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Abstract—Opportunistic or Delay Tolerant Networks (DTNs)
may be used to enable communication in case of failure or lack of
infrastructure (disaster, censorship, remote areas) and to comple-
ment existing wireless technologies (cellular, WiFi). Wireless peers
communicate when in contact, forming an impromptu network,
whose connectivity graph is highly dynamic and only partly
connected. In this harsh environment, communication algorithms
are mostly greedy, choosing the best solution among the locally
available ones. Furthermore, they are routinely evaluated through
simulations only, as they are hard to model analytically. Even
when more insight is sought from models, they usually assume
homogeneous node meeting rates, thereby ignoring the attested
heterogeneity and non-trivial structure of (human) mobility.

We propose DTN-Meteo: a new unified analytical model that
maps an important class of DTN optimization problems and the
respective (greedy) algorithms into a Markov chain traversal over
the relevant solution space. Fully heterogeneous node contact
patterns and a range of algorithmic actions jointly (but separably)
define transition probabilities. Thus, we provide closed-form
solutions for crucial performance metrics under generic settings.
While DTN-Meteo has wider applicability, in this paper, we focus
on algorithms with explicitly controlled replication. We apply
our model to two problems: routing and content placement. We
predict the performance of state of the art algorithms (SimBet,
BubbleRap) in various real and synthetic mobility scenarios
and show that surprising precision can be achieved against
simulations, despite the complexity of the problems and diversity
of settings. To our best knowledge, this is the first analytical
work that can accurately predict performance for utility-based
algorithms and heterogeneous node contact rates.

I. INTRODUCTION

Opportunistic or Delay Tolerant Networks (DTNs) are envi-
sioned to support communication in case of failure or lack of
infrastructure (disaster, censorship, rural areas) and to enhance
existing wireless networks (e.g. offload cellular data traffic),
enabling novel applications. Nodes harness unused bandwidth
by exchanging data when they are in proximity (in contact),
aiming to forward data probabilistically closer to destinations.
Using redundancy (e.g. coding, replication) and smart mobility
prediction schemes, data can be transported over a sequence
of such contacts, despite the lack of end-to-end paths.

Many challenging problems arise in this context: routing [1],
[2], resource allocation [3], content placement [4], etc. Given
the disconnected and highly dynamic nature of the connectivity
graph of Opportunistic Networks, these problems are sub-
stantially harder here, than in traditional connected networks.
As a result, most solutions proposed for each problem are
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greedy, local heuristics. Moreover, the performance evaluation
of these solutions is largely simulation-based, as it is hard to
develop suitable analytical models. While simulations provide
quantitative results for realistic settings, they offer little insight
into the problems and it is hard to generalize their findings, due
to the sheer range of mobility scenarios, optimization problems
(e.g. routing) and the multitude of algorithms for them.

Early analytical models for DTNs were devised [5]–[7], to
complement simulations. These are typically based on Markov
chains or fluid approximations. For example, in routing, the
spread of a message was modeled with a Markov chain,
whose states are the number of copies in the network [5].
Alternatively, the spreading process was treated as a fluid
flow and the number of copies, approximated as a continuous-
valued function of time and the node meeting rate [8].

However, for the sake of tractability, these models mainly
rely on simple mobility assumptions (e.g. Random Walk,
Random Waypoint), where node mobility is stochastic and
independent identically distributed (IID). Studies of real sce-
narios [9], [10] reveal more complex structure, comprising
considerable heterogeneity in node mobility, questioning the
usefulness of these models’ predictions. Protocol design has
integrated these findings in new, sophisticated “utility-based”
solutions, aiming at exploiting this heterogeneity [4], [11].
However, the complexity of mobility patterns involved, and
often of the algorithms themselves, implies that the evaluation
of such newer protocols remains purely simulation-based.

Recent techniques that introduce some mobility heterogene-
ity in existing models [12]–[14] quickly become prohibitively
complex or deal with simple protocols only. It is thus evident
that a common analytical framework is needed that can
successfully deal with (a) more realistic mobility assumptions,
and (b) the range of DTN communication and optimization
problems and the abundance of protocols for each, while still
providing insight and, ideally, closed form solutions.

Our first step in this direction is to observe that the bulk of
proposed algorithms, whether for routing, content dissemina-
tion, distributed caching etc, essentially solve a combinatorial
optimization problem over the state of every node in the
network. Each algorithm defines a preference (utility) function
over possible network states and moves to better states. The
second observation is that candidate new states, in the DTN
context, are presented according to the stochastic mobility of
the nodes involved. As such, the traversal of the solution space
of a problem is also stochastic. The third shared element is
that, due to the difficulty in steering nodes globally, protocols
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resort to local deterministic (greedy) or randomized heuristics
to choose between the current and a new possible state,
involving state changes only in the two nodes in contact.

Using the above insight, DTN-Meteo maps an optimization
problem into a Markov chain (MC), where each state (e.g.
assignment of content replicas to nodes) is a potential solution,
and transition probabilities are driven by two key factors:
(i) node mobility, which “offers” new solutions to the algo-
rithm based on the (heterogeneous, but time-invariant) contact
probability of each node pair, and (ii) the algorithm, which
orders the states using a utility function and accepts better
ones deterministically (greedy) or randomly. This not only
decouples the algorithm’s effect from mobility, but also allows
one to derive interesting performance metrics (convergence
delay, delivery probability) using transient analysis of this MC.

While DTN-Meteo is more widely applicable, due to space
constraints, in this paper we mostly focus on algorithms, which
explicitly limit the copies of a message at the source [4],
[15]. In the other category of DTN algorithms, replication is
either unlimited [1] or implicitly limited through utility [16].
Here, we also scrutinize the most important part of such an
algorithm, its utility function, by simply forcing it into the
first category. In [17], we consider unlimited replication (or
flooding-based) schemes. Summarizing, our contributions are:
● We formulate an important class of DTN optimization

problems using a Markovian model, that combines the
heterogeneous mobility properties of a scenario and the
actions of an algorithm into an appropriate transition
matrix over a problem’s solution space (Section II). This
model enables us to calculate in closed-form the perfor-
mance (delay, success probability) of a fixed-replication
algorithm in various mobility scenarios (Section III).

● To demonstrate the value and relative generality of DTN-
Meteo, we apply it to both single- and multi-copy al-
gorithms for two DTN problems: (i) Unicast routing
(SimBet [11] and BubbleRap [16]) and (ii) Content
placement/Distributed caching [4]. We chose state of the
art, utility-based algorithms which cannot be modeled by
existing tools. We compare the accuracy of our predic-
tions against simulations for a range of synthetic and real-
world mobility traces (Section IV).

● We provide a simple approximation scheme, which im-
proves DTN-Meteo’s scalability, without significantly im-
pacting the accuracy of its predictions (Section V).

A key part of DTN models is the approximation of pairwise
contact patterns with exponential variables. While this idea has
spurred some controversy [18], Karagiannis et al. established
in [19] that after a short “characteristic time” of about half
a day, the inter-contact time does exhibit exponential decay.
Thus, approximating inter-contact times with exponential vari-
ables is not unreasonable, especially when focusing on residual
inter-contact times1, as is the case with analyses of forwarding
schemes. The exponential assumption enables an otherwise
unfeasible analysis and spares us from other more restrictive
assumptions (e.g. path length of at most two hops [20]).

1This is the time until the next contact for a node pair, from an arbitrary
point in time. Intuitively, the residual time reflects how much time a device
must wait, before being able to forward a message to another given device.

II. A GENERIC MODEL FOR DTN PROBLEMS

Let � be our Opportunistic Network, with �� � = N nodes.
� is a relatively sparse ad hoc network, where node density
is insufficient for establishing and maintaining (end-to-end)
multi-hop paths. Instead, data is stored and carried by nodes,
and forwarded through intermittent contacts established by
node mobility. A contact occurs between two nodes who are
in range to setup a bi-directional wireless link to each other.

We assume an optimization problem over the N-node net-
work � (e.g. multicast under resource constraints) and a dis-
tributed algorithm for this problem, run by all nodes. Our long
term aim is to understand the performance of the algorithm
as a function of the nodes’ behavior and attributes (mobility,
collaboration, resource availability etc). In this section, we first
define more precisely the class of problems we consider, as
well as the type of algorithms used to solve them. Then, we
present our network model and assumptions. Finally, we show
how to integrate all of the above into a Markov chain that will
allow us to derive useful performance metrics.

A. Solution Space
We consider a class of DTN problems for which a solution

can be expressed in terms of nodes’ states. In this paper, we
restrict ourselves to binary node states, to better illustrate the
key concepts; however, in a more realistic variant of DTN-
Meteo, nodes’ states should be chosen from a set of B-bit
integers (e.g. to allow the modeling of B messages). Then, the
space of candidate solutions for such problems is a set of N-
element vectors, possibly restricted by a number of constraints.
Finally, an algorithm for the problem defines a ranking over
these solutions, captured by a utility function U(⋅). The goal
is to maximize this utility (or minimize a cost function). We
define our class of problems as follows:

● node state space � ⊂ or � = {�, �} (1)
● network state space Ω ⊆ �N (2)
Ω = {x � x = (x� , x� , . . . , xN)}, xi ∈ �, ∀i ∈� (3)
● a set of constraints fi(x� , . . . , xN) � ρ i (4)
● a utility function Ux = U(x� , . . . , xN). (5)

This is, in fact, the combinatorial optimization class, which
naturally encompasses several DTN problems, as they are
dealing with indivisible entities (nodes, messages, channels
etc) and have rules that define a finite number of allowable
choices (choice of relays, assignment of channels etc). Below
are some examples of DTN problems that can be thus modeled.

Content placement. The goal in content placement, is to
make popular content (news, software update etc) easily reach-
able by interested nodes. As flooding the content is unscalable,
a small number L of replicas can be pushed from its source
to L strategic relays, which will store it for as long as it is
relevant, and from whom encountered interested nodes retrieve
it2. In its simplest form, the source of the content distributes
the L replicas to L initial nodes (e.g. randomly, using binary
or source spraying [2]). These initial relays then forward
their copies only to nodes that improve the desired utility –

2L must be derived to achieve a trade-off between desired performance and
incurred costs, for example as in [2].
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Replication Constraint

i) single-copy [11], [21], [22] ∑N
i=� xi = �

ii) fixed budget L [2], [15] ∑N
i=� xi � L

iii) epidemic [1] ∑N
i=� xi � N

iv) utility-based4 [3], [16], [23] ∑N
i=� xi � N

TABLE I
MODELING REPLICATION WITH EQ. (4)

which can be based on mobility properties, willingness to help,
resources, etc. (see [4] for some examples).

Here, the binary state of a node i is interpreted as the node
being (xi = �) or not being (xi = �) a provider for the content of
interest3. There is a single constraint for any allowed solution,
namely ∑N

i=� xi � L, that is, in Eq. (4) ρ i = ρ = L.
Routing. In routing, be it unicast, multicast, broadcast, or

anycast, the binary state of node i is interpreted as carrying or
not carrying a message copy. For example, for unicast routing
from source node s to destination node d, the initial network
state is x� = (�, �, . . . , {xs = �}, . . . , {xd = �}, . . . , �). The
desired network state is any x�, with xd = � and xi ∈ {�, �},∀i ≠ d. This can easily be extended to group communication,
with multiple sources and/or multiple destinations.

Various replication strategies can be expressed using Eq. (4)
constraints, as shown in Table I. Different schemes in each
category, essentially differ in the utility function used to rank
states and the action taken given utility difference. In this
paper, we analyze the first two strategies in Table I.

The multi-copy cases of both content placement and fixed
budget routing include an initial replication phase, i.e., going
from network state x� with ∑N

i=� xi = � to xn with ∑N
i=� xi = L.

Because a very small number of copies L (compared to N)
is usually enough for a good cost–gain tradeoff, the initial
replication phase has a negligible contribution in the total delay
(see e.g. [2]). While we could easily include this phase in
our model, the added realism does not justify the increase in
complexity. We therefore ignore this delay, to simplify our
discussion and deal with a smaller state space.

B. Exploring the Solution Space

In traditional optimization problems, local search methods
define a neighborhood around the current solution, evaluate
all solutions in the neighborhood and “move” towards the best
one therein (greedy algorithms). Occasionally, they may also
move to lower utility states (using randomization) in order
to overcome local maxima, as in simulated annealing. This
aspect is fundamentally different in DTN optimization. The
next candidate solution(s) cannot usually be chosen. Instead,
the solution space Ω is explored via node mobility (contacts):
a new solution is offered and can replace the current one
only when two nodes come in contact. This has two major
implications: (i) a new solution can differ (from the current) in
the state of at most two nodes, the ones involved in the contact;
(ii) new solutions are presented randomly; hence, the traversal
of a DTN problem’s solution space is by nature stochastic.

3A B-bit integer node state extends this to providing B pieces of content.
4Replicating only to higher utility nodes limits copies implicitly, but in the

worst case, there will still be N copies.

Consider implication (i) first (we treat (ii) in Section II-C).
Every contact between a relay node/content provider i (xi = �)
and another node j (x j = �) offers the chance of moving to a
new network state y ∈ Ω, with yi = � and y j = � (forwarding) or
yi = � and y j = � (replication). If the replica is transferred from
relay i to j, then the xy transition happens. Fig. 1 provides
examples of potential state transitions, along with contacts
required for the transitions to be possible.

Transition xz in Fig. 1 require two contacts to start simul-
taneously, and is thus not allowed5. This means that only
transitions between adjacent states are possible, where we
define state adjacency as:

δ(x, y) = �
��i�N

{xi ≠ yi} � �, (6)

i.e., the two network states may only differ in one or two
nodes. An encounter of those two nodes is a necessary (but
not sufficient) condition for transition xy to happen.

(a) Forwarding (b) Replication
Fig. 1. Example state transitions in two �-node DTNs.

From Fig. 1 it is clear that the sequence of solutions pre-
sented to a distributed optimization algorithm in this context
is dictated by node mobility and is thus a random sequence
of contact events. We next examine this contact process.

C. Modeling Heterogeneous Node Mobility
As pointed out in the beginning of this section, network �

is a sparse ad hoc network of mobile nodes, in which data is
exchanged only upon contacts. Thus, a mobility model based
on contact patterns is sufficient for our analysis. We describe
the network � using a marked point process (Mn)n∈ ={Tn , σn}, where Tn denotes the starting time of a contact and
σn = (i , j,∆n) denotes the two nodes in contact i , j ∈ � and
the duration of the contact ∆n [24], [25]. The random variables
Jn = Tn − Tn−� are the times between the initiations of two
successive contacts. We assume the following:

1) (Tn)n∈ are epochs of a stationary and ergodic renewal
process – the times Jn are IID with intensity6 λ, dependent
on network sparsity.

2) Tn < Tn+� , ∀n ∈ – no two contacts start at the same
time, i.e., Jn > �.

3) ∆n << Jn – the duration of a contact is negligible
compared to the time between two contacts, but sufficient
for all data transfers to take place. Therefore, σn = (i , j).

4) (σn)n∈ is a discrete IID process, with common dis-
tribution [σn = (i , j)] = pci j. This is the pairwise

5We emphasize that this is not a strict necessity for our networks of interest,
but rather an assumption of our mobility model, for analytical convenience
(see Section II-C for more details). However, given the relative sparsity of the
networks in questions, such events occur with low probability.

6Expected number of points or contact “arrivals” per time unit.
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contact probability, that the next contact in the sequence
is between nodes i and j.

We distinguish between standard time (wall-clock time) and
event time (measured in number of contact events or “contact
ticks”). Because our contact process is stationary and ergodic,
it is easy to relate event time to wall time, using Wald’s
equation [26]. For simplicity, we use event time throughout the
paper. Consequently, within the IID (σn)n∈ process, at any
moment, the remaining discrete inter-contact delay between
nodes i and j has a geometric distribution with parameter pci j.

Under the above assumptions, a given mobility scenario
with heterogeneous node mobility can be described through
its pairwise contact probabilities pci j forming the contact
probability matrix:

Pc = {pci j}. (7)

Probabilities pci j can be either measured directly from a
given real or synthetic mobility trace (e.g. maximum likelihood
estimation of pci j for every pair); or they can be calculated
using the pair’s contact statistics (e.g. frequency), as in [27].
We apply the former approach to all traces we use (Table II).

Going back to our solution space exploration, our contact
process model implies the following: When at a state x, the
next contact “tick” presents a new solution y to the algorithm
with probability pci j. The new solution y differs from x in
positions i and j only. For example, in Fig. 1(a): when at state
x = (�, �, �, �, �, �) the algorithm could move to a new solution
y = (�, �, �, �, �, �) in the next contact, with probability pc��.

D. Modeling a Local Optimization Algorithm
Node contacts merely propose new candidate solutions.

Whether the relay i does in fact hand over its message
or content replica to j (or, more generally, whether a new
allocation of objects between i and j is chosen), is decided by
the algorithm. In greedy (utility-ascent) schemes, a possible
state transition occurs only if it improves the utility function
U , specific to each problem. Then, for our DTN problems, a
possible transition xy occurs with acceptance probability7:

Axy = �Ux < Uy�. (8)

More generally, the acceptance probability may be any func-
tion of the two utilities: Axy ∈ [�, �]. This allows us to model
stochastic utility-ascent algorithms (e.g. simulated annealing),
as well, in DTN-Meteo. Due to space limitations, in the
remainder of this paper we will focus on greedy (deterministic)
algorithms; we stress though that a similar, equivalent analysis
is applicable to stochastic (local) optimization schemes.

E. A Markov Chain Model for Distributed Optimization
Summarizing, the transition probability between adjacent

network states x and y can be expressed in function of the
contact probability and the acceptance probability as:

pxy = pci j ⋅ Axy , (9)

where nodes i and j are the two nodes whose encounter
provokes the state transition.

7In a distributed algorithm, the utilities of two states must be comparable
locally by the two nodes in contact (e.g., additive function). This is not a
requirement for our model, but a challenge for the algorithm designer [4].

Given our mobility model (stationary contact process), the
above transition probability is time-homogeneous. Most DTN
protocols suppose the existence of a mobility-related node util-
ity (e.g. contact frequency). DTN-Meteo assumes this utility is
readily available. In practice, protocols do not know the utility
a priori; thus, they must solve the added problem of estimating
it – usually through an integrated sampling component [3],
[23]. However, if the mobility is stationary (and the estimation
designed correctly), the online and offline utility rankings will
coincide. We discuss non-stationarity in Section VI.

The final observation to put our pieces of DTN-Meteo
together is that, for most utility-based DTN algorithms, the
transition from any state x to any other state y only depends
on these two states and not on past states. This means that
our system has the Markov property, therefore we model
it with a time-homogeneous discrete-time Markov chain(Xn)n∈ �

over the solution space Ω. From above, the transition
probability matrix of the Markov chain is P = {pxy}, with:

pxy = [Xn+� = y �Xn = x] =
�������������

�, δ(x, y) > �
pci j ⋅ Axy , � < δ(x, y) � �
� − ∑

z≠x pxz , x = y.
(10)

where, i and j are the two nodes whose encounter provokes the
state transition. pci j is the mobility component of the transition
probability and Axy is the algorithm component.

III. CONVERGENCE ANALYSIS

In the previous section, we have transformed any (difficult)
problem of our defined class into a Markov chain. The chain(Xn)n∈ �

defined in Eq. (10), modeling greedy utility-based
algorithms, is absorbing. Thus, we use the theory of absorbing
Markov chains [28], to obtain absorption probabilities and
delays for all pairs: (transient state → absorbing state). From
these we derive crucial performance metrics for our algo-
rithms, such as delivery ratio and delivery delay in routing
or the probability and delay of optimally placing content.

A. Absorption Analysis of Discrete-Time Markov Chains
Maximum utility (optimum) network states are, by defi-

nition, absorbing states in the Markov chain. In addition to
maximum utility states, there may also be network states of
smaller utility, but from which it is impossible to greedily
advance to higher utility, due to the mobility pattern. These
correspond to local maxima and are also absorbing states in
P. We use the following notation for the two sets of states:

�� ⊂ Ω (global maxima),
�� ⊂ Ω (local maxima).

�� contains all solutions x� ∈ Ω, such that Ux� � Uy, for all
states y ∈ Ω. For example, in Spray and Wait routing, states
x� are the �N−�L−�� states in which one of the L copies is at the
destination node d. �� contains all solutions x ∈ Ω � �� ,
such that for all states y ∈ Ω, the transition probability pxy is
zero, either because:
● δ(x, y) > � – the states are not adjacent, or because
● pci j = � – the required nodes never meet, or because
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● Uy < Ux – all “neighboring” states y have lower utilities.
Every other solution in Ω��� is a transient state. Denote by
TR ⊂ Ω, the set of transient states. Then, Ω = �� ∪�� ∪TR.

In order to derive absorption related quantities, we write the
matrix P in canonical form, where states are re-arranged such
that transient states (TR) come first, followed by absorbing
states corresponding to local maxima (�� ), followed by
maximum utility states �� :

TR �� ��

P = ���
Q R� R�
� I� �
� � I�

���
TR
��
��

(11)

Let ��� � = r�, ��� � = r� and �TR� = t. That is, there are r�
optimum states, r� local maxima and t transient states. Then,
I� and I� are, respectively, the r� × r� and the r� × r� identity
matrices, Q is a t × t matrix, and R� and R� are, respectively,
non-zero t × r� and t × r� matrices.

We can now define the fundamental matrix N for the
absorbing Markov chain as follows:

N = (I −Q)−� = I +Q +Q� +� (12)

The last equality is easy to derive (see [28], page 45). N is a
t × t matrix whose entry nxy is the expected number of times
the chain is in state y, starting from state x, before getting
absorbed. Thus, the sum of a line of the fundamental matrix
of an absorbing Markov chain is the expected number of steps
until absorption, when starting from the respective state.

Finally, for the derivation of absorption quantities, we also
need the initial probability distribution of the Markov chain(Xn)n∈ �

. Denote by p(�)x the probability that the chain starts
in state x ∈ Ω. Assuming source nodes are equally likely,

p(�)x = �
N �

i � xi=�
[X� = x � source is i]. (13)

The conditional probability above may be hard to calculate
depending on the initial replication strategy. For the sake
of tractability, we assume that simple source spraying [2] is
used and that the spreading completes before the forwarding
algorithm starts. We defer the treatment of more sophisticated
initial spreading conditions to future work. Then:

p(�)x = �
N �

i � xi=�
∏N

j=� x j pci j
∑

y � yi=�
�∏N

j=� y j pci j� . (14)

B. From Absorption Analysis to Practical Metrics
Based on the fundamental matrix and the initial probability

distribution, we can now derive the metrics of interest for any
algorithm of our class. In the following theorems, we show
how to do this for our example problems: routing and content
placement. However, the theorems apply to any other problem
unchanged, as long as the state space and utility are defined.

Theorem 1 (Success Probability): The end-to-end delivery
probability for a routing algorithm modeled by Markov chain
P starting from any initial source(s) with equal probability, is

pd = �
x�∈��

pd(x�) = �
x�∈��

��
x∈TR

p(�)x bxx�� , (15)

where bxx� is the probability of being absorbed at state x�,
given we start at x and p(�)x is the probability of starting at x.
In matrix form, B� = {bxx�} is a t× r� matrix, with B� = NR�.

The success probability of content placement finding the
best set of L relays, starting from any initial source(s) with
equal probability obeys the same relation.

Proof: The delivery probability pd is obtained from the
absorption probabilities bxx� of Markov chain (Xn)n∈ �

. The
absorption probabilities can be derived using first-step analysis
as in [28], page 52. We refer the interested reader to [26], for
a comprehensive proof of this theorem.

In addition to knowing what chances a greedy algorithm
has of finding an optimal solution, we are also interested in
how long it will take. In the following theorem, we derive
the expected end-to-end delivery delay of routing and the
convergence delay of content placement using the fundamental
matrix N and the individual delivery ratios/success probabili-
ties pd(x�) = ∑x∈TR p(�)x bxx� defined in Eq. (15) above.

Theorem 2 (Expected Delay): The expected end-to-end de-
livery delay for a routing algorithm modeled by Markov chain
P, starting from any source with equal probability, given that
it does not get absorbed in any local maximum is:

[Td] = �
x�∈��

pd(x�)
pd

[Td(x�)] = �
x�∈��

pd(x�)
pd

��
x∈TR

p(�)x τxx�� ,
(16)

where τxx� is the delay of being absorbed at state x�, given
we start at x, and p(�)x is the probability of starting at x. In
matrix form, τx� = {τxx�} is a t-element column vector with
τx� = D−�NDc. c is a t-element column vector with ones, and
D is a t × t diagonal matrix with entries bxx� for x ∈ TR
and x� ∈ �� . The expected convergence delay for content
placement to find the best set of L relays, starting from any
initial source with equal probability obeys the same relation.

Proof: Assume we start in a transient state x of our chain
Xn and compute all conditional transition probabilities, given
that the process ends up in optimal state x�. Then, we obtain a
new absorbing chain Yn with a single absorbing state x�. The
transient states are unchanged, except we have new transition
probabilities, which we can calculate as in [28], page 64. Then,
τx� is obtained from the fundamental matrix of the new chain,
as the matrix’ row sums. This process must be repeated for all
x� ∈ �� . Then, using the initial probabilities p(�)x and the law
of total expectation, Eq. (16) is obtained. We refer the reader
to [26], for a comprehensive proof of this theorem.

Summarizing, we have just shown how to calculate con-
vergence probabilities and delays from any transient state to
any absorbing state. We have also shown how these can be
mapped to metrics of great practical interest for two DTN
problems: routing and content placement. In the next section,
we compare our predictions obtained from Thms. 1 and 2 to
results obtained from simulations, for both problems.

IV. APPLICATIONS TO COMMUNICATION ALGORITHMS

In this section, we apply our analysis to the state-of-the-
art routing algorithms – SimBet [11] and BubbleRap [16],
and to greedy content placement, all of them using the first
two replication strategies in Table I: single-copy and fixed
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budget L. These are all utility-based algorithms which cannot
be modeled by existing tools.

A. Utilities for Routing and Content Placement
First, we briefly describe the utility used by each algorithm.

These utilities were chosen by the designer of the proposed
algorithms for the respective problem, and are not necessarily
optimal (different utilities would define different algorithms).

In many recent protocols (including our case studies), a
node’s utility is assessed using the strength of its mobility
ties to other nodes, e.g., based on contact frequency and/or
duration etc. These tie strengths are sometimes used as such.
However, predominantly, they are aggregated in a single static
(“social”) graph, on which node utility can be mapped to
metrics from social network analysis, such as centrality and
community membership or similarity. This may be a weighted
(W) or a binary (Wbin) graph. For our case studies, we
use normalized pairwise meeting frequencies as weights wi j.
When necessary, we obtain Wbin from W by keeping only the
highest weights up to the optimal link density [29].

1) Content Placement: Recall the goal of content place-
ment: to make popular content (news, software update etc)
easily reachable by interested nodes, by pushing L copies of it
from its source to L “strategic” relays. The accessibility that a
relay offers to the rest of the network is related to the expected
meeting delay between the relay and any other node. This
delay is minimized (and accessibility maximized) by relays
who meet the most (unique) nodes per unit time [30]. Using
the graph W, this number amounts to the relay’s (or a node’s)
degree: di = ∑N

j=� wi j, with wii = � by convention. Thus, we
define the utility of a network state x as:

Ux =�N
i=� xidi . (17)

2) SimBet: is a DTN routing algorithm based on social net-
work analysis. It assesses similarity (number of neighbors in
common) to detect nodes that are part of the same community,
and (ego) betweenness centrality to identify bridging nodes,
that could carry a message from one community to another.
We calculate these metrics on the binary graph Wbin. Thus, in
SimBet the utility of node i, for a destination node d is8:

Ui(d) = α ⋅ Simi(d) + β ⋅ Beti (18)

and the utility of a network state is, as above, the sum of
individual relay utilities: Ux(d) = ∑N

i=� xiUi(d).
SimBet was first published as a single-copy utility-based

protocol. It was later enhanced [15] with the option of using
a fixed number of copies L.

3) BubbleRap: uses an approach to routing similar to
SimBet. Again, betweenness centrality is used to find bridging
nodes until the content reaches the destination community.
Communities are explicitly identified by a community detec-
tion algorithm, instead of implicitly by using similarity. Once
in the right community, content is only forwarded to other
nodes of that community: a local centrality metric is used to
find increasingly better relays within the community. We use
Wbin to obtain betweenness and apply the Louvain method [31]

8For parameters α and β, we use the original paper values: α = β = �.�.

on the same graph to detect communities. Thus, in BubbleRap
the utility of node i, for a destination node d is:

Ui(d) = {i ∈ Cd} ⋅ LBeti + {i ∈ Cd} ⋅GBeti , (19)

where {i ∈ Cd} is an indicator variable for node i belonging
to the destination’s community, and LBeti and GBeti are
the local and global centralities, respectively. The utility of
a network state is: Ux(d) = ∑N

i=� xiUi(d).
Bubble Rap does not originally limit the number of copies,

but this is easily accomplished with only insignificant modifi-
cation of the algorithm.

For all three problems, the respective Markov chain P
from Eq. (10) is now entirely defined9 and we can apply the
convergence analysis from Section III to each of them. While
content placement fundamentally differs from routing (in one
problem, node characteristics are sought for, in the other the
nodes themselves), our three example problems are suddenly
similar: same state space, just different utilities. This is, to a
great extent, the merit of our unified framework DTN-Meteo,
whose declared goal is to exploit the similarities of DTN
problems and algorithms. The seemingly small difference in
utilities is, in fact very consequential. It has the following
effects: (i) content placement, has a single utility function per
network scenario – in routing, we must evaluate a collection of
utilities (one per destination d) for each network; (ii) content
placement usually has a single optimal state – in routing, for
each utility function or destination d, there are �N−�L−�� optimal
states (any subset of L nodes containing d); (iii) local maxima
(and thus an algorithm’s behavior) radically change with the
utility function, as shown in [26].

B. Measuring the Accuracy of DTN-Meteo
To cover a broad range, we use three real-world connectivity

traces and two synthetic mobility traces for validation: (i) the
Reality Mining trace (MIT) [9], (ii) the Infocom 2005 trace
(INFO) [32], (iii) the ETH trace [10], and (iv) two synthetic
scenarios created with a recent mobility model (TVCM) [33].
Their characteristics are summarized in Table II.

In simulations, we measure absorption quantities, starting
from every node separately. The starting node generates mes-
sages using a Poisson process. This ensures, via the PASTA
property [34], that we do not introduce any sampling bias.
The message generation process produces a sample of at least
� ��� observations per source node for shorter traces and up
to �� ��� observations per source node for longer ones. For
all measured delays, we compute the ��th percentile using the
normal distribution.

L Optimum Best local max.

pred. meas. pred. meas.

ETH 5 1.00 1.00 N/A N/A
Infocom 3 0.34 0.36 0.18 0.20
MIT 2 0.39 0.38 0.42 0.42
TVCM24 4 0.10 0.10 0.38 0.38
TVCM104 2 0.60 0.48 0.36 0.44

TABLE III
ABSORPTION PROBABILITIES

9The state space Ω is formed by all L-node subsets of � , i.e., �Ω� = �NL�,
as we ignore the delay of the initial replication phase.
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MIT INFO ETH TVCM

Scale and context �� campus students & staff �� conference attendees �� lab students & staff ������ nodes, ��� disjoint communities
Period � months � days � days �� days
Scanning Interval ���s (Bluetooth) ���s (Bluetooth) �.�s (Ad Hoc WiFi) N/A
# Contacts total �� ��� �� ��� �� ��� � ��� ���

TABLE II
MOBILITY TRACES CHARACTERISTICS.

Tab. III shows the measured vs. predicted (Thm. 1) success
probabilities of content placement. The first two columns give
the probability of absorption by the global optimum, the sec-
ond two – the probability of absorption by a local maximum.
In the majority of cases, the prediction is reliably accurate,
both with a single absorbing state, the global maximum (in
ETH) and when local maxima are present, resulting in multiple
absorbing states (in Infocom, MIT, TVCM24, TVCM104).
The delivery ratios of the routing algorithms show similar
accuracy; we omit them due to space limitations.
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Fig. 2. Prediction accuracy for content placement

Fig. 2 compares the measured and predicted (Thm. 2) values
of the convergence delay of content placement, averaged
over all initial states for the greedy algorithm (L values
as in Tab. III). The theoretical results coincide once again
surprisingly well with the measured delays, both for absorption
by the optimum state – Fig. 2(a), and for absorption by a local
maximum – Fig. 2(b). In Fig. 2(b), the ETH trace does not
have any local maxima with our utility.
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(a) SimBet
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(b) BubbleRap

Fig. 3. Prediction accuracy for routing

Fig. 3 compares the measured and predicted (Thm. 2) values
of the end-to-end delivery delay of SimBet and BubbleRap
routing, averaged over all initial states (L values as in Tab. III).
Again, the theoretical results of both algorithms coincide well
with the measured delays, with the exception of BubbleRap
routing on the MIT trace. This points to a potential sensitivity
of our model to the utility function, which we plan to further
investigate in the future.

Summarizing, we have used DTN-Meteo to model three
DTN communication algorithms and obtained closed form

results for crucial performance metrics for these algorithms
(delivery/convergence probabilities and delays). Despite sim-
plifying assumptions, our models’ forecasts are reliably ac-
curate, under a large variety of real and realistic mobility
scenarios. To our best knowledge, this is the first analytical
work that can accurately predict performance metrics for
utility-based algorithms and general, heterogeneous mobility.

The framework we have described can evaluate almost any
single-copy DTN communication algorithm for relatively large
network sizes (order ���), as well as multi-copy algorithms
with low replication. However, the computational complexity
may become prohibitvely large with increasing replication
L. In the next section, we briefly analyze this complexity
and propose further simplifications to the framework trading
accuracy for greater applicability.

V. A NOTE ON STATE SPACE SIZE

The size of our state space Ω varies from linear in network
size (N or pol y(N)) for low replication, to exponential (� �N )
in the worst case (epidemic replication). This affects Eq. (12),
where finding the fundamental matrix requires the inversion of
a t × t matrix. The number of transient states, t, may have the
order of magnitude of Ω or it may be significantly smaller (de-
pending on the contact pattern Pc and on the utility function).
The fastest known matrix inversion algorithm takes �(n�.���)
operations (with n the matrix size). This allows the treatment
of fairly large networks for single-copy or low replication
algorithms, but becomes practically challenging with high or
uncontrolled replication. To alleviate this, we propose a delay
approximation technique to deal with the complexity caused
by increased replication L. We also examine the quality of this
approximation, by comparison with the exact predictions from
Section IV, as well as with simulation results.

As we have seen in the previous sections, modeling the
evolution in the network, of a single copy of an object over
time is computationally feasible for fairly large networks.
Our analysis yields absorption probability and delay results
for every pair: (starting node → finishing node). From these
quantities, a large variety of aggregates can be derived, that
have high practical value. Below we examine under which
conditions we can use the pairwise absorption delays for L = �,
to approximate absorption delays for multi-copy DTN com-
munication algorithms. Due to space limitations, we provide
intuitive arguments for our approximation and defer a more
formal treatment (including error bounds) for future work.

1) The Independence of Copies: In multi-copy DTN
algorithms, copies may be dependent in two ways: First,
as implied in Section II-D, a state’s utility Ux, may not
be decomposable in node utilities Uixi . In this case, copies
cannot be followed separately (i.e., as L identical independent
N-state Markov chains running in parallel). However, due
to the difficulty of locally estimating global quantities in
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DTNs, almost all utilities are decomposable – we adopt this
assumption henceforth. Second, in most algorithms, copies
interact with each other: when two nodes meet and both carry
copies of the same message or content, no exchange/transition
happens, although one’s utility may be higher than the other’s.

Let D, the dependency among copies, be measured as the
“number of node encounters per time unit, where forwarding
should have occured, but did not, due to dependency”. Con-
sider the evolution of this metric in function of the L to N ratio,
shown in Table IV. The dependency D decreases significantly
with the L to N ratio. In other words, the L copies – and thus,
the L walks on the N-state Markov chain – become almost
independent, for small L to N ratios. Clearly, the independence
of copies is a valid assumption, which we will use for the rest
of the analysis.

L�N 0.25 0.20 0.15 0.10
D (×��−�) 220 130 63.6 3.45

TABLE IV
COPY DEPENDENCY VS. L TO N RATIO

2) One Chain per Copy: With the above assumption, we
can simply run L identical N-state Markov chains (with differ-
ent starting nodes), to find the individual expected convergence
delays of each copy. Combining these, we can obtain the
overall expected convergence delay from initial state x to an
absorbing state y. Below we explain how to do this for both
content placement and routing.

Lemma 3 (Routing Approx.): The expected end-to-end de-
lay for L-copy routing from starting nodes s� , . . . , sL to node
d is:

τr t = [Trt] = [min(Ts�d , . . . , TsLd)] . (20)

where Ts�d , . . . , TsLd are the end-to-end delays from each
starting node si to the destination d.

Intuitively, we can explain this lemma as follows: The L
copies start at different nodes s� , s� , . . . , sL (as a consequence of
the negligible initial distribution phase). We are only interested
in one of the copies reaching the destination, regardless of
the positions of the other L − � copies. Then, the overall
convergence delay for L-copy routing is the minimum of the
L independent delivery delays as in Eq. (20).

Lemma 4 (Content Placement Approx.): The expected
convergence delay for L-copy content placement from
any starting nodes to the optimal relays n� , . . . , nL (with
U(n�) � U(n�) . . . � U(nL)) is:

τc p = [Tcp] = ��L
i=� T(L−i+�)i � . (21)

where T(L−i+�)i is the residual delay (after i − � copies have
been absorbed at n� , . . . , ni−�) of any of the L− i+ � remaining
copies being absorbed at ni .

The key to Eq. (21) is to consider the occupation of the
optimal relays ni in the order of their utility. The total content
placement delay is the sum of: (i) the time until the best relay
n� received any one of L copies; plus (ii) the remaining time
until the second best relay n� received any one of L−� copies;
and so on until the last relay receives the last copy. Because
we do not distinguish between copies, each delay component
of the sum is the minimum of L− i + � individual delays, as in
Eq. (20). In addition, here, we also do not distinguish between

starting nodes. Thus the L− i+� individual delays are identical:
the residual absorption time starting from any node with equal
probility to relay ni . We denote its expectation τ i .

3) Absorption Time Distribution: To find the minimum
in Eq. (20) and the minima and sum of random variables
in Eq. (21), we need their distributions. The variables are
absorption times of a finite Markov chain; as such, they follow
a phase-type distribution. In fact, phase-type distributions are
defined by an absorbing Markov chain with a single absorbing
state and by its initial distribution vector [35].

Phase-type distributions have two very useful properties,
both proven in [35]: (i) they have exponential tails, and (ii) if
absorption rates/probabilities (to the single absorbing state)
are small, not only the tail, but the entire distribution is
asymptotically exponential. Although the condition for the
second property may not always be fulfilled in our scenarios,
we believe that in our context, the first property alone justifies
an approximation of the individual node absorption times by
exponential/geometric distributions.

Using this approximation and copy independence, the calcu-
lations in Eqs. (20) and (21) are straightforward. The minimum
of L independent geometric random variables with parameters
pk = τ−�k and with qk = � − pk , is also geometric, with
expectation τmin = �� −∏L

k=� qk�−�. Then, Eq. 20 becomes:

τr t = �� −�L
k=� �� − τ−�sk d��−� . (22)

In Eq. (21), each term T(L−i+�)i of the sum is also a minimum
of L − i + � identical individual residual absorption times. By
the independence of copies, these residual absorption times are
mutually indepedent. In addition, because absorption times are
geometric – a memoryless distribution – residual absorption
times are also geometric with the same original parameter
τ−�i . Parameters are obtained from the single-copy Markov
chain, using Thm. 2. Then, random variables T(L−i+�)i are also
geometric with expectation τ(L−i+�)i = �� − (� − τ−�i )L−i+��−�,
calculated as in Eq. (22). By the memoryless property of the
geometric distribution, variables T(L−i+�)i are also indepedent,
although they are residual of one another. Then, the sum in
Eq. (21) is a sum of the independent geometric variables and,
by the linearity of expectation,

τc p =�L
i=� τ(L−i+�)i =�L

i=� �� − �� − τ−�i �L−i+��−� . (23)

Using Eqs. (22) and (23), we can now predict delays for
much larger scenarios, where L is virtually unhampered.
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(b) SimBet Routing

Fig. 4. Approximation accuracy



9

Fig. 4 shows our evaluation of the precision of the above
approximation scheme. We compare approximate predictions
with simulation results and with exact predictions, for content
placement and SimBet routing (BubbleRap results are similar).
We reuse the same L-values as before, to bound simulation
time, as well as to enable comparison with exact predictions.
While the predictions have traded accuracy for increased
applicability, the results are still sufficiently precise.

VI. DISCUSSION AND APPLICATIONS

All in all, despite: (i) the complexity of heterogeneous
mobility, (ii) the complexity and diversity of the problems
and algorithms considered, and (iii) simplifying assumptions
ensuring tractability of the above, DTN-Meteo predicts rele-
vant performance metrics for Routing and Content Placement
surprisingly accurately under a wide variety of real and realis-
tic mobility scenarios. To our best knowledge, this is the first
analytical work that can predict performance for utility-based
algorithms with general, heterogeneous mobility. Moreover,
while our current results have focused on these two problems,
the main components of DTN-Meteo are generic and should
enable accurate performance predictions for other problems.
For example, DTN multicast [36] can be modelled similarly
to content placement, by simply redefining the utility. In future
work, we intend to conduct a similar performance analysis for
more problems (buffer management, anycast, multicast, etc),
to further validate the merit of DTN-Meteo.

In addition, we plan to further develop the analysis, so as to
investigate more sophisticated initial replication strategies in
fixed budget algorithms, as well as unlimited and implicitly
limited replication (preliminary results in [17]). A second
planned improvement is the support for time-inhomogeneous
utilities. This is well achievable for contact processes with
multiple alternating stationary regimes (e.g., day–night), where
utilities can be estimated and used separately for each. Finally,
we will derive bounds for the errors of all our approximations.

Beyond the theoretical aspects of our analysis, the presented
model is useful to protocol or system designers. Firstly, DTN-
Meteo offers valuable insight into a protocol’s inner-workings:
e.g., a small delivery ratio can be directly linked to the
presence of local maxima or to an insufficient TTL, compared
to the predicted average delay. Consequently, the TTL or the
replication constraints can be tuned to achieve target delivery
parameters, as shown in Table V for SimBet on ETH.

Desired Expected Delay < 475 285 190 135
Minimum Required L 1 2 3 4

TABLE V
MINIMUM L TO ACHIEVE EXPECTED DELAY IN ETH WITH SIMBET

Moreover, DTN-Meteo can help tune parameters of a utility
function (e.g. α and β in SimBet) or compare two functions,
to have as little local maxima as possible and good delays.

VII. CONCLUSION

In this paper, we presented DTN-Meteo a generic model
and analytical framework for DTN algorithms. Unlike earlier
analytical research work, our model captures the full hetero-
geneity of node mobility, which has been observed in real sce-
narios [9], [10], even for sophisticated utility-based algorithms.

Moreover, our framework allows the examination of a larger
class of algorithms, instances of which are very frequently
proposed as solutions to DTN problems: utility-ascent/descent
algorithms, be they probabilistic of deterministic.
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