
Analysis of the Communication between Colluding
Applications on Modern Smartphones

Claudio Marforio†, Hubert Ritzdorf†,
Aurélien Francillon‡, Srdjan Capkun†

†Institute of Information Security
ETH Zurich, Switzerland

{maclaudi,rihubert,capkuns}@inf.ethz.ch

‡Networking and Security Group
Eurecom, Sophia-Antipolis, France

aurelien.francillon@eurecom.fr

ABSTRACT
Modern smartphones that implement permission-based se-
curity mechanisms suffer from attacks by colluding appli-
cations. Users are not made aware of possible implications
of application collusion attacks—quite the contrary—on ex-
isting platforms, users are implicitly led to believe that by
approving the installation of each application independently,
they can limit the damage that an application can cause.

We implement and analyze a number of covert and overt
communication channels that enable applications to collude
and therefore indirectly escalate their permissions. Further-
more, we present and implement a covert channel between
an installed application and a web page loaded in the system
browser. We measure the throughput of all these channels as
well as their bit-error rate and required synchronization for
successful data transmission. The measured throughput of
covert channels ranges from 3.7 bps to 3.27 kbps on a Nexus
One phone and from 0.47 bps to 4.22 kbps on a Samsung
Galaxy S phone; such throughputs are sufficient to efficiently
exchange users’ sensitive information (e.g., GPS coordinates
or contacts). We test two popular research tools that track
information flow or detect communication channels on mo-
bile platforms, and confirm that even if they detect some
channels, they still do not detect all the channels and there-
fore fail to fully prevent application collusion. Attacks us-
ing covert communication channels remain, therefore, a real
threat to smartphone security and an open problem for the
research community.

1. INTRODUCTION
Modern smartphone operating systems allow users to in-

stall third-party applications directly from on-line applica-
tion markets. Given the large number of applications and
the number of independent developers, every application
cannot be trusted to behave according to its declared pur-
pose. Certain types of malicious behaviors can be detected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

by inspection and testing while others cannot; malicious
applications therefore find their way into application mar-
kets [1, 24, 25, 26].

To limit the potential impact of malicious applications,
mobile phone operating systems (e.g., Android OS [14], Sym-
bian OS [23], Windows Phone 7 [21]) implement a permission-
based security model (also called a capability model) that
restricts the operations that each application can perform.
This model explicitly gives applications the permissions that
are required to correctly execute their operations. Recent
work by Schlegel et al. [29] introduces smartphone malware
that makes use of application collusion over a limited num-
ber of communication channels to overcome the security
mechanisms put in place by the implemented permission-
based model. By establishing communication over a covert
or overt channel, applications are allowed to execute opera-
tions which the system, based on their declared permissions,
should prohibit.

It is important to stress that application collusion attacks
on permission-based models are neither a result of a soft-
ware vulnerability nor related to a particular implementa-
tion. Instead, they are a consequence of the basic assump-
tion on which the permission-based model relies: applica-
tions can be independently restricted in accessing resources
and then safely composed on a single platform. Collusion
attacks show that this assumption is incorrect and can be
exploited to circumvent the permission-based model. Fur-
thermore, in current systems, users are not made aware of
possible implications of application collusion attacks—quite
the contrary—users are implicitly led to believe that by ap-
proving the installation of individual applications indepen-
dently, they can limit the damage that an application can
cause.

Although the existence of overt and covert channels and
thus the feasibility of application collusion on any platform
might not be surprising, the implications of collusion are
very damaging on mobile platforms: these platforms are de-
signed for personal use, generally store personal informa-
tion and facilitate the installation of multiple third-party
applications. Furthermore, existing security products (e.g.,
Lookout Privacy Advisor [32]) analyze and report applica-
tion permissions independently for each individual applica-
tion. Since they do not consider application collusion, these
products do not correctly reflect the collective privacy im-
plications of the applications that the users install.

In this work, we demonstrate the existence of a number
of overt and covert channels by implementing them on the

Android platform. We then evaluate the severity of the
threats posed by application collusion attacks by measuring
the throughput and stability of each channel. Our results
show that different covert channels, which are generally hard
to detect or prevent, can reach throughputs roughly ranging
from 3.7 bps up to 3.27 kbps on the Nexus One and from
0.47 bps up to 4.22 kbps on the Samsung Galaxy S, thus
posing a serious threat to privacy on modern smartphones.

While it is shown that overt channels on mobile smart-
phones may be detected or restricted using taint analysis [10],
policy enforcement [3, 4], better sandboxing and by reduc-
ing access to some APIs, we show that these approaches fail
to detect most covert channels. This is consistent with re-
search carried out in the 1970’s where it has been shown
that covert channels in computer systems are hard to pre-
vent [9, 20]. To evaluate the effectiveness of contemporary
tools, we tested both TaintDroid [10] and XManDroid [4]
confirming that they do not detect all channels and there-
fore fail to fully prevent application collusion. This shows
that application collusion attacks remain a real threat on
modern smartphone platforms. Finally, we propose ways of
preventing or limiting some of these channels.

In summary, the contributions of this paper are the fol-
lowing. (1) We demonstrate the practicality of application
collusion attacks by implementing several communication
channels on the Android platform. (2) We measure and
report the throughput of implemented communication chan-
nels highlighting the extent of the threat posed by such at-
tacks. (3) We confirm that two recently proposed architec-
ture modifications and tools that deal with overt and covert
channels discovery, TaintDroid [10] and XManDroid [4], still
fail to detect several of the implemented channels. (4) We
propose countermeasures that, if not eliminate, limit the
throughput of selected communication channels between the
applications.

The rest of the paper is organized as follows. In Section 2
we present the problem statement with a classification of
communication channels. We then show the results of our
study of communication channels in the Android OS in Sec-
tion 3. The analysis of TaintDroid and XManDroid in the
setting of our testing framework is detailed in Section 4. We
then discuss current mitigation techniques and their limi-
tations in Section 5. Finally, we present related work in
Section 6 and conclude in Section 7.

2. PROBLEM STATEMENT
The goal of this work is to understand the threat posed

by colluding applications on modern smartphones. In par-
ticular we investigate the feasibility and the practicality of
multiple communication channels in terms of throughput,
bit-error rate and required synchronization. Figure 1(a) il-
lustrates an example channel between two applications. On
the left, the ContactsManager application has access to pri-
vate data on the device but not to the network (later in the
work referred to as the source application), on the right, the
Weather application having access to the network but no di-
rect access to the private data (later in the work referred to
as the sink application). The two applications can create a
stealthy communication channel to share data. Figure 1(b)
illustrates an interesting covert channel that can be created
between an application and the Browser which does not re-
quire any extra application to be installed on the device. We
will describe this channel in more detail in Section 3.3.

WeatherContacts
Manager

source

network

private smartphone data

sink

(a)

web pages

BrowserContacts
Manager

source javascript
sink

network

private smartphone data

RC4 nop

'1' '0'
RC4

(b)

Figure 1: Figure (a) shows a generic example of
collusion between the ContactsManager and the
Weather applications through a stealthy (overt)
communication channel. Figure (b) shows a (covert)
timing channel between an application and the
browser working through the use of dummy RC4
operations.

2.1 Channels Classification
We classify communication channels based on their imple-

mentation on current smartphone architectures as follows:

• Application. This is the level of the API that an
operating system provides to the developers (e.g., An-
droid’s Java API, Windows Phone 7 C # / Silverlight
APIs, iOS’s Objective-C API). Access and usage of
these communication channels may be easily controlled.
We consider these channels as high-level.

• OS. This is the level of the operating system that is
exposed through native calls that exploit information
present in the operating system. We believe that at
this level some channels are impossible to close, oth-
ers, if closed, could hamper backward compatibility
severely.

• Hardware. This is the level that is exposed through
exploiting hardware functionalities of the smartphone.
It is highly dependent on individual hardware specifi-
cations of smartphone models. These communication
channels cannot be closed without severe performance
degradation of the system. We consider these channels
as low -level.

Different levels usually also imply different throughput
and stealth. In particular, we notice that throughput is usu-

Overt Channel Throughput (kbps)
Nexus One Samsung Galaxy S

UNIX Socket Communication 340.45 (± 154.02) 34.78 (± 11.39)
Internal Storage 292.03 (± 50.06) 32.60 (± 8.47)
Shared Preferences 75.81 (± 6.83) 31.00 (± 2.75)
Broadcast Intents 40.58 (± 8.41) 26.74 (± 4.88)
External Storage † 11.55 (± 1.10) 6.12 (± 3.95)
System Log ‡ 2.94 (± 0.03) 2.14 (± 0.11)
† Requires extra WRITE_EXTERNAL_STORAGE permission.
‡ Requires extra READ_LOGS permission.

Table 1: List of our implemented overt channels in the Android OS with corresponding throughputs (with
the 95% confidence intervals in parenthesis). The displayed values are averaged over 10 runs for both the
Nexus One and the Samsung Galaxy S. The “System Log” is a new channel that we engineered and for which
we did not find references in the open literature.

ally directly proportional to the level, with higher through-
put associated to high-level communication channels. Stealth
(i.e., the difficulty to detect a communication channel), on
the other hand, is usually inversely proportional to the level,
with stealthier channels associated to low -level communica-
tion channels.

3. OVERT AND COVERT CHANNELS IN
ANDROID

We explore possible covert and overt channels on Android
smartphones. We analyzed some known channels and iden-
tified a number of new channels specific to smartphones not
yet presented in the literature.

To analyze overt and covert channels, we implemented a
framework to measure the throughput, the bit error rates
and the synchronization times for each implemented com-
munication channel. The results of our study are presented
in Tables 1 and 2.

The values shown in both tables are averaged over 10 in-
dependent runs for each implemented channel executing on
a Nexus One or a Samsung Galaxy S smartphone. During
the tests the phone was running on battery power and not
charging. Each time the source application tries to send 4, 8
and 135 byte (to mimic the transfer of contact information
as explained in Section 3.4) messages to the sink that, if the
channel is open, would record them successfully. For each
covert channel that requires tight synchronization between
the source and the sink application (i.e., timing channels),
we implement a synchronization protocol and run it before
starting to send data. In general the synchronization proto-
col is used to estimate the noise present in the system when
the applications want to share data and to correctly start
the measurements to exchange data at the same time. Such
a protocol is implemented on top of the covert channel (i.e.,
using the same mechanism) and allows us to reach higher
accuracy. A covert channel’s accuracy is measured in bit
error rate, with perfectly accurate channels reaching 0% bit
error rate during transmission. While synchronization time
values are reported in Table 2 for completeness, we believe
that they can be further optimized to yield overall slightly
faster communication channels.

3.1 Overt Channels
We now briefly describe the implementation of overt chan-

nels to give an intuition of how they work.

Shared Preferences (Application): the sink application uses
an API to create an Android preference XML file that is
world-readable and world-writable. The source application
writes ASCII data to it and the sink reads it. This channel
does not require any synchronization to operate as the two
applications do not need to be run simultaneously.
Internal Storage (Application): the source application writes
a world-readable file to the internal storage, the sink appli-
cation reads its contents. Similarly the External Storage
simply uses a file on the external storage. For the external
channel to work, the source application requires an extra
permission: WRITE_EXTERNAL_STORAGE. Again, similar to the
Shared Preferences communication channel, these channels
do not require synchronization between the applications.
Broadcast Intents (Application): the source application com-
municates by adding private data as extra payload to a
broadcast message sent to the system. Broadcast intents are
a particular type of messages that are used in the Android
OS to enable one form of communication between applica-
tions. The operating system, upon receiving such a message
with its payload, broadcasts it to all the applications that
requested to be notified when such a message is received
(i.e., by registering themselves for a particular ID that is
used to identify the message). The sink application regis-
ters itself with the system and receives the message sent by
the source. While both applications need to be running at
the same time, no synchronization is required in order for
the channel to work.
System Log (Application): the source writes a specially-
crafted message to the system log that the sink then reads to
extract the information. The extra READ_LOGS permission is
required by the sink application in order to be able to read
the system logs. Messages longer than 4000 characters must
be split and binary data must be encoded, because data is
otherwise lost when inserted into the log. Given that the log
has a finite number of entries that are held at any time, the
sink application must be activated before the message sent
by the source is deleted. Alternatively, the source could re-
peatedly insert the message at time intervals to increase the
chance that the sink receives it. Potentially the channel can
be rendered stealthy by filling the log with seemingly mean-
ingful logging data after the communication takes place.
UNIX Socket Communication (OS): the source sends the
data through a UNIX socket that the sink application opened.
For this channel to work correctly, both applications must
be simultaneously active.

3.2 Covert Channels
We now describe the covert channels that we implemented

and measured. As the storage of these channels is not per-
sistent, all these channels are synchronous. This means that
before starting to exchange data over the channel a syn-
chronization protocol between the source and the sink must
be run in order to achieve better accuracy during the data-
exchange phase. For channels where accuracy is not specif-
ically stated, our implementation reached perfect accuracy.
Single and Multiple Settings (Application): the source mod-
ifies a general setting on the phone and the sink reads it
as described in [29]. Multiple settings can be changed at
the same time to achieve higher throughput. Most settings
in Android can be changed and read without requesting any
permissions. This particular covert channel can be closed by
disabling or requiring extra permissions in order to change
particular settings.
Type of Intents (Application): the source sends a broadcast
message (similar to the Broadcast Intents overt channel) to
the sink and encodes the data to be transmitted into the
type of the intent (i.e., flags, action, particular extra data),
rather than directly exchanging the data as the extra pay-
load of the message. In contrast to the similar overt channel
that uses Broadcast Intents, this covert channel is not de-
tectable by tainting mechanisms or similar solutions. The
sink application still needs to register with the system in
order to receive the intents.
Automatic Intents (Application/OS): the source modifies
particular settings (i.e., the vibration setting [29]) that trig-
ger automatic broadcasts by the system to all applications
that registered to be notified when such a change happens.
The sink receives the messages and infers the data depend-
ing on the contents of the received broadcasts. For instance,
changing the vibration setting of the phone triggers a broad-
cast which contains 1-bit of information (vibration on equals
to 1, vibration off equals to 0).
Threads Enumeration (OS): the source spawns a number of
threads and the sink reads how many threads are currently
active for the source application by looking into the /proc

directory of source. This particular covert channel can be
closed by controlling application access to the /proc filesys-
tem or by mediating the access through a system service.
UNIX Socket Discovery (OS): the source uses two sockets,
a synchronization socket and a communication socket. The
sink checks if the source communication socket’s state is
open, and infers the transferred bit. The synchronization
socket is open if the communication socket can be checked.
Free Space on Filesystem (OS): the source application writes
or deletes data on the disk to encode the information for
the sink. The channel throughput depends on the noise in
the system; for example the sink application could infer a
larger amount of information depending on how many free
blocks are available. The data presented in Table 2 was
generated by having the source allocate three blocks to en-
code a ‘1’ and clearing three blocks to encode a ‘0’. The
sink checked the available blocks in the system at prede-
fined time intervals (75ms for the Nexus One and 100ms
for the Galaxy S). The current implementation yields bit-
errors percentages between 0.01% (Nexus One) and 0.03%
(Samsung Galaxy S). A possible solution for preventing this
channel is to enforce a quota on the available space for each
application (that could potentially vary depending on the
number of applications on the system) and report the free

0 125 250 375 500 625 750 875 1000
0

1

2

3

4

5

Timeslot (ms)

U
s
e
r

p
ro

c
e
s
s
e
s
 t
im

e
 τ

F
 (

jif
fy

)

0 1 1 0 1 1 0 0

(a)

100 125 150 175 200 225 250 275 300
0

1

2

3

4

5

6

7

8

9

10

Timeslot (ms)

T
h
ro

u
g
h
p
u
t
(b

p
s
)

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

B
it
 e

rr
o
rs

 (
%

)

Throughput

Bit−error percentage

(b)

Figure 2: Figure (a) shows an exemplification
schematic rise of the value τF (number of jiffies
spent for every user process) over time when send-
ing the bits written on the top. Figure (b), the
graph shows the trade-off between throughput and
accuracy (measured in bit errors) for the /proc/stat

channel. Values are averaged over 5 independent
runs.

blocks remaining of each quota rather than the free blocks
in the overall system.
Reading /proc/stat (OS): the source application performs
some computations, while the sink monitors the processor
usage statistics. These are available in the /proc/stat vir-
tual file where the Linux kernel provides information about
the current system load (as the number of jiffies used for
all user processes). A schematic representation of how the
values (τF) read in /proc/stat change depending on the bit
that the source wants to send is presented in Figure 2(a).
The overall idea is that sending a ‘1’ causes, in the values
read, a steeper slope than sending a ‘0’. Figure 2(b) presents
the trade-off between throughput and accuracy of this chan-
nel. Other channels behave similarly to this one, with higher
throughput resulting into lower accuracy. The current im-
plementation yields bit-error percentages between 0% (Sam-
sung Galaxy S) and 0.10% (Nexus One). Similarly to the
Threads Enumeration covert channel, this channel could be
closed by preventing read access to the /proc filesystem.

Covert Channel Throughput (bps) Synchronization (ms)
Nexus One Samsung Galaxy S Nexus One Samsung Galaxy S

Type of Intents 3350.85 (± 134.11) 4324.13 (± 555.32) 716.8 (± 168.2) 473.0 (± 249.0)
UNIX Socket Discovery 2610.92 (± 305.25) 1647.78 (± 170.70) 5.2 (± 0.8) 13.9 (± 2.2)
Multiple Settings 239.76 (± 9.41) 284.91 (± 1.90) 314.9 (± 21.8) 302.1 (± 11.0)
Threads Enumeration 157.73 (± 0.97) 139.39 (± 7.40) 71.6 (± 7.1) 110.1 (± 8.8)
Automatic Intents [29] 51.38 (± 0.41) 90.67 (± 0.39) 1083.2 (± 75.1) 435.1 (± 180.8)
Single Settings [29] 46.88 (± 0.31) 65.89 (± 0.73) 267.5 (± 3.2) 273.4 (± 11.9)
Free Space on Filesystem 13.07 (± 0.00) 9.80 (± 0.00) 1038.2 (± 5.1) 1442.7 (± 15.6)
Reading /proc/stat 7.82 (± 0.00) 3.26 (± 0.00) 6923.4 (± 8.1) 16669.2 (± 48.7)
Processor Frequency 4.88 (± 0.00) 0.47 (± 0.09) 8203.9 (± 7.2) 78866.1 (± 9156.8)
Timing Channel 3.70 (± 0.00) 3.69 (± 0.01) 10286.8 (± 16.1) 68057.6 (± 105259.4)

Table 2: List of implemented covert channels in the Android OS with their corresponding throughput (95%
confidence intervals are shown in parenthesis). The displayed values are averaged over 10 runs for both the
Nexus One and the Samsung Galaxy S. Channels listed in bold are new channels that we engineered and for
which we did not find references in the open literature. In the synchronization column we present the time
required to run the synchronization protocol before starting to transmit data through the channel.

Timing Channel (Hardware): the data transmission between
the source and the sink is performed by varying the load on
the system. The source runs CPU-intensive tasks to send
the bit ‘1’, on the other hand it does not perform any CPU-
intensive operation to send the bit ‘0’. The sink continuously
runs computation-intensive operations and records the time
required to complete them. The sink uses this time to in-
fer the presence of computation by the source thus inferring
the transmitted bit. For reliable differentiation of bits based
on the time, an initial learning period is used to benchmark
the system behavior. Finally, to eliminate the noise in the
system, we use a majority vote (out of five measurements)
at the sink to decide the value of a particular bit depend-
ing on a threshold value updated with a moving average.
In our implementation, the time difference between trans-
mitting a ‘1’ and a ‘0’ is approximately 6 ms in the case
of the Nexus One. The current implementation yields bit-
errors percentages between 0.10% (Nexus One) and 0.05%
(Samsung Galaxy S).
Processor Frequency (Hardware): this channel is an im-
provement over the basic Timing Channel ; in this particular
instance we take into account Dynamic Frequency Scaling
(used on the smartphones that we tested) to improve the
throughput and reduce the synchronization time (for the
Nexus One). While the source behavior remains the same as
in the case of the Timing Channel, the sink instead monitors
the trend of the processor frequency by repeatedly querying
it from the system and thereby decodes the current bit. Af-
terwards the source waits a fixed amount of time to allow the
CPU to “slow down” again before the next bit transmission
is started. The current implementation yields bit error per-
centages between 0.14% (Nexus One) and 4.67% (Samsung
Galaxy S).

3.3 Communication Channel With External
Agents

We extend the concept of colluding applications and con-
sider the scenario in which there is only one application in-
stalled on the system that has access to private data and
wants to disclose it to a third-party web service without
requesting the permissions to connect to the network. Fur-
thermore, we want to ensure the successful transmission of
the private data through a channel that is hard to detect.

Here, the colluding sink application resides on a web page
executing intensive JavaScript operations, that is opened
within the system browser. The phone will show the page
on the screen, therefore, to decrease detection by the user,
the operation can be carried out when the phone screen is
off (for example, during night time). To reach the sink, the
source application uses a covert timing channel similar to
the Processor Frequency covert channel. However the sink
cannot directly query the processor frequency, as it is in-
side the JavaScript sandbox. Such channel is visualized in
Figure 1(b).

We have implemented and tested this proposed covert
channel as follows: depending on the current bit to trans-
fer, the source either tries to increase the processor fre-
quency or sleeps. Afterwards the sink measures how many
dummy RC4 operations it can perform in a fixed time pe-
riod, thereby getting the processor frequency and the trans-
mitted bit. The possibility to use the browser to send private
data has been described in [19] but their proposed method is
easily detected by flow-tracking techniques (such as Taint-
Droid). Our proposed covert channel—while having a low
throughput of roughly 1.29bps on the Nexus One—is also
much harder to detect and cannot be detected by today’s
tools.

3.4 Results of the Analysis
The experiment results reported in Tables 1 and 2 indi-

cate that the attacker’s choice of one channel over another,
depends on the nature and size of data that needs to be
transmitted between applications. For example GPS coor-
dinates usually consist of two floating point numbers (repre-
sented by 32 bits of data), in contrast contacts, for example,
might have a varying number of characters: in order to sim-
ulate a few full names and corresponding phone numbers we
transmit 135 bytes of information.

Given a rough estimate of the size of the data that can
be shared between applications, we conclude that even the
covert channels with low throughput, such as the Timing
or the Processor Frequency channels (respectively at around
3.70 and 4.88 bps) enable the sharing of reasonable amounts
of data on the smartphone. For example, exchanging GPS
coordinates requires roughly 19.4 or 14.8 seconds respec-
tively; sharing 135 byte contacts requires roughly 304.9 or

231.1 seconds respectively. Covert channels with higher through-
put, such as the Type of Intents or UNIX Socket Discovery,
reaching up to 4324.13 and 2610.92 bps, enable the exchange
of GPS coordinates or contact information in less than a sec-
ond.

Another interesting result of the analysis is that most
channels, when tested on the more powerful Samsung Galaxy
S, did not perform better than on the Nexus One. For CPU-
bound channels these results come from the fact that Sam-
sung ships the device with a larger number of active services
which influence the different channels. For channels based
on Processor Frequency it is based on the fact that there is a
different frequency governor. For IO-bound channels these
results come from the fact that the Samsung device uses
a Samsung-developed file system rather then the standard
YAFFS2 used on the Nexus One.

Overall, the results show that application collusion at-
tacks, through the usage of different communication chan-
nels depending on the amount of data that needs to be trans-
mitted, are a realistic attack and therefore a serious threat.

4. ANALYSIS OF EXISTING TOOLS
In this Section we test two recently proposed tools that try

to solve the information leakage on modern smartphones, in
particular TaintDroid [10] and XManDroid [4]. We use the
Nexus One as the test phone where we successfully install
both tools and report the findings.

4.1 TaintDroid
TaintDroid [10] tries to track information flows within an

application and between applications; it is implemented as
a modification of the Android operating system. Using dy-
namic taint-tracking, the modified OS follows the informa-
tion flow of tagged data, that is, data which is generated
from sources of private information, including the user con-
tacts and the GPS location.

Inside the Dalvik VM, TaintDroid employs variable track-
ing and propagates taint through primitive data types, ex-
ception handling routines and array lookups. Tainting infor-
mation, though, does not follow through in native code (such
as JNI native libraries) execution. Due to this limitation, at
the moment of writing, trying to use native libraries not re-
siding in the /system folder results in an application crash.
Additionally, taint is propagated through IPC messages, by
performing message-level tracking.

Whenever tainted data reaches a sink (such as the net-
work), a notification is shown informing the user about the
application that is leaking data, the originating data class
and the network transmission. Interestingly enough, the im-
plementation of TaintDroid notifies the user when the sink
application uses Java’s HttpURLConnection to send the data
off the device, but no detection happens when it uses a UDP
connection (i.e., through the Java DatagramSocket class).
We believe this is just an implementation detail overlooked
by the authors rather than a design flaw of the proposed
solution.

In our study, TaintDroid was able to correctly report the
transmission of sensitive data for the following overt chan-
nels: Internal Storage and Broadcast Intents. The Exter-
nal Storage channel was not detected: this happens because
taint information is propagated using extended attributes
and external storage uses the FAT file-system which does
not support them. Surprisingly the remaining overt chan-

nels (Shared Preferences and System Log), which should be
detected by TaintDroid were not detected. Further analysis
shows that the implementation of the logging mechanism in
Android OS is carried out in native code (i.e., C). As previ-
ously stated, TaintDroid is not currently capable to extend
tagging to native code and therefore cannot detect this chan-
nel.

Given that the authors explicitly state that the Taint-
Droid mechanisms can be circumvented through the use of
implicit flows, it is clear that the covert channels imple-
mented in our framework remain undetected due to their
bit-wise nature. To remove the taint from tainted variables,
such that higher-throughput overt channels can be used suc-
cessfully, we propose four different techniques. We imple-
ment each technique and test it on a Nexus One to report
the throughput.
n-way Switch Statement [6]: an n-way Switch Statement can
be used to strip the taint off log(n) bits. The Switch State-
ment reads the tainted value and writes the corresponding
constant into a new untainted memory location. The taint
does not propagate, because constant values are used. We
measured the throughput of this technique to be, roughly,
27.65 Mbps (megabits per second).
Java Exception Handling: Here we encode a tainted bit in
the existence of a Java exception. If the tainted bit is ‘1’,
an exception is thrown that causes the untainted bit as well
to be set to ‘1’ by the exception handler [22]. We measured
the throughput of this technique to be, roughly, 107.42 kbps
(kilobits per second).
File-based: This technique encodes the tainted bit in the
existence of a file inside the application’s private directory.
Depending on the tainted bit a special file is either created or
not. The untainted bit is set depending on the results of the
following existence check for the special file. We measured
the throughput of this technique to be, roughly, 680 bps
(bits per second).
Timing-based: The application’s own execution time en-
codes the tainted bit in this example. The application de-
lays its own execution by sleeping in order to signal a one.
Timing measurements determine the value of the untainted
bit. We measured the throughput of this technique to be,
approximately, 98 bps (bits per second).

Given the throughput of each untainting technique, and
the fact that covert channels remain undetected by Taint-
Droid, we conclude that employing a dynamic flow-tracking
technique does not prevent application collusion attacks.

4.2 XManDroid
XManDroid was first presented in [3] and later extended

in [4]. It aims at implementing different techniques to suc-
cessfully mitigate the problems of confused deputy attacks
and direct application collusion attacks.

The authors propose a security framework to enable pol-
icy enforcement at different system levels on Android. The
instantiation of the framework extends various parts of the
Android OS, in particular they port and extend TOMOYO
Linux [16]. The security framework modifies Android ref-
erence monitor to check for direct IPC calls at runtime
between applications and indirect communication through
Android system components (i.e., the settings manager).
Furthermore, kernel-level MAC (Mandatory Access Control)
monitors access to different resources such as the file system,
UNIX sockets and internet sockets. System policies are ex-

pressed in a high-level language and specify which flows are
to be denied.

The prototype with which we experimented was able to
block a subset of channels that are potentially detected by
XManDroid. In particular the prototype successfully de-
tected all the overt channels except the System Log channel.
It also successfully detected the Type of Intents and UNIX
Socket Discovery covert channels, as they work over explicit
communication between applications. Further, the Reading
/proc/stat and Threads Enumeration covert channels are
detected by the fact that they work by accessing the /proc

file system, blocked by the TOMOYO Linux access control.
Similarly, it is safe to assume that XManDroid would be

able to detect the Broadcast Intents and UNIX Sockets Com-
munication channel, because they work over explicit com-
munication between applications. The System Log channel
could also be detected because it works over simultaneous
access of a shared file (i.e., similarly to the storage-based
channels that are detected).

This leaves our analysis with a small subset of covert chan-
nels that are not detected by XManDroid: Free Space on
Filesystem, Processor Frequency and finally Timing Chan-
nel. In particular the last two that are hardware-level com-
munication channels are not in the scope of XManDroid.

One limitation of using XManDroid and similar tools is
that they might report false-positive results when two non-
malicious applications try to share legitimate data, as the
communication is blocked even if non-sensitive data is shared
(i.e., XManDroid is agnostic of the transmitted data). While
the authors claim that this is not an issue because non-
malicious applications generally do not tend to share data,
it might be interesting to understand if it is possible to ren-
der XManDroid data-gnostic. Similarly, restricting access
through policies to parts of the system (i.e., /proc) might
result in some applications to malfunction in case they rely
extensively on access to such resources. Finally, XManDroid
works by specifically adding hooks to system functions or to
the kernel as new channels are discovered, and is therefore
a reactive solution.

Given that some channels remain undetected under exist-
ing state-of-the-art tools, we conclude that application collu-
sion attacks remain a threat and stress that research should
focus on closing these (obviously harder to deal with) chan-
nels.

5. MITIGATION TECHNIQUES AND
THEIR LIMITATIONS

Solving the confinement problem, and in particular clos-
ing all possible covert channels in a system, is known to be a
difficult problem [9, 20]. It is further complex in the case of
smartphones, where performance, application markets open-
ness and exposed API features are key to user and developer
adoption. Mitigation can be achieved either at design time
(by reducing access to sensitive APIs or by limiting commu-
nication possibilities) or by analyzing static and dynamic
properties of applications and their interactions off-line or
at run-time.

5.1 Design Time Mitigation Techniques
General Purpose Techniques. There are a number of

techniques that could be considered by smartphone operat-
ing system designers:

User control on private data access: As in Windows Phone 7,
involving user action on each data access helps to mitigate
the impact of colluding applications (and more generally,
malicious applications). However, this also limits applica-
tions capabilities; for example, in such an environment, it is
impossible for third-party developers to create applications
that perform automated backups of private data.
Limiting APIs: When designing APIs exposed to third-
party developers, designers should carefully consider the pos-
sibility that the API may create a communication channel
between applications. If an overt or covert channel is found,
it should be either mitigated or its access should be control-
lable through the system’s policies.
Limiting Multitasking: Reduces the possibility of covert chan-
nels resulting from competition for access to resources (CPU
time, cache and bus contention). However, this limits the
diversity of applications that can be implemented on the
system.
Application Review: Performed to detect colluding appli-
cations before publication of applications on the markets.
However, this approach requires dedicated techniques to de-
tect application collusion.
Policy-Based Installation Strategy: Could be used in a cor-
porate scenario where installation of applications can be lim-
ited through some policies e.g., deny access to applications
that read contacts.
Application-Level Channels. Communication channels
constructed at this level are dependent on the APIs exposed
by the underlying operating system. Careful design of per-
missions used to access data sources as well as data sharing
points (i.e., sharing of files or preferences, settings, broad-
cast intents) could draw attention towards applications that
require an excessive number of permissions. Furthermore,
some of these channels could be closed by removing unnec-
essary APIs after an analysis of the used and unused ones.
This would enable tighter security while maintaining a rea-
sonable amount of freedom for the developers. For instance,
the System Log channel can be closed by allowing access to
the log file only when “USB Debugging” is active. This is a
mode to which the phone switches to when connected to a
PC, for instance, for development purposes.
Operating-System-Level Channels. Covert channels that
can be established at this level might not be detectable by
information flow analysis and their prevention requires fur-
ther investigation. Such channels usually utilize mechanisms
offered by the underlying kernel (i.e., sockets, threads, child
processes) and therefore, removing such functionality by pre-
venting developers from using it might impede certain ap-
plications and their potential optimization. Other system
information made available (for example, through the /proc

filesystem by the Linux kernel) could be restricted (for ex-
ample, as done in GRSecurity [15], TOMOYO Linux [16] or
SEAndroid [31]) or mediated by operating system services
that could directly control access to such information.
Hardware-Level Channels. Covert channels (e.g., tim-
ing) established at this level are the usually hardest to re-
move without serious performance degradation or function-
ality impact. Solutions, such as preventing multitasking or
flushing caches between process scheduling, limit the overall
performance or responsiveness of the system and increase
its power consumption. Furthermore, common data taint-
ing or information flow control techniques are ineffective in
this scenario since communication happens at the bit-level of

the transmitted data. Closing these channels requires novel
approaches, e.g., design of information flow secure systems
from the bottom up [33], however redesigning current smart-
phone systems from scratch is likely to have a prohibitive
cost.

One possible solution for timing-based channels (similarly
proposed for different systems in [17]) is to add a new per-
mission to the Android OS (for example, it can be named
REQUIRE_PRECISE_TIMING). Applications requiring such per-
mission, upon requesting timing information, would be given
precise timing information (i.e., games require precise timing
for physics engines or graphics display). Applications with-
out such permission would be presented with a rough esti-
mate of timing (i.e., ±5 seconds). This modification would
disrupt the correct functioning of communication channels
that require precise timing for their operation such as, in
our reported channels, the Timing Channel and the Proces-
sor Frequency channel. For example, in our implementation
the Timing Channel works over 6 ms differences (to send
a ‘1’ or a ‘0’), therefore if the system would report time to
applications at a granularity higher than 6 ms the channel
would be disrupted.

If further analysis shows that precise timing is indeed re-
quired for the correct functioning of a large number of appli-
cations, another viable solution to disrupt timing channels is
to limit the number of times applications can request timing
information.

5.2 Application Analysis Techniques
Black-box Analysis. One strategy in trying to detect col-
lusion is to add a data monitor between separate applica-
tions on the device. This would remove the need to de-
tect covert channels by only monitoring data leakage itself.
In such an architecture, when data from one application is
used, the monitor would store it (or a fingerprint of it) and
track the data sent to the colluding application. While this
approach seems promising, it is inherently limited: malware
can encode data in a way that it leaves the mobile device still
encoded (e.g., encryption using a public key), defeating the
monitoring. While it is clear that black-box analysis may
detect some trivial attempts to evade the system security
policy, it clearly does not provide a complete solution.
Exclusive access to sensitive resources. Techniques
to limit access to sensitive resources (e.g., the microphone)
from third-party applications when a sensitive operation is
ongoing (e.g., a phone call), as presented in [29], only pre-
vents malware from accessing that particular data at that
instant. Such techniques cannot be applied generally: for
example, access to the GPS data would always be consid-
ered a privacy invasive operation and therefore would never
be allowed.
Offline application analysis. Since colluding applications
are communicating on an unexpected channel, it is likely
that when colluding applications are executed simultane-
ously on a device, they would show a different behavior than
when executed independently. For example, they would de-
tect each others presence and engage into communication
over a covert channel. Behavioral analysis could be used
to detect such a change of behavior, for example executing
applications on an emulator alone or in pair and comparing
execution traces and coverage. However, given the vast num-
ber of potential pairs of colluding applications, this solution
does not scale. This can be addressed by strategies which

include evaluating applications according to their popularity
or according to “replicated” installations [28].

6. RELATED WORK
The Confinement Problem and Covert Channels.

Lampson first described the confinement problem [18] as the
problem of preventing unauthorized communication, over
overt or covert channels, between two subjects on a system.
It is recognized to be a difficult problem in practice, Denning
and Denning state that“Cost-effective methods of closing all
covert channels completely probably do not exist” [9].

While overt channels can be managed by security policies,
covert channels are communication channels built from re-
sources that are not intended for communication, and so
they cannot be mitigated with the same techniques. Covert
channels were also used to perform covert communications
over networks [27, 12], however in this work we mainly fo-
cused on inter-process covert channels. Inter-process covert
channels can be classified as either software (sometimes re-
ferred to as TCB channels) or hardware (also known as fun-
damental channels) and communicate over timing or storage
channels. However, this distinction is more empirical than
theoretical [13].

Software covert channels can be mitigated by a careful
analysis of the usage of visible and alterable variables used
by system calls [34] or using a formal model for analyzing
programs [30] using a semi-automated technique. However,
hardware-related covert channels (e.g., timing, competition
to access resources, paging) are difficult to prevent and re-
cent processor designs have been shown to increase the num-
ber and efficiency of covert channels [36].

As an example, multi-core application processors are al-
ready available for smartphone devices, which would render
covert channels over cache highly reliable [36]. Possible mit-
igation techniques include using fuzzy time [17] and prevent-
ing multitasking.
Permission-Based Security. A significant amount of work
has been performed, in the past few years, on the Android
platform and specifically on the permission-based model [2,
5, 7, 8, 24, 26, 35]. Barrera et al. present an empiri-
cal methodology for the analysis and visualization of the
permission-based model, which can help in refining the per-
mission system [2]. The Kirin tool [11] uses predefined se-
curity rule templates to match dangerous combinations of
permissions requested by applications. As Kirin analyzes
individual applications, colluding applications would not be
detected by such policies. Saint [26] allows run-time control
over communication among applications according to their
permissions. In [5], Burns discusses possible unchecked in-
formation flows due to applications that use Broadcast In-
tents without proper permissions checking.
Soundcomber[29] introduces a proof of concept malware
based on application collusion for Android smartphones. The
authors foresee using the microphone of the device to harvest
sensitive information, such as credit card numbers, by de-
tecting voice and tone patterns. The information is then sent
over an application with the necessary permissions to send
it through the internet through means of covert communi-
cation channels. The channels presented by the authors use
globally-available settings (vibration, volume, screen lock,
etc.) or file locks. In contrast, we presented a wide range
of channels and carried out an analysis of their behavior in
terms of throughput and accuracy through our framework.

7. CONCLUSION
We demonstrated that application collusion attacks against

the permission-based mechanisms used on modern operat-
ing systems for mobile devices, such as Android OS, are a
serious threat given different implementation of communi-
cation channels at different system levels. The results of the
throughput measurements for each channel show that even
covert channels with low throughput are still sufficient to ex-
change possibly private information stored on a smartphone.
Finally, we confirmed that proposed and implemented tech-
niques and tools do not provide a complete solution against
different communication channels and are therefore insuffi-
cient to prevent application collusion attacks, which remain
an open problem for the research community.

Acknowledgments
This work was partially supported by the Zurich Information
Security Center (ZISC). It represents the views of the au-
thors. We would like to thank Sven Bugiel and the team be-
hind XManDroid for giving us the possibility to test XMan-
Droid and for productive discussion.

8. REFERENCES
[1] J. Anderson, J. Bonneau, and F. Stajano. Inglorious

Installers: Security in the Application Marketplace. In
Workshop on the Economics of Information Security,
WEIS ’10, 2010.

[2] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application
to Android. In Proceedings of the 17th ACM
Conference on Computer and Communications
Security, CCS ’10, pages 73–84, New York, NY, USA,
2010. ACM.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and
A.-R. Sadeghi. XManDroid: A new Android evolution
to mitigate privilege escalation attacks. Technical
Report TR-2011-04, Technische Universität
Darmstadt, April 2011.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on Android. In Proceedings
of the 19th Annual Network and Distributed System
Security Symposium, NDSS ’12, February 2012.

[5] J. Burns. Developing secure mobile applications for
Android. https://www.isecpartners.com/files/
iSEC_Securing_Android_Apps.pdf (accessed October
2012), 2008.

[6] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis and
containment. In Proceedings of the 5th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA ’08, pages
143–163, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] A. Chaudhuri. Language-based security on Android.
In Proceedings of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analysis
for Security, PLAS ’09, pages 1–7, New York, NY,
USA, 2009. ACM.

[8] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on Android.

In Proceedings of the 13th International Conference on
Information Security, ISC’10, pages 346–360, Berlin,
Heidelberg, 2011. Springer-Verlag.

[9] D. E. Denning and P. J. Denning. Data security. ACM
Comput. Surv., 11(3):227–249, Sept. 1979.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

[11] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, pages
235–245, New York, NY, USA, 2009. ACM.

[12] C. G. Girling. Covert Channels in LAN’s. IEEE
Transactions on Software Engineering, 13(2):292–296,
1987.

[13] V. Gligor. A guide to understanding covert channel
analysis of trusted systems, version 1 (light pink
book). NCSC-TG-030, Library No. S-240,572,
November 1993. National Computer Security Center,
TCSEC Rainbow Series Library.

[14] Google. Android OS (up to version 2.3.7).
http://developer.android.com/.

[15] GRSecurity. The GRSecurity project.
http://grsecurity.net/features.php.

[16] T. Harada, T. Horie, and K. Tanaka. Task oriented
management obviates your onus on linux (TOMOYO
Linux). Linux Conference, 2004.

[17] W.-M. Hu. Reducing timing channels with fuzzy time.
In Proceedings of IEEE Computer Society Symposium
on Research in Security and Privacy, pages 8–20, May
1991.

[18] B. W. Lampson. A note on the confinement problem.
Commun. ACM, 16(10):613–615, Oct. 1973.

[19] A. M. Lineberry. These aren’t the permissions you’re
looking for. BlackHat USA, August 2010.

[20] S. B. Lipner. A comment on the confinement problem.
In Proceedings of the 5th ACM Symposium on
Operating Systems Principles, SOSP ’75, pages
192–196, New York, NY, USA, 1975. ACM.

[21] Microsoft. Security for Windows Phone 7.
http://msdn.microsoft.com/en-

us/library/ff402533%28v=VS.92%29.aspx (accessed
October 2012).

[22] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S.
Tanenbaum. A virtual machine based information flow
control system for policy enforcement. Electron. Notes
Theor. Comput. Sci., 197(1):3–16, Feb. 2008.

[23] Nokia. Symbian OS. http://symbian.nokia.com.

[24] J. Oberheide. Android Hax. SummerCon 2010, June
2010.
http://jon.oberheide.org/files/summercon10-

androidhax-jonoberheide.pdf (accessed October
2012).

[25] J. Oberheide and F. Jahanian. When mobile is harder
than fixed (and vice versa): demystifying security
challenges in mobile environments. In Proceedings of

the 11th Workshop on Mobile Computing Systems and
Applications, HotMobile ’10, pages 43–48, New York,
NY, USA, 2010. ACM.

[26] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-centric
security in Android. In Proceedings of the 25th Annual
Computer Security Applications Conference, ACSAC
’09, pages 340 –349, dec. 2009.

[27] F. A. Petitcolas, R. J. Anderson, and M. G. Kuhn.
Information hiding-a survey. Proceedings of the IEEE,
87(7):1062 –1078, July 1999.

[28] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: versatile protection for
smartphones. In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC
’10, pages 347–356, New York, NY, USA, 2010. ACM.

[29] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones. In
Proceedings of the 18th Annual Network and
Distributed System Security Symposium, NDSS ’11,
pages 17–33, Feb. 2011.

[30] A. B. Shaffer, M. Auguston, C. E. Irvine, and T. E.
Levin. A security domain model to assess software for
exploitable covert channels. In Proceedings of the 3rd
ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS ’08, pages
45–56, New York, NY, USA, 2008. ACM.

[31] S. Smalley, NSA, and Trust Mechanisms (R2X).
SEAndroid.

http://selinuxproject.org/page/SEAndroid

(accessed October 2012).

[32] The Lookout Blog. Lookout’s privacy advisor protects
your private information. http://blog.mylookout.
com/2010/11/lookout%E2%80%99s-privacy-advisor-

protects-your-private-information/ (accessed
October 2012).

[33] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin,
B. Hardekopf, R. Kastner, F. T. Chong, and
T. Sherwood. Crafting a usable microkernel,
processor, and I/O system with strict and provable
information flow security. In Proceedings of the 38th
Annual International Symposium on Computer
Architecture, ISCA ’11, pages 189–200, New York, NY,
USA, 2011. ACM.

[34] C.-R. Tsai, V. D. Gligor, and C. S. Shandersekaran.
On the identification of covert storage channels in
secure systems. IEEE Transactions on Software
Engineering, 16:569–580, June 1990.

[35] T. Vennon and D. Stroop. Threat analysis of the
Android market. Technical report, GTC, June 2010.
Smobile systems technical report, Available at
http://threatcenter.smobilesystems.com/wp-

content/uploads/2010/06/Android-Market-Threat-

Analysis-6-22-10-v1.pdf (accessed October 2012).

[36] Z. Wang and R. B. Lee. Covert and side channels due
to processor architecture. In Proceedings of the 22nd
Annual Computer Security Applications Conference,
ACSAC ’06, pages 473 –482, dec. 2006.

