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Abstract—Most of the existing packet-level simulation tools
are designed to perform experiments modeling small to medium
scale networks. The main reason of this limitation is the
amount of available computation power and memory in CPU-
based simulation environments. To enable efficient packet-level
simulation for large scale scenarios, we introduce a CPU-GPU
co-simulation framework where synchronization and experiment
design are performed in CPU and node’s logical processes are
executed in parallel in GPU according to the master/worker
model. The framework is developed using the Compute-Unified
Device Architecture (CUDA) API and denoted as Cunetsim,
CUDA network simulator. In this work, we study the node
mobility and connectivity as they are among the most time con-
suming task when large scale networks are simulated. Simulation
results show that Cunetsim runtime remains stable and that
it achieves significantly lower runtime than existing approaches
when computing mobility and connectivity with no degradation in
the accuracy of the results. Further, the connectivity is achieved
up to 870 times faster than Sinalgo, which presents the best
performances know until now.

Index Terms—Large Scale, Simulation, Evaluation, GPGPU

I. INTRODUCTION

Packet-level simulators are usually based on a discrete

events paradigm where sequences of events are generated

and processed. In general, such events represent mobility

and connectivity evaluation, protocol operations, and in/out

packets processing. The time complexity of a simulation

is then proportional to the network size and the number

of packets scheduled to be processed, which represent two

main bottlenecks when targeting scalability. To enable effi-

cient and scalable simulations, traditional approaches involve

parallel nodes execution environments with minimal inter-

process communication overhead to improve performances

when total number of nodes and packets increase significantly

[1]. To deal with large scale simulations, CPU parallelism

through distributed simulation is the most investigated method

[2]. However, this approach introduces a significant overhead

due to the synchronization among different processes and

machines and requires sophisticated and expensive simulation

infrastructure [3].

Furthermore, mobile networks require periodic nodes and

link updates, which needs to access global information such as

nodes’ position across multiple machines causing distributed

simulations to be inefficient in terms of runtime. Sinalgo is

an example of a mono-process simulator that is capable of

simulating up to one hundred thousand nodes [4]. It only

focuses on the verification of network algorithms, and provides

a message passing view of the network by abstracting the

underlying layers. However, performances degrades when the

number of nodes increases as it requires the global view of

the network prior to each iteration.

This work presents an efficient and scalable CPU-GPU [5]

co-simulation framework for testing and validating network

algorithms, denoted as Cunetsim, CUDA [6] Network Sim-

ulator. As opposed to previous works, Cunetsim is designed

to provide an independent parallel execution environment for

logical processes of a node. Nodes communicate with each

other only through the message passing based on the buffer

exchange, thus avoiding the usage of any global knowledge.

Furthermore, it exploits the master/worker model for CPU-

GPU co-simulation and provides CPU-based conservative syn-

chronization.

The remainder of the paper is organized as follows. Section

II presents exiting solutions for scalable networks simulation.

Section III briefly presents the concept of Cunetsim and

its design features. Preliminary results are given in section

IV followed by concluding remarks and future directions in

section V.

II. STATE OF THE ART

A. Scalability in networks simulation

The scalability and efficiency problems was approached by

several works previously [1], [7], [8], where authors demon-

strated the impact of the number of nodes and packets. To

enable efficient and scalable simulations, CPU-based paral-

lel execution is the traditional approach [2]. There are two

dominants axes in the realization of parallel discrete events

simulation systems: the native and federated parallel systems.

Native parallel systems are those where the software was

custom designed for particular parallel simulation architecture

which provides, at a minimum, services for communication

and synchronization. Examples of parallel network simulators

using this approach include GloMoSim [9], TeD [10] and

SSFNet [11] among others. Even if such simulators are

generally efficient, they introduce a compatibility problem and



requires a significant amount of time and effort to create a

usable system.

Federated systems evolve interconnecting simulators. These

simulations may include multiple copies of the same one

(modeling different portions of the network), or entirely differ-

ent simulators. The individual simulators that are to be linked

may be sequential or parallel. The federated approach offers

the benefits of model and software reuse, and provides the po-

tential of rapid parallelization of existing sequential simulators.

It also offers the ability to exploit models and software from

different simulators in one system [12]–[14]. However, setting

such testbeds implies the use of complicate and expensive

infrastructure and sophisticate coordination work.

Even if parallel and distributed simulators have crossed

a scalability boundary, they introduce a significant overhead

due to the synchronization among different processes and/or

machines , it requires also sophisticated and expensive in-

frastructure. This overhead may increase drastically in mobile

environment if the network topology and machine mapping is

not dynamically managed.. Moreover, famous solutions listed

above did not address the emerging network challenges as it

was done by centralized simulator as NS2/NS3 [15]. Among

the rare exceptions who have studied the subject, SwimNet

[16] is a simulation environment designed for wireless Net-

work, nevertheless, this solution did not address the funda-

mental of mobility problem and its architecture is achieved

around a master process which may be the bottleneck in large

scale experiments. A different approach was introduced by

sinalgo which proposes a simulation framework for testing

and validating network algorithms, focused on the verification

of network algorithms. Ignoring the physical layer. It presents

an important scalability level as it is able to simulate until

one hundred thousand nodes. However it remains a centralized

solution where large scale still the bottleneck. The scalability

decreases with the number of generated packets.

The major challenge of wireless mobile network simulation

resides in the connectivity, which needs a global view of the

simulated space thus; it needs also all nodes positions. In fact

the connectivity information is the unique method allowing

the systems to know which node is able to communicate

with which one. Centralized (mono process) network simulator

achieves this task via the help of the god object as NS3 do

or via a clever management of the space as it is done on

sinalgo. But this remains a bottleneck because the computing

time increases exponentially as a function of the number of

node.

In some recent approaches, the Graphics Processing Unit

(GPU) is used to offload certain CPU-intensive computing

tasks such as channel modeling [17]. Recent studies of GPUs

highlights the credibility of the general-purpose computation

GPGPU [5], [18] which encourages us to propose an in-

novate approach where the GPU is the central element of

the simulation, not a co-processor. The newer graphics cards

implement massively parallel architecture comprising several

hundreds of scalar processors [19]. The limit of one thousand

in a unique card is already reached. In GPGPU programming

concept, a single instruction is executed across all the pro-

cessors in a data flow. All these processors can communicate

using the shared memory space; The GPU provides several

memory levels with different speed, size and access right. The

new design delivers impressive computational power, which is

made possible by the management of numerous threads on fly

along with high memory bandwidth. There are two actors in

GPUs manufacturing: AMD and NVIDIA. Actually NVIDIA

propose a specific GPGPU API: the Compute-Unified Device

Architecture (CUDA) which has a mature ecosystem including

development, debugging and compiling tools.

III. THE DESIGN OF CUNETSIM

The Cunetsim specification targets a new solution which is

able to achieve a large scale simulation of wireless mobile

network with high performances and low cost. Multi-platform

distribution capability must be respected and the conditions

of scientific experimentation must be guaranteed. Moreover, it

must be intuitive and easy to use, simplifying the procedure

of adding a new protocol or functionality and reducing the

learning time. To deal with such requirements, we designed

Cunetsim based on Three models: (A) node, where each

function/service of a node is performed on an independent log-

ical process, (B) simulation, where the master/worker parallel

discrete event model is used between CPU and GPU within

the same OS context and (C)Data, where the flow is the basic

model to increase the throughput.

A. Node Model

A node is modeled as a stack of independent logical

processes (LP) each of which performs a specific function-

ality/service on behalf of a node. Nodes communicate with

each other only through the message passing (i.e. restrictive

communication). Only buffers are exchanged between nodes

to avoid global knowledge and centralized information.

In Cunetsim, each node contains four ordered LPs: mobility

(MOB), connectivity (CON), protocol (PROTO), and packet

(PKT). Each LP has its own container (i.e. GPU kernel)

and executed in parallel. For each node, the container will

be periodically launched and select corresponding data and

model applicable to each LP based on the kernel unique

identifier (KID). Nodes are logically located in a geometric

area called cell used by MOB and CON processes to determine

the network topology. The MOB calculates the movement in a

space following the mobility model and moving dynamics (e.g.

min and max speed) of a node. It implements several mobility

and boundary policy models. The current version supports two

mobility models: random way point and random walk, and

three boundary policy models: annulment of excess, sliding

on the boundaries, and bouncing on the boundaries [20]. The

CON determines network topology over time following the

connectivity model and nodes’ position. It counts the number

of nodes in each cell and updates the nodes’ ID and positions

to build the network connectivity according to a set of models

including channel, interference, power, transmission models.

Currently, only two simple channel models are supported:



unit disk graph and quasi unit disk graph. The PROTO

describes network nodes and their operation and algorithm.

It implements methods that are called when a node sends and

receives a message (i.e. protocol data unit). The current version

implements different broadcasting schemes. The PKT encap-

sulates protocol messages in packets, which contains meta

information to perform the message delivery, and provides all

the actions associated with the packet processing when nodes

communicate with each other.

B. Simulation Model

The simulation is modeled based on a master/worker

simulation model [2], where the master is a CPU process and

workers is GPU (and in some cases CPU) threads within the

same OS context. Due to this specificity, the management of

master and workers interaction can be simplified. The main

simulation model is designed around node and LPs. Each node

is composed of several LPs and each LP is implemented in a

unique process P and executed sequentially (see Figure 1a).

The master process resides in CPU context and is responsible

for global time synchronization and the simulation coherence,

which is achieved through safe timestamps-ordered processing

of simulation events within each LP, also known as conserva-

tive synchronization [21]. This ensures that an LP does not

execute an event until it can guarantee that no event with a

smaller timestamps will later be received by that LP.

Fig. 1. Node LP sequence and pool

In a general case, each node is composed of M processes

and the experiment evolves N nodes. A simulation round is

defined by the execution of all process of all nodes one time

which means that the total number of processes in one round

is M ∗N . In ideal conditions, the N nodes will be executed

in parallel and their processes sequentially as shown in (figure

1 b). Now assume that only C cores (or GPU kernels) are

available, which implies that only C nodes could be executed

in parallel. In this case, the correctness of simulation will be

preserved if and only if : ∀i ∈ [0,M ]∧j ∈ [0, N ], Pi+1,j could

not start until all Pi,j∀j ends. To achieve this, a sequence of

process pool Πj is defined incorporating the same process for

all nodes (see Figure 1c). For a given Πj , all Pij processes

must ends to assert that Π is achieved. This presents a simple

yet efficient implementation of the coherence and consistency

paradigm [22].

C. Data Model

Cunetsim data is based on the kernel/flow model [23].

We define several flows where each one presents a specific

part of the simulation data. Data is grouped by functionality.

Each LP uses one (or more) flows and each node has a

specific box with Read/Write rights. One node can access

foreign data with read right. Flow model is natively used by

graphics application to manage the communication between

the GPU and the CPU. We apply a flows loading-offloading

mechanism between the GDRAM (limited and non-extensible)

and the principal memory (larger and extensible). The master

manages flows transfer between the principal memory and

the GPU one, such that no LPs will be in famine situation.

Conceptually there are two types of objects represented by

flows in Cunetsim: The simulated space and simulated nodes.

Cunetsim provides two important services: memory allo-

cation abstraction (MAA) and critical section management

(CSM). MAA insures the double allocation of each data flow

in both of the RAM and the GDRAM. The synchronization

of the two copies of each flow is a manual operation which

must be specified by the user. Critical section is a recurrent

challenge in case of shared memory between several processes.

Software mutual exclusion solutions such as semaphores,

mutex and locks are commonly used in CPU context. However,

GPU context did not provides such explicit solutions. Conflict

situation can be described as following: If two nodes A

and B want to send messages to node C, than they must

write them into the input buffer of C. if this will happen

in parallel the probability that node A erases the message

of B is not negligible. Further if the number of concurrent

nodes is important, all messages will be lost. CSM provides an

abstraction of this problem based on cuda atomic operations.

IV. PERFORMANCES & RESULTS

In this section, we compare the performance of Cunetsim

with Sinalgo in terms of runtime for computing nodes mobility

and network connectivity as the number of nodes increases. We

vary the network size from 256 nodes to 64k. The benchmark

scenario is the following: Nodes are initially randomly dis-

tributed into a cubic space (edge=1600). The mobility model

is the random way point with speed uniformly distributed

between 1-5m/s. The maximum transmission range, Rmax, is

100 and the connectivity model is UDG. We run 500 rounds1

to provides a significant average. Experimentations are done

using a simple workstation(i7 940 CPU with 4GB RAM and

NVIDIA GTX 460 SE GPU with 1GB GDR5). In order to

assess the performance gain and simulation efficiency when

GPU is used, Cunetsim is also built for CPU target using the

PGI compiler [24].

1One round is finished when all nodes achieve their mobility and compute
their connectivity set.



A. MOB Performances

Figure 2 presents the average runtime to compute nodes

mobility in Sinalgo and Cunetsim (GPU and CPU-only). Even

if both of them present a linear behavior, we observe that

Cunetsim (GPU) runtime is always lower than Sinalgo one

when computing nodes mobility, and that it remains stable

as the number of nodes increases. Compared to Sinalgo,

Cunetsim is up to 4 times faster in CPU and 74 times in

GPU.

Fig. 2. Execution time for mobility

The random way point mobility implementation is similar

and presents an equivalent complexity in sequential execution

for both simulators. However, Cunetsim is completely scal-

able for parallel contexts .Theoretically it must be 4 times

faster in quad-cores CPU. Nevertheless, Cunetsim introduces

a management overhead with a significant impact in small

and medium scales. This is more visible for the CPU version

especially for network bellow 1000 nodes, where Cunetsim is

two times faster than Sinalgo while it uses four threads. In

the other hand, the analysis of Cunetsim on GPU context is

more complex due to three major parameters: First a GPU core

did not has the same architecture than the CPU one which

skews the comparison. Second, the GPU and CPU clocks

are different which introduce a speed factor. Third using the

GPU implies a memory transfer between the GDRAM and the

RAM which presents an additional overhead. To simplify the

evaluation we suppose that both of cores are equivalent than

we can calculate the relative speed factor: Our CPU is clocked

at 3.06 Ghz and our GPU is clocked at 763 MHz. Based on

previous assumption, one CPU core is equivalent to four GPU

cores. As our GPU includes 336 Cores, we can admit that

they are equivalent to 84 CPU cores. Theoretically, Cunetsim

must be 84 times faster on the GPU than Sinalgo however we

distinguish two phenomena: First, in small scale networks, the

GPU is under used while the memory transfer still significant,

inducing a reduced gain. Second, in large scale networks, the

performance converge to be 74 times faster, which implies

that the impact of the memory transfer is not negligible in all

cases.

B. CON Performances

The connectivity evaluation of a wireless network using

the UDG model is NPC problem [25]. Figure 3 presents the

average connectivity runtime. It can be seen that Cunetsim

runtime remains stable as the number of nodes increases while

that of Sinalgo increases exponentially. In particular, when

the number of nodes is close to 50k, the runtime increases

drastically. In Cunetsim, we observe that the runtime remains

stable by exploiting the high bandwidth of the GPU memory

(10 times faster than the RAM) and parallel processing power,

which in turn allow Cunetsim to be radically faster than

Sinalgo. For 64k nodes, Cunetsim compute the connectivity

set of all nodes 870 times faster than Sinalgo. These results

Fig. 3. Execution time for connectivity

confirm that our parallel architecture is natively adapted to

multi-cores hardware. Our approach enlarges the scalabil-

ity borders and reduces significantly the simulation runtime.

Moreover, the GPU implementation presents extraordinary

results compared to one machine CPU-based solutions.

C. PKT and PROTO Performances

To evaluate the performance of PKT and PROTO LPs

regardless the efficiency of MOB and CON, we propose a

scenario which models a simple network, where the nodes

are arranged in a grid topology as illustrated in Fig. 4.

The scenario includes one traffic source which generates 600
uniform packets with 1 second of inter-departure-time. Packets

size is fixed to 128 Bytes. All nodes -including the source-

relay unseen packets after a delay of 1 second, thus flooding

the totality of the network. The delay of 1 second models the

propagation delay. Nodes did not provide any packets man-

agement services. Transmission and reliability are modeled

on the channel using a fixed dropping probability which is

identical on all links. The sender is the node with the lowest

identity and the receiver is the one with the highest identity.

This methodology described above is the was implemented in

both Sinalgo and Cunetsim. The minimal simulation time is

set to 700 seconds2. Figure 5 shows the average measured

simulation runtime for each simulator. The CPU version of

Cunetsim is the fastest simulator up to 200 nodes and still

faster than Sinalgo for all network sizes. The efficiency factor

between Cunetsim (GPU version) and Sinalgo is about 11

2To allows the deliverance of the last packet -number 599- we extend the
simulation time for network larger than 2500 node following this rule: N =
a∗a; simtuime = max(600+2 ∗a, 700). where N is the number of node
and a is its root



Fig. 4. Grid Network

Fig. 5. Execution time for PKT & PROTO LPs

and remained stable until the threshold of 48K nodes where

the RAM in our machine becomes insufficient. For small

network the CPU version is the fastest because it did not

need any memory transfers and use the totality of the CPU

resources (four cores). However, for large scale, the GPU

version becomes the fastest owe due to its large computing

power and its memory bandwidth. Sinalgo is lagging because

the scenario involves a large number of small packets which

complicate the JAVA garbage Collector work.

V. CONCLUSION & FUTURE WORK

New challenges emerge when simulating a large scale

mobile network. While network simulation tools are widely

used for validation and performance evaluation, their scala-

bility and efficiency remain challenging. Cunetsim aims to

unlock the parallel capabilities of the state-of-the-art hardware

and software architectures to achieve simulation scalability

and efficiency with significantly lower cost. It provides a

CPU-GPU co-simulation framework for testing and validating

network protocols and algorithms for large scale scenarios.

Preliminary results show that the execution time could be

radically improved when CPU-GPU parallelism is used. In

future work, we will evaluate the execution time of Cunetsim

with other existing approach such as NS-3 and extend the

results for protocol and packet operations. We also plan to

further optimize the parallelism capability of Cunetsim by

exploiting multi-GPU hardware as a simulation platform.
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