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Abstract

Expressing security policies to govern distributed systems is a complex and error-prone task. Policies are hard to understand,
often expressed with unfriendly syntax, making it difficult for security administrators and for business analysts to create intelligible
specifications. We introduce the Hierarchical Policy Language for Distributed Systems (HiPoLDS), which has been designed to
enable the specification of security policies in distributed systems in a concise, readable, and extensible way. HiPoLDS design
focuses on decentralized execution environments under the control of multiple stakeholders. It represents policy enforcement
through the use of distributed reference monitors, which control the flow of information between services. HiPoLDS allows the
definition of both abstract and concrete policies, expressing respectively high-level properties required and concrete implementation
details to be ultimately introduced into the service implementation.

Keywords:
security policies, service-oriented architectures, distributed systems

1. Introduction

Service-oriented architectures (SOAs) are a major software
development pattern that builds applications based on loosely
coupled services which can be run by different entities. Be-
cause of their complexity and of the varying degrees of trust
between locations in which code is deployed and executed, it is
challenging to make these systems secure. In particular, secu-
rity is a crosscutting requirement: security-related code is gen-
erally scattered over several pieces of code and locations. What
is worse, a local vulnerability or a mismatch between the se-
curity mechanisms adopted at different locations can have dire
consequences, potentially putting large systems at stake.

The CESSA project1 focuses on the daunting task of mak-
ing large SOAs secure by using aspect-oriented structuring
and modularizing security across administrative and technolog-
ical domains. It is with this goal in mind that we introduce
HiPoLDS (Hierarchical Policy Language for Distributed Sys-
tems). This language aims at being an efficient tool to express
policies in diverse and complex distributed systems, where sev-
eral entities interact in complex scenarios. SOAs are our moti-
vating use case and they have driven our design, but HiPoLDS
has been designed to be applicable to any kind of distributed
system.

HiPoLDS provides the following features which are not
present together in existing security policy languages:

• Allowing to describe the security policy also by way of ab-
stract requirements: this should allow the writer of the pol-
icy to mention which security properties they want (e.g.,

1http://cessa.gforge.inria.fr

confidentiality, authentication, etc.) along with how they
are implemented (e.g., encryption, signatures. etc.).

• Expressing the security policy of a service-oriented ar-
chitecture centrally despite its decentralized enforcement.
A single abstract requirement (e.g., confidentiality or au-
thentication) often needs to be implemented distributedly
with several pieces of code at different locations (e.g. en-
crypt somewhere and decrypt in another place, add secu-
rity metadata at a sender and verify them at a proxy, and
so on). HiPoLDS aims to make the relationship between
the abstract requirement and its distributed implementa-
tion more obvious and modular.

• Keeping specifications clear and understandable, minimiz-
ing the need for code duplication and helping maintain-
ability – even when policies are drafted cooperatively by
several entities.

After discussing the state of the art on distributed policy lan-
guages in Section 2, we introduce the main constructs of our
own language in Section 3. HiPoLDS is based on a hierarchy
of policy domains, each of them being a set of locations where
security policies apply. HiPoLDS security rules are handled by
reference monitors (RMs) running at each policy domain and
controlling the flow of information crossing their borders.

HiPoLDS has been designed by taking into account con-
crete practical use cases and deriving the features that were
needed in such situations [1, 2]. We show in Section 4 var-
ious use cases highlighting how it makes it easier to express
complex security requirements and how to refine specifica-
tions into security mechanisms. We discuss our plans towards
a complete HiPoLDS implementation in Section 5, together
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with automated and semi-automated strategies to relate require-
ments with mechanisms that implement them. We finally con-
clude (Section 6) by highlighting open research issues related
to HiPoLDS and outlining our agenda for future research.

2. Related Work

The expression of a security policy is central when it comes
to describing how to secure a system. We review in this section
a few of these approaches and in particular how appropriate
they are for the distributed deployment of a service-oriented ar-
chitecture. A large number of security policy specifications aim
at mediating and restricting access to a central database. Those
approaches cannot qualify for SOAs due to their distributed na-
ture. In addition, the security policy of a SOA has to capture re-
sponsibilities about the enforcement of the security policy and
the fact that not all execution environments where services are
running can be controlled.

Even in decentralized settings, access control policies have
generally been well covered. The SecPal language [3] is one
such proposal for describing decentralized access control which
formalizes the use of SPKI certificates. It is interesting in that,
similarly to the underlying PKI infrastructure, it captures rather
well the notion of trusted authorities and their respective com-
petences for authentication. However, SecPal expressions are
restricted to the access control model to be enforced and can-
not describe any manipulation of messages required for more
complex security policies. This means it also would not be very
appropriate for analyzing complex and extensible protocols like
those encountered in service-oriented architectures. Contrary to
SecPal, some policy languages aim at extensibility rather than
formal verifiability; this is the case of Li et al.’s approach [4].
The policy model is captured through facts and inference rules,
which may be interesting for introducing additional concerns.

Information centric approaches like the Decentralized Label
Model [5] or its variants aim at specifying formally the security
properties of the information flow in a system. This description
is implemented through the typing of information flows with la-
bels, in particular confidentiality labels in the case of Myers and
Liskov’s label model. One advantage of this approach is that it
is also very declarative and may describe many different prop-
erties beyond access control. Implementing policy enforcement
may however be rather difficult to implement: some automation
is required when moving to low-level operations, in particular
with respect to the selection of the cryptographic mechanisms
used and to the key distribution operations. All of those are left
outside the security policy specification, thus likely preventing
the customized combination of multiple encryption techniques;
it is also implicitly assumed that this implementation will be
“correctly” deployed, whatever that may mean to the security
expert. Furthermore, while they are simple because of their
high-level of abstraction, information flow security models re-
quire handling the declassification of information, which more
or less breaks the regularity of the policy. Still, the Decentral-
ized Label Model is at an advantage here compared with similar
models by making this declassification operation explicitly de-
scribed in the language.

It is worth noting that the security policy specifications de-
scribed above approach the expression of the policy as a high
level statement of security objectives or properties for the sake
of separating the policy model from its implementation. How-
ever, by not considering low-level concerns related to policy
enforcement they also fail to capture network boundaries, net-
work domains, and the protocols between them, all which are
however extremely important for the specification of relevant
policies.

In contrast, the SPL language [6, 7] is quite inspirational in
that it expresses the distributed enforcement of obligation poli-
cies at different levels of abstraction. Those policies easily map
to reference monitors for enforcement. SPL also aims at pro-
viding a unifying framework for policies expressed at multiple
places in a company. Still, SPL assumes that the enforcement
is performed by a trusted entity which is not adapted for ad-
dressing SOA security in general. Furthermore, the policies
expressed in SPL are simply access control related in that some
information is authorized or forbidden, the expression of that
requirement being essentially focused on the description of the
reference monitor operation.

Ponder [8] is another language based on obligation and filter-
ing whose expressivity is more extended. It too fails to express
the existence of multiple entities for enforcement.

The Law Governed Interactions approach [9] (LGI) also con-
stitutes a very interesting attempt at specifying policies over
multiple domains, like network domains. LGI aims at rather di-
verse types of policies, even beyond security ones, encompass-
ing for instance quality of service concerns. Policy enforcement
in LGI is based on the realization of a policy based middleware
in which communication is mediated by reference monitors be-
tween domains. In this approach, domains can be considered
as governed by a mandatory policy, their law. However, the ap-
proach fails short to account for multiple stakeholders by not
considering that the enforcement might not always be possible
- or at least not by an authority that is trusted enough to ensure
the application of the law. Unlike LGI, in HiPoLDS reference
monitor do not need to be trusted by all participating entities,
and need to be as trusted as the applications running in their
domains.

All three approaches above feature the idea that the concept
of domains is not only central to enforcement by an associated
reference monitor but also central to the very specification of
security policies. Our work builds on the idea that a domain
does not only mean a consistent policy is enforced, but that the
enforcement is under the control of a single authority. Given
that authority model, this architecture may to some extent also
help solve policy composition issues [10], even though we do
not address this issue in this paper.

Using AOP for policy enforcement is not an original idea in
itself. Several works apply AOP for building inline reference
monitors for access control, such as [11, 12, 13] or to specify
other requirements such as availability [14]. The particularity
in our approach is its application to the information flow in a
distributed systems, which requires the use of specific aspect
mechanisms [15].

Hierarchical policies also require another approach to policy
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composition and conflict resolution. In previous work, conflicts
are mostly solved by disambiguating among diverging policy
decisions [16, 17, 18]. We advocate that the hierarchical orga-
nization of HiPoLDS policies essentially impacts the enabled
information flows between domains controlled by different au-
thorities. Handling such issues rather requires advanced nego-
tiation techniques when policies cross domains.

3. Language Overview

In service oriented architectures, complex processes are car-
ried out by several interacting entities. It is essential to support
a concise way of specifying high-level policies that need to be
applied in the whole architecture or in large parts of it, as well
as fine-grained requirements that need to be applied in smaller
domains. In HiPoLDS, we do this by defining the whole sys-
tem architecture as a hierarchical structure of policy domains,
and using reference monitors that enforce security policies at
the border of policy domains.

A HiPoLDS document is composed of two parts: a declara-
tion of the domain hierarchy, and a set of rules. The domain
hierarchy, complemented by domain attributes, describes the
global system architecture, while rules describe security poli-
cies that will take place. In this Section, we will introduce them
along with the syntax, by means of simple examples.

3.1. Policy Domains

Policy domains can represent very different entities, such
as corporations, individuals, down to the level of real or vir-
tual machines, or even applications running on those machines.
They are the scope for HiPoLDS rules, and they correspond to
sets of entities that have particular properties that can be rele-
vant to security (for example, a security domain can correspond
to an organization, an individual, a place, a real machine, a vir-
tual machine, and even a single application). Leaves of a pol-
icy domain hierarchy should be small enough that no security
enforcement is needed for communications within a single pol-
icy domain. This is illustrated in Figure 1 on the following
page, which shows an example hierarchy for a loan negotia-
tion scenario, where a bank communicates with a governmen-
tal information system in order to evaluate the eligibility of its
customers to loan aids. We will use this scenario as a running
example throughout this paper.2

Policies regulate the exchange of information between differ-
ent domains. They are enforced and monitored at the borders
of policy domains. In this way it is possible to make sure that,
for example, particular information sets remain confined within
a domain (e.g., to fulfill a privacy requirement) or get annotated
with additional security metadata (e.g., a Message Authentica-
tion Code or a cryptographic signature). The hierarchical struc-
turing of policy domains allows the coexistence of policies that
cover a wide set of locations (such as an organization) and of
very specific ones (for example, access to a particular service).

2A complete HiPoLDS specification for this scenario is available in [1].

Any domain can contain any number of subdomains, up to
an arbitrary level of nesting. For a domain included within a
parent domain, policies both in the enclosing and the inner do-
mains will apply. This allows us to naturally define rules both
at large (e.g., organizations) and small (e.g., services) scales.
The hierarchy of policy domains also allows drafting a secu-
rity policy cooperatively: the language supports the definition
of rules that only apply within one, or more, policy domains.
In our framework, administrators from involved entities should
agree on “top-level” security policies applying to all domains,
but they can be free to define additional security policies apply-
ing only to a domain of their competence. Data fields can be
attached to policy domains, for example to contain encryption
keys used by a principal.

In very complex scenarios, the number of policy domains
might become very large, making the policy domain hierarchy
unwieldy to handle manually. Currently, HiPoLDS does not
handle this problem, which can be however managed by resort-
ing to an external macro language such as, for example, GNU
M4.3

In a deployed implementation, the definition of the domain
hierarchy should also include a way to match the addressing
scheme used for communication between services with the pol-
icy domains, in order to allow reference monitors to evaluate
the origin and destination policy domain for a message.

Domain Attributes
We allow specifying an arbitrary number of additional at-

tributes for each policy domain, when defining the policy do-
main hierarchy. Domain attributes are text labels allowing to
attach additional information to the containment relationships
implied by the hierarchical domain policy structure.

Domain attributes allow to specify policies that apply to sev-
eral policy domains without the need to list them explicitly, al-
lowing them to “cross” the policy domain hierarchy. For ex-
ample, all policy domains corresponding to mobile devices can
be labeled as “mobile”; afterwards, it will be easy to define
policies that apply to all mobile devices in the policy domain
hierarchy, or some sub-hierarchy of it, by writing policies that
apply only to domains with a “mobile” attribute. Such a feature
is essential for avoiding repetitions and keeping rules as terse
as possible.

Domain attributes can be used for several purposes, such as
describing what a policy domain corresponds to (e.g., an or-
ganization, an individual or a device) or some technical archi-
tecture details (e.g., the kind of operating system running on a
machine).

All such information are potentially relevant with respect to
the security policies, and domain attributes can be used to spec-
ify policies that apply to domains with common characteristics,
even in different parts of the domain hierarchy. Using policy
domain attributes increases maintainability: when a new pol-
icy domain is created, it will be sufficient to label it with the
appropriate attributes and the relevant security policies will be
applied to it as well.

3http://www.gnu.org/s/m4/
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Figure 1: Domain Hierarchy Example

Example
We show the HiPoLDS declaration of part of the domain hi-

erarchy for the loan negotiation scenario. The nesting of pol-
icy domains is expressed by enclosing inner domains in curly
braces, and for each domain the list of domain attributes is writ-
ten as comma-separated between parentheses. Here, domain
attributes make it possible to differentiate the clerks from the
manager. For brevity, we omit data items attached to domains,
such as for example the encryption key IDs used by the bank
employees.

Bank (organization) {

Dept-A (Department, organization)

{

employee (manager, Department),

Sub-department (sub-Domain, Department),

{...},

}

Dept-B (Department, organization)

{

employee (clerk, Department),

...

}

}

3.2. Reference Monitors

In our model, security is at stake if proper measures are not
taken when information traverses policy domains. For exam-
ple, due to a confidentiality requirement, one or more pieces of
information should not be readable outside a given set of policy

domains, and this requirement is not fulfilled when the infor-
mation is sent unencrypted outside of the allowed domains, or
the encryption keys are divulged. In our system model, a refer-
ence monitor per domain monitors all the information entering
or exiting the domain and alters it as needed. A reference
monitor communicates exclusively with the services in its own
domain and with the reference monitors of the neighbors in the
domain hierarchy (i.e., parent and child domains).

Reference monitors are as trusted as anything in their policy
domain: rather than being a trusted infrastructure (as, for ex-
ample, in LGI), they are simply used to enforce and/or monitor
the security mechanisms, separating them when possible from
the business logic of the application. Reference monitors inter-
cept, and take action, on communications across trust domain
boundaries. They work similarly to “customs control”, enforc-
ing restrictions about what gets in and out of a domain. Some
actions that reference monitors can apply are:

• filtering: reference monitors can implement access control
to resources outside of their original policy domain4 by
filtering unauthorized messages;

• cryptography: information can be encrypted, decrypted or
signed when leaving or entering policy domains;

• managing security metadata: in our system, information
is augmented with metadata that we label as information
tags (see Section 3.4).

4Policy domains can be made as small as required; for example, to enforce
access control to a service from any other location, a policy domain can enclose
only the original service.

4



In other cases, reference monitors can enforce security poli-
cies by triggering actions that will take place in their policy
domain.

3.3. HiPoLDS Rules

Rules are the way in which security requirements are speci-
fied in HiPoLDS. The form of a rule is SCOPE {LEFTPART →
RIGHTPART}.

• The scope identifies the part(s) of the policy domain hier-
archy in which the rule needs to be enforced. If omitted,
the default scope for a rule is the whole domain hierarchy.

• The left part is a set of comma-separated clauses that de-
scribe the conditions that trigger rule enforcement. The
rule is enforced when all the clauses on the left part are
true.

• The right part describes the properties that are required to
hold. The rule is satisfied when all the clauses on the right
part are true.

A first example of a rule is the following one:

x→ x is confidential(Bank,Government)

The scope here is omitted, meaning that the rule applies to
the whole policy domain hierarchy. The left part of the rule, in
this case, matches the only variable x. In HiPoLDS, variables
match pieces of information; if they appear on the left side, they
are implicitly quantified universally. In this case, the variable x
therefore matches any piece of information exchanged in the
whole domain hierarchy. If a variable appears only on the right
side of the rule, it is instead implicitly quantified existentially,
meaning that security enforcement mechanism must ensure that
such an assignment to the variable exists such that the right part
of the rule is satisfied.

On the right side, confidential is a security property –
specified by a list of domains – that must be ensured. Security
properties in HiPoLDS are preceded by the is keyword. The
confidential property requires that pieces of information will
not be readable outside of the specified policy domains – Bank
and Government, in this case. Security properties can also
describe constraints on the content of information tags or on
the composition of information tag sets. In that case, the usual
set operators are then used.

Abstract and Concrete. The rule described above requires
that the confidential property is ensured, yet it can be described
as underspecified in the sense that it can be implemented in
different ways. For example, all messages that leave Bank or
Government can be encrypted with keys only available in those
domains, or messages can just be filtered when they leave any
of those domains. We refer to rules that can be implemented in
several possible ways as abstract rules, as opposed to concrete
rules that give a complete specification that can be executed
by reference monitors. Since abstract rules are less verbose

and more focused on the security properties that are needed,
we consider the ability to express them as very beneficial
towards having clear and maintainable security policies. The
development of inference techniques that would help writers of
security policies derive concrete rules starting from high-level,
abstract ones is currently an open issue on which we are still
working.

Composition. Rules are not monotonic. For example, con-
sider a sub-domain B of domain A. If we consider requirements
on data confidentiality, a piece of information can be allowed
to be readable only within B and not in the rest of A, but also
the opposite can apply: if B for some reason is considered “less
trusted” than the rest of A (e.g., a mobile device that can fall
more easily in the hands of an attacker), then restrictive rules
can be applied whenever some data is sent to B.

It is possible that rules will require actions that are impossi-
ble to satisfy or in conflict with other rules. We plan to inves-
tigate how to detect conflicting rules, both statically (i.e., when
drafting the security policy) and at runtime, and on determin-
ing ways to manage them. Conflicts within a policy domain are
the easiest to solve as they only correspond to local policies as
defined by the same authority.

In the current proposal, we limit ourselves to an order-based
prioritization of rules within a policy domain, in the style of
most firewall policies; other approaches for solving conflicts
have been vastly explored in the literature and might be ap-
plied as well. In contrast, conflicts between policies defined
in different domains are harder to solve as they are defined
by potentially different authorities and thus require some ne-
gotiation. Due to the style of HiPoLDS policies which only
adds further security constraints to the diffusion of information
flows between policy domains, those conflicts cannot increase
the rights granted to principals; instead they may impede com-
munication between two policy domains, especially if an inter-
mediate domain prohibits information to flow across. In this
current proposal, we will limit ourselves to a simple priority
rule, by choosing the most specific rules (i.e., those defined for
inner policy domains) and, to discriminate between rules de-
fined at the same hierarchy level, we will give priority to the
one defined first.

3.4. Information Tags
Information tags are free-form text labels representing some

security metadata attached to information and that categorizes
it. It is possible to define HiPoLDS rules that apply to infor-
mation that has particular tags; when combined with domain
attributes this allows us to naturally define policies that apply
to large sets of information and span different policy domains.
Reference monitors manage information tags and use informa-
tion tags to decide which actions to take. For example, based
on the tags it has, information can be filtered, transformed (e.g.,
through encryption, stripping of confidential information, sani-
tization against injection attacks) and/or rerouted. Information
tags are stripped before sending information to the original ser-
vices, which will behave as if no security mechanisms were put
in place.
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3.5. Hierarchy vs. Attributes
HiPoLDS provides two different ways to express security

policies that apply to several different policy domains: cluster
them in the policy domain hierarchy, or adopt domain attributes
to express a logical grouping. The difference between the two
is that an outer policy domain grouping various inner domains
should be able to host a reference monitor that filters all traffic
for inner domains. This solution is efficient when the network
topology actually matches with the policy domain hierarchy;
such a solution can allow for more efficient enforcement (for
example, a confidentiality requirement within a certain orga-
nization can be enforced by analyzing only traffic leaving that
organization). Mismatches can be solved by using virtualized
network topologies such as VPNs (Virtual Private Networks).

The hierarchical grouping, however, can become inefficient
when traffic has to be rerouted through “parent” reference mon-
itors several times; consider the case of portable and mobile de-
vices and the phenomenon of “BYOD” (Bring Your Own De-
vice). In such cases, using virtual network channels to route
traffic might be inefficient – leading to a multiplication of traffic
passing through reference monitors, possibly introducing band-
width bottlenecks and increasing costs. Enforcement of policies
can be better handled right at a reference monitor at the device
level. In that case, the proper way to group domains with simi-
lar policies is via domain attributes.

4. Examples

After introducing the basic structure of HiPoLDS, we now
show how its features can be adopted in a realistic case. We
illustrate the relationship between concrete and abstract rules,
discuss the role of reference monitors, and show how domain
attributes can be used to describe role-based security rules.

4.1. Stateless Policies
In this section, we first provide some examples of simple

rules that can be executed independently of any other context
to showcase the syntax of HiPoLDS.

Origin Authentication. The following example illustrates
how the authentication of the origin of a message can be de-
fined in the policy using a digital signature mechanism. The
verification of the signature will be enforced by the reference
monitor. The following example also illustrates how an infor-
mation tag can be used in HiPoLDS to work on the contents of
a message:

Bank {

m : message, x : customer-info ε m.contents,

m. f rom == y :: employee, y.public key == Pk

→ x is signed(Pk)
}

(1)

In this example, the scope of the rule is the Bank domain.
In its place, a domain attribute could have been there (for ex-
ample, bank) to specify that the rule applies to all banks in the

domain hierarchy. In this rule, we see for the first time the ‘:’
and ‘::’ constructs, which are used respectively to match vari-
ables representing data with information tags and those repre-
senting domains with domain attributes. In addition, data fields
on information and on policy domains are accessed via the dot
notation seen in m.contents and m.from.

The left side of the rule uses information tags and domain at-
tributes to match any message m sent from an employee y in the
Bank. Since variables appearing on the left side of the rule are
quantified universally, the contents of the message m are bound
to x. Then y’s public key is bound to the variable Pk; finally, the
right side of the rule requires that the message is signed with
the key Pk. When the message is sent, reference monitors will
verify the state of the message; if the left side matches and the
right side does not (i.e., the message is not signed) the appro-
priate reference monitor has to process the messages so that the
right part of the rule is verified. In this example, this can happen
in two ways: if the reference monitor has access to the private
key matching with Pk, it can add a signature to the message.
Otherwise, the other possibility is dropping the message.

In summary, the rule above can be read as follows in plain
English: “The following rule applies only to the policy domain
of Bank. For each message m sent by an employee y with a pub-
lic key Pk, Pk must be used to sign the contents of the message.”

Four Eyes Principle. A message may need to be processed
by two different principals before it is deemed acceptable. It is
possible to specify such a rule in HiPoLDS by combining two
origin authentications. The location of this rule in the set of
policy domains will determine where in the overall architecture
such a check will be done. In the following example, we are
just checking that a financial operation has been checked both
by the front-office and by the back-office. All attributes might
be used to characterize the two principals involved:

m : accept loan,

e1 : front-office ε m.contents,

e2 : back-office ε m.contents,

e1.key == Pk1,

e2.key == Pk2,

→ m is signed(Pk1),
Pk1 , Pk2

(2)

Separation of Duty. Separation of duty will essentially
be addressed based on the contents of messages. The policy
must specify which part of a message cannot originate from
one principal. Such specifications can of course be combined
with roles. The following policy describes that a message can
be forwarded only if two different people originated the fields
customer-info and customer-account-value, as proven
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by their respective signatures:

m : message,

x : customer-info ε m.contents,

y : customer-account-value ε m.contents,

x.from == e1::employee, e1.key == Pk1,

y.from == e2::employee, e2.key == Pk2,

→ x is signed(Pk1),
y is signed(Pk2),
Pk1 , Pk2,

not(y is signed(Pk1)),
not(x is signed(Pk2))

(3)

4.2. Stateful Policies

In this section, we provide use cases featuring stateful
policies. State handling is generally necessary to define more
involved security properties and to define history based security
mechanisms.

Counting Messages. In practice, accountability objectives
for instance generally involve logging the traffic that has been
observed. This is often implemented by modifying the state of
the reference monitor. This concept can be illustrated in the
case where we want to track how many messages have been
sent by employees in a company. This particular monitoring
policy can be described using a counter variable attached to ev-
ery employee, and whose value is incremented after the mes-
sage tracked is observed, as follows:

m : message, m. f rom == y::employee,

y.msg count == z

→ y.msg count == z+1

(4)

Chinese Wall. Conflicts of interests are typically avoided
using the Chinese Wall security policy [19]. This is also a typi-
cal example of the need for the expression of a stateful security
policy, since one must remember the accesses requested and
obtained by principals. The reference monitor typically needs
to update its logs based on the data that have been sent and
will filter accesses declared illegal after the policy based on the
contents of these logs. Again, this can be implemented using
a state variable attached to the principal. This variable stores
the set of contents accessed by the message recipient so far.
This set is compared with conflict of interest classes, as de-
fined by Brewer and Nash, which themselves have to be first
statically initialized based on information tags about all possi-
ble data contents of messages. The following dynamic check
describes in HiPoLDS how attributes that should not be sent
to the recipient can be filtered out (without dropping the entire

message):

m : message, x ε m.contents

→ m.contents -= (e.content accessed ∩ x.con f lict set),
e.content accessed += x

(5)

Given the universal quantification on x, this rule actu-
ally might result in the addition of several elements to the
content accessed set and the removal of several message el-
ements due to conflicts of interest.

4.3. Abstract and Concrete Rules

Let us consider a security requirement of the following form:
“Customers’ private information should only be disclosed to
the Bank and the Government, and its integrity has to be guar-
anteed”. Such a requirement would translate to the following
HiPoLDS abstract rule:

m : message, x : customer-info ε m.contents

→ x is confidential(Bank,Government),
m is integrity verified

(6)

In this case, we use the customer-info information tag to
denote messages that contain the kind of information that is
affected by the rule, and limit the disclosure of data to the Bank
and Government domains, and to their sub-domains. In this
case, the abstract properties we require are confidential and
integrity verified.

Asymmetric Encryption. Since this is an abstract rule, it
can be implemented in several ways. A first option is adopting
asymmetric cryptography: for example, when a message is sent
from the Bank to the Government, the following rule might be
applied in the reference monitors in the Bank domain:

Bank {

m : message, x : customer-info,

m.to == t in Government

→ x is asym encrypted(t.Pk)
}

(7)

In this case, asym encrypted is a concrete rule applying to
all the messages that are sent to any recipient in the Govern-
ment domain (i.e., whose to field is within a policy domain
contained in Government). This is a concrete rule because it
dictates the specific mechanism to use in order to obtain the
required property, which is confidentiality.

Such a rule has to be accompanied by other rules: the
companion rule enforcing decryption when messages are
received in the Government, and a set of analogous rules for
messages sent from the Government to the Bank which are
tagged with customer-info as well.
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Symmetric Encryption. Other concrete implementations of
the same abstract requirement are possible. For example, this
can be done with a symmetric cryptography implementation us-
ing a shared key:

Bank {

m : message, x : customer-info, m.to == t in Government

→ x is sym encrypted(Bank.shared key)
}

(8)

The above concrete policy rule can implement the required
abstract property; however, there are cases for which such a
solution would not be acceptable: for example, if the abstract
property of non-repudiability were requested, it would not be
achievable with only this mechanism.

Multi-Step Encryption. More elaborate scenarios are con-
ceivable: for example, if a reference monitor (say, on a mobile
device representing a subdomain of Bank) is not considered to
be trusted enough to hold a system-wide shared key - like in the
example before - and not powerful enough to process asymmet-
ric encryption, multi-step protocols can be envisaged. In this
case, for example, the reference monitor on the mobile device
can use a shared key to use symmetric encryption with the Bank
reference monitor, which can then re-encrypt the messages to-
wards the intended recipient with asymmetric encryption. Such
a policy is within the expressive capabilities of HiPoLDS, and
can be expressed as follows.

MobileDevice {

m : message, x : customer-info,

m.to == t in Government

→ x is sym encrypted(MobileDevice.shared key),
m : step1 applied

}

Bank {

m : step1 applied

→ m is sym decrypted(MobileDevice.shared key),
m is asym encrypted(m.to.Pk),
}

(9)

In this case, the step1 applied information tag is used to
mark the first processing step where it is applied; processing
will further continue at the Bank reference monitor. As before,
further matching rules will decrypt messages at the recipient,
and deal with sending messages in the opposite direction.

We consider the ability of expressing both abstract and con-
crete rules as a key feature of HiPoLDS; in Section 5.1 we dis-
cuss our plans for deriving or verifying concrete policies based
on abstract ones.

4.4. Roles and Policy Domains

It is worth noting that rules based on roles can be expressed
via HiPoLDS. Indeed, roles can be expressed by assigning pol-
icy domain attributes to policy domains that represent individu-
als. The following (abstract) rule states that all messages tagged
as classified should remain confidential between managers:

m : classi f ied → m is confidential(manager)

In this case, we remind that manager is a domain attribute,
and this rule would be equivalent to enumerating all policy do-
mains with the manager attribute. Using domain attributes in
this way helps maintainability and avoids repeating the same
rule for different domains. The rule can be implemented using
concrete rules similar to what we have seen in Section 4.3.

Let us furthermore suppose that we want to avoid sending
classified messages to mobile devices, even if they are owned
by a manager (i.e., they are subdomains of a domain with
manager attribute). Such a rule writes as

m : classi f ied → m is filtered(mobile)

In this case, filtered is a new property requiring that mes-
sages should not arrive to the listed domains. Again, mobile
is a domain attribute and using it is equivalent to listing all do-
mains tagged as mobile.

To enforce this rule, reference monitors in a manager domain
with mobile subdomains should enforce the filtering. This kind
of rule is applicable because correctly-behaving reference mon-
itors communicate with each other only through the hierarchi-
cal channels as shown in Figure 1, so the parent node is the
only point from which information can reach a domain. It is
exactly because, in this case, mobile domains are feared to not
behave correctly (e.g., have side communication channels) that
confidential information is filtered before reaching them.

Here, we reinforce the fact that each reference monitor is as
trusted as the domain it is in, and such trust is non-monotonic.
In fact, the only reference monitors that handle confidential in-
formation unencrypted are those in the domains that have ac-
cess to it. We point out that this might mean that reference mon-
itors at high levels in the hierarchy might not have any concrete
rule to apply – this means that they can effectively be removed.
In particular, the top-level global reference monitor could be
complex to deploy and to implement, and concrete rules that do
not need it could be advisable.

5. From Specification To Enforcement

Until now, we focused on the design and expressive power
of HiPoLDS. In this Section, we turn our attention towards the
implementation of an enforcement architecture that implements
HiPoLDS on real systems.

Globally, a HiPoLDS reference monitor works as an
application-level gateway (ALG), that is, a firewall-like entity
that is put between services and the rest of the network; its re-
sponsibility is to filter and mangle traffic according to HiPoLDS
concrete rules. ALGs for web services have been studied by
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academia [20], [21], industry [22], and standard bodies [23];
commercial solutions [24, 25] are also available. Compared to
these approaches, HiPoLDS provides a framework to configure
reference monitors according to a set of more abstract overar-
ching security policy, automating the application of matching
policies in different reference monitors (e.g., message encryp-
tion on the sender side is matched with decryption at the re-
ceiver).

Figure 2 displays the architecture of the four main compo-
nents we design for the correct enforcement of rules, using an
FMC [26] diagram:

1. Policy Engine, putting in relation abstract and concrete
policies;

2. Traffic Analysis, relative to extracting information relevant
to security from the traffic observed on the network;

3. Decision Engine, taking as input the output of traffic anal-
ysis, and putting them in relation to the concrete policies
in order to decide how to operate on traffic.

4. Enforcement Engine, enacting the transformations on traf-
fic dictated by the decision engines.

In the rest of this Section, we will describe the responsibil-
ities and interactions of each component; we will also provide
details on the implementation choices we have taken for the on-
going development of a prototype reference monitor.

5.1. From Abstract to Concrete Policies

The most realistic approach to derive concrete policies into
contrete ones would be to rely on the expertise of the se-
curity administrator to define concrete policies from abstract
ones. Expert knowledge about domain topology and its com-
ponents is much more precise than fully automated processing,
that would ignore details that can be fundamental for security
(e.g. protecting password files). The process can be supported
by tools to check the abstract and concrete policies, such as
model checkers, which can work without much intervention.
For instance, the ASLAN++ language and system [27] allows
to model communication protocols for the verification of secu-
rity goals.

The definition of a (semi-)automated refinement process is it-
self a research challenge, but feasible. It is necessary to reduce
the semantic gap from abstract to concrete policies: a transla-
tion framework linking the abstract concepts of HiPoLDS poli-
cies to lower level system concepts. One of the tasks to achieve
it is to identify decidable classes of HiPoLDS policies and to es-
tablish the correctness of the generated concrete policies, con-
sidering the formal semantics at the abstract and concrete levels.
Remark that multiple correct concrete policies can be associ-
ated to one abstract policy. Another problem to be solved can
be code optmization: the automated concrete policy generation
could produce possible overhead. For instance, encrypting a
communication channel more than once, as soon as the poli-
cies governing a domain hierarchy may require confidentiality
under overlapping conditions.

Likely the best solution is the combination of human exper-
tise and tools to generate concrete policies. This would reduce

the number of assumptions about the domain in question to map
abstract to concrete policies (a large number of semantic rela-
tionships among the tags, attributes, roles and the domain hier-
archy). An automated tool would be able to produce a partial
concrete policy as an output that would need to be manually
edited or corrected by a security expert. As soon as basic con-
siderations about enforcement could be reasonably handled by
the automated refinement process, the effort of the security ex-
pert could be reduced.

5.2. Traffic Analysis
In order to enact the concrete policies, reference monitors

need to intercept all communications that traverses policy do-
main boundaries. An appropriate choice for this scenario is to
implement them as application-level firewalls, intercepting all
traffic to or from their policy domain, and performing the ap-
propriate filtering and/or mangling before distributing it to the
policy domain. Traffic that reaches the analyzer will not prop-
agate to the rest of the network until the enforcement engine –
after performing all the due actions – dictates to do so.

A key part of reference monitors is traffic analysis: from
all information traveling over the network, extracting the set
of data that is relevant with respect to the choice of how to han-
dle messages passed. This data will then be passed to decision
engines, which are described in Section 5.3.

The type of information that a traffic analyzer might need to
extract is dependent on the concrete rules defined on the ref-
erence monitor it is running on, and can include information
coming from different layers of the network stack – e.g., IP ad-
dress information and application-level payload. In addition,
traffic analyzers will parse information tags sent by other refer-
ence monitors.

Information collected by the traffic analyzer will be presented
to the decision engines in the form of additional information
tags; as we have pointed out, HiPoLDS is meant to apply gener-
ically to distributed systems, and aims to be viable even for
applications that are using heterogeneous ways of performing
messages. This requires defining ad-hoc rules to extract infor-
mation from the data payload; this is dependent on the details
on the message exchange policy used, and is therefore outside
the scope of this work.

We are currently working on a prototype implementation of
a reference monitor that handles web services communicating,
and uses the Wireshark network analyzer5 to obtain information
about data exchanged between Web services, analyzing proto-
cols at the level of TCP/IP, HTTP requests and JSON payload.
By using Wireshark, we also make it easy to analyze data at
different layers of the networking stack, and allow for further
extension of the reference monitor.

5.3. Decision Engines
The decision engines are responsible for applying the con-

crete rules on the information about traffic that is output by the
analyzer. The output of decision engines is a set of actions to

5http://www.wireshark.org
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Figure 2: Enforcement Architecture

apply to data, which will afterwards be passed to the enforce-
ment engines described in Section 5.5.3.

In our current development, we are implementing decision
engines in Prolog. Traffic information coming from the ana-
lyzers is output as Prolog facts; furthermore, concrete rules are
also represented as Prolog facts. In this way, we can make it
possible to use Prolog’s unification engine in order to associate
traffic with maching rules. The output of decision engines is,
again, a set of Prolog facts that represent all the actions that the
reference monitor applies on the data.

Since the form of the two languages is rather similar, we con-
sider that translation from HiPoLDS rules to Prolog rules is a
reasonable task.

It is worth noting that it is easy to define sets of conflicting
actions – such as, for example, “forward message m to user x in
policy domain y” and “ensure that message m is not sent outside
the current policy domain”. Such a conflict detection is trivially
done by creating additional Prolog rules. This solution will de-
tect conflicts “at run-time”, when they are generated. Detecting
conflicts statically, preventing them to ever reach this stage, is
preferable and it is a topic for further work. This simple so-
lution, however, makes it possible to detect some problems by
performing testing, and to alert security administrators in the
case such problems happen on a “live” system.

5.4. Enforcement Engines
Enforcement engines are the reference monitor components

that have the duty to put into action the directives that are output
by the decision engines. They include all actions that may be
dictated by the concrete rules, and imply not only message fil-
tering, but also any kind of message alteration that makes sense
from the point of view of security. For example, an enforce-
ment engine should be able to add or remove security metadata
such as signatures or message authentication codes, strip or en-
crypt confidential information, or decrypt it when it is the case.
Ultimately, enforcement engines will have the task of sending
altered traffic over the network.

We remind that the HiPoLDS philosophy is to separate as
much as possible the security concerns, such that services
should behave without taking them into account: they are al-
ready taken care of by reference monitors. This results in the
fact that most of the security metadata will be stripped away be-
fore being sent to services; moreover, data meant to be accessed
by the services will be unencrypted. A particular kind of alter-
ation that will always be done relates to information tags: since
they are meant to be exclusively handled by reference monitors,
they will be stripped before being sent to services in the same
policy domain.

Enforcement engines will receive input from decision en-
gines – in order to decide which actions to take – and from
traffic analyzers: to perform manipulations over traffic, and to
ultimately send it, they will need to access the raw data of the
traffic.

A particular action that enforcement engines apply is verifi-
cation (e.g., verification of signatures of message authentication
codes): in this case, they will obtain an output that will be the
base for further decisions by the decision engine: as such, the
enforcement engine will send a new fact to the decision engine
(e.g., signature s is not verified); the decision engine will then
generate new decisions based on this outcome that will be then
applied by the enforcement engine, possibly requiring a further
feedback between decision and enforcement engines.

5.5. Supported Properties
In our current implementation, we focused on a small yet

representative set of security policies, covering three abstract
properties and their concrete implementations: confidentiality,
authentication and availability; they are described in the fol-
lowing. Table 1 on the next page lists the abstract and concrete
properties currently implemented.

We assume that encryption keys are distributed beforehand to
reference monitors; in our communication model all messages
are exchanged on a one-to-one basis: there is no broadcast or
multicast. We consider that each reference monitor holds an
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Table 1: Supported security properties.

Abstract property Concrete mechanism

Confidentiality

Drop
End-to-end asymmetric
End-to-end symmetric
Boundary-to-boundary asymmetric
Boundary-to-boundary symmetric

Authentication Asymmetric signature
MAC

Availability Do-not-drop

asymmetric key pair, whose public part is known to all refer-
ence monitors; moreover, whenever symmetric communication
between pairs of reference monitors is required, we assume that
there is a shared symmetric encryption key between the two ref-
erence monitors.

5.5.1. Confidentiality
A confidentiality requirement specifies that messages match-

ing the specification of the left-hand side of the HiPoLDS rule
will not be readable outside a set of allowed domains, speci-
fied on the right hand side of the rule. This requirement can
be satisfied by several strategies: the simplest one is the drop
mechanism, whereby matching messages that should be sent to
an unauthorized reference monitor are instead dropped. This,
of course, can harm the functionality of the system: in Sec-
tion 5.5.3 we show how availability requirements are modeled
here.

When it is unacceptable to drop messages that would be
routed through unauthorized domains, confidentiality is attain-
able through encryption. We consider concrete strategies that
adopt both symmetric and asymmetric encryption; in addition,
we consider two different kinds of encryption strategies, de-
pending on the reference monitor where the encryption is car-
ried out: end-to-end and boundary-to-boundary.

End-to-end encryption is the typical case where confiden-
tial messages are encrypted at the sender and decrypted at the
receiver; this, however, may place unsustainable load on un-
derpowered devices. Boundary-to-boundary, instead, involves
lazily delegating encryption to other reference monitors that are
at higher layers of the policy domain hierarchy. We remind that,
due to the tree structure of the policy domain hierarchy, a mes-
sage has to be sent through a sequence of relay nodes; since this
hierarchy has a tree form, the path is unique. The boundary-to-
boundary strategy employs this property: whenever a confiden-
tial message has to be routed through an untrusted reference
monitor, the last trusted “boundary” node encrypts the message
so that it will be unencrypted by the next trusted monitor that
will have to handle it (i.e., the other “boundary” of the untrusted
zone).

This example shows how the same requirement can be im-
plemented by way of different concrete policies, and using one
or another depends on criteria such as the possible conflicts that
may raise between policies, computational load and scalabil-
ity issues. We are considering more elaborate policies that use

domain attributes to identify the capabilities of each node, and
choose the points of encryption and decription as the result of
an optimization strategy.

5.5.2. Authentication
An authentication property requires that the sender of mes-

sages, and the message integrity, is verified at the receiver side.
We consider two different concrete implementation for this: one
using traditional symmetric/asymmetric key pairs, another one
using a shared secret which is used to compute a Message Au-
thentication Code using symmetric cryptography. Additionally,
further options can be specified to support message signature
and verification not only at the endpoints (source and destina-
tion), but also at reference monitors in the path between the
two endpoints. This is done to ensure that messages have been
delivered through the correct path, undergoing the necessary
security checks.

5.5.3. Availability
In the context of HiPoLDS, an availability property specifies

that the concrete mechanisms that are put in place do not harm
the required system functionality: if the system does not imple-
ment its required functionality in the first place, it is not the job
of the reference monitors to provide it.

The semantics of an availability requirement (specifying a
set of domains where this requirement should be respected) is
therefore raising conflicts whenever any concrete mechanism
would “break” the availability requirement; currently, conflicts
are detected at run-time as described in Section ; it is in our
agenda to consider how to detect such conflicts statically.

Within the current list of implemented mechanisms (cf. Ta-
ble 1), the drop mechanism can hurt availability requirements;
therefore, a “do-not-drop” decision is taken by the decision en-
gine when a message should remain available. The decision
engine outputs both a “do-not-drop” and “drop” decision, an
error is raised and communicated out-of-band to the security
administrator.

6. Conclusion

In this paper, we introduced the design of and main im-
plementation directions of a new security policy language,
HiPoLDS, intended for specifying rules regarding the place-
ment of security measures, access control, usage control, and
similar concerns in complex distributed systems typically en-
countered in service-oriented architectures. The main idea be-
hind HiPoLDS is to separate between the application logic and
handling of security in order to mitigate the complexity of de-
signing such systems, and to make them less subsceptible to
errors. We designed the features of HiPoLDS based on various
real-world use cases. As a result, we believe that this language
is expressive enough to describe tersely a large amount of real-
world policies.

Abstract policies also play the role of high-level security re-
quirements to a certain extent, defining what should be done
in order to guarantee security in the system; concrete policies
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instead specify how it should be done. We are starting with
simple mechanisms to derive concrete policies from abstract
ones, which brings up interesting open issue: the same abstract
requirement can be implemented with several concrete strate-
gies at once. One of these strategies must be selected based on
several criteria: computational efficiency, simplicity, maintain-
ability, and even resilience in case weaknesses are discovered
in security protocols. In addition, we will investigate whether
concrete policies can conflict, in which situations, and how to
detect them before deploying and testing the system.

HiPoLDS has been inspired by service-oriented architec-
tures; however, the way it has been specified make it agnostic
to the particular architecture it is developed in. We therefore
plan on developing different enforcement mechanisms so that it
may be executed on complex hybrid architectures using differ-
ent message passing architectures and deployment models.

A further topic to consider is scalability. It is interesting to
analyze where concrete policies can be easily distributed and
decentralized, in order to avoid possible performance bottle-
necks and points that could be easily attackable by denial-of-
service attacks. In conjunction with the former point about the
very choice of concrete policies that implement a set of given
abstract policies, this would make it possible to consider in-
frastructure for security that scale well. In addition, in order to
avoid the overhead of sending data over the network for analysis
by the reference monitors, we are also considering a different
implementation of reference monitors, where they are “woven”
into the application code using techniques from aspect-oriented
programming. This solution has the potential of solving the
performance overhead due to reference monitors.
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