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ABSTRACT

In this paper we focus on the use of windows in the frequency do-
main processing of data for the purpose of spectral parameter esti-
mation. Classical frequency domain asymptotics replace linear con-
volution by circulant convolution leading to approximation errors.
We show how the introduction of windows can lead to slightly more
complex frequency domain techniques, replacing diagonal matrices
by banded matrices, but with controlled approximation error. We
focus on the estimation of zero mean Gaussian data with a para-
metric spectrum model and show the equivalence of three approx-
imation/estimation criteria: Itakura-Saito distance (ISD), Gaussian
Maximum Likelihood (GML) and Optimally Weighted Covariance
Matching (OWCM). We specialize the discussion to the case of sin-
gle microphone based separation of quasiperiodic sources with AR
spectral envelope.

Index Terms— Gaussian ML, Itakura-Saito, Optimally Weighted
Covariance Matching, AR modeling, audio source separation, win-
dow, periodogram.

1. INTRODUCTION

Audio signal quasi-periodicity and spectral information have been
widely exploited to perform speech enhancement. In fact, in [1],
Nehorai et al. propose a sinusoidal model based algorithm for en-
hancement of speech corrupted by additive white Gaussian noise.
The enhancement is achieved by estimating the sinusoidal model pa-
rameters which consist of the fundamental frequency (pitch), ampli-
tudes and phases. The fundamental frequency (nonlinear parameter)
is estimated using the recursive prediction error adaptive comb filter;
amplitudes and phases are estimated using the recursive least squares
(RLS) algorithm. In [2], the sinusoidal model, corrupted by additive
broadband noise, is used with smoothness constraints imposed on
the model parameters. The smoothness condition is induced by the
continuous and slow variations with time of the vocal tract transfer
function and the pitch. Therefore, this algorithm is restricted only
to the voiced speech, while in [3], a more general algorithm is pro-
posed, using two filters jointly, one for enhancing voiced speech ex-
ploiting harmonicity, another for unvoiced speech.
In audio source separation, periodicity has been used exhaustively
[4, 5, 6, 7, 8, 9, 10, 11].Specifically, in [5, 4], the authors considera
multipitch model for voiced speech (referred to also as the long-term
model) and introduce a time-warping function which describes pitch
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variation with time. The separation is achieved by identifying this
function and estimating the ML solution of the other usual parame-
ters (amplitudes, phases, etc..). In [12], the short-term and long-term
aspect of speech are jointly modeled. For more references about
multipitch modeling and estimation, the reader can refer to [13].

In [14, 15], a joint autoregressive (AR) model (short- plus long-
term (ST+LT)) was introduced for quasiperiodic sources. The long-
term part allows to capture the quasiperiodicity (with possible imper-
fect correlation in time), while the short-term part allows to model
the spectral envelope. The modeling of the power spectral density
is important to allow power splitting between sources at overlapping
harmonics in the source extraction operation. In [14, 15] Bayesian
approaches were adopted for source and parameter estimation, us-
ing EM-Kalman and Variational Bayes techniques resp. In [16], the
ST+LT AR models were used for mono-microphone source separa-
tion in the frequency domain. Using Gaussian source models, the
source extraction is simply Linear MMSE (Wiener) estimation. In
the parametric approach, the ST+LT AR parameters need to be esti-
mated also. In [16], three criteria are formulated for the estimation
of these parameters on the basis of one frame of data, the Itakura-
Saito distance (ISD) and Optimally Weighted Spectrum Matching
(OWSM) for matching the parametric observed spectrum and the ob-
servations periodogram. The third criterion is Gaussian Maximum
Likelihood (GML cf.[17]). The gradients of these three criteria w.r.t.
the AR parameters and hence their extrema are shown to be identical.
The results in [16] are based on asymptotic frequency domain ex-
pressions that are only valid for extremely long frames. In this paper,
we extend these results by accounting for the finite window length
and by introducing advantageously a non-rectangular window. Non-
trivial windows were also introduced in [15], for the different pur-
poses of source extraction and parameter estimation, passing from
time to frequency domain. The approach in [15] was based on Vari-
ational Bayes, in which sources and their parameters are estimated
jointly in an alternating optimization fashion. Here we estimate the
parameters separately from the sources (e.g. after elimination of the
Gaussian sources from the likelihood function), as in [16]. Due to
the introduction of the window, which already limits temporal corre-
lation, we propose to replace the LT AR correlation coefficient by its
maximum value 1. We reconsider the equivalence of the three crite-
ria mentioned, but this time based on finite data vectors, for which
in frequency domain we can no longer neglect the correlations be-
tween different frequencies (the goal of the window design will then
be to limit these correlations). The equivalence of multivariate ISD
and GML is straightforward [18] as we shall see. In the multivariate
case, the OWSM results in Optimally Weighted Covariance Match-
ing (OWCM)[19].OWCM is again shown to be equivalent to ISD
and GML in terms of gradients.



2. WINDOWING FOR FRAME-BASED PROCESSING

The audio signals considered are by nature non-stationary. If we
can consider the parameters constant during a short time, we can
process the signal in frames (time segments), over which the signal
can be considered stationary, which corresponds to time-invariant
filtering. Many of the signal processing operations (e.g. linear time-
invariant filtering and filter computation) could be largely simpli-
fied by passing to the frequency domain. However, transforming a
frame of signal to the frequency domain directly via the DFT (FFT)
leads to approximations due to the periodic extension of the frame
assumption inherent in the DFT. We shall see later how we can im-
prove these approximations. Just like the original data signalyk will
be cut into a series of windowed frames of lengthN , a bit like in
the Welch method, a processed signal (e.g. extracted source) will
be reconstructed by superposing its reconstructed windowed frame
segments. Since the window needs to decay towards its edges, con-
secutive frames need to overlap. LetM be the hop size (time jump)
from one frame to the next, then a perfect reconstruction (PR) win-
dowwn requires

∞∑

i=−∞

wn−iM = 1 , ∀n (1)

see the top figures in Fig. 1 for the cases of relative overlap of
(N−M)/N = 50%, 75% (both the individual windows and their
sum are shown for a finite set of windows). Note that one could
consider extensions to non-PR windows, in which the superposition
of windowed signal frames could be followed by a zero-forcing
rescaling with1/(

∑∞
i=−∞ wt−iM ) or (multi-window) MMSE ver-

sions thereof. An example of a PR window is a Hann (or raised
cosine) window

wt =
1

2

[
1− cos

(
2π

t

N

)]
, t = 0, 1, . . . , N − 1 . (2)

The continuity of the window at its edges can be expected to be
reflected in the continuity of the reconstructed signal and help reduce
blocking artifacts (musical noise). The motivations for the window
design will be different however in the parameter estimation part as
we shall see. In a separate approach for parameter estimation and
source extraction, as considered here, different windows could be
used in both parts.

3. EQUIVALENCE OF ISD, GML AND OWCM CRITERIA

In what follows we consider a vector of zero mean dataY of length
N , with covariance matrixR, and estimation on the basis of the sim-
ple sample covariancêR = Y Y H . We consider the dataY to be
circular complex Gaussian distributed. The covariance matrixR is
parameterized by the vectorθ: R = R(θ). In this paper the super-
scripts.∗, .T , .H denote complex conjugate, transpose and Hermitian
transpose respectively.

3.1. Itakura-Saito Distance (ISD)

The multivariate Itakura-Saito distance is based on the observation
that for a nonnegative definite matrixA, the tangent hyperplane to
ln detA at A = IN is tr{A − IN}, where tr denotes trace and
IN is the identity matrix of sizeN . The concavity ofln det(.) then
leads to

tr {A − IN} − ln detA ≥ 0 .
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Fig. 1. Perfect reconstruction windowing.

The Itakura-Saito distance is obtained by taking the ratio of the two
matrices to be comparedA = R̂ R−1:

ISD(θ) = tr {R̂ R−1 − IN} − ln det(R̂ R−1) . (3)

3.2. Gaussian Maximum Likelihood (GML)

Assuming a circular complex Gaussian distribution, the negative log-
likelihood becomes (apart from constants)

GML(θ) = ln det(R) + Y HR−1Y . (4)

Now note that using a property of the trace operator,
Y HR−1Y = tr {Y HR−1Y } = tr {Y Y HR−1} = tr {R̂ R−1}.
On the other hand,ln det(R̂ R−1) = ln det(R̂)− ln det(R). Hence,
apart from constants (ln det(R̂) being one of them), theIS and
GML criteria are identical (in their dependence onθ). Note that
the GML criterion only has an estimation motivation, whereas the IS
(and hence GML also) performs jointly approximation and estima-
tion. The approximation part refers to the fact that the true covari-
ance matrix ofY may not be of the formR(θ) for someθ, in which
case minimizing the ISD will lead to aθ that best approximates the
data.

3.3. Optimally Weighted Covariance Matching (OWCM)

OWCM is in fact optimally weighted least-squares applied to a
sample covariance. Consider thevec(.) operator which stacks the
consecutive columns of a matrix into a vector. Thenvec(R̂) =
vec(Y Y H) = Y ∗ ⊗ Y where⊗ denotes the Kronecker product.
The mean ofY ∗ ⊗ Y is of coursevec(R). Using expressions for
fourth moments of complex Gaussians, we get for its covariance
matrixR∗ ⊗ R. The OWCM criterion is then

OWCM(θ)
= (Y ∗ ⊗ Y − vec(R))H(R∗ ⊗ R)−1(Y ∗ ⊗ Y − vec(R))

= tr {(R̂ − R)R−1(R̂ − R)R−1}

(5)



Now, it is well-known that the weighting matricesR−1 can be re-
placed by consistent estimates without modifying the asymptotic co-
variance matrix of the estimation errors resulting from minimizing
the OWCM criterion. Once theR−1 are replaced by a consistent
estimate, they are no longer a function ofθ. Now, taking the gra-
dient of OWCM w.r.t. a parameterθi by only considering theR(θ)
appearing in the quadratic ”numerator”, we get

∂ OWCM(θ)

∂θi
= −2 tr {

∂R
∂θi

R−1(R̂ − R)R−1} . (6)

On the other hand we get forGML(θ) = ln det(R) + tr {R̂R−1}
that

∂ GML(θ)
∂θi

= tr {R−1 ∂R
∂θi

} − tr {R̂ R−1 ∂R
∂θi

R−1}

= − tr { ∂R
∂θi

R−1(R̂ − R)R−1} .
(7)

Comparing (6) and (7), we see that the extrema ofOWCM(θ) and
GML(θ) coincide.

4. GML APPLIED TO THE DATA DFT

Working in the time domain, we have a full covarianceR to work
with. By going to the frequency domain, one typically assumes
to be able to work with a diagonalR because asymptotically, dif-
ferent frequency components are uncorrelated. We shall analyze
more precisely the nonasymptotic regime. Because of the correspon-
dence of the three criteria above, we shall henceforth only consider
the GML criterion. Now, let the current frame ofN samples be
y = [y0 y1 · · · yN−1]

T and w.l.o.g. we assumed that the first sample
starts at time zero. Before applying the DFT, the data get windowed.
Let W = diag{w0, w1, . . . , wN−1} andF is theN × N discrete
Fourier transform (DFT) matrix, with inverse DFT1

N
F ∗ = 1

N
FH .

Then we shall work with the transformed windowed data vector

Y = FWy . (8)

The data are assumed to have zero mean so that covariance and
correlation matrices are equal. Note now thaty is real, butY is
complex due to the DFT.Y is strictly speaking non-circular as both
R = EY Y H and EY Y T are nonzero. However,Y is not a gen-
uine complex random vector as only the real vectory is random
and the complex aspect is due to a deterministic transformation. As
a result we can continue as ifY has a circular complex Gaussian
distribution (which corresponds to a real Gaussian distribution with
transposes replaced by Hermitian transposes). Now, all we need for
GML is R. Note that componentYk of Y = [Y0 Y1 · · ·YN−1]

T

is in fact the discrete-time Fourier transformF (DTFT) Y w(f) of
the windowed signal evaluated at frequencyf = k/N . To consti-
tuteR, we shall need the correlations between different frequencies
EY w(f1)Y

w∗(f2). For this consider

Y w(f1) =

N−1∑

n=0

wn yne
−j2πf1n =

∞∑

n=−∞

wne
−j2πf1n yn

=

∞∑

n=−∞

h−n yn = hn ∗ yn|n=0

=
∫ 1

2

− 1

2

H(f)Y (f) df =
∫
W (f1 − f)Y (f) df

(9)

where we zeropadded the finite window to infinity. Now we get

EY w(f1)Y
w∗(f2)

= E
∫
W (f1 − f)Y (f) df

∫
W ∗(f2 − f0)Y

∗(f0) df0
=

∫
df W (f1 − f)

∫
df0W

∗(f2 − f0) EY (f)Y ∗(f0)
=

∫
df W (f1 − f)

∫
df0W

∗(f2 − f0)Syy(f) δ1(f − f0)
=

∫
df W (f1 − f)W ∗(f2 − f)Syy(f)

(10)
whereY (f) =

∑∞
k=−∞ yke

−j2πfk is the DTFT of the stationary
random processyn with spectrumSyy(f), W (f) is the DTFT of
the windowwn, andδ1(f) =

∑∞
k=−∞ δ(f − k) is the periodicized

delta function. Now let us introduce the vector of DFT frequencies
f = [0 1 · · ·N−1]T /N and theN × 1 vector of ones1, letW (f)
denote the column vector ofW (.) evaluated at the components off ,
then we can write for

R =

∫
df W (f − f1)WH(f − f1)Syy(f) . (11)

We get in particular for the diagonal elementsRkk =
∫
df |W ( k−1

N
−

f)|2 Syy(f) which is the well-known spectrum smearing appear-
ing in the mean of the periodogram. Now, to limit complexity in
the frequency domain based methods, one should sparsifyR as
much as possible. Here is where the window design comes in.
For a properly designed window,W (f) can be neglected outside
of its main lobe (see e.g. the lower right corner in Fig. 1). Note
that from this point of view, a rectangular window is (again) not
a very good choice since the sidelobes are not much attenuated.
If ∆f is the doublesided width of the main lobe ofW (f), then∫
df W (f1 − f)W ∗(f2 − f)Syy(f) can be approximated to zero

for |f1 − f2| > ∆f . This means thatR can be approximated by
a banded matrix with only⌈N ∆f⌉ non-zero diagonals. E.g. the
inversion ofR can then be done efficiently using the LDU trian-
gular factorization ofR in which the triangular factors will also be
banded. Compared to classical frequency-domain asymptotics, the
spectrum gets smeared on the diagonal and spills onto the main sub-
and super-diagonals, leading to correlations between neighboring
frequencies (only). In those classical asymptotics, the smearing
effect ofW (f) gets neglected, leading toR = diag{Syy(f)}.

If Syy(f) is sufficiently smooth, the integral in (11) can be ap-
proximated by a sum over frequencies spaced more densely atf ′,
containing multiples of1/N ′, whereN ′ > N . This can be obtained
by zeropadding the signal fromN to N ′ samples and applying the
DFT of sizeN ′. We then getR′ of the form

R′ = C(W (f ′)) diag{Syy(f
′)} CH(W (f ′)) (12)

whereC denotes a circulant matrix constructed from the vector argu-
ment. The entries ofR′ can be downsampled to obtainR if desired.

5. FREQUENCY DOMAIN CRAMER-RAO BOUNDS
(CRBS)

For a Gaussian process with zero mean, the element(i, j) (pertaining
to θi andθj) of the Fisher Information Matrix (FIM) are obtained as

FIMi,j = tr {R−1 ∂R
∂θi

R−1 ∂R
∂θj

} . (13)

Here,R is given in (11) and we get for the derivatives

∂R
∂θi

=

∫
df W (f − f1)WH(f − f1)

∂Syy(f)

∂θi
. (14)



In the classical asymptotics, the FIM gets then approximated as

FIMi,j =
∫
df S−2

yy
∂Syy(f)

∂θi

∂Syy(f)

∂θj

=
∫
df

∂ lnSyy(f)

∂θi

∂ lnSyy(f)

∂θj
.

(15)

6. PERIODIC SOURCES WITH ST AR SPECTRAL
ENVELOPE

The single microphone measurement signalyn is considered to be
composed ofK quasiperiodic sourcessk,n plus noisevk. Assuming
stationarity, the spectrumS(f) of yn can be written as

S(f) = S0(f) +
K∑

k=1

Sk(f) . (16)

In the case of white noise,S0(f) = σ2
v. For quasiperiodic sources,

which are observed over a limited time frame which is furthermore
windowed with reduced weight towards the edges, we can neglect
possible limited long-term correlation and model the source as a
Gaussian periodic signal with ST AR spectral envelope, leading to a
spectrum of the form

Sk(f) =
σk

|Ak(f)|2

⌊ 1

2fk
⌋

∑

m=−⌊ 1

2fk
⌋

δ(f −mfk)

= σ2
k

∑

m

1

|Ak(mfk)|2
δ(f −mfk)

(17)

whereσ2
k adjusts the source power andfk if the source pitch. We

have for the AR spectral envelope the ST filter

Ak(f) =

Lk∑

i=0

ak,ie
j2πf i , with ak,0 = 1 (18)

whereLk is the AR order of sourcek.
With the above signal model the parametersθ are

{σ2
v, aki, i = 1, . . . , Lk, k = 1, . . . ,K} and we get forR(θ)

R(θ) = σ2
v

∫
df W (f − f1)WH(f − f1)

+
∑K

k=1

∑
m

1
|Ak(mfk)|

2W (f −mfk1)W
H(f −mfk1) .

(19)
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