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Dynamic Rate Allocation in Markovian Quasi-Static
Multiple Access Channels

Konstantin Avrachenkov, Laura Cottatellucci, Lorenzo giag

Abstract

We deal with multiple access channels in which the chanrefficgents fol-
low a quasi-static Markov process on a finite set of states.atidess the
issue of allocating the rate to the users in each time inkesugh that the
optimality and the fairness of the allocation are presemedughout the
communication, and moreover all the users are consistsatigfied with
it. We first show how to allocate the rates in a global optinashion. We
give a sufficient condition for the optimal rates to fulfil serfairness crite-
ria in a time consistent way. We then utilize the game-thszakconcepts
of time consistent Core and Cooperation Maintenance anchew that in
our model the sets of rates fulfilling these properties ddimcand they also
coincide with the set of global optimal rate allocationseThalevance of our
dynamic rate allocation to LTE systems is also shown.

Index Terms

Quasi-static fading, fair rate allocation, Dynamic Co@tise Game theory.
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1 Introduction

In the last few years, the concepts of user fairness andagadits have received
significant attention. These notions will play an incregbircrucial role in future
networks, due to the paradigm shift that we are witnessiogn ffully centralized
with dumb terminals to distributed networks with rationalets able to pool re-
sources with each other.

In the literature, the notion of fair and satisfactory rallecation has been dealt
with under manifold perspectives in static Gaussian or diggily fading Multi-
ple Access Channels (MAC). In [1], the fairness of a ratecaltmn in a Gaussian
MAC is related to the economical concept of Lorenz orderdu®e measuring
disparity in income distributions. Such fair allocationwals exists, it is Pareto
optimal, and also solution of a Nash bargaining problem wéto disagreement
payoff allocation. In the following [2], the authors showetbxistence of a unique
rate allocation which is max-min and proportional fair. Tiesults in [1, 2] are
extended to the general frameworkfairness [3] in [4]. For MAC’s with poly-
matroid regions, alk-fair rate allocations collapse into a single point, whish i
max-min and proportional fair, too. An analysis of rate edittons in the context
of constrained games points out that the normal Nash equitib[5] also coin-
cides with then-fair and Pareto optimal allocations.

Furthermore, the issue of users satisfaction is address€ddperative Game The-
ory (CGT) with non-transferable utility (NTU) (see [6] fonaverview), which
provides powerful tools to derive efficient and stable alams in a setting in
which the users can cooperate to reach a common goal. ImgEapacity of the
Gaussian MAC is studied with a game-theoretical approaoh[8]l the authors
expressed the rate allocation problem in static Gaussia Mi&h jamming in a
cooperative game-theoretical setting. They found a satisfy rate allocation ful-
filling the newly introduced concept of envy-free. The elfikge allocation exists,
is unique and Pareto optimal, but in general it does not aenwith the o-fair
solution.

In this contribution we study and extend for the first time tbacepts of optimal,
fair, and satisfactory rate allocations talynamicscenario, described by a Gaus-
sian MAC where the channel evolves quasi-statically, atingrto a Homogeneous
Markov Chain (HMC) on a finite state space.

We stress the scenario that we consider is relevant for tlieemd.TE systems. In
fact, in LTE, the average channel state information is estidh by the receiver and
fed back to each transmitter at regular intervals. Henceaah of these intervals,
a different rate for each user needs to be allocated and @&ssable that fairness
and users’ satisfaction is guaranteed along the course @faimmunication.

The paper is structured into two main sections. The form8erd. 3, in which
we discuss thelesign of optimal and fair allocations a dynamic process. The
latter is Sect. 4, in which weharacterize the optimal rate allocations as the allo-
cations which are also satisfactory throughout the commcation, according to a



Dynamic Cooperative Game Theory (DCGT) formulation. Welgta bottom-up
(Sect. 3.1) and a top-down procedure (Sect. 3.2) to allacatebal optimal rate
in each state of the HMC. The former prescribes to allocast tire static allo-
cations and derive next the long-run ones; conversely,atterlsuggests to select
first the long-run rate allocations. Though the top-dowrcpdure would be more
useful since the user have a long-run perspective, it is mays feasible since
it is described by a non bijective mapping. We then suggesbeepure to over-
come this problem. In Sect. 4 we provide a sufficient conditiader which there
exists a rate allocation which is fair, i.e. max-min, prdamral, anda-fair, both
state-wisely and in the long-run process. Most importartllg fairness property
of such allocation is time consistent, i.e. it is fair thrbogt the process, from any
intermediate step onwards. Conversely, a fair allocathauays exists in the static
case [4], [9]. We remark that all our results in Sect. 3 applsity communication
system characterized by a polymatroid capacity structee [4] for some exam-
ples).

In Sect. 4 we introduce a game formulation with jamming usérslar to the one
in [8], but in a dynamic scenario. We then characterize thesglobal optimal
allocations as satisfactory too, since it coincides withdat of rates for which two
crucial DCGT properties hold. These properties are theg(ttonsistent) Core, in-
troduced in [10], and the Cooperation Maintenance prodédy Such properties
formulate the concept of acceptable allocations throughalynamic process for
all users in two different, but equally appealing, manners.

We refer the reader to [12] for the proofs of all our resultwjtted here to comply
with the space constraint.

2 System Model

We consider a wireless system in whighterminals attempt to send information
to a single receiver or base station. lket= {1,..., K} be the set of all users.
Each userk has a power constrain®,. We assume a quasi-static channel, i.e.
the channel coefficients can be considered constant for tidewduration of a
codeword. Thus, theth signal block received by the unique receiver, ffar Ny,
can be written as

K
ylt] =Y h® [ x®[e] + wit],
k=1

wherex(¥)[] is the codeword of usek, h(*)[t] is the complex channel coefficient
for userk at time step, andw|t| is zero mean white Gaussian noise with variance
Ny. We assume that the set of channel coefficigntd), n(2), ... KU} is finite
and it follows a discrete time HMC, which can change stateetyenew codeword.

In other words, ifS; is the channel state at time stepvhere

Sy =[O, ... hE) [t]] ,



then the random procegs;, ¢t > 0} is a HMC. We defineS as the set of all the
N possible states of the HMC. L& be its N-by-N transition probability matrix,
such thatP; ; is the probability of transition from statg to states;.

We point out that the codeword length is supposed to be veny, Isuch that
the conditions of applicability of the Shannon Capacite.(iinfinite codeword)
are practically satisfied. This assumption is widely appliequasi-static channels
(see e.g. [13]).

2.1 Markovian feasibility region

In each channel state, we consider a Gaussian MAC scenanehich K users
communicate with a single receiver. By relying on the claggiasi-static approx-
imation assumption (see e.g. [13]), we can compute the dgpate region for all
users in state as the polymatroidR (K, s) with rank functiong ) [14]:

R(K,s) = {r e RF . Zrk < 9uo)(T,s), VT C IC}
keT

90 (T 8) = C( > IEB(s)]P P, No>, VT CK, 1)
keT

whereC(a, b) = log,(1+a/b). When considering the channel dynamics, an HMC
evolves on a finite set of channel states= {s1,...,sy}. Since we consider the
channel to be constant during a codeword, the transitiomgratates occurs at the
end of each coherence period of the channel.

We allocate a rate to each user in each of the state of the Mahain. We assume
that the rate assigned in stafee S at timet depends only on the value 6f, and
not on the past history of state/allocations up to timén this sense, we say that
the dynamic allocation istationary and we callrx(s) the rate assigned to user
in states. In our model the users prefer the current rate allocatiaar thve future
ones, which are discounted by a factoe [0; 1). This assumption has been widely
adopted in the literature on game theory for networks (sg€/#5]). In this case,
theutility for userk over the whole stream of state-wise rate allocations equals

re(ly) = E (Z 8! m(&)) , )

t=0

wherel’; is the Markov process starting at timen states. An alternative inter-
pretation of (2) is the actual expected long-run rate whenl¢hgth of the com-
munication is finite, but of unknown duratioh;— 5 is the probability that, at any
time step, the communication terminates. In the literatureglynamic games it is
common to multiply expression (2) by the normalization éa¢t — 3). We antic-
ipate that both the normalization factor and the choicg afe irrelevant to all our
results. By recalling the relatioy,., 3'P! = (I — P)~!, we can write (2) in



the following matricial form:

r(Ts,) r(s1)

Do =@t (3)
r(lsy) r(sn)
wherer(s) := [ri(s),r2(s),...,rk(s)] andr(I';) is defined similarly. By defining
® := (I — BP)~! and utilizing a compact matrix notation, we rewrite (3) as
[r(FS)]seS = [r(s)]ses (4)

Remark 1. Expression (4) defines an application from the set of statipstate-
wise rate allocations to the set of feasible long-run ratesSect. 3.2 we will show
that, in general, the application ot invertible since multiplying a set of long-run
allocations by®d~! does not always produce feasible state-wise allocationst

It is natural to define the long-run rate regi®{(/C,I's) as the set of all rates
r(T's) that can be written as the long-run expected sum of statistate-wise rate
allocations, as in (3). We now give a convenient expressiorkf(«C, I's), which
follows from [16], p. 241, Theorem 12.1.5, claiming that #en of polymatroids
is still a polymatroids whose rank function is the sum of taekrfunctions of the
summands.

Lemma 21. For any s; € S, the long-run rate feasibility regioR(IC,T's;) is a
polymatroid with rank function:

N
g(IC)(T> FSJ‘) = Zyn(sj)g(lC)(Tv 3”)7 VT C K,

n=1

wherev (s;) is thej-th row of the matrixd. 0

2.2 Relevance to LTE systems

In LTE systems, the statistics of the channel are estimdtesbalar intervals and
used for resource allocation. Under the common assumpfitasbfading Gaus-
sian channel in additive Gaussian noise, in each pdritiee state of the HMC
is given by the channel distribution, completely charaeest by its second-order
statistics. The rate region in absence of instantaneousli&dge of the channel at
the transmitter is still a polymatroid, with rank functi@[g(c)(7, s)], as shown
in [17]. Since the results presented in the following stigngly on the polyma-
troid structure of the rate region in each state of the HM@ntthey also hold
for LTE systems. Hence, our general results in particularess the issue of al-
locating the rate to users in a MAC LTE system at each fee#-bate interval,
so that optimality, fairness, and the users’ satisfactsopreéserved throughout the
communication.



3 Optimal and fair rate allocation design

In this section we address the issue of allocating the ratl tasers during the
transmission process, in each state of the channel Markain.ci/e stress that all
the results in this section apply to any communication sgstewhich the capacity
region in the single channel state has a polymatroid strei¢ee [4] for a list of
such systems).
For a classic result on polymatroids (see e.g. [16]), we kitimat the dominant
facet, or simply facetM (R (K, s)) of the rate regioRR (K, s) is maximum sum-
rate, i.e.

M(K,s) == M(R(K,s)) = argmax Z Tk (5)

reR(K,s) ek

Similarly, the facetM (K, T's) is maximum sume-rate in the long-run procdss
Hence, the global optimum rate design solution would be both the state-wise
and the long-run rate allocations belong to the fadett§C, s) and M (K, T'y), for
all s € §. Hence, we will restrict our focus on the allocations inside defined
as in the following.

Definition 1 (M). M is the set of stationary state-wise allocations belongimg t
the dominant facets of both state-wise and long-run felitgilbégions, i.e.

M = {{r(s)}segz r(s) € M(K, 5),
r(Dy) € M(K,T), Vs € 5},

where [r(Ts)]ses = @ [r(9)]ses- O

Now, we will investigate two different approaches to sebattllocation inM.
The first, called bottom-up procedure (Sect. 3.1), is thetmatural one, and it
prescribes to select a set of state-wise allocationfifiC, s), for all s € S, and
then to derive the set of associated long-run allocatioasmuiltiplication by®.
Conversely, the second approach, dubbed top-down (Sez}, vdould be more
useful, but unfortunately it is not always feasible. It segtg to select first the
long-run allocations, inVI(K,T',), for all s € S, and then to multiply byp ! to
obtain the state-wise allocations. Clearly, the choice tive adopted procedure
depends on the priority that the designer gives to the steeHong-run alloca-
tion. By adopting the top-down procedure, one embracesgion perspective of
the process, by preferring to adhere to a specific fairndestsm criterion in the
long-run process, rather than in the state-wise one. Weipaté from Sect. 3.3
that one can select the unique allocation point in the lamgprocess, that ia-
fair, proportional fair, and max-min fair, simultaneousGiearly, the best scenario
would consist in being fair in each state, in the long-runcpss, and from each
intermediate step onwards. A sufficient condition to atthis will be provided in
Sect. 3.3.



3.1 BOTTOM-UP DESIGN: From single-stage to long-run allocdions

In this section we investigate the feasibility of our firsopedure to select an al-
location in M. It is calledbottom-uprate allocation approach, and it consists in
selecting a set of stage-wise allocations belonging to tmikant facet of each
state-wise feasibility region. Then, we need to computedbpective long-run al-
locations and check whether they belong to the dominantfad¢he feasibility re-
gion of the respective long-run processes. By a lineartyment, it is easy to see
that the facetM (IC, ', ) is obtained as the Minkowski suﬁﬁf:l Un (s)M(K, sp,).
Therefore, if the state-wise allocations all belong to tbenahant facet in the re-
spective states, then their expected long-run sum alsinligee dominant facet of
the long-run process. Then, the bottom-up procedure alweyduces stationary
allocations belonging ta1.

Proposition 31 (Bottom-up allocation procedurefelect a set of state-wise rate
allocations{r(s) € M(K,s)}ses. Then, their associated long-run allocations
[r(Ts)]ses = ®[r(s)]ses belong to the respective long-run dominant facets, i.e.
r(I's) e M(K,Ts), forall s € S. 0

Then, the first positive result of Proposition 31 is that ¢hexist allocations
belonging to the dominant facet of both state-wise and lumgprocesses, jointly,
i.e. M is non-empty. Secondly, it is easy to find them, since it sedfito select
a rate allocation on the dominant facet®{X, s), for all s € S. Finally, as a
by-product of Proposition 31, we are allowed to simplify thedinition of M as:

M= {{r(s)}seg s.t. r(s) e M(K,s), Vs € S}.

Proof. If r(n) € M(R(n)), foralln = 1,..., N, then trivially > r(n) €
M(R). Conversely, fix € M(R). We know from [16], p. 241, Theorem 12.1.5,
that there exis{r(n) € R(n)}n=1,. .~ Such thatr = ZnNzlr(n). If r(n) ¢
M(R(n)) for somen, then there would exist’ € M(R) such thaty 1, i >
Zszl ri, Which is impossible. Hence, the thesis is proven. O

3.2 TOP-DOWN DESIGN: From long-run to single-stage allocaibns

The bottom-up procedure always produces feasible allmtstibut it is not what
really concerns us. Indeed, the users are endowed with atdongperspective of
the communication process, hence one may wish to selecafsst of long-run
allocations i{ M(/C,T'5)} scs which adhere to a certain criterion in the respective
long-run processes (e.g. a fairness criterion, as in Seg}. Bhen, the state-wise
rate allocationgr(s)}cs are obtained via multiplication b ~!. Unfortunately

this method, dubbetbp-down does not always produces feasible stationary state-
wise allocations. We interpret this fact by saying that thedr application defined

6



by @ in (4) is not always invertible in the space of feasible stadiry allocations.
In Example 31 we show an instance of the described scenario.

Example 31. Sets = 0.8, Ny = 0.1W. Consider two users, with power con-
straintsP, = P, = 2W. Consider two states. sy, |h()(s)]? = 0.1, |h?) (s1)> =
0.2. In 59, |hM (s9)]? = 0.15, |h?) (s2)|? = 0.15. The transition probability ma-
trix is P = [0.8 0.2; 0.3 0.7]. Choose the optimal allocations in the long-run
process

r(Ty,) = [0.5843; 1.1109] € M(K,T,,) bits/s/Hz
r(Ts,) = [0.8270; 0.8682] € M(K,T,) bits/s/Hz.

The corresponding state-wise allocations, throdgh!, are both not feasible, be-
cause

r(s1) =2 [0.0780; 0.2610] ¢ R(K, s1)
r(s9) 22 1[0.2236; 0.1154] ¢ R(K, s2). 0

Remark 2. One may argue that there is no need to select the whole setgfrin
allocations{r(I';) } scs, but only the one corresponding to the actual initial state.
Indeed, since the channel stasg at time 0 is known, one could seledfl’s, )
according to the desired criterion and then compute theestése allocations by
choosing one solutions among the infinite possible of thatemu

N
r(Tsy) = > vn(So)r(sn).
n=1

Finally, the remaining long-run allocations are automaily computed by re-
inverting the relation, asb[r(s)]ses. Of course, in this way there is no control
over the long-run allocations(I';), with s # S.

On the other hand, thanks to the stationarity of the payddfcation, the long-run
sub-process starting at tini€ > 0 is precisely the3” -scaled version of g, i.e.

: (Z 5r(s) | h<T>) — 8"x(Tsy)
t=T

whereh(T') is the history of state/allocations from time 0 up to tifieTherefore,
jointly choosing the long-run allocations(T'y) for all statess € S is equivalent
to assign the long-run allocations that each user obtainsanh sub-process from
any intermediate time stép > 0 onwards. O

Example 31 seems to discourage a top-down allocation puoeedndeed in
general, if one chooses a set of long-run allocations, tiseme guarantee that the
allocation is actually feasible, since the associatedostaty state-wise allocation
might be not feasible. Of course, this does not rule out thsipdity to carry out a

7
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Figure 1: Example 31.r('s) € M(K,T), fors = s1,s2, butr(s) ¢ R(K,s), for
s = s1, 82, wherelr(s)]ses = @7 r(Ty)]ses-

top-down allocation procedure successfully. Indeed, ieorem 33 we will present
a top-down procedure guaranteeing the feasibility of tseeiated state-wise rate
allocations. Before, let us introduce a classic result dpmpatroids (see [18]). Let
R be a polymatroid on the ground gdt, . . . , K}, with rank functiong. LetTI(K)
be the set of permutations §f, ..., K'}. The facetM (R ) has at mosk! extreme
points, and each of them has an explicit characterizaticafagaction of the rank
functiong. Indeed,w is a vertex ofM(R) if and only if there exists a permutation
mof{l,...,K}suchthat foralk =1,..., K,

W = g({ﬂ'l,...,ﬂ'k_l,ﬂ'k}) —g({m,...,ﬂk_l}) = Wk(ﬂ')

Proposition 32. Leta,, > 0,forn =1,...,N. LetR4,...,Rn be N polyma-
troids on the ground sefl, ..., K}. LetR = 3> a,R,. Letw(r)(n) be the
vertex of the faceM (R,,) associated to the permutatione II(K). Letw(w) be
a vertex ofM(R). Then,

N
w(m) = > a,w(m)(n), VmeI(N). O
n=1

Proposition 32 claims that the vertex of the fadd{R ) associated to the per-
mutation7 can be decomposed into the sum of the vertices associated same
m of each facetM (R,,),n = 1,..., N. Then, our idea is to choosmeset of con-
vex coefficients, valid for any € S, and to define the set of long-run allocations

8



{r(T's) € M(K,T's)}ses as the same convex combination of the vertices of the
respective dominant facets. The associated state-wisgatithns are then obtained
as thesameconvex combination of the vertices of the respective stase-domi-
nant facets, hence they are feasible and optimal.

Theorem 33(Top-down allocation procedurelChoose a set of convex coefficients
{c(m)}ren(xy, such thate(m) > 0and 3. oy c(m) = 1. Letw(m)(T's) be the
vertex of M (K, T's) associated to the permutation Compute the set of long-run
allocations as
r(Cy) = Y e(mw(m)(Ts), VseSs.
mell(K)
Then,
[r(s)]ses = ! [r(I's)]ses
is a set of feasible state-wise rate allocations, and mareeis) € M (K, s), for
all s € S. 0

Proof. Let us write

r(s1) ZneH(K) c(m)w(m)(Ls,)
: =1 :
r(sn) Y oren(x) (M) w(m)(Lsy)
w(m)(Ls,)
= Z c(m)® 1 .
mell(K) w(m) (L)

For Proposition 32, we can say that

r(s1) w(m)(s1)

r(sn)|  mNE) | w(m)(s)

Hence, the thesis is proven. O

The top-down allocation procedure provided in Theorem 38oisthe only
possible of course, but it leads to an intuitive remark. Bemftexw (7)(s) can
be achieved by letting the receiver decode sequentialliharreverse order of,
the signals coming from each user in channel stateS, and by considering the
signals not decoded yet as Gaussian noise (e.g. see [14])efore, any rate allo-
cation onM (K, s) can be achieved by time sharing such decoding configurations
andthe time-sharing procedure is independent of the state
We suggest an interesting future research, which may stadytb optimize the
convex coefficients(7) to make the resulting long-run allocations globally close



to the set of long-run allocations fulfilling a certain crita, e.g. the fairness cri-
terion that we will present in the next section.

3.3 FAIR ALLOCATION DESIGN: being fair throughout the pro-
cess

In this section we deal with a fairness criterion to selecabmcation rate inside
M. In the static channel case, it is possible to find rate alioesa which are fair,
under plenty of different criteria (see [4]). In the dynamise, the definition of
fairness is much more demanding, and not always there dkistions fulfilling
it. Firstly, we demand an allocation to be fair in the longrprocess, since users
are endowed with a long-term perspective of the transnmmissiocess. Then, the
top-down procedure would be best, because it would guadhéerate allocations
to be fair in the long-run. However, in Sect. 3.2 we showed tiia approach not
always produces feasible stationary rate allocationsor®#yg, we demand that an
allocation respects the fairness criterion not only froe leginning of the trans-
mission onwards, but throughout it, i.e. it should be timasistent. Thirdly, we
wish that the rate allocation is also fair in each state oHMC. We will see that
these three conditions are not generally satisfied, howeggrrovide a sufficient
condition for them to hold.

3.3.1 Fairness criteria: A review

Let us first introduce the fairness criteria that we williagl in the next section. In
the literature, three fair allocations have been extehssteidied: a-fair, max-min
fair, and proportional fair allocations. We now provideittgeneral definition, by
considering a general rate feasibility regiBn

Definition 2 (max-min fairness) An allocationr®™™) is max-min fair whenever

no user; with rate rg.MM) can yield resources to a userwith rEMM) < rg.MM)

without violating feasibility irnR. O
Definition 3 (a-fairmess) Letu(®) (ry,) = r.~*/[1 — ] be the utility function for
userk. Thea-fair allocation r(®¥), with o > 0, is defined as

K

r(®®) — argmax Zu(a) (7k)- O
rer b1

Definition 4 (proportional fairness)The proportional fair allocationc®*) coin-
cides with thex-fair allocation whenoe — 1, i.e.

K
r(PF) — argmax H Tk- U
reR L4

10



We point out that, in general, the-fair allocation is also max-min fair for
a 1 oo and proportional fair fory — 1.
If we consider the long-run proce$s, then in Definitions 2, 3, and 4 we should
interpretR = R(K,T's), while in channel state, R = R(K, s).
In the special case in which the feasibility region is a payroid, as forR (K, s)
andR(K,Ty), for all s € S, then the three fair allocations coincide.

Theorem 34 ( [4]). If the feasibility region is a polymatroidk, then max-min,
proportional, anda-fair allocations coincide for alkx > 0, and moreover belong
to the facetM(R) i.e.

r(MM) — p(PF) — p(0F) . — p(F) ¢ M(R). O

For Theorem 34, the three mentioned fair solutions coinbiath in the long-
run procesd’ and in states, for all s € S. Therefore, we can generally refer to
them asfair allocations and we callr")(T';) the fair allocation in the long-run
procesd’,, andr(") () the fair allocation in state. Moreover, a fair allocation be-
longs to the dominant facet of the associated feasibiligjore hence it is a proper
criterion to select a set of allocations.v.

3.3.2 Fair allocation design

Finally, we are ready to deal with the design of fair rateclons on quasi-static
channels. We will show under which conditions it is possitdeallocate a rate
which isfair (i.e. max-min, proportional, and-fair at the same time) both in each
state and in the long-run process, and which is fair througtie game, from each
intermediate step, i.e. it is time consistent. More forgmalle look for a sufficient
condition for which the following holds:

{@—1 [)(Cy)]ses = 10 (5)]ses
¢ [r(F)(s)]SES - [r(F) (Fs)]ses-

We stress that property (6) is crucial, mainly for three oeas that we list
below.

(6)

e The top-down procedure may fail, hence if we cho¢s€’) (I',)},cs, not
necessarily it is feasible among the stationary allocatioe. in general it
may happen that

dse S :r(s) ¢ R(K,s),
with [r(s)]ses = @ f(Ty)ses.

11



e Though the bottom-up procedure always produces feasilbleasibns, if the
allocation is fair in each state, then not necessarily itde &air in the long-
run processes. Indeed, it may happen that

Ise S : () # (1),
with [r(I's)]ses = © [T(F)(S)]ses (7)
As an example, in Figure 2 we show an instance in which (7)ri$ied.

e Most importantly, if relation (6) holds, then the fairnessgerty of the rate
allocation istime consistenfsee Theorem 35).

The time consistency of fair allocations claims that thenfess criteria that in-

duces to enforce a certain rate allocation at time 0 shoultbhsistent in time, at
stepsT’ > 0 as well. More formally, at each time stépy the 5-discounted sum
of allocations that each user obtains from tiffieonwards should be fair in the
long-run proces$'s,..

Theorem 35. If condition (6) holds, then the fairness of the stationaateralloca-
tion {r(F) (s)}scs istime consistenti.e. for all 7' € Ny,

E <§: B (s,) ( h(T)> = Tr™(Dg,),
t=T

whereh(T) is the history of states/rate allocations up to tiffie O

Proof. Thanks to the stationarity of the rate allocations, we claim

(Z B (S,) | (T ) ~E (i B (sy) | ST>
= 5"E (f} B (Spir) | ST>
t=0

= 6" (Ts,). ©)

where (8) comes from condition (6). Hence, the thesis isgmov O

After presenting the appealing properties of condition (@ wish to find a

sufficient condition for (6) to hold. For this purpose, it iseful to present first an
algorithm, first studied in [9], that produces the fair aition in a general poly-
matroid R with rank functiong. Of course, it can be utilized to compute the fair
allocation in any state-wise and long-run process.

Algorithm 36 ([9]). Setq:=1. Setk’ := K, ¢’ := g.

12



oo

~

(=]

o

bits/s/Hz

N

[
T

8 10 12

6
bits/s/Hz

Figure 2: Example of situation in (7) with two users and two states, ol the state-
wise allocations are fair in the respective channel statéshe relative long-run allocations
are not fair in the respective long-run processes. Theaillas indicated with the asterisk are
fair, while the circle describes the actual computed atiocs.

1) Compute

} g w_ IUg) .
Ty = argmin , = , YkeT. .
(a) 7‘ggc’ 17| k ’ (fz)‘ (a)

2) If T(f]) = K’, then stop. The rate allocatiorf” is fair for R. Otherwise, set
qg=q+1,K = /C/\']E’;),

g(T) =g (TUTg) —d(Tg), YT K,

)
and return to step 1). O

Finally, we are ready to provide a condition that ensuregiigtence of a rate
allocation design which is fair both in each state and inl@ng-run process, as
described in (6), and for which the fairness criterion isgiconsistent, as shown in
Theorem 35.

7 (a(s
be the sequence computed in the iterations of step 1, AfhgorR6, aép |)ed to

channel state. Suppose that

Theorem 37(SC existence fair allocations).et 7 (s) = [Ta)(s), LT f (s)]

3T =T(s), VseS,

i.e. T (s) does not depend on Then, condition (6) holds. O
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Proof. At step 1 of the first iteration of Algorithm 36 applied to thepesd’,, we
obtain

N
7?;) (FS) = argmin Zn:l Vn(S) 9(K) (T7 Sn)

T
TCK T )

Hence, we can compute the fair allocation for the set of u@'gr;sasnf(l“s) =

Zﬁ;l Un(8)1E (s), for all k € (’;). Then, at step 2, the update of the rank func-
tion:

N
940/ (T Ts) = Y vn(s) g(xe) (Tosn), VT CK\TG
n=1

preserves the linearity property of the rank function alsahe next iteration.
Hence, by induction, the thesis is proven. O

4 Optimal and Satisfactory allocations:
A game-theoretical approach

Sect. 3 dealt with thelesignof the rate allocation in each channel state for each
user. We restricted our focus solely on the set of globalnmtn rate regionM

(5), i.e. the set of stationary state-wise which are optipmdh in each state and in
the long-run process.

We now start the second part of the paper by turning our &tetawards thehar-
acterizationof the set of rateg\1 in game theoretical terms. We will show indeed
that M, besides being global optimum, also “satisfies” all the sif@oughout the
game, according to two important properties specific foratlyic CGT, namely the
time consistent Core and the Cooperation Maintenance gxope

4.1 CORE characterization of M

Generally speaking, Static Cooperative Game Theory (S@@Mnon-transferable
utility (NTU) studies one-shot interactions among differglayers who can col-
laborate with each other by coordinating the respectivatesjies. It is assumed
that grand coalitioriC, composed by all the players, is formed, and the main chal-
lenge consists in devising a payoff allocation for each @lagccording to some
pre-defined criteria. To this aim, the typical procedure @3 consists in investi-
gating thepotentialscenario in which a sub-coalition (or simply, coalitiod)c
of players withdraws from the grand coalition and no longmrdinates its actions
with the excluded players; then, the set of feasible paybfis. A can earn on its
own is computed (see [6] for a thorough survey). The payddication is finally a
function of such feasible sets.

Let us then translate these preliminary few concepts intosoanario. We first
consider the static process in statghat we callstatic game For the static game

14



case we adopt the same model as in [8]. In our situation, theepd are the users,
and the grand coalition is the set of transmitting uger$Ve say that a coalition of
usersd s := K\J C K forms when its members share the respective codes with
the receiver, which can then decode the signals transntiyed ;. For us, the
payoff for a player is the assigned transmission rate. Th@ Bliferature provides
several ways to compute the set of rate allocations acHeu®beach subset of
usersA 7. One of the most utilized is the max-min method, originatifreduced

by von Neumann and Morgenstern in [19], suggesting that ¢hefsfeasible al-
locationsRR (A7, s) should be defined as theet of rate allocations thatl ; can
achieve whatever is the transmission strategy employetiéoyeimaining users.
Then, we need to take into account thierst possible scenario fad 7, i.e. when
the users in7 do not allow joint decoding and jam the network, and invegdghe
set of ratesR (A 7, s) that the users ipd s can achieve in this hypothetical worst-
case scenario. When the usergjifam, they sum coherently the respective signals
and transmit with an overall power:

5) = (Zm(“(snm)

keJ

In this worst-case scenario, in [8] it is shown that, amohg, only the userssz
whose associated received power level is high enough tovtnedm the jamming
signal can communicate, i.e.

As(s) = {k e Ay B (s)2P, > A(j,s)} .

Then,R(Az, s) is a polymatroid with rank function [8]:

s (T9) = C( L IOLRAT ) + Mo ), ©)

keT

whereP, = P, for k € A;(s)andP, = 0 for all k € A\ A (s). Please note
that, when7 = 0, (9) boils down to expression (1).

Now, let us consider the feasibility regioR(As,I's) for a coalition.A 7 in the
long-run process (or game&),. Similarly to the static case, it is still defined in the
max-min fashion, as the set of long-run rate allocationsttieusers4 ; can guar-
antee, whatever is the transmission strategy adopted, bigroughout the process.
Therefore, we have to consider the worst-case scenarioighwhjams during the
whole process’; and, analogously to Lemma 21, we claim thatA 7, T's) is a
polymatroid with rank function:

9(A7) TFSJ ZVn SJ (A7) TSn) VTQ.AJ

Our goal is now to further characterizet, and we achieve this via the def-
inition of the Core set for NTU cooperative games. The Corthésset of rate
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allocations that no coalitiosl ; C X can improve upon when the remaining users
J jam. Let us define formally the Core of the static game in staté/e say that

a rate allocation for the grand coalitiane R (K, s) is blockedby the coalition
Az C K whenever there exist$ € R(Ay, s) such that-, > r, forall k € Aj.

In other words, the rate allocatianis unacceptable by the set of usersip.

Definition 5. The CoreCo(s) is the set of unblocked rate allocations®R(/C, s).

Remark 3. We can intuitively define th€ore as the set of all “acceptable” rates
for all users indeed, if an allocation does not belong to the Core, atlieasubset
of users is dissatisfied with it, because they can all attabetier rate allocation
even when the remaining users do not participate to the tmassion and jam. O

Additionally, an allocation irCo(s) is also not blocked by the grand coalition
K. SinceR(K,s) is a polymatroid, it follows that it is a region with maximum
sum-rate, i.eCo(s) € M(K,s), forall s € S.

The CoreCo(T's) in the long-run gamé'; is defined analogously to the static
case. We remark that it coincides with the set of long-runcallions that are
acceptable for each subset of usatghe beginning of the long-run gamdhis
definition of Co(I';) relates to static CGT, in which the coalition structure sold
steady throughout the game and players do not change tledar@nce over the
rate allocations over time. This is a naive perspectivedghosince the channel is
dynamic. Hence, we demand that a stationary rate allocatgonot only “accept-
able” for each coalition at the beginning of the game, bud #isoughout the game.
This property is called, in dynamic CGiime consistencyf the Core [10]. The
philosophy behind this definition is analogous to the timeststency of fair allo-
cations, in Theorem 35. Hence, if the Core property of arcation is time con-
sistent, then atachtime step, if any coalition faces the dilemmao*‘we withdraw
now or we cooperate forevert always prefers the second option. Therefore, we
will focus our attention on the allocations (fv, defined as follows, and we will
prove thatCo = M.

Definition 6 (Co). Co is the set of stationary state-wise allocations belongimg t
the Core of each static game, and that belong to the Core gffan games in a
time consistent fashion throughout the game, i.e.

Co:= {{r(s)}segz r(s) € Co(s),

E (Z Blr(S;) ( h(T)> e pTCo(Ts,), VT € No},
t=T
whereh(T") be the history of states/rate allocations up to tiiiie O
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Henceo is the set of stationary allocations that are maximum sus-hence
optimum for the global network, and that are “acceptable’e@mch subset of users,
in both static and long-run games, throughout the game. ¢jeme can already
claim thatCo C M. Let us show tha€o = M.

In [8], La and Anatharam computed the Core of the static gaynelying on
SCGT with transferable utilities (TU). Their approach i nompletely rigorous,
since the rate cannot be shared in any manner among the beely within
the capacity region. Nevertheless, NTU cooperative gameryhyields the same
result as [8], as we show next.

Theorem 41. The CoreCo(s) coincides with the facet (K, s) of the feasibility
region R (K, s) for the grand coalition. O

Proof. Is is known (e.g. [18]) that all the points i (K, s) solve the linear pro-
grammax,cri,s) >_rei Tk HENce, all the points i (I, s) are efficient forkC.
Moreover, in [8] it is shown that, for alt € M(K, s),

Z Tk > g, (Ag,8), VAg CK.
keAg

Hence, we can say that, for ale M(K, s), there exists no allocation belonging to
M(Ay, s) that dominates for coalition.4 7. Since any rate allocations belonging
to R(Az,s) is dominated by a rate allocation i (A7, s), then M(K,s) C
Co(s). If r ¢ M(K,s), either it is not feasible or it is not efficient fé¢. Then,
M(K,s) = Co(s). O

In the light of Theorem 41 and Lemma 21, we can easily providexgression
for Co(T's) as well.

Corollary 42. The CoreCo(T';) of the long-run gamé&', coincides with the facet
M(K,Ty). 0

Now, we are ready to claim that! = Co.

Theorem 43. The set of stationary state-wise rate allocatiof$ coincides with
Co, i.e. M = Co. O

Proof. We know thatCo C M. We have to prove that1 C Co. For Theorem 41,
if {r(s)}ses € M, then{r(s) € Co(s)}ses. Then, we just need to prove that, if
{r(s)}ses € M, then the Core is time consistent in the long-run game. &ityil
to the proof of Theorem 35, we claim that for @lle Ny,

2 (Z g'e(s1) | h<T>> =67 (L)
t=T
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where[r(I's)]ses = ®[r(s)]ses is the set of the associated long-run allocations.
Thanks to Proposition 3%(I's,.) € Co(I's,). Hence, the thesis is proven. [

Thanks to Theorem 43, the set of stationary state-wise Hatatons M gains
further significance. Not onlyM is the maximal sum-rate region, but it also coin-
cides with the set of rates which are “acceptable” both inldimg-run and in the
static games, under the definition of Core. Moreover, thee@uiterion is time
consistent, hence such rates are acceptable throughoggrine
In the next section we provide a second characterizatiofviobbased on a Coop-
eration Maintenance property.

4.2 COOPERATION MAINTENANCE characterization of M

In this section we show that, by exploiting a crucial condef@CGT, called Coop-
eration Maintenance property, we are able to provide adurtharacterization to
the setM of the maximum sum-rate stationary state-wise allocatidhg property
that we are going to define is an adaptation to our NTU scerdiriibe Coopera-
tion Maintenance property defined in [11], [20]. It claimsthat each time step,
the maximum sum-rate that coalitioh; expects to obtain if it withdraws (with-
out any chance of joining back) from the grand coalition ie atep should be not
smaller than what4 ; obtains if it withdraws (still, without a second thought) at
the current step.

Remark 4. When we say, in a game-theoretical jargon, that a coalitibn is en-
ticed towithdraw from the grand coalition, we actually mean that itdissatisfied
with its assigned rate, because, even inwwst-casescenario in which7 jams,
A 7 could achieve a better allocation. Hence, like in Sect. weawill utilize Game
Theory as a tool to measure users’ satisfaction with thegaesl rate. O

The set of allocations for which the Cooperation Mainterapoperty holds
is calledCM.

Definition 7 (CM). The set of (first step) Cooperation Maintaining allocations
CM is the set of stationary state-wise rate allocatidm$s) € M (K, s) }ses such
that, for all coalitions.4; C K and at each time step € Ny,

s i s, Tone] 2

k€A s'eS keAg

max : Z re(Cs,). (10)

r(T's; )ER(Ag.Lsy KeAs
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The intuition behind the definition of M is that, if a coalition faces the
dilemma ‘do we withdraw now or in one stefh should prefer the second option,
at any instant. In this way, by induction, no coalition is regaticed to withdraw
and the grand coalition is cohesive throughout the game.

It follows from Definition 7 thatCM C Co. Also, it is not difficult to show
that, if the (first step) Cooperation Maintenance propedids, then the:-tuple
step Cooperation Maintenance property also holds (seef§203d more general
case), i.e. if a coalition faces the dilemmdo“we withdraw now or im steps?,
it prefers the second option. Fart oo, such property suggests that whenever a
coalition faces the dilemmadt we withdraw now or cooperate forevérthen it
prefers to stick with the grand coalition forever. Not sisjmgly, this notion co-
incides with the time consistency property of the Core that @location inM
possesses, as illustrated in Theorem 43.

We remark that, in more general settingsy1 is smaller than the set of the station-
ary distributions belonging to the Core of long-run game=® (R0]). Hence, the
definition of CM requires a “higher level of satisfaction” for the playerarthe
Core. We now state that actually, in our scenand,= CM. Through this result,
we provide a second dynamic characterization of the\get

Theorem 44. The maximum sum-rate set of stationary state-wise allooati1
coincides with the Cooperation Maintaining $&t1, i.e. M = CM. O

Proof. For Proposition 31 M C M. Conversely, if an allocatiofir(s) }ses €
M, thenitalso belongs @o. S0,3 " 4, 7k(s) = g(a,)(Ag, s), forall Ay C K,
s € 8. Then, thanks to Lemma 21, we can say that forlejl C I, s € S:

Tk(sl) g(.Aj)(Aj7 Fsl)
ol i |z : :
ReAs | re(sw) 9a) (A7, Tsy)
which is an expression equivalent to (10). Hendd, C CM and the thesis is
proven. O

Therefore, in this section we have provided two game-thealecharacteriza-
tions for the global optimal set of allocationd, i.e.

M =Co=CM.

Hence, M coincides with the set of rat€® which are acceptable for all coalitions
throughout the game, and with the set of raidgl that make the grand coalition
cohesive at every step of the game.

5 Conclusions

In this paper we considered a quasi-static Markovian niel@égcess channel. We
studied how to allocate the rate for each user in each chatatel. Our work is
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motivated by the fact that, in the LTE technology, the stiatisof the channel are
estimated by the receiver and used at regular intervalsrforpe rate allocation.
Hence, in each possible channel state, a different rateaftin eser needs to be
allocated. We focused on the skt of allocations which are maximum sum-rate,
both in each state and in the long run process. In Sect. 3 vestigated two rate
allocation procedures, namely bottom-up and top-downughdhe latter is more
useful under a long-run perspective, it does not alwaysymedeasible allocations.
Theorem 33 offers a remedy for this. In Sect. 3.3 we demartftedxistence of an
allocation which is fair both in each state and in the long-pwocess. Moreover,
we demanded the fairness property to be time consistentoréhme37 provides a
sufficient condition for this.

While in Sect. 3 we dealt with the issue of selecting a ratecalion inside the
optimal setM, in Sect. 4 we turned our attention towards a characteoizatf the
setM in dynamic game-theoretical terms. Firstly, in Theorem 43claim that\
coincides with the Core sélo of allocations which are, in a sense, “acceptable”
for all the users, both in the static and in the long run game, ime consistency
fashion. Secondly, in Theorem 44 we state thdtalso coincides with the set of
Cooperation Maintaining allocatiordM that makes the coalition of all players
cohesive throughout the game. Therefore, all allocationd\ are both global
optimal and satisfy the users throughout the process, diogpto the criteria de-
fined byCo andC M.
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