
On the Fundamental Feedback-vs-Performance
Tradeoff over the MISO-BC with Imperfect and

Delayed CSIT
Jinyuan Chen

Mobile Communications Dep.
EURECOM

Sophia Antipolis, France
Email: jinyuan.chen@eurecom.fr

Sheng Yang
Telecommunications Dep.

SUPELEC
Gif sur Yvette, France

Email: sheng.yang@supelec.fr

Petros Elia
Mobile Communications Dep.

EURECOM
Sophia Antipolis, France

Email: petros.elia@eurecom.fr

Abstract—This work considers the multiuser multiple-input
single-output (MISO) broadcast channel (BC), where a transmit-
ter with M antennas transmits information to K single-antenna
users, and where - as expected - the quality and timeliness of
channel state information at the transmitter (CSIT) is imperfect.
Motivated by the fundamental question of how much feedback
is necessary to achieve a certain performance, this work seeks
to establish bounds on the tradeoff between degrees-of-freedom
(DoF) performance and CSIT feedback quality. Specifically, this
work provides a novel DoF region outer bound for the general K-
user M×1 MISO BC with partial current CSIT, which naturally
bridges the gap between the case of having no current CSIT (only
delayed CSIT, or no CSIT) and the case with full CSIT. The work
then characterizes the minimum CSIT feedback that is necessary
for any point of the sum DoF, which is optimal for the case with
M ≥ K, and the case with M = 2, K = 3.

I. INTRODUCTION

We consider the multiuser multiple-input single-output
(MISO) broadcast channel (BC), where a transmitter with M
antennas, transmits information to K single-antenna users. In
this setting, the received signal at time t, is of the form

yk,t = hT

k,txt + zk,t, k = 1, · · · ,K (1)

where hk,t denotes the M × 1 channel vector for user k, zk,t
denotes the unit power AWGN noise, and where xt denotes
the transmitted signal vector adhering to a power constraint
E[||xt||2] ≤ P , for P taking the role of the signal-to-noise
ratio (SNR). We here consider that the fading coefficients
hk,t, k = 1, · · · ,K, are independent and identically dis-
tributed (i.i.d.) complex Gaussian random variables with zero
mean and unit variance, and are i.i.d. over time.

It is well known that the performance of the BC is greatly
affected by the timeliness and quality of feedback; having
full CSIT allows for the optimal min{M,K} sum degrees-
of-freedom (DoF) (cf. [1])1, while the absence of any CSIT
reduces this to just 1 sum DoF (cf. [2], [3]). This gap has

1We remind the reader that for an achievable rate tuple (R1, R2, · · · , RK),
whereRi is for user i, the corresponding DoF tuple (d1, d2, · · · , dK) is given
by di = limP→∞

Ri
log P

, i = 1, 2, · · · ,K. The corresponding DoF region
D is then the set of all achievable DoF tuples (d1, d2, · · · , dK).
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Fig. 1. System model of K-user MISO BC with CSIT feedback.

spurred a plethora of works that seek to analyze and optimize
BC communications in the presence of delayed and imperfect
feedback. One of the works that stands out is the work by
Maddah-Ali and Tse [4] which recently revealed the benefits
of employing delayed CSIT over the BC, even if this CSIT
is completely obsolete. Several interesting generalizations fol-
lowed, including the work in [5] which showed that in the BC
setting with K = M+1, combining delayed CSIT with perfect
(current) CSIT (over the last K−1

K fraction of communication
period) allows for the optimal sum DoF M corresponding
to full CSIT. A similar approach was exploited in [6] which
revealed that, to achieve the maximum sum DoF min{M,K},
each user has to symmetrically feed back perfect CSIT over
a min{M,K}

K fraction of the communication time, and that this
fraction is optimal. Other interesting works in the context of
utilizing delayed and current CSIT, can be found in [7]–[10]
which explored the setting of combining perfect delayed CSIT
with immediately available imperfect CSIT, the work in [11]
which additionally considered the effects of the quality of
delayed CSIT, the work in [12] which considered alternating
CSIT feedback, the work in [13] which considered delayed
and progressively evolving (progressively improving) current
CSIT, and the works in [14]–[16] and many other publications.

Our work here generalizes many of the above settings,
and seeks to establish fundamental tradeoff between DoF
performance and CSIT feedback quality, over the general K-



user M × 1 MISO BC with general CSIT quality. It is noted
that, in parallel to this work, [17] also considered a particular
case of K-user MISO BC with the additional constraint that
the CSIT quality is invariant over time and equal for all users,
and provided an inner bound and an outer bound.

A. Structure of paper, notation and conventions

We proceed to first describe the quality and timeliness
measure of CSIT feedback, and how this measure relates to
existing work. After that, Section II provides the main results
of this work, i.e., the novel outer bound on the DoF region
and sum DoF, optimal DoF characterizations for many cases,
and some inner bounds on the sum DoF. The sketches of the
proofs are shown in the same section, as well as in Section III
and Section IV, while most proof details are placed, due to
the lack of space, in the journal version of this work [18].

Throughout this paper, we will consider communication
over n coherence periods where, for clarity of notation, we will
focus on the case where we employ a single channel use per
such coherence period (unit coherence period). Furthermore,
unless stated otherwise, we assume perfect delayed CSIT, as
well as adhere to the common convention (see [4], [6], [8],
[9], [12], [19]), and assume perfect and global knowledge of
channel state information at the receivers. In terms of notation,
(•)T will denote the transpose of a matrix or vector, while ||•||
will denote the Euclidean norm.

B. Quality and timeliness measure of CSIT feedback

We here use ĥk,t to denote the current channel estimate (for
channel hk,t) at the transmitter at timeslot t, and use

h̃k,t = hk,t − ĥk,t
to denote the estimate error assumed to be mutually indepen-
dent of ĥk,t and assumed to have i.i.d. Gaussian entries with
power

E[‖h̃k,t‖2]
.
= P−αk,t ,

for some CSI quality exponent αk,t ∈ [0, 1] describing the
quality of this estimate.

The approach extends over non-alternating CSIT settings in
[4] and [7]–[10], as well as over an alternating CSIT setting
(cf. [6], [12]) where CSIT knowledge alternates between
perfect CSIT (αk,t = 1), and delayed or no CSIT (αk,t = 0).

In a setting where communication takes places over n such
coherence periods (t = 1, 2, · · · , n), this approach offers a
natural measure of a per-user average feedback cost, in the
form of

ᾱk ,

∑n
t=1 αk,t
n

, k = 1, 2, · · · ,K,

as well as a measure of current CSIT feedback cost

CC =

K∑
k=1

ᾱk,

accumulated over all users.
Furthermore, in a setting where delayed CSIT is always

available, the above model captures the alternating CSIT

setting where the exponents are binary (αk,t = 0, 1), in which
case ᾱk = δP,k simply describes the fraction of time during
which user k has perfect CSIT, with CC = CP ,

∑K
k=1 δP,k

describing the total perfect CSIT feedback cost.

II. MAIN RESULTS

A. Outer bounds

We first present the DoF region outer bound for the general
K-user M × 1 MISO BC.

Theorem 1 (DoF region outer bound): The DoF region of
the K-user M × 1 MISO BC, is outer bounded as
K∑
k=1

dπ(k)

min{k,M}
≤1+

K−1∑
k=1

(
1

min{k,M}
− 1

min{K,M}

)
ᾱπ(k)

(2)
dk ≤ 1, k = 1, 2, · · · ,K (3)

where π denotes a permutation of the ordered set
{1, 2, · · · ,K}, and π(k) denotes the kth element of set π.

Proof: A sketch of the proof is shown in Section III.
Remark 1: It is noted that the bound captures the results in

[4] (αk,t = 0, ∀t, k), in [8], [9] (K = 2, αk,t = α, ∀t, k), in
[19] (M = K = 2, α1,t = 1, α2,t = 0, ∀t), in [10] (K = 2,
α1,t 6= α2,t, ∀t), in [6], [12] (αk,t ∈ {0, 1}, ∀t, k), as well as
in [17] (M ≥ K, αk,t = α, ∀t, k).

Summing up from the above the K different bounds,
where for bound k(= 1, 2, · · · ,K) we have π = {π(i) =
mod(k+ i−2)K + 1, i = 1, · · · ,K} with mod(x)K being the
modulo operator, we directly have the following upper bound
on the sum DoF d∑ ,

∑K
k=1 dk, which is presented using the

following notation

dMAT ,
K

1 + 1
min{2,M} + 1

min{3,M} + · · ·+ 1
min{K,M}

. (4)

Corollary 1a (Sum DoF outer bound): For the K-user
M × 1 MISO BC, the sum DoF is outer bounded as

d∑ ≤ dMAT +

(
1− dMAT

min{K,M}

) K∑
k=1

ᾱk. (5)

The above then readily translates onto a lower bound on
the minimum possible total current CSIT feedback cost CC =∑K
k=1 ᾱk needed to achieve the maximum sum DoF2 d∑ =

min{K,M}.
Corollary 1b (Bound on CSIT cost for maximum DoF):

The minimum CC required to achieve the maximum sum
DoF min{K,M} of the K-user M × 1 MISO BC, is lower
bounded as

C?C ≥ min{K,M}. (6)

Transitioning to the alternating CSIT setting where αk,t ∈
{0, 1}, we have the following sum-DoF outer bound as a
function of the perfect-CSIT duration ᾱk = δP,k = δP, ∀ k.

2Naturally the result is limited to the case where min{K,M} > 1.
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Fig. 2. Optimal sum DoF d∑ vs. δP for the MISO BC with M ≥ K .

We note that the bound holds irrespective of whether, in the
remaining fraction of the time 1− δP, the CSIT is delayed or
non existent.

Corollary 1c (Outer bound, alternating CSIT): For the K-
user M × 1 MISO BC, the sum DoF is outer bounded as

d∑ ≤ dMAT +

(
K − KdMAT

min{K,M}

)
min

{
δP,

min{K,M}
K

}
.

(7)

B. Optimal cases of DoF characterizations

We now provide the optimal cases of DoF characterizations.
The case with M ≥ K is first considered in the following.

Theorem 2 (Optimal case, M ≥ K): For the K-user M×1
MISO BC with M ≥ K, the optimal sum DoF is characterized
as

d∑ = (K − dMAT) min{δP, 1}+ dMAT. (8)

Proof: The converse and achievability proofs are derived
from Corollary 1c and Proposition 2 (shown in the next
subsection), respectively.

Remark 2: It is noted that, for the special case with M =
K = 2, the above characterization captures the result in [12].

Moving to the case where M < K, we have the following
optimal sum DoF characterizations for the case with M =
2, K = 3. The first interest is placed on the minimum C?P(d∑)

to achieve a sum DoF d∑, recalling that CP =
∑K
k=1 δP,k

describes the total perfect CSIT feedback cost.
Theorem 3 (Optimal case, M = 2,K = 3): For the three-

user 2×1 MISO BC, the minimum total perfect CSIT feedback
cost is given as

C?P(d∑) = (4d∑ − 6)+, ∀ d∑ ∈ [0, 2] (9)

where the total feedback cost C?P(d∑) can be distributed
among all the users with some combinations {δP,k}k such that
δP,k ≤ C?P(d∑)/2 for any k.

Proof: The converse proof is directly from Corollary 1a,
while the achievability proof can be found in [18].

Theorem 3 reveals the fundamental tradeoff between sum
DoF and total perfect CSIT feedback cost (see Fig 3). The
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Fig. 3. Optimal sum DoF (dΣ) vs. total perfect CSIT feedback cost (CP)
for three-user 2× 1 MISO BC.

following examples are provided to offer some insights corre-
sponding to Theorem 3.

Example 1: For the target sum DoF dΣ = 3/2, 7/4, 2, the
minimum total perfect CSIT feedback cost is C?P = 0, 1, 2,
respectively.

Example 2: The target dΣ = 7/4 is achievable with
asymmetric feedback δP = [1/6 1/3 1/2], and symmetric
feedback δP = [1/3 1/3 1/3], and some other feedback
such that C?P(7/4) = 1.

Example 3: The target dΣ = 2 is achievable with asymmet-
ric feedback δP = [1/3 2/3 1], and symmetric feedback
δP = [2/3 2/3 2/3], and some other feedback such that
C?P(2) = 2.

Transitioning to the symmetric setting where δP,k = δP ∀k,
from Theorem 3 we have the fundamental tradeoff between
optimal sum DoF and CSIT feedback cost δP.

Corollary 3a (Optimal case, M = 2,K = 3, δP): For the
three-user (2 × 1) MISO BC with symmetrically alternating
CSIT feedback, the optimal sum DoF is given as

d∑ = min

{
3(2 + δP)

4
, 2

}
. (10)

Now we address the questions of what is the minimum C?P
to achieve the maximum sum DoF min{M,K} for the general
BC, and how to distribute C?P among all the users, recalling
again that C?P is the total perfect CSIT feedback cost.

Theorem 4 (Minimum cost for maximum DoF): For the
K-user M × 1 MISO BC, the minimum total perfect CSIT
feedback cost to achieve the maximum DoF is given by

C?P(min{M,K}) =

{
0, if min{M,K} = 1
min{M,K}, if min{M,K} > 1

where the total feedback cost C?P can be distributed among all
the users with any combinations {δP,k}k.

Proof: For the case with min{M,K} = 1, simple TDMA
is optimal in terms of the DoF performance. For the case with
min{M,K} > 1, the converse proof is directly derived from
Corollary 1b, while the achievability proof can be found in
[18].



It is noted that Theorem 4 is a generalization of the
result in [6] where only symmetric feedback was considered.
The following examples are provided to offer some insights
corresponding to Theorem 4.

Example 4: For the case where M = 2, K = 4, the optimal
2 sum DoF performance is achievable, with asymmetric feed-
back δP = [1/5 2/5 3/5 4/5], and symmetric feedback
δP = [1/2 1/2 1/2 1/2], and any other feedback such
that C?P = 2.

Example 5: For the case where M = 3, K = 5, the opti-
mal 3 sum DoF performance is achievable, with asymmetric
feedback δP = [1/5 2/5 3/5 4/5 1], and symmetric
feedback δP = [3/5 3/5 3/5 3/5 3/5], and any other
feedback such that C?P = 3.

The following corollary is derived from Theorem 4, where
the case with min{M,K} > 1 is considered.

Corollary 4a (Minimum cost for maximum DoF): For the
K-user M ×1 MISO BC, where J users instantaneously feed
back perfect (current) CSIT, with the other users feeding back
delayed CSIT, then the minimum number J is min{M,K},
in order to achieve the maximum sum DoF min{M,K}.

C. Inner bounds

In this subsection, we provide the following inner bounds
on the sum DoF as a function of the CSIT cost, which are
tight for many cases as stated.

Proposition 1 (Inner bound, M = 2,K ≥ 3): For the
K(≥ 3)-user 2× 1 MISO BC, the sum DoF is bounded as

d∑ ≥ 3

2
+
K

4
min{δP,

2

K
}. (11)

Proof: The proof is shown in Section IV-A.
Proposition 2 (Inner bound, M ≥ K and M < K): For

the K-user M × 1 MISO BC, the sum DoF for the case with
M ≥ K is bounded as

d∑ ≥ (K − dMAT) min{δP, 1}+ dMAT, (12)

while for the case with M < K, the sum DoF is bounded as

d∑ ≥ (K − KΓ

M
) min{δP,

M

K
}+ Γ (13)

where

Γ,
M∑K−M

i=1
1
i (
M−1
M )i−1 + (M−1

M )K−M (
∑K
i=K−M+1

1
i )
.

Proof: The proof is shown in Section IV-B.

III. CONVERSE PROOF OF THEOREM 1

We first provide Proposition 3 to be used, the proof of which
can be found in [18]. For simplicity we drop the time index.

Proposition 3: Let

yk = hT

kx+ zk,

yk , [y1 y2 · · · yk]T, Hk , [h1 h2 · · · hk]T

H , [h1 h2 · · · hK ]T, H = Ĥ + H̃

d∑ 
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Fig. 4. Achievable sum DoF dΣ vs. δP for the MISO BC with M < K.

where h̃i ∈ CM×1 has i.i.d. NC(0, σ2
i ) entries. Then, for any

U such that pX|UĤH̃ = pX|UĤ and K ≥ m ≥ l, we have

l′ h(ym|U, Ĥ, H̃)−m′ h(yl|U, Ĥ, H̃)

≤ −(m′ − l′)
l∑
i=1

log σ2
i + o(logP ) (14)

where we define l′ , min {l,M} and m′ , min {m,M}.
Giving the observations and messages of users 1, . . . , k− 1

to user k, we establish the following genie-aided upper bounds
on the achievable rates

nRk ≤ I(Wk; yn1 , y
n
2 , . . . , y

n
k |W1, . . . ,Wk−1,Ω

n) + nε
(15)

where we apply Fano’s inequality and some basic chain rules
of mutual information using the fact that messages from
different users are independent, and where we define

Ωn, {St, Ŝt}nt=1, y
n
k , {yk,t}nt=1

St,
[
h1,t · · · hK,t

]T
, Ŝt,

[
ĥ1,t · · · ĥK,t

]T
.

Alternatively, we have

nRk ≤ h(yn1 , . . . , y
n
k |W1, . . . ,Wk−1,Ω

n)

− h(yn1 , . . . , y
n
k |W1, . . . ,Wk,Ω

n) + nε. (16)

Therefore, it follows that
K∑
k=1

n

k′
(Rk − ε)

≤
K−1∑
k=1

n∑
t=1

(
h(y1,t, . . . ,yk+1,t | yt−1

1 , . . . ,yt−1
k ,W1, . . . ,Wk,Ω

n)

(k + 1)′

− 1

k′
h(y1,t, . . . , yk,t | yt−1

1 , . . . , yt−1
k ,W1, . . . ,Wk,Ω

n)

)
+ n logP + n o(logP ) (17)

≤ logP

K−1∑
k=1

n∑
t=1

(k + 1)′ − k′

k′(k + 1)′

k∑
i=1

αi,t+n logP+n o(logP )

(18)



= n logP

K−1∑
i=1

( 1

k′
− 1

K ′

)
ᾱi + n logP + n o(logP ) (19)

where we define k′,min {k,M}, the inequality (17) is
due to 1) the chain rule of differential entropy, 2) the
fact that removing condition does not decrease differential
entropy, 3) h(y1,t |Ωn) ≤ logP + o(logP ), i.e., Gaus-
sian distribution maximizes differential entropy under covari-
ance constraint, and 4) h(yn1 , . . . , y

n
K |W1, . . . ,WK ,Ω

n) =
h(zn1 , . . . , z

n
K) > 0; (18) is from Proposition 3 by setting

U = {yt−1
1 , . . . , yt−1

k ,W1, . . . ,Wk,Ω
n} \ {St, Ŝt}, H = St,

and Ĥ = Ŝt; the last equality is obtained after putting the
summation over k inside the summation over i and some basic
manipulations. Similarly, we can interchange the roles of the
users and obtain the same genie-aided bounds. Finally, the
single antenna constraint gives that di ≤ 1, i = 1, · · · ,K.
With this, we complete the proof.

IV. SOME ACHIEVABILITY PROOFS

We here provide the sketches of some achievability proofs,
leaving more details in [18] due to the lack of space.

A. Proof of Proposition 1

The achievability scheme is based on time sharing between
two strategies of CSIT feedback, i.e., delayed CSIT feedback
with δP = 0 and alternating CSIT feedback with δP = 2

K ,
where the first strategy achieves d∑ = 3/2 by applying
Maddah-Ali and Tse (MAT) scheme (see in [4]), with the
second strategy achieving d∑ = 2 by using alternating CSIT
feedback manner (see in [6]).

B. Proof of Proposition 2

For the case with M ≥ K, the proposed scheme is based
on time sharing between delayed CSIT feedback with δP = 0
and full CSIT feedback with δP = 1, where the first feedback
strategy achieves d∑ = dMAT by applying MAT scheme, with
the second one achieving d∑ = K.

Similar approach is exploited for the case with M < K.
In this case, we apply time sharing between delayed CSIT
feedback with δP = 0 and alternating CSIT feedback with
δP = M/K.

V. CONCLUSIONS

This work considered the general multiuser MISO BC, and
established inner and outer bounds on the tradeoff between
DoF performance and CSIT feedback quality, which are opti-
mal for many cases. Those bounds, as well as some analysis,
were provided with the aim of giving insights on how much
CSIT feedback to achieve a certain DoF performance.
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