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Abstract. Bag Of visual Words (BoW) is widely regarded as the stan-
dard representation of visual information present in the images and is
broadly used for retrieval and concept detection in videos. The gener-
ation of visual vocabulary in the BoW framework generally includes a
quantization step to cluster the image features into a limited number of
visual words. This quantization achieved through unsupervised cluster-
ing does not take any advantage of the relationship between the features
coming from images belonging to similar concept(s), thus enlarging the
semantic gap. We present a new dictionary construction technique to
improve the BoW representation by increasing its discriminative power.
Our solution is based on a two step quantization: we start with k-means
clustering followed by a bottom-up supervised clustering using features’
label information. Results on the TRECVID 2007 data [8] show improve-
ments with the proposed construction of the BoW.
We equally give upperbounds of improvement over the baseline for the
retrieval rate of each concept using the best supervised merging criteria.

1 Introduction

The codebook or Bag of Words (BoW) model is a histogram representation used
for scene description that is proven to be promising for large scale image and
video retrieval. It is usually obtained through vector quantization performed on
a number of keypoints or robust descriptors gathered from images. Each image
is in turn coded by this histogram representation.

For the generation of visual vocabulary in the BoW framework, keypoints or
Local Interest Points (LIPs) containing rich local information from images are
identified. These keypoints are described using local image descriptors such as
Scale Invariant Feature Transformation (SIFT) [5] resulting in a 128 dimensional
feature vector and are clustered to form the visual codebook. This quantization
is usually performed using any unsupervised clustering algorithm, like e.g. k-
means. The clustering process divides the feature space into adjacent Voronoi
cells where the cluster centers are the words of the visual vocabulary. After
quantization of the feature space an image can be represented by a histogram
where the bins of this histogram count the number of visual words in each cell.
This histogram is then used for training the classifier; typically the two class
Support Vector machines (SVM).



Image description in the BoW framework generally faces two important is-
sues. The first is that generating the visual vocabulary through unsupervised
quantization from tens of thousands of low level descriptors does not capture
semantic context as category information is not accounted for during clustering.
Doing so the expressive or discriminative power of the vocabulary is affected
as only overall distortion is minimized and category information is not used in-
creasing the semantic gap between the concept and the mid-level BoW feature.
This category information should be used in the vocabulary generation to build
class specific visual words. The other problem with codebook representation is
choosing the vocabulary size. Typical size of visual vocabulary ranges from 200
to 5000 words. The categorization performance usually increases with the dic-
tionary size but this affects the retrieval efficiency and also the generalization
ability of the vocabulary over noisy descriptors. There is therefore a need to
find a compromise between the dictionary size and its discrimination ability. We
present a dictionary construction method in this paper, to address these issues,
for generating discriminative codebooks to improve retrieval results.

The problem of increasing the discriminative power of BoW model has been
attacked by many authors in the recent years. Wang [9] builds a multi-resolution
codebook by adding a new codeword at each step using hierarchical clustering
and a selection criterion based on Boosting. This is done to find a compro-
mise between a small codebook that lacks discriminative power and a large one
that may result in overfitting. Perronnin et al. [7] represent each image with a
bipartite histogram by building universal and class specific vocabularies using
maximum likelihood estimation. Lin et al. [4] use a similar principle to bridge
the semantic gap between the concept(s) depicted in the image and the low
level features. k-means is used to generate separate class specific vocabularies
followed by an agglomerative clustering on class codebooks to get the uinversal
vocabulary. In both these works an image is represented by a set of histograms,
one per class, using the amalgamated codebooks. Hao and Jie [3] present an im-
proved BoW algorithm for scene recognition exploring discriminative power of
codewords when representing different scene categories. They obtain a weighted
histogram to code every image that highlights the discriminative capabilities of
each codeword for each category.

For generating a discriminative codebook we follow a two step clustering
framework as proposed by Winn et al. [10], where they compress an initial large
dictionary by optimizing a statistical measure of discrimination that finds a com-
promise between low intra-class variance and inter-class discrimination. Moos-
mann et al. [6] build a set of randomized decision trees using the class labels
with the leaf of a tree representing a spatial code (visual word). They calculate
information gain of the split at each step of tree growing and use it as a threshold
to split the tree based on the descriptor dimension at that level. Similarly, we
use en entropy measure to merge clusters, achieved through an initial clustering,
by minimizing information loss.

We use a clustering method with only a few k-means’ mean shift iterations
using a better centers initialization based on [1] to generate a larger than required



number of clusters before doing a supervised mapping significantly reducing
the number of clusters (visual words). We initially merge neighboring clusters
based on entropy minimization criteria that allows the generation of non-convex
connex clusters. We present three such merging criteria in order to increase
the discriminative power of BoW with an increase in the retrieval performance
over the baseline. We then relax certain constraints in our merging criteria to
allow the generation of non-connex clusters. We have used SIFT descriptors [5]
calculated on keypoints extracted from images, contrary to dense sampling [10,
6], labeled with one or more classes rather than segmented hand-labeled images
[10].

We also show that using our dictionary construction from supervised merging
a smaller dictionary gives the performance comparable to the retrieval perfor-
mance given by a dictionary upto 8 times its size.

The rest of this paper is organized as follows. Section 2 gives the detailed
description of the two step supervised clustering algorithm and its three variants.
In Sect. 3 we discuss detailed experimentation and present the results with the
improvements proposed. Finally Sect. 4 concludes the paper.

2 Supervised Clustering Based on Entropy Minimization

In the two step clustering paradigm, Fig. 1, first of all the nearest neighbors
are quantized into a large number of visual words using k-means. The number
of initial visual words (k-means clusters) is p ∗ D, where D is the size of the
desired dictionary. In the second step the number of clusters is reduced by 1/p
by merging neighboring clusters repeatedly based on entropy driven information
loss minimization criterion.

2.1 Concept Distribution Entropy Minimization

For deriving this minimization criterion we have the m concepts Xl ∈ X, l =
1 . . .m and we know with what concept(s) is each image I labeled. Thus we
know what concept is represented by each descriptor (keypoint). Now suppose
as a result of the initial clustering we have p ∗ D clusters, and for each cluster
Ci ∈ C, i = 1 . . . p ∗D we know the labels of the keypoints assigned to it (we are
only treating keypoints coming from labeled shots). For finding the number of
keypoints belonging to a concept Xk in the cluster Ci we consider that there may
exist shots that are labeled with more than one concept. Also generally keypoints
extracted from a shot are assigned to different centers. Thus we compute the
number of occurences of concept Xk in the cluster Ci as:

|Xk ∈ Ci| =
∑

IlabeledwithXk

|Keypoints(I) ∈ Ci|
|Keypoints(I)|

(1)

We find next the conditional probability of the concept Xk given the cluster Ci:

p(Xk/Ci) =
|Xk ∈ Ci|∑
l |Xl ∈ Ci|

(2)



Unsupervised clustering 
p*D visual words 

Supervised grouping 
D visual words 

Fig. 1: Supervised merging of visual words

The set Nb{i} contains the neighbors of the cluster Ci where two clusters are
neighbors if the midpoint between their centers is closer to those two centers than
to any other center. When joining two neighboring clusters Ci and Cj , where
j ∈ Nb{i}, all the keypoints in Cj are assigned to Ci, and all the neighbors
of Cj are added to those of Ci. Cj is then deleted from the set of clusters i.e.
C = C\Cj .
The entropy of the concept distribution given a clustering is given by:

H(X/C) = −
∑
C

p(C)
∑
X

p(X/C) log p(X/C) (3)

which is increased (or stays the same) when any two clusters are merged.
The combination Ci∪Cj that minimizes the increase in entropy is our target

combination and those two clusters are merged together.

argmin
Ci∪Cj ,j∈Nb{i}

H(X/C) (4)

Thus the entropy H(X/C) is calculated for a given clustering C. This step
is repeated p ∗D −D times until the desired number of clusters D is reached.

2.2 Concept Dependent Entropy Minimization

The entropy minimization principle can be equally used to find a merge of clus-
ters independently for each concept using entropy of only that concept. This way
we shall have one combination of clusters per concept and thus we will end up
with a different BoW representation for each semantic concept. Using the above



notation, for the concept Xk ∈ X the entropy is given by:

Hcd(Xk/C) = −
∑
C∈C

[
p(Xk, C) log p(Xk/C) + p(Xk, C) log p(Xk/C)

]
(5)

where p(Xk, C) = p(C)− p(Xk, C) and p(Xk/C) = 1− p(Xk/C).

Now for each possible combination of two neighboring clusters we will calcu-
late the entropy to find the best merge by choosing the two clusters that result
in minimum entropy increase, given by:

argmin
Ci∪Cj ,j∈Nb{i}

Hcd(Xk/C) (6)

This step is repeated, reducing the total number of clusters by one each time,
until the desired number of clusters is reached. This whole process is repeated
for each concept resulting in a different clustering for each concept as well as a
different bag of words model. An image is thus represented by a set of histograms,
one per concept.

2.3 Average Concept Entropy Minimization

Another possibility to obtain a clustering combination is by combining the out-
put of the concept dependent clusterings. This is done by taking the sum of
entropy of all concepts for a merge of two clusters and then minimizing that
sum for every possible combination of clusters. This clustering of average over
all concepts is given by:

argmin
Ci∪Cj ,j∈Nb{i}

∑
Xk∈X

Hcd(Xk/C) (7)

where Hcd(Xk/C) is the concept dependent entropy as given in (5).

2.4 Relaxing Constraints

Based on the results shown in Sect. 3 we select the best entropy minimization
based clustering criterion and make few changes. To reduce the bias of the labeled
keframes over the unlableled ones we include all the keypoints in the second
step of clustering. This is done by including all the unlabeled keypoints as the
(m+1)th concept during the calculation of the entropy of the concept distribution
and recalculating the mapping based on entropy minimization. Furthermore we
relax the constraint of merging only neighboring clusters where any two clusters
(not necessarily neighbors) can be mapped together in the high dimensional
disjoint clustering space. This allows the generation of a non-connex BoW model.
These alterations are further explored in the Sect. 3 discussing the experiments
and results.



Table 1: Mean Average Precision for 20 concepts using three entropy minimiza-
tion based mapping criteria

Dictionary Size K-means Min Ent Av Cd Cd

500 0.0739

1000 to 500 0.0795 0.0792 0.0757

2000 to 500 0.0801 0.0791 0.0758

4000 to 500 0.0813 0.0775 0.0727

3 Experiments

We present here experiments carried out on the TRECVID 2007 Sound and
Vision database comprising 219 videos [8]. The training corpus consists of 110
videos and the other half is used for tests. Twenty semantic concepts are used to
demonstrate the results. We have used 1 vs all SVM classifiers with chi-square
kernel of degree 2 using the LIBSVM [2] package for each concept.

3.1 Supervised Clustering Results

Initially we evaluate the performance of supervised clustering for a resulting
dictionary of 500 visual words using the three types of entropy minimization
criteria. In our experiments the maximum value of p, as described in Sect. 2,
is 8. That is the maximum size of initial visual dictionary obtained through
k-means is 8 times the size of the desired supervised dictionary. To obtain a
large initial dictionary we have used k-means++ algorithm [1] for a better
initialization in order to avoid a large number of k-means iterations, which is
costly for a large number of centers. K-means++ is an initialization method that
selects initial seeds far from each other while minimizing the effects of outliers.
This is done by chosing a new cluster centers with a probability propotional
to its distance to the closest center already chosen. After the initialization 10
normal k-means iterations are performed to generate initial visual dictionaries.

Using these large dictionaries supervised mappings are done from clustering
space with 1000, 2000 and 4000 centers to 500 centers by merging neighboring
clusters using entropy minimization criteria. In all three cases the final dictionary
generated is always 500-word big which is then used to represent images as
histograms. SVM classifiers are trained for each concept and independently for
each set of histograms obtained through entropy minimization based mappings.
The Mean Average Precision (MAP) for all 20 concepts is shown in the Table 1
for the 3 mapping criteria and for the 3 initial cluster sizes, along with the MAP
obtained using 500 visual words achieved directly through k-means (baseline).

As the number of initial centers increases the individual concept dependent
entropy minimization criteria for mapping suffers from overfitting as it gener-
ates dictionaries for each concept independently. The image level labeling does
not translate well to increase the discriminative power of the BoW model built
for each concept separately. This effect is carried on to the average (of concept



dependent) entropy minimization as the retrieval performance is adversely af-
fected with the increase in the number of initial cluster centers in the first step
of clustering.

Contrarily, merging neighboring clusters using minimization of the entropy
of concept distribution given clustering improves retrieval performance with the
increase in the size of the initial number of centers. Thus this merging criterion
is used for evaluating the retrieval performance of 1000 word dictionaries ob-
tained from larger dictionaries and we see improved performances as the initial
dictionary size increases. Figure 2 shows concept-wise Average Precision (AP)
results along with the MAP for the two baselines of 500 and 1000 visual words
and entropy minimization based mappings with the value of p selected from 2,
4 and 8. Concepts like Airplane Flying and Person Playing Soccer that have a
very low number of positives in the training set are adversly affected in their per-
formance as the number of initial centers is increased. The MAP for 1000-words
dictionary increases from 0.0796 (baseline) to 0.0831 with 8000 initial centers.
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Fig. 2: Supervised clustering scores for 20 concepts using the first (best) entropy
minimization criterion for (a) 500 and (b) 1000 visual words dictionaries



3.2 Alternative Mappings

We test retrieval performance for three simple modifications in the clustering
criterion. To see the effect of including the unlabeled examples in the second
step of our clustering framework we include all keypoints coming from the unla-
beled keyframes as a new concept making the total number of concepts m + 1.
The rest of the method remains the same which is the best performing entropy
minimization criterion from the previous sub-section.

The second alternative is the relaxation of the constraint that only neighbor-
ing clusters can be merged, and the third version includes the unlabeled features
while merging clusters over the whole clustering space. The MAP scores for a
final dictionary of 500 words are presented in Table 2. Here we see good perfor-
mance for the merging of 1000 initial clusters into 500 for the three alternatives
and then a decline in the performance as the number of initial clusters is in-
creased. This may be due to some overtraining as the number of choices for
merging clusters are increased with the relaxation of constraints. However the
performance is still better than the baseline results in each case.

Table 2: Mean Average Precision for 20 concepts using three alternatives of the
concept distribution entropy minimization based mapping

Dictionary Size Unlab All Space Unlab All Space

1000 to 500 0.0803 0.0805 0.0794

2000 to 500 0.0788 0.0795 0.0795

4000 to 500 0.0777 0.0755 0.0780

Finally we give upper bounds of improvement for each concept with highest
average precision score selected from the retrieval results of different initial dic-
tionary sizes for concept distribution entropy minimization with (i) neighboring
constraint, (ii) inclusion of unlabeled features, (iii) relaxing the neighbor con-
straint and (iv) the inclusion of unlabeled features with the relaxation of neigh-
bor constraint. Tables 3-(a) and 3-(b) shows the upper bounds of improvements
for the two step clustering performed with its alternatives showing significant
increase in the individual score for each concept for 500 and 1000 word final dic-
tionary sizes. Individual scores for each concept improve significantly with only
the concepts Person eating and Traffic intersection showing little improvement
as their performance is already quite high. An exception is the concept Airplane
flying which shows a decrease in performance with supervised merging for 1000
words dictionaries as shown in Table 3-(b).

3.3 Small and Informative vs Large Dictionaries

In the previous subsections we have shown results of our technique for building
a visual dictionary and compared them to retrieval results of the baseline using



Table 3: Upperbounds of concept-wise improvements for dictionaries of (a) 500
visual words and (b) 1000 visual words

(a)

Semantic Concept k-means Entropy Unlabeled All-space Unlab All improvment

Airplane flying 0.0126 0.0257 0.0266 0.0266 0.0212 111%
Boat/Ship 0.0709 0.1005 0.1041 0.1149 0.1015 62%
Bus 0.0123 0.0170 0.0140 0.0248 0.0168 103%
Cityscape 0.0564 0.0661 0.0522 0.0652 0.0660 17%
Classroom 0.0132 0.0211 0.0265 0.0463 0.0197 250%
Demonstration 0.0158 0.0249 0.0239 0.0325 0.0168 106%
Hand 0.0809 0.0938 0.0962 0.0879 0.0872 19%
Nighttime 0.1037 0.1430 0.1487 0.1545 0.1460 49%
Singing 0.0415 0.0423 0.0399 0.0367 0.0435 5%
Telephone 0.0055 0.0072 0.0072 0.0074 0.0071 34%
Chair 0.0476 0.0581 0.0618 0.0576 0.0553 30%
Doorway 0.0865 0.0915 0.0857 0.0840 0.0810 6%
Female face closeup 0.0809 0.1045 0.1040 0.0959 0.0984 29%
Infant 0.0110 0.0233 0.0131 0.0170 0.0158 111%
People dancing 0.0116 0.0219 0.0218 0.0301 0.0196 159%
Person eating 0.2612 0.2664 0.2653 0.2714 0.2683 4%
Playing music 0.0779 0.0945 0.0926 0.0949 0.0884 22%
Person playing soccer 0.0081 0.0203 0.0179 0.0137 0.0138 151%
Person riding bicycle 0.1820 0.1926 0.1980 0.1949 0.2100 15%
Traffic intersection 0.2971 0.3036 0.3065 0.2947 0.3096 4%

MAP 0.0739 0.0859 0.0853 0.0875 0.0843

(b)

Semantic Concept k-means Entropy Unlabeled All-space Unlab All improvment

Airplane flying 0.0208 0.0147 0.0130 0.0197 0.0178 -5%
Boat/Ship 0.1136 0.1129 0.1016 0.1167 0.1080 3%
Bus 0.0107 0.0235 0.0194 0.0212 0.0317 198%
Cityscape 0.0765 0.0720 0.1042 0.0697 0.0591 36%
Classroom 0.0140 0.0181 0.0177 0.0394 0.0197 181%
Demonstration 0.0130 0.0366 0.0339 0.0335 0.0332 181%
Hand 0.0876 0.1014 0.0997 0.1023 0.0959 17%
Nighttime 0.1297 0.1585 0.1912 0.1712 0.1570 47%
Singing 0.0282 0.0317 0.0397 0.0405 0.0367 44%
Telephone 0.0058 0.0074 0.0066 0.0059 0.0063 29%
Chair 0.0534 0.0616 0.0571 0.0581 0.0579 15%
Doorway 0.0792 0.0855 0.0825 0.0757 0.0777 8%
Female face closeup 0.0877 0.1049 0.1038 0.0957 0.1014 20%
Infant 0.0173 0.0231 0.0107 0.0151 0.0139 33%
People dancing 0.0238 0.0174 0.0295 0.0191 0.0181 24%
Person eating 0.2643 0.2643 0.2668 0.2694 0.2657 2%
Person playing music 0.0758 0.0860 0.0890 0.0830 0.0790 17%
Person playing soccer 0.0109 0.0111 0.0129 0.0120 0.0119 18%
Person riding bicycle 0.1839 0.1923 0.1875 0.1912 0.2069 13%
Traffic intersection 0.2967 0.3045 0.3014 0.2978 0.3024 3%

MAP 0.0796 0.0864 0.0884 0.0869 0.0850

a dictionary obtained through sufficient number of k-means iterations. In those
cases the sizes of the baseline and supervised dictionaries were same (500 words
and 1000 words). We claimed that the retrieval performance of using dictionary
obtained through supervised merging matches that of using a larger dictionary
which is evident from the results in the Table 4.



Table 4: Comparing MAP for 20 concepts using three large dictionaries vs cor-
responding smaller supervised dictionaries of (a) 500 and (b) 1000 visual words

(a)

1000 2000 4000
k-means 500 k-means 500 k-means 500

0.0796 0.0795 0.0814 0.0801 0.0830 0.0813

(b)

2000 4000 8000
k-means 1000 k-means 1000 k-means 1000

0.0814 0.0806 0.0830 0.0816 0.0847 0.0831

SVM classifiers were trained for larger dictionaries containing 1000, 2000,
4000 and 8000 visual words. These are the dictionaries obtained in the first
stage of the supervised merging using k-means. The training time for these larger
BoWs is much higher and the performance is comparable to the smaller super-
vised BoW models. For example the 8 times smaller dictionary only results in
2% performance decrease as can be seen in the last two columns of the Table
4-(a) and less than 2% performance decrease as evident in the last two columns
of the Table 4-(b).

The difference in performance will increase as the size of the first step dictio-
nary increases as it becomes richer and richer. While merging helps to capture
important semantic information the performance of the resulting supervised dic-
tionary will be limited as the smaller dictionary will always be a coarser repre-
sentation of the visual space.

As far as the computation overhead for supervised clustering is concerned it
only uses the information from the image labels. Thus it does not perform any
direct computation on the image features. The time complexity of supervised
clustering is O(n3), with n = p∗D, which is the cost borne once at the clustering
stage during training phase giving a mapping from p ∗ D visual words to D
visual words. After the two step clustering the costs of baseline and supervised
dictionary for the remaining stages of video retrieval are similar.

4 Conclusions

We have seen that the discriminative ability of the Bag of Words model increases
when performing the two step supervised clustering. The performance of a much
smaller dictionary obtained through supervised merging reaches that of larger
dictionaries obtained through k-means. The merging step is fast and incorporates
already available label knowledge for calculation of the entropy. Although class
specific merging of clusters overfits the BoW representation the performance is
high as long as the initial number of clusters is kept low.
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