[38] https://rackspace.com/.

[39] https://azure.microsoft.com/.

[40] http://swift.openstack.org/.

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.bbc.com/news/world-us-canada-23123964
http://www.cloudindex.fr/
http://www.rightscale.com/lp/2015-state-of-the-cloud-report
https://dropbox.com/
https://box.com/
https://drive.google.com/
https://onedrive.com/
https://www.amazon.com/clouddrive/home
https://cloud.google.com/
https://rackspace.com/
https://azure.microsoft.com/
http://swift.openstack.org/

Bibliography 130

[41] https://tresorit.com/.

[42] https://spideroak.com/.

[43] https://www.mcafee.com/consumer/en-us/store/m0/catalog/mls_430/

mcafee-livesafe.html?pkgid=430.

[44] Claude E Shannon. Communication theory of secrecy systems*. Bell system

technical journal, 28(4):656–715, 1949.

[45] Whitfield Diffie and Martin E Hellman. New directions in cryptography.

Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

[46] Ronald L Rivest, Adi Shamir, and Leonard M Adleman. Cryptographic com-

munications system and method, September 20 1983. US Patent 4,405,829.

[47] PUB FIPS. 197, advanced encryption standard (aes), national institute of

standards and technology, us department of commerce (november 2001). Link

in: http://csrc. nist. gov/publications/fips/fips197/fips-197. pdf.

[48] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In Advances in cryptology, pages 10–18. Springer, 1985.

[49] Morris Dworkin. Recommendation for block cipher modes of operation. meth-

ods and techniques. Technical report, DTIC Document, 2001.

[50] Davis Pan. A tutorial on mpeg/audio compression. IEEE multimedia, (2):60–

74, 1995.

[51] Barry G Haskell, Atul Puri, and Arun N Netravali. Digital Video: An In-

troduction to MPEG-2: An Introduction to MPEG-2. Springer Science &

Business Media, 1997.

[52] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on information theory, 23(3):337–343, 1977.

[53] Greg Roelofs and Richard Koman. PNG: the definitive guide. O’Reilly &

Associates, Inc., 1999.

[54] David Jeff Jackson and Sidney Joel Hannah. Comparative analysis of im-

age compression techniques. In System Theory, 1993. Proceedings SSST’93.,

Twenty-Fifth Southeastern Symposium on, pages 513–517. IEEE, 1993.

https://tresorit.com/
https://spideroak.com/
https://www.mcafee.com/consumer/en-us/store/m0/catalog/mls_430/mcafee-livesafe.html?pkgid=430
https://www.mcafee.com/consumer/en-us/store/m0/catalog/mls_430/mcafee-livesafe.html?pkgid=430

Bibliography 131

[55] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side channels

in cloud services: Deduplication in cloud storage. Security & Privacy, IEEE,

8(6):40–47, 2010.

[56] Michael O Rabin et al. Fingerprinting by random polynomials. Center for

Research in Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[57] Leonard Carlitz. The arithmetic of polynomials in a galois field. American

Journal of Mathematics, pages 39–50, 1932.

[58] https://github.com/joeltucci/rabin-fingerprint-c.

[59] https://www.bitcasa.com/.

[60] Silvio Micali, Charles Rackoff, and Bob Sloan. The notion of security for

probabilistic cryptosystems. SIAM Journal on Computing, 17(2):412–426,

1988.

[61] Yvo G Desmedt. Threshold cryptography. European Transactions on

Telecommunications, 5(4):449–458, 1994.

[62] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key

exchange secure against dictionary attacks. In Advances in CryptologyEuro-

crypt 2000, pages 139–155. Springer, 2000.

[63] Anand Balachandran, Geoffrey M Voelker, Paramvir Bahl, and P Venkat

Rangan. Characterizing user behavior and network performance in a public

wireless lan. In ACM SIGMETRICS Performance Evaluation Review, vol-

ume 30, pages 195–205. ACM, 2002.

[64] www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/.

[65] http://tornado.readthedocs.org/en/latest/web.html.

[66] https://libcloud.apache.org/.

[67] Colin Percival and Simon Josefsson. The scrypt password-based key derivation

function. 2015.

[68] http://msgpack.org/.

[69] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private

matching and set intersection. In Advances in Cryptology-EUROCRYPT

2004, pages 1–19. Springer, 2004.

https://github.com/joeltucci/rabin-fingerprint-c
https://www.bitcasa.com/
www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/
http://tornado.readthedocs.org/en/latest/web.html
https://libcloud.apache.org/
http://msgpack.org/

Bibliography 132

[70] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private

information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[71] Edward A Fox, Lenwood S Heath, Qi Fan Chen, and Amjad M Daoud. Prac-

tical minimal perfect hash functions for large databases. Communications of

the ACM, 35(1):105–121, 1992.

[72] Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data structures

into entropy bounds. In Proceedings of the seventeenth annual ACM-SIAM

symposium on Discrete algorithm, pages 1230–1239. Society for Industrial and

Applied Mathematics, 2006.

[73] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the

weil pairing. In Advances in CryptologyASIACRYPT 2001, pages 514–532.

Springer, 2001.

[74] https://pypi.python.org/pypi/pycrypto.

[75] http://cmph.sourceforge.net/.

[76] http://www.burtleburtle.net/bob/hash/index.html.

[77] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-OHearn, and Chris-

tian Winnerlein. Blake2: simpler, smaller, fast as md5. In Applied Cryptog-

raphy and Network Security, pages 119–135. Springer, 2013.

https://pypi.python.org/pypi/pycrypto
http://cmph.sourceforge.net/
http://www.burtleburtle.net/bob/hash/index.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Cloud Computing
	1.2 Cloud Storage Security
	1.3 Secure Data Deduplication
	1.3.1 Deduplication
	1.3.2 Deduplication of Encrypted Data
	1.3.3 Convergent Encryption

	1.4 Existing Approaches for Secure Data Deduplication
	1.4.1 Solutions based on Convergent Encryption
	1.4.2 Solutions based on Secrecy
	1.4.3 Client-side Protocol
	1.4.4 Data Popularity as a differentiator for Encryption
	1.4.5 File-level vs Block-level

	1.5 Contributions
	1.5.1 Study on Deduplication
	1.5.2 ClouDedup
	1.5.3 PerfectDedup

	2 State of the Art
	2.1 Cloud Computing and Cloud Storage
	2.2 Asymmetric vs Symmetric Cryptography
	2.3 Probabilistic vs Deterministic Encryption
	2.4 Data Compression
	2.4.1 Data Deduplication
	2.4.1.1 Source-based vs target-based Deduplication
	2.4.1.2 Inline vs Post-processing Deduplication
	2.4.1.3 Single-user vs Cross-user Deduplication
	2.4.1.4 File-level vs Block-level Deduplication
	2.4.1.5 State-of-the-art in the Industry

	2.5 Data-chunking Techniques
	2.5.1 Rabin Fingerprinting

	2.6 Convergent Encryption
	2.7 Existing Approaches for Secure Data Deduplication
	2.7.1 Convergent Encryption
	2.7.2 DupLESS
	2.7.3 iMLE (Interactive message-locked encryption and secure deduplication)
	2.7.4 Popularity-based Encryption
	2.7.5 PAKE

	3 Study on Deduplication
	3.1 Introduction
	3.2 Datasets
	3.2.1 Dataset 1 (Emails POP)
	3.2.2 Dataset 2 (Email IMAP)
	3.2.3 Dataset 3 (Users Homes)
	3.2.4 Dataset 4 (Research)
	3.2.5 Dataset 5 (Teaching)
	3.2.6 Dataset 6 (Linux VM images)

	3.3 Technical Environment
	3.3.1 Performance Overhead

	3.4 Storage Space Savings
	3.5 Statistical Attacks
	3.6 Popularity
	3.7 Conclusions

	4 ClouDedup
	4.1 Introduction
	4.2 The Idea
	4.2.1 The Gateway
	4.2.2 Block-level Deduplication and Key Management
	4.2.3 Threat Model
	4.2.4 Security

	4.3 Components
	4.3.1 User
	4.3.2 Gateway
	4.3.3 Metadata Manager (MM)
	4.3.4 Cloud Storage Provider (SP)

	4.4 Protocol
	4.4.1 Storage
	4.4.2 Retrieval

	4.5 Prototype Implementation
	4.5.1 Client
	4.5.2 Gateway
	4.5.3 Metadata Manager
	4.5.4 Access Control
	4.5.4.1 Client Access Control
	4.5.4.2 Gateway Access Control
	4.5.4.3 Metadata Manager Access Control

	4.5.5 Prototype Credential Management
	4.5.5.1 Key Management
	4.5.5.2 Credentials and Key Rotation

	4.5.6 Technical Challenges
	4.5.6.1 Fast Upload of Large Files
	4.5.6.2 Disaster Recovery
	4.5.6.3 Upload Buffer

	4.6 Evaluation
	4.6.1 Complexity
	4.6.1.1 Storage
	4.6.1.2 Retrieval

	4.6.2 Performance and Overhead
	4.6.2.1 Throughput
	4.6.2.2 Libcloud Upload Performance
	4.6.2.3 Upload Throughput vs File Size
	4.6.2.4 Upload Buffer vs Response Time
	4.6.2.5 Network Overhead
	4.6.2.6 Metadata Storage Overhead
	4.6.2.7 Data Storage Overhead

	4.6.3 Deduplication Rate
	4.6.4 Security

	5 PerfectDedup
	5.1 Introduction
	5.2 Secure Deduplication Based on Popularity
	5.3 Basic Idea: Popularity Detection Based on Perfect Hashing
	5.4 Background
	5.4.1 Perfect Hashing
	5.4.1.1 CHD Algorithm

	5.5 The system
	5.5.1 Overview
	5.5.2 Popularity Check (Scenarios 1, 2 and 3)
	5.5.3 Popularity Transition (Scenarios 1 and 2)
	5.5.4 Data Upload (Scenarios 1, 2 and 3)

	5.6 Security Analysis
	5.7 Performance Evaluation
	5.7.1 Prototype Implementation
	5.7.2 Computational Overhead
	5.7.2.1 Conclusion

	5.7.3 Communication Overhead

	6 Conclusions and Future Work
	6.1 Study on Deduplication
	6.2 ClouDedup
	6.3 PerfectDedup
	6.4 Future Work

	Bibliography
	Publications

