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Abstract. We investigate the problem of classifying an intruder of two
different types (spy or spammer). The classification is based on the num-
ber of file server and mail server attacks a network defender observes
during a fixed window. The spammer naively attacks (with a known dis-
tribution) his main target: the mail server. The spy strategically selects
the number of attacks on his main target: the file server. The defender
strategically selects his classification policy: a threshold on the number
of file server attacks. We first develop parameterized families of payoff
functions for both players and analyze the Nash equilibria of the non-
cooperative nonzero-sum game. We analyze the strategic interactions of
the two players and the tradeoffs each one of them faces: The defender
chooses a classification threshold that balances the cost of missed detec-
tions and false alarms while the spy seeks to hit the file server as much
as possible while still evading detection. We give a characterization of
the Nash equilibria in mixed strategies, and demonstrate how the Nash
equilibria can be computed in polynomial time. We give two examples
of the general model, one that involves forensics on the side of the de-
fender and one that does not. Finally, we evaluate how investments in
forensics and data logging could improve the Nash equilibrium payoff of
the defender.
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1 Introduction

Classifying an attacker is not an easy task. In almost every network security
situation, the defender has limited resources. The defender needs to distinguish
between different types of attackers (spy or spammer) and decide what kind
of actions should be triggered. For example, an attack on a mail server by a
spammer (causing at most network congestion) should be treated differently
than an attack on a file server (possibly involving identity theft). Knowing that
a defender is trying to classify attackers, the strategic spy is likely to change the
way he attacks in order to make it more difficult to be classified as a spy.
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The paper focuses on the specific situation of a network with one mail server
and one file server. However, the model developed is very flexible and inde-
pendent of the underlying architecture. In particular, the model can fit many
situations in which a strategic attacker has an incentive to blend in with or be
mistaken for other more benign kinds of attackers or even as legitimate users. We
first develop a generic model that guarantees the NE computation in polynomial
time, but also provides insights on how the players’ NE strategies are derived.
Computing the NE is a tractable process, even for larger N . We propose two
characteristic examples, in which the defender has made different security in-
vestments in forensic mechanisms. The analysis of these models provide us with
a qualitative and quantitative view on how changes on the network parame-
ters affect the strategies of the players. We explore the relation between the NE
strategies of the two strategic players and the behavior of the non-strategic one,
and we evaluate the defender’s expected gain after investing in forensics.

1.1 Related Work

There is a substantially increasing body of work in the game theory community
that explores and suggests equilibrium solutions in security games (see e.g., a
recent survey in [4]). Particularly relevant to the present paper is the growing
body of work is on the topic of intrusion detection. In [5], Alpcan and Başar
present a security game between an attacker and an intrusion detection sys-
tem and address some of the basic security tradeoffs, e.g., false alarms versus
undetected attackers. They also provide insightful overview on how different net-
work parameters affect the performance of the intruder detection system. Our
game-theoretic framework investigates a more complex game and provides ana-
lytic expressions for the defender’s NE strategies for any network size. We also
investigate the way the nonstrategic player influences the spy’s strategy.

Gueye, Walrand, and Anantharam [7, 8] have investigated the structure of the
Nash equilibria in a network topology game, in which attacker and defender select
which links to attack and use for communication respectively. They consider a
special case of nonzero-sum games, in which the different term in the players’
payoffs is controlled only by the one player. In these games, one player optimizes
his payoff against his opponent who has optimized his payoff as well. Such games
are easier to analyze than general nonzero-sum games, and they give interesting
insights on the strategies of the two players. Our work is using a similar payoff
formulation in a different setting: the defender selects a threshold on file server
attacks (not a set of links to use) and there are two different types of attackers.

This is a follow up of our recent work [1], where we investigated and char-
acterized the Nash equilibria of a game similar to what we study in the current
paper, but with a much more specific form assumed for the payoff functions of
the players. In the current paper, we provide a comprehensive way to derive the
strategies of the two players who have generalized payoffs. We further provide
evaluation results between two different models, with different assumptions on
the resources available to the defender.



1.2 Summary of contributions

In summary, our contributions are the following:

– We propose a generic game-theoretic model to analyze the interactions be-
tween two adversaries: a classifier (defender) and a malicious attacker when
a nonstrategic spammer is present (Sec. 2).

– We show how to derive the NE strategies in polynomial time (Sec. 3).
– We develop two models for intrusion detection (Sec. 4.1 and 4.2).
– By comparing the above two models, we extract key insights on the expected

gain from the defender’s investment in forensic capabilities. This is an ex-
ample of how our methodology can be used to evaluate how changes in the
strategic situation affect the equilibrium payoffs of the players. We also in-
vestigate the impact of the different network parameters on the resulting NE
strategies (Sec. 5).

2 Game Model

The network we consider consists of a defender and two servers that he monitors
for potential attacks: a File Server (FS) with sensitive data and a Mail Server
(MS) with contents of inferior importance. The defender observes the number of
hits from an attacker to each server for a fixed classification window of N time
slots. The attacker may be a spy or a spammer with probabilities p and 1 − p
respectively.

The defender is a strategic player that seeks to correctly classify the potential
intruder by selecting a threshold T . When he observes T or more hits on the
FS, he classifies the attacker as spy; otherwise as spammer. The spy is also a
strategic player that selects the number of FS attacks H he will perform. He
seeks to attack the FS as frequently as possible, while evading detection. The
spammer is a non-strategic player that mostly attacks the MS and adds noise to
the network. He also attacks the FS Z times (Z follows a known distribution).
For example, the spammer can be modeled to follow the binomial distribution,
with a small probability θ0 to attack the FS at each time slot.

Our solution captures a more general setting than the one presented above.
We only require that the attacker has some cost function if he gets detected or
missed. We describe the model around the example scenario in which there are
two servers, one of which is of primary interest to the strategic attacker (the file
server) in order to be more concrete. However, the model we develop is quite
general and applicable to many settings in which there is a target of special
interest to a strategic attacker but who is incentivized to mix his attack across
other targets to make classification more difficult.

Notational Conventions:
We use “min[v]” to denote the minimum element of a vector v and “minimize”
when we minimize a specific expression over some constraints. We use the prime
sign (′) for transpose of matrices and vectors. All vectors are assumed to be



column vectors and are denoted by bold lowercase letters (e.g., α, β). For matrix
notation we use capital greek letters (e.g., Λ). The indicator function is denoted
by 1cond; it is equal to 1 if “cond” holds and is equal to 0 otherwise. The column
vector of ones of length N is denoted by 1N and the matrix of ones of dimensions
N ×M is denoted by 1N×M . The norm of a vector x of length N , denoted by
‖x‖, always refers to the 1-norm, i.e, ‖x‖ = |x1|+ |x2|+ . . .+ |xN |. An overview
of our notation is shown in Table 1.

2.1 Spy’s cost function

The spy cost depends on the defender’s classification decision and the number of
FS hits. We denote the spy cost function when the spy is detected (i.e., T ≤ H)
by D(H) and when the spy is not detected (i.e., T > H) by M(H). Thus, the
overall spy cost function is expressed as follows

JA(T,H) = D(H) · 1T≤H +M(H) · 1T>H ,

or by making the appropriate simplifications

JA(T,H) = [D(H)−M(H)] · 1T≤H +M(H).

2.2 Defender’s payoff function

We now describe how the defender’s expected payoff function is constructed. We
distinguish two cases:

– With probability p the defender faces a spy. If the defender correctly clas-
sifies the intruder as a spy (i.e., T ≤ H), he gains D(H). If the defender
misclassifies the spy (i.e., T > H), he gains M(H).

– With probability 1−p the defender faces a spammer. If the defender correctly
classifies the intruder as spammer (i.e., T ≥ Z), he does not benefit. The
defender incorrectly classifies the spammer with probability φ(T ) = Pr{Z ≥
T} and in this case there is a false alarm penalty cfa.

Combining these two scenarios, the defender’s expected payoff is

ŨD(T,H) = p · [D(H) · 1T≤H +M(H) · 1T>H ]− (1− p) · cfa · φ(T ). (1)

By scaling the above function, we get

UD(T,H) = D(H) · 1T≤H +M(H) · 1T>H − µ(T ),

where µ(T ) =
1− p
p
·cfa ·φ(T ). Function φ(T ) is decreasing on T , and we assume

that it is strictly decreasing: Pr{Z ≥ T} > Pr{Z ≥ T + 1}.



2.3 Players’ interactions

For a classification window of N time slots, the spy has N + 1 available actions
(attack the file server H ∈ {0, . . . , N} times). The defender has N + 2 available
actions (select T ∈ {0, . . . , N + 1} as the classification threshold).

We model our problem as a nonzero-sum game. However, the defender’s
payoff is different from the spy’s cost function in only one term µ(T ) that depends
only on the defender’s strategy (UD(T,H) = JA(T,H)−µ(T )). These games are
known as almost zero-sum games or quasi zero-sum games.

We are interested in Nash equilibria in mixed strategies for the following
reason. In most cases the spy’s best response to a threshold T is to attack the
file server a number of times H just below T (unless the cost of being detected
is so low that the spy prefers to attack as often as possible even while being
detected). Likewise, in most cases, the defender’s best response to an H is to
choose the threshold T to be just equal with H in order to have the lowest false
alarm penalty possible while still detecting the spy. Since each player wants to
pick “lower” than the other, there is no pure strategy Nash equilibrium in most
cases of interest, so we consider mixed strategies. The spy chooses a distribution
vector α on the allowed number of FS hits; α is a vector of size N+1 (with non-
negative elements that sum to 1). Similarly, the defender chooses a distribution
vector β on the collection of possible thresholds T ; β is a vector of size N + 2
(with non-negative elements that sum to 1).

Let Λ̃ be a (N + 1)× (N + 2) matrix representing the spy’s (pure) strategies’
cost. We express the cost matrix of the attacker as

Λ̃ =

δ(0) 0
. . .

0 δ(N)

 ·


1 0 · · · · · · 0 0
... 1

. . .
...

...
...

. . .
. . .

...
...

...
. . . 0

...
1 · · · · · · . . . 1 0


+


M(0) · · · M(0)
M(1) · · · M(1)

...
...

M(N − 1) · · · M(N − 1)
M(N) · · · M(N)

 ,

where δ(H) = D(H)−M(H). Each row i of Λ̃ corresponds to one of the N + 1
possible spy strategies. For instance, row “0” corresponds to spy attacking the
FS 0 times (or H = 0), row “1” corresponds to spy selecting H = 1 and so on.
Each column of Λ̃ corresponds to one of the N + 2 possible defender strategies.

Let Λ̃ be defined as above, and α, β, be the spy and defender distribu-
tions respectively. The attacker cost can be written as α′Λ̃β and the defender
payoff can be written as α′Λ̃β − µ′β, where µ is a strictly decreasing vector
(component-wise) with µi be the ith component of vector µ. Certain computa-
tions are simplified by using a matrix with only positive entries. We define

Λ = Λ̃+K · 1(N+1)×(N+2),

where K > 0 is such that every matrix element is positive. Since α and β
must each sum to 1, the expressions α′Λβ and α′Λβ−µ′β are respectively the



Table 1. Main Notations

p probability for spy α spy’s mixed strategy

D(H) detection cost β def. mixed strategy

M(H) missed detection cost µ false alarm cost vector

δ(H) D(H)−M(H) θ(β) defendability of β

H spy’s strategy (# FS hits) Λ cost matrix of spy

T def. strategy (threshold) s first tight inequality

Z # of FS hits by spammer f last tight inequality

attacker cost and defender payoff shifted by a constant. Adding a constant to
the players’ payoff does not affect their best responses, thus from here on we will
consider these expressions to be the payoff functions of each player.

3 Game-Theoretic Analysis

It is known that every finite game (finite number of players with finite number of
actions for each player) has a mixed-strategy Nash equilibrium [12]. Our game is
finite, thus it admits a NE in mixed strategies. In a two-player game, the players’
strategies α and β are a NE if each player’s stategy is a best response to the
other player’s mixed strategy.

3.1 Best response analysis

Here is a roadmap of the subsequent analysis.

– Lemma 1 leads to the proof of Theorem 1 on the maximization of the de-
fender’s payoff in NE.

– Lemma 2 defines the simplified problem Λx ≥ 1N+1, x ≥ 0.
– Theorem 2 introduces the algorithm to compute the players’ NE strategies,

under certain conditions. To prove the validity of this algorithm, we prove a
series of Lemmata (3 – 9).

Lemma 1. A spy who plays a best response to a defender strategy β has a cost
min[Λβ].

Proof. For a given defender strategy β the minimum attacker cost is achieved
by putting positive probability only on strategies corresponding to the minimum
entries of the vector Λβ (recall Λ is positive). Thus the spy’s optimal cost is
min[Λβ]. ut

Definition 1 (Defendability). The defendability of a mixed strategy β is de-
fined as

θ(β) = min[Λβ]− µ′β. (2)

It corresponds to the defender’s payoff when the attacker plays a best response
to β.



The defendability is a measure of how good a strategy β is. The defendability is
similar to the notion of vulnerability in [7]. An interesting fact that arises from
the definition of the defendability is that the defender’s payoff when the attacker
plays a best response against β depends only on β.

Theorem 1. A defender-attacker strategy pair (α,β) is a NE, if and only if
the defendability θ(β) is maximal.

Proof. The intuition behind this proof is twofold. First, we prove that if the
defender does not maximize his defendability, then the attacker’ optimization
problem in NE (in order to make the defender indifferent among the strategies
in his support and not want to use strategies outside) is infeasible. Second, we
prove that the attacker’s optimization problem, when the spy limits the defender
to the defendability θ(β) yields a spy cost min[Λβ], i.e., the same one as if the
spy was not limiting the defender to the defendability (as in Lemma 1). (Sketch,
see [1] for full proof). ut

Definition 2. Polyhedron: A polyhedron is the solution set of a finite number
of linear equalities and inequalities.
Tight constraint: An inequality constraint is tight, if it holds as an equality;
otherwise, it is loose.
Extreme point: A point x of a polyhedron is said to be extreme if there is no
x′ whose set of tight constraints is a strict superset of the set of tight constraints
of x.
“Corresponds”: We say that a point on the polyhedron x corresponds to strat-
egy β, if β = x/‖x‖.

Lemma 2. The defendability is maximized amongst strategies β corresponding
to the extreme points of the polyhedron defined by Λx ≥ 1N+1, x ≥ 0.

Proof. As we proved in Theorem 1, in NE, the defender maximizes the defend-
ability, that is, he solves the following “defendability LP”

maximize
β,z

− µ′β + z

subject to z · 1N+1 ≤ Λβ
1′N+2 · β = 1, β ≥ 0.

(3)

The solution for z is z = min[Λβ] (finite and positive since Λ positive). We can
make the following transformation x = 1

z · β, with ‖x‖ = 1
z · 1 and get the LP

maximize
x

− µ′x+ 1

subject to Λ · x ≥ 1N+1, x ≥ 0.
(4)

The intuition behind the proof is that we can rewrite the above LP (4) in terms of

β, and then impose the equality constraint
∑i=N+1
i=0 xi = 1. Then the objective is

linear in β. We prove that the extreme points of the inequalities in x correspond
to the extreme points of β in the above LP. The formal proof can be found in
[1]. ut



3.2 Form of players’ strategies in NE

Since the defender maximizes his defendability in NE, the defender must solve
the LP given by (4). There exist polynomial-time algorithms to solve linear
programming problems [10]. Our approach not only guarantees a low-complexity
algorithm to compute the NE strategies of the two players, but it also provides
essential intuition about how and why the defender is behaving the way he
behaves.

Defender’s NE strategy As we saw in Lemma 2, the best response strategy
of the defender is found by looking at the extreme points of the polyhedron
Λx ≥ 1N+1, x ≥ 0. We call the first type “inequality” constraints and the second
type “positivity” constraints. We have N+1 “inequality”- and N+2 “positivity”
constraints. We assume that δ(H),M(H) are positive functions. If they are not,
we can add a constant parameter and render them positive without affecting the
Nash equilibria of the game. Writing down the “inequality” constraints, we get

δ(0) · x0 +M(0)‖x‖ ≥ 1

δ(1) · (x0 + x1) +M(1)‖x‖ ≥ 1

...

δ(i) · (x0 + · · ·+ xi) +M(i)‖x‖ ≥ 1

...

δ(N) · (x0 + x1 + . . .+ xN ) +M(N)‖x‖ ≥ 1.

Our goal is to eliminate nonextreme and other points that are not selected by
a defender in NE, so that we reduce the number of points we have to check.
Depending on the nature of the attacker’s cost functions δ and M , we are able
to compute analytically the defender’s NE strategies in polynomial time. We will
consider the following conditions for the subsequent analysis.

Condition 1: ∀s ∈ {0, . . . , N − 1}, where ∆kg(i) = g(i+ k)− g(i),

1. ∆1δ(s+ 1) ≥ ∆1δ(s), and
2. ∆1M(s+ 1) ≥ ∆1M(s)

Condition 1 suggests that the difference between the cost of the spy upon detec-
tion and his cost upon misdetection is non decreasing with respect to H. It also
suggests that the marginal cost for the spy when he is not detected is smaller
for smaller values of H. We use this condition to prove that the inequalities are
violated, unless there is a contiguous block of tight inequalities (see Lemma 5).

Condition 2:

1. D(H) is monotone with respect to the number of attacks to the FS H.
2. M(H) is a decreasing function with respect to H.



Theorem 2 summarizes our results on the computation of Nash equilibria for the
intruder classification games.

Theorem 2. Under condition 1, there exists a defender NE strategy that sat-
isfies a contiguous block (by index) of tight inequalities (indexed s through f).
Under condition 2, the contiguous block will finish at index f = N , or we only
have pure NE. When f = N , we search amongst different βN+1 for the defender
strategies β that maximize the defendability. The remaining vector β is the result
of the solution of the tight inequalities with the maximum allowed integer s. The
attacker’s strategy is the solution of the LP given by (8).

We now develop a series of lemmata that lead to Theorem 2. The proof is pro-
vided in the Appendix.

Lemma 3. Two points x1 and x2 on the polyhedron, with ‖x1‖ = ‖x2‖, corre-
spond to defender strategies β1 and β2 respectively with detection cost min[Λβ1] =
min[Λβ2] against a best responding attacker.

Proof. We showed in Lemma 2 that a defender NE strategy β corresponds to
one of the extreme points of a polyhedron defined by Λx ≥ 1N+1, x ≥ 0, with
‖x‖ = 1/z = 1/min[Λβ]. Thus, for the same the norm ‖x‖, we get the same
detection cost against a best responding attacker, i.e., min[Λβ1] = min[Λβ2].

ut

Lemma 4. If ‖x1‖ = ‖x2‖ and µ′x1 < µ′x2, then x1 corresponds to a de-
fender strategy β1 with a better defendability, i.e., θ(β1) > θ(β2).

Proof. From the definition of the defendability (Definition 2), we get

θ(β1)− θ(β2) = min[Λβ1]− µ′β1 − (min[Λβ2]− µ′β2)

= µ′β2 − µ′β1 (5)

> 0, (6)

where (5) results from Lemma 3 (since ‖x1‖ = ‖x2‖, min[Λβ1] = min[Λβ2]),
and (6) follows the assumption µ′x1 < µ′x2. The point x1 corresponds to a
defender strategy β1 with a smaller false alarm cost, i.e., µ′β2 > µ′β1. Hence
θ(β1) > θ(β2). ut

Lemma 5. Under condition 1, an extreme point x corresponding to a defender
NE strategy β satisfies exactly one contiguous set (of indices) of tight inequalities.

The proof is provided in the Appendix. Let s, f be the indices of the first and
last tight inequalities (of the contiguous block of tight ones) respectively.

Lemma 6. Under condition 1, an extreme point x that corresponds to a de-
fender NE strategy β has zeros before s and after f + 1, i.e.,

xi = 0,∀i ∈ {0, . . . , s− 1} ∪ {f + 2, . . . , N + 1}.



Proof. We first show that xi = 0,∀i < s. If ∃i ∈ {0, . . . , s − 1}, s.t. xi > 0, we
reduce xi to x̂i until either x̂i = 0 or ith inequality is tight, and increase xi+1 by
the same amount. We maintain ‖x‖ constant, and in case that xi+1 > 0 we get
one more tight constraint. Thus the original point is not extreme, as we can find
another point whose tight constraints is a strict superset of those of the original.
In case that xi+1 = 0, the new x̂ corresponds to a defender NE strategy with a
better defendability.

We now show that xi = 0,∀i > f + 1. If ∃i ∈ {f + 2, . . . , N + 1}, s.t. xi > 0,
we reduce xi until x̂i = 0 and increase xf+1 by the same amount. We again
keep the norm ‖x‖ constant but x̂ has one more tight constraint, thus x was
not extreme. ut

Lemma 7. In any Nash equilibrium, under conditions 1 and 2,

1. f = N , when D is non increasing.
2. f = N or s = f , when D is increasing.

The proof is provided in the Appendix.

Lemma 8. Amongst different defender mixed strategies β with the same com-
ponent βN+1, the detection cost against a best responding attacker is the same,
under conditions 1 and 2.

Proof. By Lemma 7 under conditions 1 and 2, f = N or we have pure strategies
NE. By Lemma 3, the points with the same norm ‖x‖ correspond to defender
strategies with the same detection cost (min[Λβ] = 1/‖x‖). Scaling the last
tight inequality N with the norm and since β is a distribution, we get δ(N)(1−
βN+1) + M(N) = 1

‖x‖ . Thus for the same βN+1, the norm is the same, which

results in the same detection cost against a best responding attacker. ut

Lemma 9. Under conditions 1 and 2, amongst defender mixed strategies with
different s and same βN+1, the defendability is maximal when s is maximal.

The proof is provided in the Appendix.

Note 1. There might be more than one maximizers of the defendability. In this
case, we have multiple NE strategies for the defender. But, by small perturba-
tions of the game parameters we can prevent ties. For instance, let β1, β2 be
two maximizers of the defendability, with different detection costs (min[Λβ1] >
min[Λβ2], and false alarm costs µ′β1 < µ′β2. Perturbing the µ such that
µ′β1 ≥ µ′β2, we get a unique maximizer of the defendability. We can follow
the same approach to break the ties among multiple defender strategies β. This
way, Nash’s theorem of NE existence guarantees an attacker’s NE strategy.

Attacker’s NE strategy Having computed and analyzed the defender NE
strategy, we now explore the spy’s attack strategy. Let Λr be a reduced matrix,
after keeping only the defender strategies in his support (columns). Similarly, let
µr be the reduced false alarm vector. Then the payoff of the defender must be the
same for all strategies in his support, and greater (or equal) with his respective



payoff fox all strategies outside his support. Thus, the attacker is solving the
following optimization problem:

maximize
α

0

subject to α′ · Λ ≤ θ · 1N+2 + µ,

α′ · Λr = θ · 1 + µr

1′N+1 · a = 1,

a ≥ 0.

(7)

Since this is an LP, it can be solved in polynomial time [10]. Using the Big M
method (with M big) we can transform the above problem into the following
one (that is more robust with respect to noise and / or small perturbations).

maximize
α

−M(αs + αx)

subject to α′ · Λ ≤ θ · 1N+2 + µ

α′ · Λr + α′s · 1(N+1)×R ≤ θ · 1′R + µr

1′N+1 · a+ αx ≤ 1,

a ≥ 0, αs ≥ 0, αx ≥ 0.

(8)

To solve problem (8) we use CVX, a package for specifying and solving convex
programs [13, 14]. CVX is using the simplex method to find the solution. From the
Nash Equilibrium Theorem, we know that a solution exists, since the attacker
will play a best response.

Depending on the degrees of freedom N and the number of defender NE
strategies that are given nonzero probability in NE (R), the above procedure
might give a unique or multipleα. Thisαmust be a valid probability distribution
(sum to one and have nonnegative elements) for if otherwise, it would contradict
Nash’s existence theorem.

4 Evaluation with model examples

In this section, we present two characteristic examples of the above general
problem and evaluate them in terms of the expected defender NE payoff.

4.1 Example model 1

In the first model, which is analyzed in [1], the spy’s cost function in case of
detection is D(H) = cd − H · ca. There is a constant cost cd associated with
the detection and a benefit proportional to the number of attacks H. In case
of missed detection, the spy gets the benefit from the attacks, without suffering
from the detection cost, thus M(H) = −H · ca, where ca is the cost associated
with a single FS attack. The spy cost is

JA(T,H) = cd · 1T≤H − ca ·H.



The defender’s expected reward function depends on the true type of the attacker
and following the general model analysis and is given by

UD(T,H) = JA(T,H)− µ(T ),

where µ(T ) = 1−p
p · cfa ·φ(T ). All lemmata that were proved in Sec. 3 hold since

conditions 1 and 2 hold. Note that M(H) = −H · ca is a decreasing function
with respect to H and δ(H) = cd is constant. Thus there is a contiguous block of
tight inequalities starting at index s and finishing at index N with xi = 0, ∀i ∈
{0, . . . , s − 1}, or we have pure NE. Furthermore, the defender’s NE strategy
exists amongst the two forms in Table 2. The proof is given in [1].

Table 2. Defender’s strategy in NE (βm = ca/cd)

# . . . βs βs+1 . . . βN βN+1

1. 0 0 βm βm βm 1− (N − s)βm
2. 0 1− (N − s)βm βm βm βm 0

4.2 Example model 2

In this second variation of the model, we assume that the defender maintains
some logs on the type of occurred attacks. When a spy is detected, the defender
has the appropriate tools to investigate the attacker’s behavior. This way, the
defender has the opportunity to learn about the spy’s true intentions (which
specific target/information he seeks to extract from the file server), his location
or identity and his future attack pattern, in case he is not immediately expelled.

Each of the H FS hits now gives the spy a benefit of ca only if he evades
detection. In case he is correctly identified, each FS attack yields a cost of ca for
the spy, as they reveal the intentions of the spy. Thus D(H) = cd +H · ca, and
M(H) = −H · ca, giving the spy a cost function of

JA(T,H) = (cd + 2ca ·H) · 1T≤H − ca ·H.

Following the analysis for the general model, the defender payoff function is

UD(T,H) = JA(T,H)− µ(T ).

All lemmata that were proved in Sec. 3 hold since conditions 1 and 2 hold.
Note that M(H) = −ca · H is a decreasing function with respect to H and
δ(H) = D(H)−M(H) = cd + 2Hca is increasing with respect to H. Thus there
is a contiguous block of tight inequalities starting at index s and finishing at
index N with xi = 0, ∀i ∈ {0, . . . , s− 1}, or we have pure NE.



Defender’s strategy in example model 2. After subtracting the two tight inequal-
ities N and N − 1, we get βN+1 ≥ 1/2, because a tight inequality (N − 1) also
suggests that βN−1 ≥ 0. Thus in either case, it must be that βN+1 ≥ 1/2. The
upper bound for β is 1. But since the index of the first tight inequality is an
integer, only certain values of βN+1 result in an optimal s, which is also an
integer.

By Theorem 2, given a certain βN+1 for the defender NE strategy, we need
to find the largest possible s such that inequality s is tight and (s − 1)th is
loose, with β0 = . . . = βs−1 = 0. Subtracting the tight inequality N from the

loose inequality s − 1, we get s ≤ (ca−Nca)+(cd+2Nca)βN+1−cd
ca

. Since s must be

an integer, βN+1 = (N−1+k)ca+cd
cd+2Nca

, with k integer. Thus the search over the

optimal βN+1 has a linear complexity with respect to N , with βmin
N+1 = 1/2,

βmax
N+1 = 1 and step = (N−1+k)ca+cd

cd+2Nca
. Alternatively, solving for the integer k, we

get kmin = 1−N − cd/ca and kmax = N + 1.

5 Parameter Effects in the Game

The two previously presented models have an essential difference: While in the
first model, the spy benefits from the FS attacks regardless of the defender’s
classification decision, in the second model, the spy benefits from the FS attacks
only when he is misclassified. The assumption under the second model is that the
defender has invested in forensic techniques, and is able to identify, preserve and
analyze attacks within the network. This way, each FS attack reveals information
about the identity and the intention of the attacker.

Computer forensics is a costly investment, thus the defender needs to decide
under which circumstances he should develop such tools. By comparing the two
above models, and essentially the defender’s expected payoff in NE, we extract
key insights on the expected gain from the forensics. The crucial parameters are
prevalent in both models, like p, cfa, θ0, ca, cd. The critical difference is that the
spy’s cost function in case of detection D(H) is decreasing in the first model and
increasing in the second model, with respect to H.

Some network parameters are correlated in sets of combinations, in the sense
that a change in any element on the set alters the Nash equilibrium and payoffs
of the players toward the same direction. For instance, looking at the defender’s
payoff function for the first model, we observe that a change in p or cfa affects
the false alarm penalty, thus changing p and keeping cfa constant will provide
us with the same implications as if we kept p the same and changed ca. Thus it
makes sense to investigate the impact of only a subset of the parameters.

5.1 Effect of the probability of the spy p and false alarm cost cfa

We expect that when p is small, the defender will suffer a small cost from poten-
tial FS attacks. As p increases it becomes more difficult to distinguish between



spy and spammer and the defender’s payoff will be decreasing. When p becomes
larger, the defender will classify him correctly and receive a higher payoff.

Indeed, in Fig.1(a) we observe two areas of different behavior. When p < 0, 5,
the defender payoff function is decreasing whereas it is increasing as the spy’s
probability reaches p = 0.5. We also observe that as p increases, the spy’s attack
policy becomes more aggressive and the defender reduces his threshold to catch
the more-probable-to-exist spy. In Fig. 1(b) we note that as p increases, the
benefit of investing in forensics (and employ model 2) is an increasing function
on p. We note here that the depicted values for the defender payoff are the
unscaled and unshifted initial payoffs, as expressed in (1).
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Fig. 1. As p increases, the NE defender gain with model 2 increases

5.2 Effect of the detection cost cd, the classification window N and
single FS attack cost ca

In Model 1, when the cost of detection cd is small compared with the maximum
achievable gain from the FS attacks (N · ca), the spy does not care about getting
detected and is attacking with his maximum allowed strength (N times). On
the contrary, in Model 2, where the spy suffers a cost proportional to his attack
aggressiveness in case of detection, the spy is more conservative with his attacks.
This difference is depicted in Fig. 2(a).

As we can see, in model 1, the cost of detection is so small, than the attacker
always attacks N times. On the other hand, the defender selects a threshold
equal to the pure strategy of the spy and detects him. If the defender selected
T = N + 1 or T = N − 1 instead of T = N as his classification threshold,
he would miss the spy and would have smaller payoff due to the increased false
alarm, respectively. In the second model, though, the spy takes into consideration
the potential benefit his FS attacks would give the defender. The spy is less
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Fig. 2. A Difference of the two models

aggressive, and attacks fewer times. Other parameters of the game are N = 5,
cd = 1, ca = 1, p = 0.1, cfa = 10, and θ0 = 0.1. We also note here that the spy’s
strategy is a weighted truncated binomial distribution. Every defender’s strategy
in his NE support gives the defender the same payoff. Thus the difference in the
false alarm penalty for the different thresholds matches the difference in the

misdetection cost. For instance Pr{H = 3} = (1−p)·cfa·[φ(3)−φ(4)]
cd+2·3·ca = 0.1041.

When ca is small, (or else when cd is most important than N ·ca), we observe
that the two models result in the same strategies for the two players (Fig. 2(b)).
Indeed, when the spy expects not to reveal a lot of information to the defender
if he gets detected, he will act as if there was not risk (as in model 1). Thus,
when the defender expects to lose little from the FS hits, he will avoid investing
in forensics to learn more about the intentions of the spy.

5.3 Effect of the spammer’s distribution parameter θ0

In these two models we have assumed a specific distribution on the FS attacks
for the naive player, i.e., the spammer. Each time slot (period) of the available
N time slots, the spammer attacks the FS with a frequency of θ0. In the case
that θ0 is small (the spammer is mostly interested in attacking the MS instead of
FS) the task of the defender to differentiate between the two types of attackers
becomes easier.

On the contrary, if the spammer is attacking with a high θ0 each period, then
the defender is hurt from the false alarms, since he will be confused from the
large number of FS hits and will classify the attacker as spy. We can see this
difference in the defender NE payoff as θ0 increases.

In Fig. 3 we see the effect of the spammer’s strategy, essentially θ0, on the
two players’ NE strategies. In both models, as θ0 increases, the spy becomes
more aggressive (to imitate the spammer’s behavior). As θ0 increases, the spam-



mer attacks the FS more frequently, and it is more difficult for the defender to
distinguish the two types of attacker. The spy then exploits this uncertainty to
increase his payoff (by attacking more times). When θ0 is small, the defender sets
the threshold low for spy classification. As θ0 increases, his false alarm penalty
gets smaller and the defender assigns a larger weight to the “always classify as
a spammer” strategy.
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Fig. 3. Effect of θ0 on the players’ NE strategies (N = 5, ca = 1, cd = cfa = 10, p = 0.3).
The bar left and right of numeral represents the defender and the spy respectively.

In Fig. 4 we see the effect of the θ0 on the defender’s payoff for the two
models, for various values of the prior probability of the spy p. In model 1,
depicted in Fig. 4(a), 4(b), we observe that as θ0 increases, the defender’s NE
payoff decreases for any value of p, because higher θ0 signifies a higher false alarm
penalty for the defender. In contrast, the second model depicted in Fig. 4(b),
the above rule applies only for the ranges of θ0 below θ0 = 0.5. For p > 0.5, the
defender will always select the same pure strategy, that yields the same payoff.

6 Conclusion

We investigate a classification game, where a network administrator (defender)
seeks to classify an attacker as a strategic spy or a naive spammer. We first
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Fig. 4. The defender’s NE payoff decreases as θ0 increases for all values of p for model
1, but only for p < 0.5 for model 2.

prove that a nonzero-sum game with general payoff functions that satisfy some
conditions can lead to a NE computation in polynomial time. Our approach
characterizes the structure of the best response strategies of the two players
and explains the intuition for the resulting strategies. We investigate two spe-
cific game models: model 1 is a simpler game, where the spy benefits from his
attacks, regardless of the defender’s classification decision. In model 2, the de-
fender is equipped with forensic tools and the spy only benefits from his attacks
upon a misclassification. By analyzing these two games, we extract important
information about when the defender should invest in forensics and how the
strategies of two players in NE are affected by the various control parameters of
the game.
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Appendix: Omitted Proofs from Section 3

Proof (Proof of Lemma 5). An extreme point x satisfies at least one tight in-
equality. If none of the inequalities are tight, we scale the vector x down until
one inequality becomes tight. The new vector’s set of tight inequalities is a strict
superset of those of the original vector, thus the point with no tight inequalities
is not extreme. Let there be two tight inequalities with indices s and s+ k and
let all their intermediate inequalities be loose. There exist two possible cases:

1. ∃i ∈ {1, . . . , k − 1}, with xs+i > 0. We make the following transformation
that increases the defendability. We reduce xs+i by a small amount ε > 0
and increase xs+i+1 by the same amount, maintaining the same norm ‖x‖.
All the inequalities before and after the one with index (s + i) are intact,
while the previously loose inequality (s+ i) is now tight. For the new vector
x̂ it holds that µ′x̂ < µ′x, since µ is a vector with decreasing values and
we have shifted some weight from xs+i to xs+i+1. By Lemma 4, the new
point corresponds to a defender NE strategy with a better defendability. We
continue the above procedure until there are no loose inequalities between
the initial tight ones, or until xs+i = 0,∀i ∈ {1, . . . , k − 1}.

2. xs+i = 0, ∀i ∈ {1, . . . , k− 1}. Subtracting the first tight inequality (of index
s) from any loose inequality of index s+ i, with i ∈ {1, . . . , k − 1}, we get

∆1δ(s) · (x0 + . . .+ xs) +∆1M(s)‖x‖ > 0
...

∆k−1δ(s) · (x0 + . . .+ xs) +∆k−1M(s)‖x‖ > 0.

(9)

Similarly, subtracting the last tight inequality (s + k) from all the loose
inequalities of index s+ i,∀i ∈ {1, . . . , k − 1}, we get



∆k−1δ(s+ 1) · (x0 + · · ·+ xs) +∆k−1M(s+ 1)‖x‖ < −δ(s+ k)xs+k
...

∆1δ(s+ k − 1) · (x0 + · · ·+ xs) +∆1M(s+ k − 1)‖x‖ < −δ(s+ k)xs+k.
(10)

Under condition 1, the set of equations (9) and (10) cannot be satisfied
simultaneously. Indeed, the last equation of (10) gives 0 > ∆1δ(s + k − 1) ·
(x0 + . . .+xs)+∆1M(s+k−1)‖x‖ > ∆1δ(s) · (x0 + . . .+xs)+∆1M(s)‖x‖,
which contradicts the first equation of (9). ut

Proof (Lemma 7). Suppose that f < N . Then the inequality of index (f + 1)
exists, is loose and all positivity constraints are satisfied. Subtracting the tight
inequality of index f from the loose inequality of index (f + 1), we get

xf+1 >
[D(f)−D(f + 1)] · ‖x‖

δ(f)
, C. (11)

1. If D is non increasing, since δ is positive, C ≥ 0 and xf+1 > 0. We consider
the following transformation

x̂i =


xi for i ∈ {0, . . . , f} ∪ {f + 3, . . . , N + 1}
C for i = f + 1

xf+1 − C for i = f + 2.

(12)

With the above transformation we get

µ′(x̂− x) = µf+1 · (x̂f+1 − xf+1) + µf+2 · (x̂f+2 − xf+2)

= µf+1 · (C − xf+1) + µf+2 · (xf+1 − C − 0)

= (xf+1 − C) · (µf+2 − µf+1)

< 0,

since xf+2 = 0, xf+1 > C, and µ is a strictly decreasing vector (µf+2 <
µf+1). Hence, for the new point x̂, ‖x̂‖ = ‖x‖, but µ′x̂ < µ′x. By Lemma 4
point x̂ corresponds to a defender NE strategy with a better defendability.
We can continue making the above transformation until f = N .

2. If D is increasing, then C < 0 and xf+1 ≥ 0. If xf+1 > 0, while f < N
we can shift a small amount ε from xf+1 to xf+2, keeping the same norm
but getting a better defendability. We keep making the above transformation
until f = N . If xf+1 = 0, then ‖x‖ = xs + . . . + xf . Subtracting the two
tight inequalities (s) and (f) and since D(H) is an increasing function,

xs =
[D(f)−M(s)] · ‖x‖

δ(s)
>

[D(s)−M(s)] · ‖x‖
δ(s)

=
δ(s) · ‖x‖
δ(s)

= ‖x‖,

or xs > ‖x‖. Contradiction, unless s = f . ut



Proof (Lemma 9). Let β, β̂ be two different defender NE strategies with βN+1 =

β̂N+1. By Lemma 8, since βN+1 is the same for both vectors, the cost of detection
is the same. Let ŝ = s−1. We will show that the false alarm penalty for the largest
index s is larger, i.e., µ′ · (βs + . . .+ βN+1) < µ′ · (β̂ŝ + . . .+ βN+1). Subtracting

the tight inequalities N and (N − 1), results in βN = β̂N . Similarly, iteratively
subtracting the tight inequalities (s+k) and (s+k+ 1), ∀k ∈ {1, . . . , N − s−1}
results in βs+k = β̂s+k. By Lemma 6, βs−1 = . . . = β0 = 0 and β̂s−2 = . . . = β̂0 =
0. Thus the two different NE strategies differ only in βs−1, and βs. The remaining

weight is the same for both vectors (βs−1+βs = β̂s−1+β̂s = 1−
∑N+1
i=s+1 βi). In the

case of the vector β̂, this weight is divided into two different components (β̂s−1
and β̂s) while in the case of β it is all assigned into the component with index s.
Since µs < µs−1, the vector β with the largest index of the first tight inequality
s will provide a smaller false alarm cost, and hence a greater defendability. ut
Proof (Theorem 2). Depending on the nature of the cost functions, there are
two potential constructions for the defender NE strategy β. By Theorem 1). We
select the one that yields the maximal defendability.

1. Mixed strategies NE with f = N . By Lemma 9, defender strategies β with
the same βN+1 yield the maximal defendability when s is maximal. Thus,
we need to find the largest possible s such that the inequalities 0 through
(s − 1) are loose and x0 = . . . = xs−1 = 0. Since we are in mixed NE
strategies, there exist at least two tight inequalities. Starting from the last
tight inequality N and subtracting the next tight inequality N − 1, we com-
pute βN . In general, subtracting the i, (i − 1) inequalities, we compute

βi =
D(i−1)−D(i)+[δ(i)−δ(i−1)]·

∑N+1
i βi

δ(i−1) . In every step we check whether the

previous inequality (s − 1) can be loose. If this is possible, then we assign

all the remaining weight to βs(βs = 1−
∑N+1
i=s+1 βi). Since the block of tight

inequalities that ranges from s through N (integers) is unique, only a certain
number of selections on βN+1 will produce valid vectors β (with unit norm
and nonnegative weights). Thus we need to solve the following equations

δ(s− 1) · 0 +M(s− 1) > 1/‖x‖
δ(s) · βs +M(s) = 1/‖x‖

...
δ(N) · (1− βN+1) +M(N) = 1/‖x‖.

Subtracting the tight inequality N from the (s − 1) loose inequality we get
M(s−1) > δ(N) · (1−βN+1)+M(N). Solving for the integer s, we compute
the increments of βN+1 that give a valid distribution β.

2. Pure NE with s = f . This case implies that when D is an increasing function,
a pure defender strategy maximizes the defendability. For each selection of
s in {0, . . . , N}, we compute the defendability of the resulting strategy β
(βs = 1), and select the strategy that maximizes the defendability.

Given the defender strategy β, the attacker is solving his LP (8) and selects his
strategy α. Nash’s existence theorem guarantees a Nash equilibrium, thus the
LP will always provide a valid solution. ut


