Challenges in Intelligent Transportation Systems

Jérôme Härri
NTNU-EURECOM Workshop
Trondheim, Norway, September 22nd 2011
Intelligent Transportation Systems?

- Car-to-Home
- Priority Access
- Traffic conditions
- Re-routing
- Pedestrian Safety
- Telemetric data
- Road conditions
- Parking occupation
- Price, availability
The Vision: Intelligent Vehicle / Transport

Motocycle Warning

Source: BMW F&T, for Network on Wheels

Emergency Vehicle

Source: CAR 2 CAR COMMUNICATION CONSORTIUM
Evolution Phases in Intelligent Transportation Systems

- Visionary Phase
- Pioneer Phase
- Consolidation Phase
- Deployment Phase – New Applications

- 2000 - 2008: The Golden Age of Vehicular Network
- 2008 - ?: Becoming Wise(r)
- 2013 (EU) - ?: Bringing it to Reality
 ...and... Selling it!

- 1939 !! GM World Fair
Visionary Phase...GM’s FUTURAMA
Major European Field Operation Test
- Spans multiple national FOTs
- 32 partners, 10 support partners and 18.9 million Euro budget

Objectives:
- Laying the foundation for rolling out cooperative systems in Europe.
- Testing ~22 use cases in traffic safety/efficiency and comfort in real deployments
- ETSI-compliant
 - Contribute or implement ETSI ITS standards

Challenges:
- Interoperability of hardware and Software
- Data availability and data quality
- Scalability of technical testing
- ...

National FOTs
- French SCORE@F: http://blog.inria.fr/scoref/
- German SIM-TD: http://www.simtd.org/

website: http://www.drive-c2x.eu/
French FOT – SCORE@F

- French FOT of cooperative road systems
- Project: 2010 – 2013
 - Coordinator: Renault
- National FOT, part of FP7 Drive C2X
- Contributions EURECOM
 - Communication and Security Specifications
 - Heterogeneous Radio Access Specification
 - Use Case Evaluation

Partners:

http://www.scoref.fr/
The world of Intelligent Transportation Systems

- Not sounding too dramatic:
 - Have we asked ourselves the right questions?
 - What will come next?
Challenge 1: Multiple Antenna Techniques and Testing

- Impact of Antenna Placement on vehicles:
 - Unidirectional Radiation:
 - Cumulative percentage packet error:

Source: S. Kaul et al., “Effect of Antenna Placement and Diversity on Vehicular Network Communications”, ICC 2010

Legend:
- FP: Front Passenger
- FD: Front Driver
- BD: Behind Passenger
- CC: Car root center
- RV: Rear-view Mirror
- CC: Car-roof Center
Challenge 1: Multiple Antenna Techniques and Testing

- The antenna challenge
 - Multi-standard & multi-mode functionality
 - Integration of multiple antennas with **limited form factors**
 - Integrated into a dielectric housing

Source: Oliver Klemp (Oliver.Klemp@bmw.de), BMW R&D, Munich, Germany
Challenge 2: Multi-level Multi-Modal Mobility Modeling

- **Vehicular Traffic Models**
 - Represents the large scale trajectories employed by vehicles

- **Vehicular Flow Models**
 - Represent vehicular physical inter-dependencies

- **Vehicular Driver Models**
 - Represent the actions of breaks, turns etc. on vehicles
Challenge 3: Large Calibrated ITS Scenarios

- Evaluation of applications and protocols require reference scenarios
 - Need to be
 - Large scale topologies
 - Calibrated mobility and validated environment
 - Capable of various context
 - In space & in time
 - Widely accepted by the community

- Current developments
 - City of Zurich (MMTS traces)
 - Mesoscopic urban mobility
 - City of Karlsruhe, Germany (support: PTV, City of Karlsruhe, KIT):
 - Calibrated mobility and propagation of part of the city center
 - City of Braunschweig, Germany (support: city of Braunschweig, DLR, University of Hannover)
 - City of Cologne, Germany (support: INSA Lyon)
 - Calibrated 400km2 micro and macro mobility

Source: Sandesh Uppoor, Marco Fiore, "Vehicular mobility in large-scale urban environments", ACM Mobicom 2011, Poster Session
Challenge 4: Vehicular Connectivity vs. Infrastructure Deployment

- **Sparse Initial Vehicular Network:**
 - Network strongly disconnected
 - Requires infrastructure assistance

- **Mature Vehicular Network:**
 - Network is clustered
 - Requires partial infrastructure assistance

- **Common Aspect:**
 - Deployment not based on coverage
 - Rather on context

 Mobility, connectivity, degree...

- **Trade-off**
 - Optimizing connectivity: customer satisfied
 - Minimizing infrastructure size: provider satisfied

M. Fiore, J. Härri, The Networking Shape of Vehicular Mobility, ACM Mobihoc 2008, Hong Kong, 2008
Challenge 5:
Application(s)-centric - Information Relevance

- Information relevance communication
 - Information does not have the same worth/relevance in space or time
 - Not adapted to application requirements
 - Channel Congestion: cannot provide maximal freshness and coverage everywhere
 - But could adjust transmit profiles to provide it where and when needed

- Example: Cooperative Application-based TX Rate control

- Example: Cooperative Application-based TX Power control

[Source: Miguel Sepulcre, Javier Gozalvez, Jérôme Hährri and Hannes Hartenstein, "Application-based Congestion Control Policy for the Communication Channel in VANETs"]

[Source: Fatma Hrizi, Jérôme Hährri, Christian Bonnet, "Every Bit Counts: Tracking and Predicting Awareness"]
Challenge 6: Human Behaviors

- How to avoiding traffic accidents?
 - Can only provide information
 - Cannot avoid stupidity!

- What is creating the worst accidents
 - On highway?
 - In urban environment?
 - Overspeeding (french department Interior)
 - Yield signs (City of Karlsruhe)

- What are the ITS applications to limit:
 - Over-speeding?
 - Hard to do: state still struggling with radars..
 - Yield Signs?
 - Most of the applications address traffic light violation
 - detecting a yield sign violation is very complex
Research Direction: Tracking and Predicting Awareness

- **Cooperative Transmit Rate Control**
 - Entropy-based transmit decision
 - Enhanced particle filter tracking
 - Application-oriented requirements

- **Entropy-based transmit decision:**

 ![Entropy-based transmit decision diagram]

 Mutual Information \(I(X;Y) \)

 - **Car turns**
 - \(I(X;Y) < \text{AppTh} \)
 - Do not send

 - **Car moves**
 - \(I(X;Y) = \text{AppTh} \)

- **Generic Congestion Control Framework**
Research Directions: Vehicular Relaying with LTE-A

- LTE-Advanced specifies extensions of the basic architecture to support
 - Relay Stations
 - Femto e-NBs

- Both are expected to become part of vehicles
 - The LTE-A X2 link provides a data link between Relay Stations

- How will 802.11p and LTE-A RS/Femto coexist?
 - Will share similar issues
 - Mobility, connectivity, scheduling, interferences

- How to optimally use them?
Research Directions: Urban Sensing and Vehicular Clouds

- What does a vehicle contain?
 - Antennas, head unit,…
 - Also: storage and processing capabilities
 - Could be used !!

- What does a vehicle do?
 - Gathers a large amount of data
 - What to do with it?
 - Where to store it?
 - Where to process it?

- Vehicles are connected and part of a vehicular cloud
 - Mobile storage, mobile processing…
Research Directions: Electro-Mobility and Smart Grids

- Distributing the Charging station
 - In Points of Interests
 - As function of mobility

- Designing the communication networks
 - At the charging stations
 - Multiple interfaces
 - Between charging stations

- Objective Function of electro-mobility
 - Optimization of Energy
 - quick-load vs. long charge
 - Shortest path vs. least energy demanding path
 - Selling energy vs. using it
And what Future holds?

- This…

- Fully automated car
 - Awareness provided by
 - Sensors and radars
 - Google map-based navigation

- 1600 km automatic driving… 1 single accident!
Brief Summary

- **EURECOM** is involved in two ‘religions’ for Intelligent Transportation Networks (but we are not exclusive)
 - LTE-A
 - DSRC

- **Tools (Open-source):**
 - Large scale simulation platforms with iTETRIS
 - FOT and Emulation with OpenAir Interface

- **Involved in National and European Projects for ITS**
 - National:
 - SCORE@F / VELCRI / CORRIDOR / SYSTUF
 - European:
 - LOLA/EVITA/iTETRIS

- **Intelligent Transport Networks in EURECOM**
 - LTE-A for vehicular communications
 - DSRC-802.11p: 1-hop Broadcast/Multicast / congestion management
 - Infrastructure deployment Optimizations
 - Machine-2-Machine communications
 - IPv6 Mobility - Proxi-MIPv6

- **More Information:** its@eurecom.fr
 - Jerome.Haerri@eurecom.fr

- **ITS Team:**
 - Cross-department team

- **MM Department:**
 - Prof. Benoît Huet

- **RS Department:**
 - Prof. Yves Roudier

- **CM Department:**
 - Prof. Bonnet
 - Prof. Knopp
 - Prof. Härri
 - Prof. Nikaein
 - Prof, Kaltenberger
 - Prof. Spyropoulos
 - M. Wetterwald
Vehicular networks: Yet another network?

- Different from deployed networks
 - Requires dedicated communications
 - Rely on the complex characteristics of the vehicular wireless channel at 5.9GHz
 - Lack of centralized management, coordinate
 - High and dynamic mobility
 - Significant concerns related to security and privacy

- Socio-Economical Aspects
 - Needs to evaluate the real benefits of vehicular networks in safety and traffic efficiency
 - Can it really help and at which cost?
 - How to handle early deployment
 - Connectivity will be sparse at the beginning
 - But the danger is the same
Non-exhaustive Overview of Projects

- **C2C-CC** (2001)
- **CarTalk** (2001-2004)
- **SeVeCom** (2006-2008)
- **ETSI ITS** (2009)
- **Drive** (2011-2014)
- **Chauffeur I and II** (1996-2003)
- **PreVent/WILL WARN** (2005-2008)
- **Coopers/CVI S/SAFESPOT** (2006-2010)
- **CoCAR I and II** (2007-2011)
- **FleetNet** (2000-2003)
- **NoW** (2004-2007)
- **PreDrive** (2008-2010)
- **SIM-TD** (2008-2012)
- **ASV II** (1996-2000)
- **ASV III** (2001-2005)
- **ASV VI** (2006-2010)
- **PATH** (1986)
- **IVI** (1998-2004)
- **VII / IntelliDrive** (2004-2009)
- **V2V Decision** (2013)
- **DSRC** (1999)
- **WAVE** (2004)
- **ITS Strategic Research Plan** (2010-2014)

ITS Simulations – the iTETRIS Platform

- **UC A**: Traffic Jam Ahead Detection
- **UC B**: Traffic Time Estimation
- **UC C**: Emergency Vehicle & Bus Lane Management
- **UC D**: Request-Based Personalised Navigation
- **UC E**: Regulatory & Contextual Speed Limit Information
- **UC F**: Event Based Traffic Condition Notification

ns-3

iCS
- Synchronization
- Position Update
- Message Exchange
- Application / Information Support facilities:
 - Mobile Station Facilities
 - Location Referencing Facilities
 - Message Facilities

SUMO

Contact: http://www.ict-itetris.eu/10-10-10-community/
VELCRI – Véhicule Electrique à Charge Rapide

- **Fast Electrical Charging System**
 - Technical Development of fast and slow charging systems
 - 2-ways powerline communication at the charging stations
 - Smart Grid Optimization

- **National Project: 2010 – 2013**

- **Coordinator: Renault**

- **EURECOM Contribution:**
 - Network-controled IP Mobility
 - Multi-Interface Management
 - Charging station deployment plan

- **Partners:**

![Partners logos]

22/09/2011 - Jérôme Härrri
NTNU-EURECOM Workshop
Every bit should count: Tracking and Predicting Awareness

Enhanced Particle Filter
- Sequential Importance Resampling (SIR) filter
- Resampling remains problematic
 - Sudden speed/trajectory change
- Enhanced resampling:
 - Glowworm Swarm optimization (GSO)
 - Particles (glowworms) of brighter intensities attract glowworms that have lower intensity
 - Distant particles (gawworms) are discounted when a glowworm has sufficient number of neighbors
 - Approach allows to split the resampling of particles in different zones (different hypothesis where vehicle ‘could be’
Infrastructure Connectivity vs Coverage

- **Coverage does not reflect connectivity**
 - Intensity of the connectivity
 - Pure Coverage

- **Circular homogeneous coverage-based approach**
 - Does not reflect directional coverage
 - Over-estimates coverage, also where not possible/necessary

- **Convex Polygon-based coverage-based approach**
 - Reflects directional coverage
 - Still over-estimates coverage, also where not possible/necessary

- **Non-convex polygon-based coverage-based approach**
 - Reflects directional coverage
 - Manages to estimate coverage with more granularity
Provider Satisfaction and Joint Optimization

- Operator Utility decreases with # RSU
- Joint User-Operator Satisfaction
 - ~8 RSU required in all approaches
 - Benefit: not the same RSUs’ locations !!
Impact of Static and Mobile Radio Obstacles

- Urban areas have location-specific propagation values (NLOS)
 - NLOS factor: α
 - NLOS factor: β
 - NLOS factor: γ

Source: M. Boban et al., "Impact of Vehicles as Obstacles in Vehicular Ad Hoc Networks", IEEE JSAC 2010

- Not all vehicles are to be considered similar

Source: M. Boban et al., "Impact of Vehicles as Obstacles in Vehicular Ad Hoc Networks", IEEE JSAC 2010
Taming the Unknown: Connectivity Maps

Situation:

- **Vehicle A:**
 - Low LTE bandwidth at position 2!
 - Wait for pos 4/7
 - Transmit and adapt transmission parameters??
 - Use 802.11p in pos 4 instead?

- **Vehicle B:**
 - Low LTE Bandwidth at position 5, pos 7 high bandwidth..
 - Wait for pos. 7
 - Use vehicle C at position 7 as relay; V2V bandwidth between pos. 5 and 7 is high

Options:

Source: J. Yao, S. Kanhere, M. Hassan, "Improving QoS in High-speed Mobility Using Bandwidth Maps", IEEE TMC 2011
Multiple Antenna Techniques and Testing

- **Alternative mounting spaces**
 - Rear-mirror antennas
 - Inherent diversity efficiency, LTE 700 MHz
 - Comparatively large mounting space
 - Conformal design

![Rear mirror module](image1)

Fig. 1: Rear mirror module

![SDARS antenna](image2)

Fig. 2: SDARS antenna

Source: Oliver Klemp, BMW R&D, Munich, Germany
Multiple Antenna Techniques and Testing

- Path loss in different antenna positions
 - cc-scenario: monopole antennas at Pos. 2
 - ll-scenario: patch antennas at Pos. 1

Fig. 1: Antenna setup

Applications of Information Pertinence

- **Directional Antenna:**
 - Direct information flows where needed

- **Cooperative Transmit Rate Control**
 - Let vehicles cooperate in predicting contexts
 - Transmit only upon unpredicted context changes
EURECOM ITS R&D Life Cycle

- **FOT for Cooperative ITS Systems in France**
 - SCORE@F

- **PROTON-PLATA**
 - CALM
 - PHYS 802.11p
 - LTE

- **Open Source Hardware/Software Development Platform**

- **Field Operational Test**
- **System & Applications**
- **Security**
- **Experimental Platform**
- **Simulation**
- **Standardization**

- **Open Source Cooperative ITS Large-scale Simulation Platform**
- **iTETRIS**
- **NTNU-EURECOM Workshop**