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Abstract—Pilot contamination is known to severely limit the
performance of large-scale antenna (”massive MIMO”) systems
due to degraded channel estimation. This paper proposes a two-
fold approach to this problem. First we show analytically that
pilot contamination can be made to vanish asymptotically in
the number of antennas for a certain class of channel fading
statistics. The key lies in setting a suitable condition on the second
order statistics for desired and interference signals. Second we
show how a coordinated user-to-pilot assignment method can be
devised to help fulfill this condition in practical networks. Large
gains are illustrated in our simulations for even small antenna
array sizes.

Index Terms—massive MIMO, pilot contamination, channel
estimation, scheduling, covariance information.

I. INTRODUCTION

FULL reuse of the frequency across neighboring cells leads
to severe interference, which in turn limits the quality of

service offered to cellular users, especially those located at
the cell edge. As service providers seek solutions to restore
performance in low-SINR cell locations, several approaches
aimed at mitigating inter-cell interference have emerged in the
last few years. Among these, the solutions which exploit the
additional degrees of freedom made available by the use of
multiple antennas seem the most promising, particularly so at
the base station side where such arrays are more affordable.

In an effort to solve this problem while limiting the re-
quirements for user data sharing over the backhaul network,
coordinated beamforming approaches have been proposed in
which 1) multiple-antenna processing is exploited at each
base station, and 2) the optimization of the beamforming
vectors at all cooperating base stations is performed jointly.
Coordinated beamforming does not require the exchange of
user message information unlike in e.g. Network MIMO. Yet it
still demands the exchange of channel state information across
the transmitters on a fast time scale and low-latency basis,
making almost as challenging to implement in practice as the
above mentioned network MIMO schemes.

Fortunately a path towards solving some of the essential
practical problems related to beamforming-based interference
avoidance was suggested in [1]. In this work, it was pointed out
that the need for exchanging CSIT between base stations could
be alleviated by simply increasing the number M of antennas
at each transmitter (so-called massive MIMO). This result is
rooted in the law of large numbers, which predicts that, as the
number of antennas increases, the vector channel for a desired
terminal will tend to be more orthogonal to the vector channel

of a randomly selected interfering user. This makes it possible
to reject interference at the base station side by simply aligning
the beamforming vector with the desired channel (”Maximum
Ratio Combining” or spatial matched filter). Hence in theory,
a simple fully distributed per-cell beamforming scheme can
offer performance scaling (with M ) similar to a more complex
centralized optimization.

Unfortunately, the above conclusion relies on perfect chan-
nel estimation at the base station side. In reality channel infor-
mation is acquired on the basis of finite length pilot sequences,
and crucially, in the presence of inter-cell interference. In
particular, it has been shown that pilot contamination effects
[2] [3] [4] (i.e., the reuse of non-orthogonal pilot sequences
across interfering cells) cause the interference rejection per-
formance to quickly saturate with the number of antennas,
thereby undermining the value of MIMO systems in cellular
network scenarios.

In this paper, we address the problem of channel estimation
in the presence of multi-cell interference generated from
pilot contamination. We propose an estimation method which
provides a substantial improvement in performance and relies
on two key ideas. The first is the exploitation of dormant
side-information lying in the second-order statistics of the user
channels, both for desired and interfering users. We show that
the channel estimation performance is a function of the degree
to which dominant signal subspaces pertaining to the desired
and interference channel covariance overlap with each other. In
particular, we demonstrate a powerful result indicating that the
exploitation of covariance information under certain subspace
conditions on the covariance matrices can lead to a complete
removal of pilot contamination effects in the large M limit. We
then turn to a practical algorithm design where this concept
is exploited. The key idea behind the new algorithm is the
use of a covariance-aware pilot assignment strategy within
the channel estimation phase itself. While diversity-based
scheduling methods have been popularized for maximizing
various throughput-fairness performance criteria [5] [6] [7]
[8], the potential benefit of user-to-pilot assignment in the
context of interference-prone channel estimation has received
very little attention so far.

II. SIGNAL AND CHANNEL MODELS

We consider a network of L time-synchronized cells, with
full spectrum reuse. Note that assuming synchronization be-
tween uplink pilots provides a worst case scenario from a pilot



contamination point of view, since any lack of synchronization
will tend to statistically decorrelate the pilots. Estimation of
(block-fading) channels in the uplink is considered1, and all
the base stations are equipped with M antennas. To simplify
the notations, we assume the 1st cell is the target cell, unless
otherwise notified. For ease of exposition we consider the case
where a single user per cell transmits its pilot sequence to its
serving base. The pilot sequence used in the l-th cell is denoted
by:

sl = [ sl1 sl2 · · · slτ ]T . (1)

The powers of pilot sequences are assumed equal such that
|sl1|2 + · · ·+ |slτ |2 = τ, l = 1, 2, . . . , L.

We denote the receive covariance matrix Rl ∈ CM×M as
Rl , E

{
hlh

H
l

}
, where hl is the channel vector between

the l-th cell user and the target base station. Thus h1 is the
desired channel while hl, l > 1 are interference channels.
Channel vectors are assumed to be M × 1 complex Gaussian,
undergoing correlation due to the finite multipath angle spread
at the base station side as [9]:

hl = R
1/2
l hWl, (2)

where hWl is the spatially white M × 1 SIMO channel with
hWl ∼ CN (0, IM ), l = 1, 2, . . . , L, and IM is the M ×M
identity matrix. In this paper, we make the assumption that
covariance matrix Rl , E{hlhHl } can be obtained separately
from the desired and interference channels. During the pilot
phase, the M × τ signal received at the target base station is

Y =

L∑
l=1

hls
T
l + N, (3)

where N ∈ CM×τ is the spatially and temporally white
additive Gaussian noise with element-wise variance σ2

n.

III. COVARIANCE-BASED CHANNEL ESTIMATION

A. Pilot Contamination

Conventional channel estimation relies on correlating the
received signal with the known pilot sequence (referred here
as Least Squares (LS) estimate). Hence, using the model in
(3), an LS estimator for the desired channel h1 is

ĥLS
1 = Ys1

∗(s1
T s1
∗)
−1
. (4)

The conventional estimator suffers from a lack of orthogonality
between the desired and interfering pilots, an effect known as
pilot contamination [2], [10], [11]. In particular, when the same
pilot sequence is reused in all L cells, i.e., s1 = · · · = sL = s,
the estimator can be written as

ĥLS
1 = h1 +

L∑
l 6=1

hl + Ns∗/τ . (5)

As it appears in (5), the interfering channels leak directly into
the desired channel estimate. The estimation performance is

1Similar ideas would be applicable for downlink channel estimation,
provided the UE is equipped with multiple antennas as well, in which case
the estimation would help resolve interferences originating from neighboring
base stations.

then limited by the signal to interference ratio at the base
station, which in turns limits the ability to design an effective
interference-avoiding beamforming solution.

B. Bayesian Estimation

We hereby propose an improved channel estimator with the
aim of reducing the pilot contamination effect, and taking
advantage of the multiple antenna dimensions. We suggest
to do so by exploiting side information lying in the second
order statistics (covariance matrices) of the channel vectors.
The role of covariance matrices is to capture structure infor-
mation related to the distribution (mainly mean and spread)
of the multi-path angles of arrival at the base station. Due
to the typically elevated position of the base station, rays
impinge on the antennas with a finite angle-of-arrival (AOA)
spread and a user location-dependent mean angle. Note that
covariance-aided channel estimation itself is not a novel idea,
e.g. in [12]. In [13], the authors focused on optimal design of
pilot sequences and they exploited the covariance matrices of
desired channels and colored interference. The optimal training
sequences were developed with adaptation to the statistics of
disturbance. In our paper, however, the pilot design itself is
shown not having an impact on interference reduction, since
fully aligned pilots could be transmitted. Instead we focus on
i) studying the limiting behavior of covariance-based estimates
in the presence of interference and large-scale antenna arrays,
and ii) how to shape covariance information for the full benefit
of channel estimation quality.

Previously reported results dealing with large scale antenna
systems have revealed that even simple receivers such as
spatial matched filters are enough to eliminate interference
when M grows large [1]. We therefore present a channel
estimation method for the desired channel only. A more
general case which estimates the interference channels as well
can be found in [14]. For ease of exposition, the worst case
situation with a unique pilot sequence reused in all L cells is
considered:

s = [ s1 s2 · · · sτ ]T . (6)

We define a training matrix S̄ , s⊗ IM . Note that S̄H S̄ =
τIM . Then the vectorized received training signal at the target
base station can be expressed as

y = S̄

L∑
l=1

hl + n, (7)

where y , vec(Y), n , vec(N). Exploiting the covariance
information of the channels, a Bayesian estimator, which is
equivalent to an MMSE estimator [15], is given by

ĥ1 = R1S̄
H

(
S̄

(
L∑
l=1

Rl

)
S̄H + σ2

nIτM

)−1

y. (8)

Note that the expression (8) is similar to the traditional
Bayesian estimate as shown in [15] [13]. The difference is that
here identical pilot sequences are sent by users, and covariance
information is assumed to be known.



A more convenient form can be written as:

ĥ1 = R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄Hy. (9)

In the section below, we examine the degradation caused
by the pilot contamination on the estimation performance. In
particular, we point out the role played by the use of covariance
matrices in dramatically improving the pilot contamination
effects under certain conditions on the rank structure.

C. Performance Analysis

We are interested in the mean square error (MSE) of the
proposed estimator, which can be defined as:

M1 , E
{∥∥∥ĥ1 − h1

∥∥∥2

F

}
. (10)

The MSE of the Bayesian estimator (9) with fully aligned
pilots is given by

M1 = tr

R1 −R2
1

(
σ2
n

τ
IM +

L∑
l=1

Rl

)−1
 . (11)

Of course, it is clear from (11) that the MSE is not
dependent on the specific design of the pilot sequence, but
on the total power of it.

We can readily get the channel estimate of (9) obtained in
an interference free scenario, by setting interference terms to
zero:

ĥno int
1 = R1

(
σ2
nIM + τR1

)−1
S̄H(S̄h1 + n), (12)

where superscript no int refers to the ”no interference case”,
and the corresponding MSE:

Mno int
1 = tr

{
R1

(
IM +

τ

σ2
n

R1

)−1
}
. (13)

D. Large Scale Analysis

We seek to analyze the performance for the above estimators
in the regime of large antenna number M . For tractability, our
analysis is based on the assumption of a uniform linear array
with supercritical antenna spacing (i.e., less than or equal to
half wavelength).

Hence we have the following multipath model

hi =
1√
P

P∑
p=1

a(θip)αip, (14)

where P is the arbitrary number of i.i.d. paths, αip ∼
CN (0, δ2

i ) is independent over channel index i and path index
p, where δi is the i-th channel’s average attenuation. a(θ) is
the steering vector, as shown in [16]:

a(θ) ,


1

e−j2π
D
λ cos(θ)

...
e−j2π

(M−1)D
λ cos(θ)

 , (15)

where D is the antenna spacing at the base station and λ
is the signal wavelength, such that D ≤ λ/2. θip ∈ [0, π]
is a random AOA. Note that we can limit angles to [0, π]
because any θ ∈ [−π, 0] can be replaced by −θ giving the
same steering vector.

Below, we momentarily assume that the selected users
exhibit multipath AOAs that do not overlap with the AOAs
of the desired user, i.e., the AOA spread and user locations
are such that multipath for the desired user are confined to
a region of space where interfering paths are very unlikely
to exist. Although the asymptotic analysis below makes use
of this condition, it will be shown in Section IV how such
a structure can be shaped implicitly by the coordinated pilot
assignment. Finally, simulations reveal in Section V the ro-
bustness with respect to an overlap between AOA in desired
and interference channel (for instance in the case of Gaussian
AOA distribution).

Our main result is as follows:

Theorem 1. Assume the multipath angle of arrival θ yielding
channel hj , j = 1, . . . , L, in (14), is distributed according to
an arbitrary density pj(θ) with bounded support, i.e., pj(θ) =
0 for θ /∈ [θmin

j , θmax
j ] for some fixed θmin

j 6 θmax
j ∈ [0, π] . If

the L − 1 intervals [θmin
i , θmax

i ] , i = 2, . . . , L are strictly
non-overlapping with the desired channel’s AOA interval2

[θmin
1 , θmax

1 ], we have

lim
M→∞

ĥ1 = ĥno int
1 . (16)

From the channel model (14), we get

Ri =
δ2
i

P

P∑
p=1

E{a(θip)a(θip)
H} = δ2

i E{a(θi)a(θi)
H},

where θi has the PDF pi(θ) for all i = 1, . . . , L. The proof of
Theorem 1 relies on three intermediate lemmas which explicit
the eigenstructure of the covariance matrices. Due to lack of
space, the detailed proofs of these lemmas are omitted and
can be found in [14].

Lemma 1. Define α(x) , [ 1 e−jπx · · · e−jπ(M−1)x ]T

and A , span{α(x), x ∈ [−1, 1]}. Given b1, b2 ∈ [−1, 1] and
b1 < b2, define B , span{α(x), x ∈ [b1, b2]}, then

• dim{A} = M

• dim{B} ∼ (b2 − b1)M/2 when M grows large.

Lemma 2. When M grows large,

rank(Ri) 6 diM,

where di is defined as

di ,
(
cos(θmin

i )− cos(θmax
i )

) D
λ
.

2This condition is just one example of a practical scenario leading to
non-overlapping signal subspaces between the desired and the interference
covariances, however, more general multipath scenarios could be used.



Lemma 3. The null space null(Ri) includes a certain set of
unit-norm vectors:

null(Ri) ⊃ span

{
a(Φ)√
M
,∀Φ /∈ [θmin

i , θmax
i ]

}
, as M →∞.

Lemma 1 characterizes the number of dimensions a linear
space has, which is spanned by α(x), in which x plays
the role of spatial frequency. Lemma 2 indicates that for
large M , there exists a null space null(Ri) of dimension
(1 − di)M . Interestingly, related eigenstructure properties of
the covariance matrices were independently derived in [17]
[18] for the purpose of reducing the overhead of downlink
channel estimation and CSI feedback in massive MIMO for
FDD systems. Lemma 3 indicates that multipath components
with AOA outside the AOA region for a given user will tend
to fall in the null space of its covariance matrix in the large
number of antenna case.

We now return to the proof of theorem 1. When M is large,
Ri can be decomposed into

Ri = UiΣiU
H
i , (17)

where Ui is the signal eigenvector matrix of size M ×mi, in
which mi ≤ diM . Σi is an eigenvalue matrix of size mi×mi.
Due to lemma 3 and the fact that densities pi(θ) and p1(θ)
have non-overlapping supports, we have

UH
i U1 = 0,∀i 6= 1, as M →∞. (18)

Combining the channel estimate (9) and the channel model
(7), we obtain

ĥ1 = R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄H

(
S̄

L∑
i=1

hi + n

)
.

According to (18), matrices R1 and
L∑
l=2

Rl span orthogonal

subspaces in the large M limit. Therefore we place ourselves

in the asymptotic regime for M , in this case τ
L∑
l=2

Rl can be

eigen-decomposed according to:

τ

L∑
l=2

Rl = WΣWH , (19)

where W is the eigenvector matrix such that WHW = I
and span {W} is included in the orthogonal complement of
span {U1}. Now denote V the unitary matrix correspond-
ing to the orthogonal complement of both span {W} and
span {U1} so that the M ×M identity matrix can now be
decomposed into:

IM = U1U
H
1 + WWH + VVH . (20)

Thus, for large M :

ĥ1 ∼ U1Σ1U
H
1

(
σ2
nU1U

H
1 + σ2

nVVH + σ2
nWWH

+τU1Σ1U
H
1 + WΣWH

)−1

(
τ

L∑
i=1

hi + S̄Hn

)
.

Due to asymptotic orthogonality between U1, W and V,

ĥ1 ∼ U1Σ1(σ2Im1 + τΣ1)−1UH
1 (τ

L∑
i=1

hi + S̄Hn)

∼ U1Σ1(σ2Im1
+ τΣ1)−1τ(UH

1 h1 +

L∑
i=2

UH
1 hi +

S̄Hn1

τ
).

However, since hi ⊂ span
{
a(θ),∀θ ∈ [θmin

i , θmax
i ]
}

, we have

from lemma 3 that ‖U
H
1 hi‖

‖UH
1 h1‖ → 0 ,for i 6= 1 when M →∞.

Therefore

lim
M→∞

ĥ1 = τU1Σ1

(
σ2
nIm1 + τΣ1

)−1
(

UH
1 h1 +

S̄Hn

τ

)
,

which is identical to ĥno int
1 if we apply the EVD decomposition

(17) for R1 in (12). This proves theorem 1.
We also believe that, although antenna calibration is needed

as a technical assumption in the theorem, orthogonality of co-
variance’s signal subspaces will occur in non-tightly calibrated
settings provided the AOA regions do not overlap.

IV. COORDINATED PILOT ASSIGNMENT

In the ideal case where the desired and the interference
covariances span distinct subspaces, we have demonstrated
that the pilot contamination effect tends to vanish in the
large antenna array case. In this section we make use of
this property by designing a suitable coordination protocol for
assigning pilot sequences to users in the L cells. The role of the
coordination is to shape covariance matrices in an effort to try
and satisfy the non-overlapping AOA constraint of Theorem
1. We assume that in all L cells, the considered pilot sequence
will be assigned to one (out of K) user in each of the L cells.
Let G , {1, . . . ,K}, then Kl ∈ G denotes the index of the
user in the l-th cell who is assigned the pilot sequence s. The
set of selected users is denoted by U in what follows. For a
user set U , we define a network utility function

F(U) ,
|U|∑
j=1

Mj(U)

tr {Rjj(U)}
, (21)

where |U| is the cardinal number of the set U . Mj(U) is the
estimation MSE for the desired channel at the j-th base station,
with a notation readily extended from M1 in (11), where this
time cell j is the target cell when computing Mj . Rjj(U) is
the covariance matrix of the desired channel at the j-th cell.

The principle of the coordinated pilot assignment is exploit-
ing covariance information at all cells in order to minimize the
sum MSE metric. Hence, L users are assigned to an identical
pilot sequence when the corresponding L2 covariance matrices
exhibit the most orthogonal signal subspaces. To reduce the
complexity, a classical greedy approach is proposed:

1) U = ∅
2) For l = 1, . . . , L do:
Kl = arg min

k∈G
F(U ∪ {k})

U ← U ∪ {Kl}
End



The coordination can be interpreted as follows: To minimize
the estimation error, a base station tends to assign a given pilot
to the user whose spatial feature has most differences with the
interfering users assigned this same pilot.

V. NUMERICAL RESULTS

In order to preserve fairness between users and avoid having
high-SNR users being systematically assigned the pilot s, we
consider a symmetric multicell network where the users are
all distributed on the cell edge and have the same distance
with their base stations.3 We adopt the model of a cluster of
synchronized and hexagonally shaped cells. We keep the basic
simulation parameters in Table I, unless otherwise stated.

TABLE I
BASIC SIMULATION PARAMETERS

Cell radius 1 km
Cell edge SNR 20 dB
Number of users per-cell 10
Distance from a user to its BS 800 m
Path loss exponent 3
Carrier frequency 2 GHz
Antenna spacing λ/2
Number of paths 50
Pilot length 10

Two types of AOA distributions are considered here, a
bounded one (uniform) and a non-bounded one (Gaussian).
Two performance metrics are used to evaluate the proposed
channel estimation scheme: the channel estimation error nor-
malized by the F-norm of the channel coefficients, and the per-
cell rate obtained assuming standard maximal ratio combining
(MRC) beamformer based on the channel estimate.

In the following part, ”LS” stands for conventional LS chan-
nel estimation. ”CB” denotes the Covariance-aided Bayesian
estimation (without coordination), and ”CPA” is the proposed
Coordinated Pilot Assignment-based Bayesian estimation.

We first validate theorem 1 in Fig. 1 with a 2-cell network,
where the two users’ positions are fixed. AOAs of desired
channels are uniformly distributed with a mean of 90 degrees,
and an angle spread θ∆ = 20 degrees for both users, yielding
no overlap between desired and interfering multipaths. The
pilot contamination is quickly eliminated with increasing the
number of antennas.

In Fig. 2, the estimation MSE versus the BS antenna number
is illustrated where the AOAs have uniform distribution. The
performance of CPA estimator improves quickly with M from
2 to 10. In the 2-cell network, the proposed pilot assignment
policy has the ability of avoiding the overlap between AOAs
for the desired and interference channels.

We then examine the impact of RMS angle spread of
uniformly distributed AOAs on the estimation error. We can
see in Fig. 3 that the estimation error is a monotonically
increasing function of the RMS angle spread. In contrast,
an angle spread tending toward zero will cause the channel

3In practice, users with greater average SNR levels (but equal across cells)
can be assigned together on a separate pilot pool.
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Fig. 1. Estimation MSE vs. BS antenna number, 2-cell network, fixed
positions of two users, uniformly distributed AOAs with θ∆ = 20 degrees,
non-overlapping multipath.
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Fig. 2. Estimation MSE vs. antenna number, uniformly distributed AOAs
with θ∆ = 10 degrees, 2-cell network.

direction to collapse into a deterministic quantity, yielding
large gains for covariance-based channel estimation.

Fig. 4 depicts the downlink per-cell rate achieved by the
MRC beamforming strategy and suggests large gains when the
Bayesian estimation is used in conjunction with the proposed
coordinated pilot assignment strategy and intermediate gains
when it is used alone. Interestingly it is shown that the rate
performance almost saturates with M in the classical LS case
(due to pilot contamination) while it increases quickly with
M for the proposed estimators, indicating the full benefits of
massive MIMO systems are exploited.

VI. DISCUSSIONS

In this paper, we assumed the individual covariance matrices
can be estimated separately. This could be done in practice
by exploiting resource blocks where the desired user and
interference users are known to be assigned pilot sequences
at different times. In future networks, one may imagine a
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Fig. 4. Per-cell rate vs. antenna number, Gaussian distributed AOAs with
standard deviation σ = 10 degrees, 7-cell network.

specific training design for learning second-order statistics.
Since covariance information varies much slower than fast
fading, such training may not consume a substantial amount
of resources.

VII. CONCLUSIONS

This paper proposed a covariance-aided channel estimation
framework in the context of interference-limited multi-cell
multiple antenna systems. We proposed a Bayesian estimator
and demonstrated analytically the efficiency of such an ap-
proach for large-scale antenna systems, leading to a complete
removal of pilot contamination effects in the case covariance
matrices satisfy a certain non-overlapping condition on their
dominant subspaces. We suggested a coordinated pilot assign-
ment strategy that helps shape covariance matrices toward
satisfying the needed condition and showed that channel
estimation performance is close to interference-free scenarios.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under grant No. 60972015 and
61231007, by the European research projects SAPHYRE and
HARP under the FP7 ICT Objective 1.1 - The Network of
the Future, and by the French national ANR-VERSO funded
project LICORNE. Discussions with Dirk Slock and Laura
Cottatellucci are gratefully acknowledged.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Trans. Wireless Commun, vol. 9,
no. 11, pp. 3590–3600, Nov. 2010.

[2] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot
contamination problem in multi-cell TDD systems,” in Proc. IEEE
International Symposium on Information Theory (ISIT09), Seoul, Korea,
Jun. 2009, pp. 2184–2188.

[3] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO: How many
antennas do we need?” in Proc. 2011 49th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), Sep. 2011, pp.
545 –550.

[4] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot
contamination and precoding in multi-cell tdd systems,” IEEE Trans.
Wireless Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.

[5] R. Knopp and P. A. Humblet, “Information capacity and power control
in single-cell multiuser communications,” in Proc. IEEE International
Conference on Communications, vol. 1, Seattle, WA, USA, Jun. 1995,
pp. 331–335.

[6] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming
using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–
1294, Jun. 2002.

[7] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM
systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178, Feb.
2003.

[8] D. Gesbert, M. Kountouris, R. Heath, C. Chae, and T. Salzer, “Shifting
the MIMO paradigm,” IEEE Signal Process. Mag., vol. 24, no. 5, pp.
36–46, Sep. 2007.

[9] A. J. Paulraj, R. Nabar, and D. Gore, Introduction to space-time wireless
communications. Cambridge University Press, 2003.

[10] H. Q. Ngo, T. L. Marzetta, and E. G. Larsson, “Analysis of the pilot
contamination effect in very large multicell multiuser MIMO systems
for physical channel models,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP11), Prague, Czech
Republic, May 2011, pp. 3464–3467.

[11] B. Gopalakrishnan and N. Jindal, “An analysis of pilot contamination on
multi-user MIMO cellular systems with many antennas,” in 2011 IEEE
12th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Jun. 2011, pp. 381–385.

[12] A. Scherb and K. Kammeyer, “Bayesian channel estimation for doubly
correlated MIMO systems,” in Proc. IEEE Workshop Smart Antennas,
2007.

[13] E. Bjornson and B. Ottersten, “A framework for training-based esti-
mation in arbitrarily correlated Rician MIMO channels with Rician
disturbance,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1807–
1820, Mar. 2010.

[14] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach
to channel estimation in large-scale multiple-antenna systems,” IEEE J.
Sel. Areas Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.

[15] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice Hall, 1993.

[16] J. A. Tsai, R. M. Buehrer, and B. D. Woerner, “The impact of AOA
energy distribution on the spatial fading correlation of linear antenna
array,” in Proc. IEEE Vehicular Technology Conference, (VTC 02), vol. 2,
May 2002, pp. 933–937.

[17] J. Nam, J. Ahn, and G. Caire, “Joint spatial division and multiplexing:
Realizing massive MIMO gains with limited channel state information,”
in 46th Annual Conference on Information Sciences and Systems, (CISS
2012), Princeton University, NJ, USA, Mar. 2012, pp. 1–6.

[18] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial
division and multiplexing,” CoRR, 2012. [Online]. Available:
http://arxiv.org/abs/1209.1402


