Vehicular Wireless Networks: What should the future hold?

Jérôme Härri
IEEE WiVEC 2011 – Panel Session
San Francisco, USA, September 5th 2011
Evolution Phases in Vehicular Networks

- **Pioneer Phase**: 2000 - 2008
 - The gold Age of Vehicular Network

- **Consolidation Phase**: 2008 - ?
 - Becoming Wise(r)

- **Deployment Phase – New Applications**: 2013 (EU) - ?
 - Bringing it to Reality
 - ...and...
 - Selling it!

Jérôme Härri
IEEE WiVEC 2011 - Panel
FP7 Drive CAR-2-X

- **Major European Field Operation Test**
 - Spans multiple national FOTs
 - 32 partners, 10 support partners and 18.9 million Euro budget

- **Objectives:**
 - Laying the foundation for rolling out cooperative systems in Europe.
 - Testing ~22 use cases in traffic safety/efficiency and comfort in real deployments
 - ETSI-compliant
 - Contribute or implement ETSI ITS standards

- **Challenges:**
 - Interoperability of hardware and Software
 - Data availability and data quality
 - Scalability of technical testing
 - …

- **National FOTs**
 - French SCORE@F: http://blog.inria.fr/scoref/
 - German SIM-TD: http://www.simtd.org/

The world of Vehicular Wireless Networks

- Not sounding too dramatic:
 - Have we asked ourselves the right questions?
 - What will come next?
Multiple Antenna Techniques and Testing

- Impact of Antenna Placement on vehicles:
 - Unidirectional Radiation:
 - Cumulative percentage packet error:

Source: S. Kaul et al., “Effect of Antenna Placement and Diversity on Vehicular Network Communications”, ICC 2010
Multiple Antenna Techniques and Testing

- The antenna challenge
 - Multi-standard & multi-mode functionality
 - Integration of multiple antennas with **limited form factors**
 - Integrated into a dielectric housing

Source: Oliver Klemp, BMW R&D, Munich, Germany, Oliver.Klemp@bmw.de
Application(s)-centric: Information Relevance

- Information relevance communication
 - Information does not have the same worth/relevance in space or time
 - Not adapted to application requirements
 - **Channel Congestion**: cannot provide maximal freshness and coverage everywhere
 - But could adjust transmit profiles to provide it where and when needed

- **Example**: Cooperative Application-based TX Rate control

[Source: Fatma Hrizi, Jérôme Härr|, Christian Bonnet, "Every Bit Counts: Tracking and Predicting Awareness"]

- **Example**: Cooperative Application-based TX Power control

[Source: Miguel Sepulcre, Javier Gozalvez, Jérôme Härr|, and Hannes Hartenstein, "Application-based Congestion Control Policy for the Communication Channel in VANETs"]
LTE-Advanced for Vehicular Networks

- LTE-Advanced specifies extensions of the basic architecture to support
 - Relay Stations
 - Femto e-NBs

- Both are expected to become part of vehicles
 - The LTE-A X2 link provides a data link between Relay Stations

- How will 802.11p and LTE-A RS/Femto coexist?
 - Will share similar issues
 - Mobility, connectivity, scheduling, interferences
Electro-Mobility and Smart Grids

- Distributing the Charging station
 - In Points of Interests
 - As function of mobility

- Designing the communication networks
 - At the charging stations
 - Multiple interfaces
 - Between charging stations

- Objective Function of electro-mobility
 - Optimization of Energy
 - quick-load vs. long charge
 - Shortest path vs. least energy demanding path
 - Selling energy vs. using it
Urban Sensing and Vehicular Clouds

- **What does a vehicle contain?**
 - Antennas, head unit,…
 - Also: storage and processing capabilities
 - Could be used!!

- **What does a vehicle do?**
 - Gathers a large amount of data
 - What to do with it?
 - Where to store it?
 - Where to process it?

- **Vehicles are connected and part of a vehicular cloud**
 - Mobile storage, mobile processing…
Large Calibrated Vehicular Scenarios

- Evaluation of applications and protocols require reference scenarios
 - Need to be
 - Large scale topologies
 - Calibrated mobility and validated environment
 - Capable of various context
 - In space & in time
 - Widely accepted by the community

- Current developments
 - City of Zurich (MMTS traces)
 - Mesoscopic urban mobility
 - City of Karlsruhe, Germany (support: PTV, City of Karlsruhe, KIT):
 - Calibrated mobility and propagation of part of the city center
 - City of Braunschweig, Germany (support: city of Braunschweig, DLR, University of Hannover)
 - City of Cologne, Germany (support: INSA Lyon)
 - Calibrated 400km2 micro and macro mobility

Source: Sandesh Uppoor, Marco Fiore, "Vehicular mobility in large-scale urban environments", ACM Mobicom 2011, Poster Session
And what Future holds?

- This…

- Fully automated car
 - Awareness provided by
 - Sensors and radars
 - Google map-based navigation

- 1600 km automatic driving… 1 single accident!