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Abstract—Epidemic spreading is one of the most popular
bio-inspired principles, which has made its way into computer
networking. This principle naturally applies to Opportunistic
or Delay Tolerant Networks (DTNs), where nodes probabilisti-
cally meet their neighbors thanks to mobility. Epidemic-based
algorithms are often the only choice for DTN problems such
as broadcast and unicast routing, distributed estimation etc.
Existing analyses of epidemic spreading in various contexts only
consider specific graph geometries (complete, random, regular
etc) and/or homogeneous exponential node meeting rates. In
addition, in wired networks, synchronous communication is
usually assumed.

In this paper, we relax these assumptions and provide a
detailed analysis of epidemic spreading in DTNs with heteroge-
neous node meeting rates. We observe the special properties of
a Markov model, describing the epidemic process and use them
to derive bounds for the delay (expectation and distribution).
We apply our analysis to epidemic-based DTN algorithms for
routing and distributed estimation and validate the bounds
against simulation results, using various real and synthetic
mobility scenarios. Finally, we empirically show that the delay
distribution is relatively concentrated, and that, depending on
graph properties (communities, scale-freeness), the delay scales
very well with network size.

I. INTRODUCTION

Opportunistic or Delay Tolerant Networks (DTNs) are
envisioned to support communication in case of failure or
lack of infrastructure (disaster, censorship, rural areas) and to
enhance existing networks (e.g., offload cellular traffic), en-
abling novel applications. Nodes harness unused bandwidth
by exchanging data when they are in proximity (in contact).
The data is then stored by the nodes, carried through
their mobility and eventually forwarded to destinations, thus
achieving multihop communication, despite the lack of end-
to-end paths.

Due to the inherent uncertainty and randomness of this
type of network, the epidemic spreading principle is central
to many DTN algorithms [1], [2], [3]. Here, epidemic
spreading operates as follows: given a piece of informa-
tion/message m, every node carrying a copy of m must
further replicate the message to every node it encounters
(provided the encountered node does not already have
m). Thus, information/messages will spread almost like an
epidemic through the network, with every node eventually
receiving a copy of m. Modifications of this basic algorithm
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include spreading the message with a probability less than
� at each contact (“gossip”).

In DTNs, algorithms based on the epidemic spreading
principle have been extensively studied, at first through
lengthy and complex simulations and later through analytical
models, based on Markov chains [4] and fluid approxima-
tions [5], [6]. For the sake of tractability, state-of-the-art
epidemic spreading models mainly rely on simple mobil-
ity assumptions (e.g. Random Walk, Random Waypoint),
where node mobility is stochastic and independent iden-
tically distributed (IID). Yet, studies of real scenarios [7],
[8] reveal more complex structure, comprising considerable
heterogeneity in node mobility, questioning the usefulness
of these models’ predictions.

A more realistic analysis of the basic principle of epi-
demic spreading is thus important for all the algorithms that
it underlies. These range from routing to distributed estima-
tion and including content dissemination. For example, DTN
broadcast routing or flooding is achieved via the epidemic
propagation of the broadcast message. Moreover, the first
algorithm proposed for DTN unicast routing is the well-
known epidemic routing [1] and while more sophisticated,
resource-friendly routing schemes have been proposed, epi-
demic routing still serves as the key benchmark against
which any scheme must compare in terms of delay and
delivery probability. The epidemic spreading principle is also
employed in the distributed estimation of global network pa-
rameters, both in DTNs [2] and in traditional networks [9].
Network size [10], average buffer occupancy [11] or overall
network storage are just a few examples of global network
parameters needed by DTN algorithms to tune themselves
and provide the best performance they can.

In this paper, we analyze the delay of epidemic spreading
under a much larger class of node mobility patterns than
in previous studies. Previous studies model every node
pair’s meeting times with identical Poisson processes of
rate λ [5], [6], [4], or use at most a few different rates
corresponding to mobility classes [3]. Here, we use a set
of fully heterogeneous Poisson processes with rates λ i j,
unique to each node pair (i , j). We choose to maintain, at
this point, the assumption of independence (among contact
processes) and the Poisson approximation, for two reasons:
(i) for analytical tractability, as even a small departure
from the simple IID exponential model rapidly increases
complexity and (ii) we believe that the introduction of



generic, heterogeneous rates already facilitates analysis over
a significantly broader class of mobility models, which better
approximate realistic scenarios (our trace-based evaluation
validates this intuition).

The rest of this paper is organized as follows. Sec. II
presents a summary of related work and demonstrates the
difficulty of introducing heterogeneous mobility in existing
Markov models. Then, Sec. III formally defines the problem,
and describes our network model. In Sec. IV, we show how
to overcome the difficulties raised by the use of heteroge-
neous pairwise meeting rates and we derive bounds for the
delay of epidemic spreading (expectation and distribution),
in function of the network size and the conductance of the
DTN contact graph. Next, in Sec. V, we validate our bounds
against simulation results on varied synthetic and real-world
DTN traces. Moreover, we empirically show that the delay
distribution is concentrated, and that, depending on certain
properties of the DTN graph (community structure, scale-
freeness), the delay scales very well with network size. In
Sec. VI, we discuss applications of our analysis to some
DTN algorithms. Finally, we summarize our conclusions and
future work in Sec. VII.

II. RELATED WORK AND CHALLENGES

Early efforts to evaluate the performance of epidemic
spreading in Opportunistic Networks relied on lengthy and
complex simulations, using a limited number of simple
mobility models (Random Waypoint, Random Direction).
Later, analytical studies emerged, using ordinary differential
equation models (ODEs) [5], [6], inspired from epidemiol-
ogy, on the one hand and Markovian models [4], on the
other hand. In ODE models, the epidemic spreading process
is treated as a fluid flow and the number of copies is
approximated as a continuous-valued function of time and
the node meeting rate. With Markov models, the spread of
a message is modeled with a chain, whose states are the
number of copies in the network.

As mentioned above, these studies rely on simple, identi-
cal node mobility assumptions, where nodes meet each other
at independent identically distributed (IID) time intervals.
There is a unique meeting rate λ, describing the contacts of
every node pair. As a result, all nodes are equal and can be
treated as a group, rather than individually. This is reflected,
e.g., in epidemic spreading Markov models, where only the
number of message copies is modeled, without regard for
the specific nodes carrying those copies, as in Fig. 1. This
results in simple chains, with state spaces the size of the
network, which can easily be solved for delivery delays and
ratios.

Figure 1. Markov chain from [4]

To incorporate some of the non-trivial structure of mo-
bility and meeting patterns observed in real world experi-
ments [7], [8], newer analyses [3] introduce a small set of
different mobility groups: node mobility is different across
groups, but inside the same group, nodes are still identical.
This results in a relatively complex partial differential equa-
tion (PDE) model, with only limited additional diversity in
the node mobility.

Here, we use individual pairwise meeting rates λ i j for
each node pair (i , j) to model the mobility of nodes. In this
case, it is a priori not possible to group nodes (unless we
make additional restrictive assumptions about the rates λ i j).
Indeed, while in Fig. 1, a state is simply the number of
message copies in the network, with our model, the specific
nodes carrying those copies need also be modeled. As a
result, for each state α of the simple Markov chain, there
are �Nα� states in the new Markov chain (with α the current
number of message copies). That is a state space of size �N−
�, resulting in a chain that could only be solved numerically
at a rapidly increasing complexity even for modest network
sizes. However, this provides no analytical insight into the
effect of different contact patterns on performance nor the
key mobility characteristics that make the epidemic delay
small or large.

One of the contributions of our work is to provide a deeper
analytical insight into this complex model, by connecting in
a new way the delay of epidemic spreading to a fundamental
property, conductance, of a well defined graph related to
the mobility process in hand. While this approach allows us
to only derive performance bounds (a reasonable penalty
for tractability), conductance, as we shall see, is closely
related to macroscopic mobility patterns such as community-
like (clustering) behavior, and is thus directly interpretable.
Furthermore, using this approach we are able to show that
the delay of epidemic spreading in DTNs has good scaling
properties, as the conductance of DTN graphs is relatively
unaltered by increasing network size.

Conductance has already been related to the delay of
epidemic spreading, in the broader context of traditional
computer networking. There, the push-pull algorithm has
recently received significant attention. This algorithm pro-
ceeds in synchronous rounds. In each round, every node in
the network randomly chooses a neighbor to communicate
with. Then, for every communicating node pair, if one of the
two nodes has the information, both will have it at the end
of the round. Several bounds on the spreading delay of this
algorithm have been proposed and gradually improved [12],
[13], [14], [15]. However, the majority of the results are
not easily transferable to the DTN context. This is firstly,
because the considered model operates synchronously and
secondly, because of the implicit connectivity assumption,
that nodes have a set of neighbors with whom they can
communicate at will.

Only in [12], do the authors consider the asynchronous
case and obtain a tail bound which is most relevant to our
work. There, epidemic information spreading is analyzed as



an underlying routine of a distributed estimation algorithm.
An upper bound is provided for the epidemic spreading
delay, in function of the conductance of the stochastic matrix
that governs communication between node pairs. Here, we
derive an upper bound for the entire delay distribution
(instead of merely the tail) and we empirically show that our
bound is tighter and that the distribution is concentrated.

III. PROBLEM STATEMENT AND MODEL

Let V be our Opportunistic Network, with �V � = N nodes.
V is a relatively sparse ad hoc network, where node density
is insufficient for establishing and maintaining (end-to-end)
multi-hop paths. Instead, data is stored and carried by nodes,
and forwarded through intermittent contacts established by
node mobility. A contact occurs between two nodes who are
in range to setup a bi-directional wireless link to each other.

Epidemic spreading in its simplest form is defined as:
Definition 1 (Single-source spreading (SSS)): Given the

network V , start from an arbitrary node i ∈ V and dis-
seminate a message mi to all nodes in the network, via a
(mobility-driven) sequence of local exchanges between node
pairs.

A. Network and Time Model
We describe the network V using a marked point process(Mn)n∈ = {Tn , σn}, where Tn denotes the starting time of a

contact and σn = (i , j,∆n) denotes the two nodes in contact
i , j ∈ V and the duration of the contact ∆n [16], [17]. The
random variables Jn = Tn − Tn−� are the times between the
initiations of two successive contacts.

We make the following assumptions:
1) (Tn)n∈ are epochs of a Poisson process – the times

Jn are IID with intensity1 λ, dependent on network
sparsity.

2) Tn < Tn+� , ∀n ∈ – no two contacts start at the same
time, i.e., Jn > �.

3) ∆n << Jn – the duration of a contact is negligible com-
pared to the time between two contacts, but sufficient
for all data transfers to take place. Thus, σn = (i , j).

4) (σn)n∈ is a discrete IID process, with common distri-
bution [σn = (i , j)] = pci j. This is the pairwise contact
probability, that the next contact in the sequence is
between nodes i and j. Then, by item 1), the pairwise
contact rate is λ i j = pci jλ.

The memoryless (exponential) assumption is key in our
DTN model, as well as in all existing analytical studies
for DTNs. While this assumption has spurred some contro-
versy [18], Karagiannis et al. established in [19] that after a
short power law “characteristic time” of about half a day, the
inter-contact time does exhibit exponential decay. Moreover,
the authors of [20] recently showed that the observed power
law in the aggregate inter-contact time may simply be the
result of exponential inter-contacts with different rates drawn
from a given (e.g., power law) distribution (a similar fact

1Expected number of points or contact “arrivals” per time unit.

is known for random graphs with generalized node degree
distributions [21]). This further corroborates our approach
to treat heterogeneous, general contact rates. Consequently,
approximating inter-contact times with exponential variables
is well-founded, especially when focusing on residual inter-
contact times2, as in analyses of forwarding schemes.

The above defined model discretizes time in the otherwise
continuous contact process Mn , by only considering the
embedded sequence of contact events σn . We can go back to
continuous time through the marked point process intensity
λ and Wald’s equation [22]. While, for small heterogeneous
networks, this is only an approximation, as network size in-
creases, the times between events (contact events in our point
process) become increasingly smaller and network delays
consist of more and more such contact events (discrete time
units). Then, by the law of large numbers, the continuous
time delays thus computed will converge, allowing us to
focus on the embedded discrete contact process.

Under the above model, a given mobility scenario with
heterogeneous node mobility is described by its pairwise
contact probabilities pci j forming the contact probability

matrix:
Pc = {pci j}. (1)

Probabilities pci j can be either measured directly from
a given real or synthetic mobility trace (e.g. maximum
likelihood estimation of pci j for every pair); or they can be
calculated using the pair’s contact statistics (e.g. frequency),
as in [23]. We apply the former approach to all traces we
use (Table I).

In the following, we use exclusively the weighted undi-
rected graph G = (V , E), with adjacency matrix Pc .

B. Information Spreading Delay
The quantity we are analysing is the delay for the SSS

task in Def. 1 to be completed. In discrete time, the SSS
delay is an integer-valued random variable DSSS, defined on
the same probability space as our contact process (Mn)n∈ ={Tn , σn} from above. Assuming node i starts the message
dissemination at time T� and denoting by S(Tn) the (sub)set
of nodes “infected” with mi by time Tn:

DSSS = inf{n > � ∶ S(Tn) = V}. (2)

In the following, we will analyze DSSS by stages. To this end,
we define the following two classes of random variables:
partial spreading delays DSSS(α) and transition delays Dα :

DSSS(α) = inf{n > � ∶ �S(Tn)� = α}, (3)
Dα = DSSS(α + �) − DSSS(α). (4)

Thus, DSSS = DSSS(N) = ∑N−�
α=� Dα . Next, we present an

absorbing Markov model for the SSS task, which enables a
detailed analysis of the Dα’s and ultimately of DSSS.

2This is the time until the next contact for a node pair from an arbitrary
point in time. Intuitively, the residual time reflects how much time a device
must wait, before being able to forward a message to another given device.



IV. THEORETICAL DELAY ANALYSIS

We first describe our model for the SSS task, then we
analyse the expected spreading delay and finally, we show
how the delay distribution can be bounded by a related and
much simpler distribution.

A. A Markovian Model for Information Spreading

In the typical Markov chain model for epidemic spreading
(shown in Fig. 1), states are the number of copies of mi
in the network (the number of nodes “infected” with mi).
As we point out in Section II, with the introduction of
heterogeneous contact probabilities pci j instead of the “one-
fits-all” probability p, nodes can no longer be treated in
groups. As a result, for each state α of that simple Markov
chain, there are �Nα� states in the new Markov chain for
the SSS task – with α the current number of copies of mi .
(There is no “dest” state in the new chain, as the SSS task
delivers the message to all nodes.)

Denote by A(α) (with α = �, . . . ,N), the set of all α-
sized node subsets of our network V (e.g., A(�) = V ). Then,�A(α)� = �Nα� and

Ω = N�
α=�A(α) (5)

is the state space of the SSS task, where a state S ∈ Ω is a
subset of infected nodes. While the size of this state space
(�Ω� = �N − �) is prohibitive for any quantitative results, its
qualitative analysis leads to very interesting findings.

The delay of the epidemic spreading task DSSS defined
in Eq. (2) is the absorption time of the Markov chain(Xn)n∈ defined on state space Ω by the transition matrix
P in Fig. 2 (non-zero entries are shown in red) and by
the initial probability vector π(�) (with ∑N

i=� π(�)(i) = �
and π(�)(i) = � for all i > N). The absorbing state
is A(N) = {V}, i.e., the one in which every node has
mi . Transition probabilities are combinatorial functions of
pairwise contact probabilities pci j. For example, if the chain
is in state Sx with nodes {a, b, c} infected, a transition
to state Sy with nodes {a, b, c, d} infected, happens with
transition probability px y = pcad + pcbd + pccd . With probability
� − px y , the chain stays in state Sx .

Lemma 1: The matrix P has the following properties:
(i) P is an upper triangular matrix.

(ii) P is a sparse matrix, specifically a band(ed) matrix.
(iii) P is a block matrix.

Proof:
(i) Upper triangular: Spreading can only be increased: if

the message mi has currently spread to α nodes (the
chain is in state Sx ∈ A(α)), it is impossible to go back
to state Sy ∈ A(α − β), with α > β > �.

(ii) Sparse, banded: When in state Sx ∈ A(α), the choice
of successor states in the Markov chain is limited to
states Sy ∈ A(α + �). Any state Sz ∈ A(α + β), β � �
is not directly reachable (as no simultaneous contacts
occur in our model).

Figure 2. The (�N − �) × (�N − �) transition matrix P for the SSS task

(iii) Block: For every [A(α),A(α + �)] pair, there is an�Nα� × � N
α+�� block, Pα ,α+�, representing the spread of

mi to a further node, i.e., from α nodes to α+ � nodes.
Additional blocks are formed by the diagonal entries,
corresponding to each A(α).

Since all blocks model the same operation (i.e., the spread
of the message to one further node), analyzing Pα ,α+� will
provide significant insight into the properties of the entire
matrix and thus, of the SSS task. To analyze a single block,
we define a new (absorbing) Markov chain on Ω′ = A(α) ∪
A(α + �) with initial probability vector π(�)α (depending on
π(�) and on previous blocks) and with transition matrix:

A(α) A(α + �)
P′(α) = � Qα Pα ,α+�

� Iα+� �
A(α)

A(α + �) (6)

where Iα+� is the α + � identity matrix and Qα is a diagonal
matrix corresponding to A(α) in the original matrix P. Note
that, in the original matrix P, states A(α+�) are not absorbing
(there exists a Qα+� ≠ Iα+�). However, since we are only
interested in the phase α → α+ � of the spreading algorithm,
we can safely ignore that for now. As an example, the
block forming P′(�) is denoted with a box in Fig. 2, clearly
showing Q� and P�� as the upper blocks.

B. Expected Delay Analysis through Absorption
The transition delay Dα defined in Eq. (4) is the absorp-

tion time of P′(α). Its expectation [Dα] and its variance[Dα] can be obtained from the theory of absorbing Markov
chains [24]. Based on this theory, we state the lemma below:

Lemma 2: The expected transition delay [Dα] is:

[Dα] =
�Nα��
x=�

π(�)α (x)
∂(Sx) , (7)



where Sx ∈ A(α) and ∂(Sx) = ∑i∈Sx ; j∉Sx pci j is the edge
boundary of the vertex set Sx in the graph G defined by
weight matrix Pc . The initial probabilities π(�)α (x) from
vector π(�)α sum to �. A similar expression can be derived for
the variance of the delay [Dα]. Due to space limitations,
we refer the interested reader to [25].

Proof: The elements of the diagonal matrix Qα from
Eq. (6) can be written as:

qxx = � − �
i∈Sx ; j∉Sx

pci j , ∀Sx ∈ A(α); x = �, . . . , �Nα�, (8)

with pci j, the contact probability between nodes i and j.
By the theory of absorbing Markov chains [24], the

expected delay [Dα] for leaving the α → α+� phase can be
obtained from the fundamental matrix of the Markov chain
P′(α): Nα = (Iα−Qα)−�. Since Qα is diagonal, so is Nα , and
its elements nxx (with x = �, �, . . . , �Nα�) are easily obtainable
as:

nxx = �
� − qxx =

�
∑

i∈Sx ; j∉Sx p
c
i j
= �
∂(Sx) , (9)

where ∂(Sx) is the edge boundary of the vertex set Sx in
the graph G defined by weight matrix Pc .

The fundamental matrix Nα is a �Nα�×�Nα� diagonal matrix,
where each nxx = ∂(Sx)−� represents the expected time the
Markov chain P′(α) will spend in state Sx ∈ A(α) before
being absorbed, i.e., moving on to phase α + �. Therefore,
the expected absorption time of the Markov chain P′(α) (or
expected transition delay [Dα]) is a weighted sum of the
nxx ’s with the initial probabilities π(�)α (x) as weights.

[Dα] =
�Nα��
x=� π

(�)
α (x) ⋅ nxx (10)

and, with Eq. (9), this completes the proof.
Note that the edge boundary of a vertex set Sx is equal to

the edge boundary of the set’s complement Sx , i.e., ∂(Sx) =
∂(Sx). This means that the SSS task from Def. 1 exhibits
some symmetry: the expected sojourn times in states Sx ∈
A(α) and Sx ∈ A(N − α) are equal, i.e., Nα = NN−α .

However, this does not mean that the respective expected
absorption delays [Dα] and [DN−α] are also equal. This
is because the expected absorption time of a Markov chain
depends not only on its fundamental matrix, but also on its
initial probability distribution. Since the initial probability
distributions π(�)α for each phase of the SSS task depend on
the previous phases, this vector is not easily obtainable and
it is very likely that π(�)α ≠ π(�)N−α .

While we cannot obtain a closed form expression for the
expected transition delays [Dα], we can use the fundamen-
tal matrices Nα to bound them:

Theorem 3 (Moments of the delay.): The expected delay
of the SSS task is bounded as follows:

[DSSS] < � ln(N − �)
NΦ

, (11)

where Φ is the conductance of the DTN graph G, defined
as Φ =minS∈Ω �(S). The conductance of a cut �(S) is3

�(S) = ∂(S)
�S� ⋅ �S� =

∂(S)
�S� ⋅ �S� = �(S), (12)

where �S� is the cardinality of the set S.
Once again, a similar bound can be calculated for the

variance of the delay, which we omit for space reasons. The
interested reader is referred to [25].

Proof: Using Eq. (7) and the fact that π(�)α (x) < � for
all x, we bound the expected transition delay as follows:

[Dα] � �
min
x

∂(Sx) =
�

α(N − α)min
x

�(Sx) . (13)

Let the α−conductance of our DTN graph G be the minimum
conductance among partitions of size α, i.e., Φα = ΦN−α =
min
x

�(Sx), for Sx ∈ A(α) and x = �, . . . , �Nα�. Then, for all
α = �, . . . ,N − �,

[Dα] � �
α(N − α)Φα

. (14)

Since DSSS = ∑N−�
α=� Dα , using the linearity of expectation

and the two above inequalities, we obtain:

[DSSS] � N−��
α=�

�
α(N − α)Φα

. (15)

This is a relatively tight bound, however, it is not easily
interpretable. To this end, we observe that Φα � Φ for all
α = �, . . . ,N − � and obtain:

[DSSS] � N−��
α=�

�
α(N − α)Φ <

� ln(N − �)
NΦ

. (16)

and this completes the proof.
Naturally, the bound in Thm. 3 can also be calculated

for the partial spreading delays DSSS(α), defined in Eq. (3).
This can be done by simply stopping the sum in Eq. (16) at
the desired stage. This results in:

[DSSS(α)] � α�
β=�

�
β(N − β)Φ <

�
NΦ
�ln α(N − �)

N − α � . (17)

Note that, to obtain these bounds, we used the exact aver-
age delay formula and essentially replaced all cut volumes
∂(Sx) for partitions of a certain size α, by the minimum cut
volume for that size, α(N−α)Φα . Consequently, in scenarios
where the contact graph does not have any well-defined
communities or if those communities are relatively small,
the bound is close to the actual delay value. Conversely,
if the contact graph exhibits larger and more defined com-
munities (i.e., well connected vertex subsets, with weaker
links towards the outside), the bound is somewhat looser. In
Section V, we will in fact observe this subtle distinction on
our various traces.

3This is one of several definitions of conductance to be found in the
literature. We use it as it provides the best bound.



MIT INFO HCMM SLAW

Scale and context �� campus students & staff �� conference attendees ��� nodes ��� nodes
Structure (from [26]) � communities no strong communities �� communities Hurst param. h = �.��
Period � months � days �.� months � months
Scanning Interval ���s (Bluetooth) ���s (Bluetooth) N/A N/A
# Contacts total �� ��� �� ��� � ��� ��� ��� ���

Table I
MOBILITY TRACES CHARACTERISTICS.

C. Bounding the Delay’s Distribution
In addition to the mean epidemic spreading delay, it is

important to know the probability that the spreading is
completed within a certain timeframe. This is practically
relevant for most algorithms based on epidemic spreading.
For example, in routing, this translates to the delivery proba-
bility/ratio. In this section, we show how to construct a new
and much simpler Markovian model, whose absorption time
distribution upper bounds the absorption time distribution of
P, that is DSSS.

Theorem 4 (Bounding Markov Chain): The random vari-
able DSSS, the absorption time of P, is upper bounded (in
the usual stochastic order) by D̂SSS, the absorption time of
the discrete-time pure-birth Markov chain P̂ (Fig. 3) [27]
with initial probability distribution π̂(�) = (�, �, . . . , �).

Figure 3. The bounding pure-birth Markov chain

Proof: The distribution of DSSS is a discrete phase-type
distribution (a mixture of geometric random variables). We
note that DSSS = ∑N−�

α=� Dα and we will once more use the
stages of the spreading process to analyze this distribution.
The random variables Dα are weighted sums of geometric
random variables. More precisely, note that, for each state
S ∈ Ω, the time spent in this state is geometrically distributed
with success probability ∂(S) (success means leaving the
state). Therefore, for all α = �, . . .N − � and all x = �, . . . , �Nα�
the variable Dx(α) ∼ �(∂(Sx)) is the delay of leaving state
Sx .

Further, we recall that we denoted by π(�)α the initial
probability vector for stage α. The probability that stage
α starts in state Sx is π(�)α (x) and ∑x π

(�)
α (x) = �.

Let D̂α ∼ �(α(N − α)Φα) be the delay of stage α in
the Markov chain P̂. Note that this delay is equal to Dx�(α),
where x� is the index of the cut achieving Φα , the minimum
α−conductance. Then, the delay of the α → α + � stage in
the original Markov chain P is

Dα =
�Nα��
x=� π

(�)
α (x) ⋅ Dx(α) �

�Nα��
x=� π

(�)
α (x) ⋅ D̂α (18)

= D̂α

�Nα��
x=� π

(�)
α (x) = D̂α , (19)

where “�” denotes the usual stochastic order (inequality in
complementary cumulative distribution function (CCDF)).
Consequently,

DSSS = N−��
α=� Dα � N−��

α=� D̂α = D̂SSS (20)

and this completes the proof.
The bounding delay D̂SSS is a simple (non-weighted)

convolution of geometric distributions. Denoting the success
probabilities pα = α(N−α)Φα , the probability mass function
of this variable is given by [28]:

[D̂SSS = �k] = �N����
α=� wα pα(� − pα)k−� , (21)

where the weights wα are defined as:

wα = �N����
β=�; β≠α

pβ
pβ − pα (22)

and ∑�N���α=� wα = �. This holds for all k � �N���, provided
that pα ≠ pβ for all α ≠ β.

Thm. 4 also holds if we replace all Φα with Φ in Fig. 3.
In this case, the weights wα simplify to:

wα = �(−�)α−��Nα�, if N is even,
(−�)α−� �� − �α

N � �Nα�, if N is odd.
(23)

The probability mass function of the partial spreading delay
DSSS(α) can be calculated in the same way for α < �N���,
by simply stopping the summation in Eq. (21) at the desired
stage α. A formula can also be derived for �N��� � α < N−�,
but it is more involved.

Similarly to the expected delay bound, the above distri-
bution bound is more or less tight depending on the strength
and size of node communities in the analyzed contact graph.

V. EMPIRICAL ANALYSIS

In this section, we validate the results of the analysis
against simulation results for the SSS task, using well known
real world traces as well as synthetic mobility models. Then,
we show that the delay distribution of the SSS task is
concentrated and that the delay has good scaling properties,
as the conductance of considered DTN graphs is relatively
unaltered by increasing network size.



(a) α−conductances Φα vs. α (b) [DSSS] from Eq. (11) (c) Coefficients of variation for DSSS

(d) DSSS CCDF for HCMM (e) DSSS CCDF for Infocom (f) DSSS CCDF for MIT (g) DSSS CCDF for SLAW

Figure 4. Prediction accuracy and concentration for the delay of the SSS task

A. The Accuracy of the Bounds
To cover a broad range, we use two real-world connectiv-

ity traces and two synthetic mobility traces for validation:
(i) the Reality Mining trace (MIT) [7], (ii) the Infocom
2005 trace (INFO) [29], (iii) a synthetic scenario created
with the HCMM mobility model (HCMM) [30] and (iv) a
synthetic scenario created with the SLAW mobility model
(SLAW) [31]. Their characteristics are shown in Table I.

For all traces, we obtained the contact probability ma-
trix Pc , using a maximum likelihood estimator for the
meeting probability of each node pair. We then calculated
approximations for the α−conductances Φα – the minimum
conductance among partitions of size α, defined just before
Eq. (14) – of the weighted graph with adjacency matrix Pc ,
using the graph partitioning package Metis [32]. Metis uses a
very fast partitioning algorithm (linear running time) and, as
shown in [33], it produces very high quality partitions, with
conductance values close to theoretical lower bounds. In fact,
within the partitions produced by Metis there are sometimes
even disconnections, resulting in conservative conductance
values and thus quite conservative bounds in our analysis.

For each graph and each cluster size, we take the mini-
mum α−conductance Φα over �� ��� Metis runs. We plot the
resulting α−conductances of our traces for all α values in
Fig. 4(a)4. This plot is called the Network Community Plot
(NCP) [34] and it offers significant insight into the graph’s
community structures at various scales (α values).

Increasing NCP curves mean that the edge boundaries,
∂(S) = ∑i∈S ; j∉S pci j, consistently increase with α = �S�. That
is, no subset of size α distinguishes itself from the rest of

4For better visualization, the α−conductances are normalized by the
duration of the traces. This avoids curve overlaps, while keeping the trends.

the network, suggesting an absence of community structure.
This is the case of the Infocom and SLAW graphs, also
recognized in [26]. For these traces the delay bounds will
be quite close to the empirical values for these traces.
This is also true for the HCMM trace, where the NCP
curve is almost constant, due to the very small built-in
communities (�� nodes each). On the other hand, the MIT
trace exhibits relatively sudden dips in conductance values
(around α = �.�N) as the partition size α increases. This
attests the existence of strong and relatively large (∼ �.�N
nodes) communities in this trace, as reported also in [26].
Consequently, the delay bound will be somewhat less tight
for this trace than for the previous three.

Using the α−conductances Φα or alternatively the graph
conductance Φ, we can now calculate the upper bounds for
both the expected delay of epidemic spreading (Eq. (11)) as
well as its complementary cumulative distribution function
(CCDF), easily obtained from Eq. (21). We compare these
analytically predicted quantities with results obtained from
simulating epidemic spreading on our traces. For each trace,
we measure the time it takes until all nodes in the network
receive a message started at a uniformly chosen node. The
message generation process produces a sample of at least
� ��� observations per source node for shorter traces and up
to �� ��� observations per source node for longer ones. For
all measured expected delays, we compute the ��th percentile
using the normal distribution.

Fig. 4(b) shows the expected delays obtained from the
simulations (“meas.”) compared to the bounds, calculated
using the α−conductance values Φα from Metis (“α-bound”)
and respectively the graph conductance Φ (“bound”). (Note
the logarithmic scale of the y−axis.) The expected epidemic



spreading delays obtained in simulations are indeed smaller
than the predicted upper bounds. Only for the HCMM model
is the prediction slightly off, presumably on account of a
non-optimal approximation of the conductance by Metis.

In Fig. 4(c), we plot the coefficients of variation for the
distribution of the delay DSSS of each trace. The coefficient
of variation, defined as

� [DSSS]� [DSSS], is a measure of
the dispersion of a probability distribution. Values less than �
(the coefficient of variation for the exponential distribution)
are considered small and indicate a concentrated distribution.
As it can be seen in Fig. 4(c), all our traces have very
small and similar coefficients of variation, indicating that
most delay values fall within a small interval of the expected
delay. A similar more rigorous statement about concentration
can be made using Chebyshev’s inequality, as shown in [25].
This has positive implications, e.g., for the predictability
of the time until termination of epidemic-based distributed
estimation (often tricky to detect), despite the considerably
heterogeneity in the mobility environments considered.

Figs. 4(d)–4(g) show the empirical CCDFs for the spread-
ing delays in comparison with our theoretical CCDFs, ob-
tained from Eq. (21) by using the α−conductance values
Φα (“a-bound”) and respectively the graph conductance Φ
(“bound”). We also show the tail bound obtained by Shah
in [12] (Theorem 3.1.). Once again, the empirical results
are well within all the predicted bounds. Note that the tail
bound is at least one order of magnitude larger than the
bounds we obtained here. Note also that the concentration
property discussed above is apparent in these plots.

As expected, a relatively loose bound, as in the case of
MIT attests the presence of at least two strong communities
connected through a relatively small set of edges (i.e., small
conductance), as observed in [26]. On the other hand, for
the community-free traces Infocom and SLAW [26], as well
as for the HCMM trace (which has built-in very small
communities of �� nodes each) the bounds are, as expected,
(much) closer to the empirical results.

B. The Scaling Behavior of the Conductance
As we have seen previously, the derived bounds are

dependent on the conductance profile (or NCP) of the graph
under analysis, as well as on the number of nodes in the
network. This dependence is crucial for two reasons, as
follows.

First, let us examine the expected spreading delay in
Eq. (11) more closely. In particular, we transpose this equa-
tion to continuous time (by Wald’s equation, as mentioned
in Sec. III):

[TSSS] < � ln(N − �)
λNΦ

, (24)

with TSSS, the continuous-time counterpart of DSSS. As
the network size N increases, so does the intensity of the
contact process λ and therefore, the term λN will roughly
tend to � as N → ∞. Therefore, the scaling behavior of
the spreading delay with increasing network size is almost
entirely determined by the conductance Φ – defined in

Section IV-B – since the term ln(N−�) increases very slowly
as the network grows.

The second reason why understanding the evolution of the
conductance as the network size increases is crucial is that,
as we have seen above, the tightness of the bound is also
conductance-dependent.

The evolution of conductance has already been studied
for a special category of graphs, i.e., graphs built using
the preferential attachment model. Mihail et al. analytically
showed in [35] that the conductance of these graphs remains
constant as the network size increases. The main feature
of the preferential attachment model is that it generates
scale-free graphs (i.e., graph with power-law degree dis-
tributions). Since our graph model is rather generic, it
is hardly possible to analytically investigate the behavior
of its conductance. However, the scale-free property has
been consistently observed on many DTN contact graphs,
obtained both from real-world traces and from mobility
models. It is thus reasonable to hypothesize that these graphs
do as well conserve their conductance value as their size
increases. In the following, we will empirically verify the
validity of this hypothesis.

We use the same traces and models as previously and
employ two simple methods to obtain networks of various
sizes. In the first method, we start from a large network and
randomly remove entire communities (if they exist). In the
second method, we start from a large network and randomly
remove single nodes. We then calculate the conductances Φ
of the newly obtained smaller networks using Metis.

For SLAW and HCMM, we start with networks of maxi-
mum size ��� nodes and the same parameters as previously
(default �.�� Hurst parameter for SLAW, and �� communities
for HCMM). For MIT, the maximum network size is obvi-
ously fixed to the �� nodes participating in the experiment.
We do not use the Infocom trace for this part, as it is already
quite small at �� nodes.

Fig. 5 shows the evolution of the graph conductances Φ
in function of the network size.

(a) HCMM (max. ��� nodes) (b) SLAW (��� nodes), MIT (�� nodes)

Figure 5. Evolution of the graph conductance Φ with network size

It is apparent from Fig. 5 that the conductance of typical
DTN scenarios is relatively constant with increasing network
size. This is also consistent with observations from [34].
There, the authors empirically analyze a series of large
real-world networks (online social networks, peer-to-peer



networks, citation networks etc) and find that, when com-
munities exist, their sizes are limited to about ��� nodes,
regardless of the size of the network. When partitions larger
than ��� nodes are sought for, the resulting α−conductances
Φα are consistently increasing with partition size.

In other words, the minimum conductance Φ is already
reached for small network sizes. This is very important
from a practical viewpoint, as shown in the beginning of
this section. In particular, it means that the increase in
spreading delay is very slow (logarithmic) as the network
size increases. Incidentally, it also means that the derived
bounds can easily be calculated even for larger networks.

VI. APPLICATIONS

In this section, we discuss the possible usage of our
derived bounds in practice, by showing how they apply to
epidemic-based DTN algorithms. Some of these algorithms
(e.g., for distributed estimation) rely on multi-source spread-
ing (MSS) instead of the basic single-source spreading (SSS)
task we defined in Sec. III. There, each i of an arbitrary
subset of nodes A ⊆ V has a distinct message to distribute
to all nodes V �{i}. For the MSS task, similar delay bounds
can be obtained, e.g., by applying Boole’s inequality (the
union bound) to the results for the SSS task. We defer a
more thorough analysis of the MSS task to future work.

Epidemic routing and its variants. Epidemic routing
(ER) was the first DTN routing protocol [1] and it is
essentially a brute-force aproach to routing, as it is trying
all possible space-time paths. Obviously, epidemic routing
is highly inefficient. To reduce the overhead, randomized
forwarding (RF) was introduced. In this case, for a given
message m, any node carrying the message transfers it to any
other node it encounters with a fixed probability p. Then, the
delivery delay of m can be analyzed similarly to the previous
section, as shown below.

Theorem 5 (Delay of Randomized Forwarding.): The ex-
pected delay of Randomized Forwarding is, similarly to
Eq. (11), given by:

[DRF] < � ln(N − �)
NpΦ

. (25)

A similar equivalent can be obtained for Eq. (21), simply
by replacing Φ with pΦ in the equation.

Proof: With simple epidemic spreading, the meeting
probability pci j is also the infection probability (i.e., the
probability that i infects j, given that i is infected and j is
not infected). By contrast, with randomized forwarding, both
the meeting and the forwarding probabilities must be con-
sidered, resulting in new infection probabilities: p ⋅pci j. Thus,
the contact process of our DTN is effectively thinned. It is
known that thinning by ε transforms a geometric distribution
with success probability psucc into a geometric distribution
with probability ε ⋅ psucc. Therefore, randomized forwarding
can be analyzed, by analyzing a new DTN contact graph,
defined by the contact probability matrix Pc

RF = p ⋅ Pc .

By constructing the corresponding Markov chain as in
Section IV and applying the subsequent analysis, one can
obtain an equivalent for Eq. (11) as shown in this theorem.
The same goes for Eq. (21), simply by replacing Φ with pΦ
in the equation.

For simple epidemic routing, as well as for time-limited
epidemic routing, the bounds derived in the previous section
can be used to determine an appropriate Time-To-Live
(TTL) and respectively, the time-threshold parameter. For
probabilistic forwarding, in addition to the TTL, the fixed
forwarding probability p can be derived, so as to achieve a
certain delivery probability.

Distributed estimation. Epidemic spreading also under-
lies a number of distributed estimation algorithms. While
the proposed analysis may not directly and easily apply to
all of them, we give here an example where it does. In [9],
the authors propose a simple epidemic-based algorithm for
estimating separable functions of individual values present at
nodes. The algorithm relies on a well-known property of the
extrema (minimum or maximum) of n random variables of
certain probability distributions. For example, the minimum
of exponential variables X� ∼ �(λ�) and X� ∼ �(λ�) is
exponentially distributed with rate λ�+λ� (also valid for more
than two variables). Thus, to estimate an additive function
of local nodes values vi (e.g., network size), it suffices that
each node i generate K samples from Xi ∼ �(vi). Then,
on each encounter, the two participating nodes calculate
the pointwise minimum of their two samples. After enough
encounters, the global parameter is estimated by maximum
likelihood from the local vector of minimum values.

It is proven that the estimation delay of the above al-
gorithm is a simple function of the delay of the underly-
ing epidemic spreading algorithm. As a consequence, our
analysis also applies to this distributed estimation algorithm.
Mosk-Aoyama and co-authors also provide an upper bound
for their algorithm, equivalent to the one in [12], which we
have shown to be much looser than the one we propose.

In the case of distributed estimation, the proposed results
can be used to, e.g., easily obtain an approximation of the
time until termination, i.e., the time when the estimate at
each node has reached a certain precision. Detecting ter-
mination is a common concern with distributed estimation,
which may be alleviated through the use of these bounds.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have used a much more realistic DTN
mobility model than previously to analyze the delay of
epidemic information spreading in Opportunistic Networks.
Unlike earlier analytical research work, our network and
mobility model captures the full heterogeneity of node
mobility, which has been observed in real scenarios [7], [8].

We have derived upper bounds for the expectation and
the distribution of the delay of epidemic spreading. We
have also shown that the distribution is concentrated and
that, depending on graph properties (communities, scale-
freeness), the delay scales very well with network size. This



delay is very important, as epidemic spreading underlies
a series of DTN algorithms, e.g., for routing, and for
distributed estimation. Moreover, we have shown that our
bounds are tighter than previously derived ones [12].

In the future, we plan to further relax the assumptions
of our model, as well as to extend our analysis to more so-
phisticated epidemic-based routing algorithms and to further
distributed estimation algorithms.
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