Enabling Message Security for RESTful Services

Gabriel Serme*, Anderson Santana de Oliveira®, Julien Massiera®, and Yves Roudier!
*SAP Labs France, France
Email: {gabriel.serme,anderson.santana.de.oliveira,julien.massiera} @ sap.com
tEurecom, France
Email: yves.roudier@eurecom.fr

Abstract—The security and dependability of cloud applica-
tions require strong confidence in the communication protocol
used to access web resources. The mainstream service providers
nowadays are shifting to REST-based services in the detriment
of SOAP-based ones. REST proposes a lightweight approach
to consume resources with no specific encapsulation, thus
lacking of meta-data descriptions for security requirements.
Currently, the security of RESTful services relies on ad-hoc
security mechanisms (whose implementation is error-prone) or
on the transport layer security (offering poor flexibility). We
introduce the REST security protocol to provide secure service
communication, together with its performance analysis when
compared to equivalent WS-Security configuration.

Keywords-REST, Performance, Message Security, Protocol

I. INTRODUCTION

With the growing interest of cloud computing, systems
are getting inter-connected faster, as applications and cloud
API’s make intensive usage of RESTful services to expose
resources to consumers. There has been a shift from SOAP-
based services to more lightweight communication, based on
REST which allowed a number of advancements in the way
resources are used on the web. As REST web services are
self-described, resources can be manipulated through a set
of verbs already provided in the communication protocol,
accelerating the adoption of the REST philosophy. On
the other hand, REST suffers from the absence of meta-
descriptions, specially concerning security requirements.

Different solutions have been developed to provide a
common way to address service description and communi-
cation. For SOAP-based web services, the standard defines
envelopes to transmit requests and responses. In contrast,
the REST concepts coined by Roy Fielding in his Ph.D.
dissertation [1] simplify access to web services by reusing
existing and widespread standards instead of adding new
layers to the communication stack. The reuse of HTTP pro-
tocol contributed to the large industry adoption of RESTful
services, supported by the simple CRUD set of operations
(Create, Read, Update, Delete).

RESTHul services suffer from the lack of a specific secu-
rity model, unlike SOAP-based services which rely on the
message security model defined in WS-Security [2] standard.
Especially, the security of existing RESTful API’s rely on
transport layer security and on some home-made message

protection mechanism. The former protects efficiently point-
to-point communication channels, but becomes a burden for
mobile systems, as the TLS channel need to be frequently
reset. The latter can be error-prone, as security protocols are
known to be tricky.

In this paper we provide a security protocol to make
message security implementation as lightweight and efficient
as possible, and yet to respect the REST principles. We
show how message signature and encryption can address
communication security for RESTful services at a fine-
grained level. We present results of the benchmark we
conducted on our implementation and compare it to the
equivalent realization using SOAP and WS-Security.

The paper is organized as follows: in Section II, We
present the REST security protocol and the threat model we
aim to mitigate. In Section III we position our protocol with
regards to WS-Security via a benchmark. Then we discuss
related works in Section IV and conclude in Section V.

II. REST SECURITY PROTOCOL

In the following, we propose a protocol to secure com-
munications for RESTful services. We provide Encryption,
Signature and their combination. We do not aim to provide
an equivalent of Secure Conversation for RESTful services,
as it relates to some transport layer security for HTTP which
is already addressed in protocols such as TLS.

A. Message Security Model

We specify an abstract message security model based
on confidentiality and digital signatures to protect RESTful
messages. The associated threat model is exactly the same
as the one described in Web-Service Security standard [2]:
“The message could be modified or read by attacker or
an antagonist could send messages to a service that, while
well-formed, lack appropriate security claims to warrant
processing”. For instance, a malicious attacker can intercept
messages on any intermediary between peers. We want
messages to carry tokens for non-repudiation (via digital
signatures), to provide data confidentiality by encrypting its
content, and to have replay attack protection.

B. PKI-based message exchange

We assume that a PKI landscape is in place and that
certificates have been exchanged between clients and servers

prior to the communication. In this way we are able to
transmit a certificate identifiers within the messages instead
of full certificates, what would bring unnecessary overhead.

In order to distinguish a certificate on both client and
server sides, we rely on a unique identifier, called Certificate
ID, known to all entities. The Certificate ID is the aggre-
gation of a serial number and an issuer name. The RFC
5280 [3] specifies that serial numbers “MUST be unique for
each certificate issued by a given CA, i.e., the issuer name
and serial number identify a unique certificate”. The issuer
name in our case can be represented by the Distinguished
Name of a X509 certificate.

C. The REST Security principle

The principle of our protocol is to propose secure commu-
nication at the message level with the minimum overhead:
we try to respect the philosophy of RESTful services and
to reuse HTTP protocol to its full advantage. For example,
we take into account the specificity of HTTP verbs in the
design of the protocol. The REST security protocol is closely
related to the WS-Security standard: it proposes a fine-
grained approach to provide authenticity, non repudiation,
and confidentiality to messages. But the approach targets
another type of service. We claim that our approach is
complementary to provide consistent application of security
policies, disregarding the type of service being addressed.
When comparing both approaches, we can highlight the
reduced development effort and also less computation at
runtime. This is a consequence of the optimization in the
message size while we have performed, yet respecting the
compatibility with service’s definition and implementation.

We propose a set of HTTP-headers for transmitting
meta-data, unlike WS-Security which modifies messages to
add its own container describing the security meta data.
The headers are described in Table 1. They start with a
prefix “X-JAG” to distinguish them from other application
headers. The main difference with the WS-Security
approach, is that we are agnostic about the information
format. WS-* services use a strict approach to determine
the transformations of XML-based messages to ensure
the correct handling by interpreters at both sides. In our
approach, we consider the information as a set of multiparts,
and protocol headers. It allows us to gain flexibility in
terms of fine-grained signature and encryption of attached
documents, and/or to restrict visibility of a number of
headers.

In the following, we present the REST security protocol
process. For illustration purposes, we present the interaction
trace produced by the request of a RESTful service in the
Listing 1. A client requests customer information to the
service and expects a JSON-encoded result. One can notice
the expected result can be in any format accepted by the
server (e.g., XML, YAML, plain text, audio file, binary

Header keys Value

X-JAG-CertificateID | Unique identifier for a certificate

X-JAG-DigestAlg Algorithm used to obtain digest

X-JAG-DigestValue Value of the digest(s)

X-JAG-SigAlg Algorithm used to obtain the signature

X-JAG-SigValue Value of the signature(s)

X-JAG-EncAlg

Algorithm used to encrypt headers and messages’ part

X-JAG-EncKeyAlg Algorithm used to encrypt the symmetric key

X-JAG-EncKeyValue | Encrypted value of the symmetric key

X-JAG-MultiParts Designation of headers and messages’ part

Table 1
REST SECURITY PROTOCOL HEADERS

content, etc.). The response produced by the application
server starts at Line 6 .

GET /customer/123 HTTP/1.1
Accept: application/json
Host: 127.0.0.1:8080
Connection: keep-alive

Server: Apache-Coyote/1.1
Content-Type: application/json

1

2

3

4

5

6 HTTP/1.1 200 OK
7

8

9 Content-Length: 77
0

1

1
11 {"Customer":{"firstname":"Gabriel","id":123,"
lastname":"Serme", "title":"Mr"}}
Listing 1. RESTful request and response

D. Message Signature

Providing digital signature along with requests gives
confidence on the data being transmitted. A server might
need information on the authenticity of a message to launch
internal orders and to render the service correctly. A digital
signature brings non-repudiation: a requester cannot deny the
request. Also, the service cannot later repudiate the response
if it includes signed token linked to the initial request.
Additionally, digital signature protects from unintentional or
malicious modifications during the transmission.

Algorithm 1 presents the steps to attach signature informa-
tion to the message after a “digest then encrypt” processing.
It starts with a message m or part of it, with: the digest
algorithm, the signature algorithm, the Certificate Id of the
sender, and the private key of the sender. The algorithms
can be decided by the sender itself, or imposed by the
server policy. In our implementation, we allow the client
to decide about the algorithm to be used, but the server
can deny access if its policy considers the protection to
be insufficient. We have defined a “digest then encrypt”
function over the message payload, security parameters, and
header information. The algorithm vary slightly depending
on the concrete signature algorithm. The values are then
attached to the message along with algorithm information.

In Algorithm 2, we present the signature verification
function. It starts from a message m, or part of it, and with
the public key of the sender. The steps are the reverse of the
previous “digest then encrypt” algorithm. We first calculate
the digest value of a set of headers and the payload. Then,

Algorithm 1 Signature of REST messages

Require: m is a message, sig is a signature algorithm name,
dig is a digest algorithm name, cid is a Certificate Id, pk
is the sender private key, urlpath the requested path, hds
are headers element to protect
dv + digest(m.payload, dig)
url <
if m is a request then

url < urlpath
end if
bytes < concat(dv, url, sig, dig, cid, hds)
digV alue < digest(bytes, dig)
m.sigV alue < encrypt(digV alue, sig, pk)
m.{url, sig,dig, cid, hds} < url, sig, dig, cid, hds

we retrieve the digest value calculated by the sender. The
encrypted value is transmitted along with the message, on
a specific header. When we decrypt the value, we are then
able to detect any corruption in the payload and headers but
also to guarantee message safety and authenticity, as it has
been digitally proved by the sender.

Algorithm 2 Verification of REST Signature

Require: m is a message, Pk is the sender public key
dv + digest(m.payload, m.dig)
bytes < concat(dv, m.url, m.sig, m.dig, m.cid, m.hds)
calculatedDigest < digest(bytes, m.dig)
retrievedDigest <— decrypt(m.sigV alue, m.sig, Pk)
if retrievedDigest = calculatedDigest then

return true

end if
return false

The Listing 2 presents a HTTP trace with concrete headers
and payload value. The request starts at Line 1 and the
response starts at Line 10. We can observe for example
that message request is issued by a sender identified as
the 4102!" certificate issued by the CESSA Authority.
This sender protects the request of the customer 123. The
response is given by another peer, identified as the 4"
certificate issued by the CESSA Authority, on Line 12.
The request and response are here signed, which allows the
party consuming the message to verify the identity of the
producer and the validity of the security token, to detect if
the message has been tampered with. A replay attack can be
avoided by binding the messages to elements with unique
characteristics: MAC, timestamp , session related nonce,
etc..

E. Message Encryption

Message encryption provides confidentiality to sensitive
assets so that no eavesdropping and data modification
happen during messages transmission. In requests, several

—_

GET /sign/customer/123 HTTP/1.1

2 Accept: application/json

3 X-JAG-CertificateID: CN=CA CESSA, <...>0=SAP
Labs France, C=FR;4102

4 X-JAG-DigestAlg: w3.0rg/2000/09/xmldsig#shal

5 X-JAG-DigestValue: 2jmj715rSwOyVb/vI1WAYkKK/YBwk=

6 X-JAG-SigAlg: w3.0rg/2000/09/xmldsig#rsa-shal

7 X-JAG-SigValue: CwgrRTaCOoGBMpLPF6m<...>+

gjtCMnuC+2svEdI5zJvITbM=
8 Host: 127.0.0.1:8080

10 HTTP/1.1 200 OK

11 Server: Apache-Coyote/1.1

12 X-JAG-CertificateID: CN=CA CESSA, <...>0O=SAP
Labs France, C=FR;4

13 X-JAG-DigestAlg: w3.0rg/2000/09/xmldsig#shal

14 X-JAG-DigestValue: RUAYhPTuXgqwChvIGrclAyRtA22Y=

15 X-JAG-SigAlg: w3.0rg/2000/09/xmldsig#rsa—-shal

16 X-JAG-SigValue: pmpc347XG/8a9QIFWYaHHsbt79nhCwF
<...>G/buHnjsHQvZhaggilRuM=

17 Content-Type: application/Jjson

18 Content-Length: 77

20 {"Customer":{"firstname":"Gabriel","id":123,"
lastname":"Serme", "title":"Mr"}}

Listing 2. Signed request and response

assets are transmitted, such as payload, session headers in
cookies, etc. In our approach, we focus on payload and
header protection mainly. We envisage extensions to address
parameter encryption in GET requests in future versions of
the protocol. The encryption has the property to modify the
payload and headers, unlike signature which needs read-only
access to the message. The encryption mechanism is also
process-intensive.

The Algorithm 3 processes the payload of a message,
or part of it for encryption. The PKI environment gives
us mechanisms to share information between actors: the
public and private keys. However, asymmetric algorithms
are too heavy in order to perform an encryption on large
amounts of data. Instead, we generate a symmetric key
for encryption. This key is small enough to be encrypted
with an asymmetric algorithm and sent with the message.
Thus, the message contains an encrypted symmetric key
for the receiver, the encrypted payload, and several headers
expressing the algorithm used for encryption.

Algorithm 3 Encryption of a REST message

Require: m is a message, P, is the receiver public key, enc
is a symmetric algorithm name, aenc is an asymmetric
algorithm name, hds are headers element to protect
skey <+ generateSymmetricKey(enc)
m.payload < encrypt(m.payload, skey)
for all name, value < hds do

hds[name] < encrypt(value, skey)
end for
m.keyValue < encrypt(skey, aenc, Py)
m.enc, aenc, hds < enc, aenc, hds

GET /encrypt/customer/123 HTTP/1.1

Accept: application/json

X-JAG-CertificateID: CN=CA CESSA, <..
Labs France, C=FR;4102

Host: 127.0.0.1:8080

W N =

.>0=SAP

HITP/1.1 200 OK

Server: Apache-Coyote/1.1

X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP

Labs France, C=FR;4

9 X-JAG-EncKeyValue: RHVEJjpmkt2QF3ZPCtgFbflDzA48
<...>/UYNCYPbB265W2%3YhL5VQSyv1Xs3Skm0=

10 X-JAG-EncAlg: w3.0rg/2001/04/xmlenc#aesl28-cbc

11 X-JAG-EncKeyAlg: w3.0rg/2000/09/xmldsig#rsa-
shal

12 Content-Type: application/json

13 Content-Length: 101

[=BEN Ie NNV, N

15 eIdV39/XV/IHgPNWB2Hpo2jWglsI9p<...>k5c4+
vVs9d53060Eoh7M0bybmt GwdZE=

Listing 3. Encrypted payload during a request

The Algorithm 4 presents the reverse operation with
respect to the above algorithm, to be executed on the
receiver side. The procedure is performed on an encrypted
message m or part of it. The message usually contains
meta-information about encrypted parts and algorithms used
for key encryption and data encryption. Otherwise, these
information should result of a previous agreement between
the sender and the receiver. To decrypt the data, the receiver
retrieves the symmetric key and uses it to replace the headers
and the payload.

Algorithm 4 Decryption of a REST message
Require: m is a message, py is the receiver private key
skey < decrypt(m.keyV alue, m.aenc, py)
for all name, value < m.hds do
m.hds[name] < decrypt(value, m.enc, skey)
end for
m.payload < decrypt(m.payload, m.enc, skey)

The Listing 3 presents a HTTP trace where the request
does not contain custom information apart from the Cer-
tificate 1d. The service has been configured to send back all
messages encrypted. The service then processes and encrypts
the message content for the requester. In the Listing, the
payload is protected and no eavesdropping can be performed
during the transmission. The protection mechanisms de-
scribed in the previous section for replay attacks are also
apply here.

FE. Signature and Encryption

Signature combined with encryption is an important fea-
ture. Signature alone brings non-repudiation to the system,
but an attacker can still read the content of messages and
remain unnoticed. Providing encryption-only brings data
confidentiality, but do not prevent against data tampering:
any intruder can replace the payload and security tokens with

—_

PUT /sign/customer/111/file HTTP/1.1

2 Content-Type: multipart/form-data; boundary="
uuid:7d156074-35"; start="<root>";

3 X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP
Labs France, C=FR;4102

4 X-JAG-DigestAlg: w3.0rg/2000/09/xmldsig#shal

5 X-JAG-DigestValue: 0;8X3Ci4M+bhWKMg+
£83CXoXXjjns=

6 X-JAG-SigAlg: w3.0rg/2000/09/xmldsig#rsa-shal

7 X-JAG-SigValue: 0;1lcj7v4UAMxFOkhBoX+8<...>
NKo39300Q=

8 X-JAG-Multiparts: 0;<root>

9 Host: 127.0.0.1:8080

10 Transfer-Encoding: chunked

12 —-uuid:7d156074-35

13 Content-Type: application/octet-stream

14 Content-Transfer-Encoding: binary

15 Content-ID: <root>

16 Content-Disposition: attachment; filename=data.
dat

17 <..binary content..>

19 <.. HTTP Response ..>

Listing 4. Multipart signature example

its own, as there is no binding with the proof of identity. For
this purpose, the combination of encryption and signature
at the message level provides confidence that data is kept
confidential from intruders, and that no modification have
been made to it. The signature testifies authenticity of the
encrypted content, and only the receiver can retrieve the
original data. In the current version of our work, we do not
address ordering between the two mechanisms, therefore it
is not yet possible to encrypt a signature.

G. Multiparts

We consider the case where one request or response
message contains several parts. It is the case for example
when forms are submitted with several fields containing
user data, or when several files are attached along the
same request. In such case, we might have general-purpose
information and sensitive-information. To encrypt sensitive
information, we need a mechanism that specifies the format
of the different parts. We have several choices: we can apply
the security requirements on the entire request/response of
the RESTful service, or just on some parts/elements. HTTP
makes usage of the Multipurpose Internet Mail Extensions
(MIME) standard' to separate the content in several parts.
We can take advantage of this usage to distinguish parts
of the data along requests. Therefore, if a request contains
multiple parts, we can choose to sign and encrypt some of
them without affecting the others.

The approach differs from what is implemented in WS-
Security standards and S/MIME standard. In our approach,
we are independent from the actual content-type, and pro-
poses to gather in one place all security meta-data. WS-*
standards deal with XML-based content, so they propose a

Uhttp://www.ietf.org/rfc/rfc2045

Processor Intel Core i7-2600 @ 3.40GHz
Installed RAM 16 GB
Hard Drive Seagate ST3500413AS Barracuda 7200 500 GB
Application Server Tomcat 7.0.21
Server JVM Memory | -Xmx 8000m
WS framework CXF 24.2
Server certificate RSA 1024
Client’s certificates RSA 4096
Table IT

BENCHMARK ENVIRONMENT

fine-grained approach at the XML-data level. Our approach
is more general, and provides resource-grained encryption
and signature. The Listing 4 highlights this principle. It
represents the signature for the first multipart element iden-
tified by <roor>. In a multipart environment, the meta-
information vary depending on the part subject to encryp-
tion or signature. The header X-JAG-Multiparts contains a
set of multipart elements and some headers referenced by
identifiers. These identifiers are used to reference digest and
signature values in the other security headers.

III. COMPARISON TO WS-SECURITY

The REST security protocol is close to the WS-Security
standard. WS-Security [2] describes enhancements to SOAP
messaging to provide protection through message integrity,
confidentiality, and single message authentication. More
precisely, it is an open format for signing and encrypting
message parts leveraging XML Digital Signature and XML
Encryption protocols, for supplying credentials in the form
of security tokens, and for securely passing those tokens in
a message. As explained in previous sections, the REST
security protocol has been designed to be an equivalent
alternative to WS-Security for RESTful services, with some
differences in the way messages are secured.

A. Environment & Methodology

In order to position the protocol performance with respect
to the state of the art, we have run several performance
tests to compare WS-* and RESTful based services. In
order to have a clear methodology and to reproduce
performance tests, the evaluation has been made on the
same environment to eliminate network side-effects. We
limited resource starvation on the server to obtain accurate
data. The Table II lists server characteristics. In order
to compare the different services, we evaluate them in
a single framework proposing coverage of both JAX-RS
and JAX-WS specifications. The CXF service framework?
allows us to compare the complexity of the two kinds of
web services under the same conditions.

We have defined and implemented three scenarios, corre-
sponding to real-use cases. In this way, we simulate several
scenarios in order to evaluate and compare performance,
message size, etc. The three scenarios correspond to:

Zhttp://cxf.apache.org/index html

Simple Get: In the following, we identify this scenario
with the acronym Ger. The scenario retrieves information
without further processing. It is materialized by the invoca-
tion of a method in WS-* to retrieve customer information,
from customer identifier. In RESTful services, the client
requests a customer through a GET action, and the service
renders the customer in the requested format.

Modify Post: In the following, we identify this scenario
with the acronym Post. In this scenario, the data is transmit-
ted in the request phase, and the response phase is just an
indicator of the success or failure. Some additional process-
ing is made on background to modify objects on the server.
The modification of a remote resources is materialized by a
method invocation with WS-* services, whereas it is a POST
request in REST.

Large payload: In the following, we identify this
scenario with the acronym Large or Big. It corresponds
to the transmission of large amount of data between
client and server. The size of messages brings out the
real impact of the protocol. Each operation gives rise
to accurate observation of the cost in terms of size and
performance. It is materialized by a method invocation for a
customer document in the input for WS-* services, and by
a PUT request in the RESTful version. The reply contains
indication of success or failure.

The different scenarios provide heterogeneous tests to
verify several properties of the REST security protocol,
in different conditions. They cover the most problematic
situation one can face in a real production environment. They
are a good basis for protocol comparison. For each of the
scenarios, we have configured and run several tests with dif-
ferent security capabilities: signature, encryption, signature
& encryption and no-security acting as the baseline. The
experiments were performed couple of times to ensure con-
sistent and valid results for comparison. The REST security
implementation uses the same cryptographic algorithms as in
the WS-Security configuration. For instance, both SOAP and
REST services are set to use the “Basic128Rsal5” security
algorithms suite: it determines the algorithms for digest,
symmetric encryption, asymmetric encryption, as well as key
derivation algorithms and key-wrap algorithms.

B. Size comparison

The Table III indicates the measurement in size to com-
pare REST and WS-* services in the different scenarios.
It lists the incoming and outgoing message sizes with
distinction between headers and payload size. The results
correspond to the different scenarios, with an equivalence
between the Get and Post scenarios in terms of total size.
The Large scenario sends a resource of around 3311kB. In
the Get scenario, a client sends a request to the server in
order to retrieve a customer object. In SOAP messages, the
request is embedded in a SOAP envelope. The envelope

grows with the type of security used. For each type, the
SOAP headers comprise secure data to indicate the type
of algorithm, the encrypted or signed parts, and sometimes
full certificates. In REST messages, the request is directly
represented by the HTTP verb used to query the server.
Therefore, no additional payload is necessary than the actual
data plus some meta-data headers.

Moverhead from outgoing messages (in %) (Normalized base 100 on REST for each Scenario and Security)

Doverhead fram incoming messages (in %]

Get Post Big

Plain Encryption

Signature

Signature & Encryption

Figure 1. Overhead of SOAP messages compared to REST. For each
scenario and security, the REST size represents the base 100

The Figure 1 highlights the global overhead using SOAP
with any security mechanisms for the different scenarios.
The REST size represents 100 for each scenario and security.
We compare then the message overhead of different security
mechanisms with its REST equivalent. For example, a
SOAP-signed message size with the Get scenario represents
around 460 when its counterpart in REST is 100. In the
figure, we distinguish a second dimension: the origin of the
overhead - from incoming message or outgoing message.
The message increase for the previous scenario is half due
to the incoming message, and second half by the outgoing
message. In all tests, the usage of SOAP services instead
of REST services is less efficient in terms of message
size. The minimal overhead impact in all scenarios is 33%,
which is the case where message payload is really large.
We can explain it by the minimal impact of SOAP overhead
compared to the actual data to transmit. This number is
the result of our measurements, where the size of messages
(including incoming and outgoing payload and headers) is
larger when WS-* services are used compared to REST
services, with all security mechanisms. The experimental
cases where REST security protocol is the most efficient
compared to WS-Security is on encryption of small set
of data. The Ger and Post scenarios present high SOAP
overhead when data to transmit is small. For such cases,
SOAP adds to much meta-data compared to the actual
information, which multiply up to eight times the message
size for a request and response in our measurements.

C. Processing performance comparison

In this paragraph, we present the processing performance
comparison. The server has a certificate with RSA 1024
bits key, and the different clients have RSA 4096 bits. The

difference of key size for the clients and the server impacts
the time of processing depending on actions performed
by the different actors. This behavior is directly linked to
the performance of asymmetric algorithm that differs from
encryption and decryption [4]. For instance, the encryp-
tion algorithm is straightforward has it uses a small value
for the exponentiation (typically 0210001). The decryption
algorithm requires more computation as the exponent is
of the size of the private key (1024 or 4096 bits in our
benchmarks). Thus, the server can decrypt faster than clients
at the cost of less security. The calculated factor shows server
decryption is around 20 times faster than client decryption.
In our benchmarks, it impacts the performance comparison
between the different scenarios we have defined. For in-
stance, the server processes messages from the Get scenario
with one encryption (fast operation) when messages from
the Post scenario needs to be decrypted (slow operation)
which lowers the processing time and throughput.

O Encryption

H Sign/Enc

5 W Piam

REST SOAP REST SOAP REST SOAP

GET (in ms) POST(in ms)

BIG (in 1/50 of s}

Figure 2. Average processing time comparison for the different scenarios

The Table III lists the average processing time calculated
under the same conditions. Each scenario has been launched
for 60 seconds, with a single client emitting requests. The
client sends messages sequentially not to overload the server
and to extract the optimal processing time. The Figure 2
depicts the differences between the different scenarios. The
difference between REST and SOAP average processing
time differs depending on the algorithm scheme and scenario
used. In the Getr and Post scenarios, REST is twice more
efficient than SOAP when cryptography is used. It can be
explained by the ratio of data related to XML format and
SOAP meta-information that impact size of messages. For
thin SOAP messages, the ratio doubles the size compared
to REST messages. The time spent to process message
is directly impacted by this size. For large messages, the
encryption scheme is shown to be slower than signature.

We can notice differences in term of performance with
regards to encryption and signature, depending on the size
of data to be processed. Although SOAP encryption is
always more costly than SOAP signature, REST shows
better performances with encryption when amount of data
remains low like in the Get and Post scenarios. If the data
size growths, signature is faster than encryption.

Message size in Bytes & Average processing time in ms
SOAP REST
o o
z z

83 %2} »n [s3] »n ©n A~

Payload In 4991 5407 6849 765 0 0 0 0

3 Headers In 228 228 228 221 330 1200 1200 192
© Payload Out 3685 3190 5149 827 236 161 236 161
Headers Out 2 2 2 2 1001 531 1359 38
Processing Time 3.964 3.445 6.244 0.187 1.060 2.332 3.156 0.145
Payload In 5052 5458 6912 820 236 167 236 163

Z Headers In 228 228 228 221 662 1216 1532 208

A Payload Out 3581 3107 5040 746 0 0 0 0
Headers Out 2 2 2 2 193 551 551 58
Processing Time 4.343 3.821 6.574 0.218 1.610 2.352 3.766 0.128

N Payload In (in kB) | 5891 kB | 4420 kB | 5893 kB | 4415 kB || 4415kB | 3311 kB | 4415 kB | 3311 kB

50 Headers In 228 228 228 221 815 1369 2052 361

3 Payload Out 3565 3089 5028 734 0 0 0 0
Headers Out 2 2 2 2 193 551 551 58

Processing Time 164.412 85.063 211.377 35510 137.950 69.468 146.043 19.776
Table 111

COMPARISON OF PAYLOAD AND HEADER SIZE, AND AVERAGE PROCESSING TIME FOR SOAP AND REST MESSAGES

IV. RELATED WORK

In this section, we present some security models adopted
by existing web services to expose their REST API’s. Then,
we provide alternative approaches to address REST security
and performance issues.

The security model adopted by Amazon S3 [5] supports
authentication and custom data encryption over HTTP re-
quests. The requests are issued with a token to prevent
unauthorized users from accessing, modifying or deleting
the data. The token conveys a signature value calculated
per request which transmits a proof of identity, ensuring the
authenticity of the request, similar to our protocol. The data
encryption can be performed by the client itself, or by the
server prior storage. The communication is supposed secured
through SSL endpoints. Our approach brings more flexibility
as actors decide of resources and headers to protect and
transform. The server benefits of the PKI environment to
render services to its clients without the need to generate
and maintain a set of secret keys. The clients can also enable
the REST security protocol with different service providers
by simply uploading their public key.

The other models adopt a slightly different approach,
making intensive usage of the OAuth 2.0 protocol. Yahoo [6]
uses OAuth Authorization protocol (OAuth Core 1.0 [7])
which is a simple, secure protocol to publish and share
protected data when several actors require access to the
resource. Yahoo demands the usage of an API Key to
sign requests and provide end-user authentication. Twit-
ter [8] leverages the transport layer security by exposing
REST APIs over SSL. Facebook [9] requires the OAuth
2.0 protocol [10] for authentication and authorization. They
distribute SSL Certificates to consumers so that they can
create signed requests and force users to use HTTPS. The
Dropbox model [11] allows third-party applications to use

their services on behalf of users. Their model forces the
requests through SSL and requires additional authenticity
checks on messages. Like the previous approaches, they are
combining transport layer security and application security.
In our approach, we simplify the access of resources by uni-
fying security at the message level. For instance, performing
a request to retrieve a file with Dropbox transmits content
metadata in an header. This content can be visible when the
packet reaches the endpoint of a SSL tunnel, whereas our
approach protects the header until its consumption.

The idea of having RESTful security as an equivalent
of WS-Security has been expressed in a blog entry [12],
using a similar approach but with no implementation and
concrete specification. An approach to sign and encrypt
multiparts have been drafted in [13]. They do not refer to
REST services, but rather propose a model integrated to the
multipart separation content to describe meta-information.
Our approach benefits from multipart to split the payload in
several resources, but we prefer centralizing security meta-
data in headers to avoid service disruption, and to incor-
porate other field protection: headers, parameters, etc.. Our
lightweight approach modifies content only when necessary.

Pautosso et al. [14] describe the differences between
REST services and “big” services with a number of ar-
chitectural decisions about which type of service is more
appropriate. We have used this work to compare security of
both approaches and to provide an extension to REST ser-
vices for more security. The work in [15] addresses attacks
targeting SOAP-based services. Although attacks are based
on the XML message format, we advocate that the approach
presented can be easily introduced in our implementation
using particular header fields to inform about the document
structure.

Optimizing service consumption in terms of performance
has been addressed for a long time. The problem is rather

to balance usability and composability while allowing cross-
cutting concerns such as security to protect the messages
with a variable level of granularity. We can mention work on
Fast Web Services [16] which defines binary-based messages
to lower bandwidth and memory consumption. The price
is the loss of self-description so that intermediaries cannot
process the messages. In [17], Suzumura et al. propose
a different approach, which is based on SOAP messages.
They boost performance by considering partial regions of
messages that differ from previously processed ones. Albeit
the approach gives interesting results, they can not help
with encrypted SOAP messages in the current state of the
protocol.

V. CONCLUSION

In this paper, we have presented a novel approach to
provide security for RESTful services equivalent to WS-
Security. Our solution respects the REST philosophy by
minimizing the processing overhead to service consumers,
without interfering in the service composition already in
place. We are able to keep messages confidential and to
sign them with a fine granularity. The custom and ad-hoc
processing on a per-message basis is a valid alternative to the
existing approaches, which consider mainly transport layer
security for securing all REST services. The advantage of
our approach is to hide the complexity for the consumers,
with no pollution on request parameters, while still carrying
security tokens processable and verifiable by recipients.

We also conducted a performance evaluation considering
several use-cases to analyze the impact of message protec-
tion to the performance of the web services. The analysis
comprises heterogeneous scenarios to compare different
security mechanisms among them, but also the behavior of
the application server when dealing with RESTful services
versus SOAP-based web services. The results show that
RESTful services are processed more efficiently from any
point of view, which is inherent to the service’s purpose.
RESTful services are oriented to handle resources, when
SOAP-based services forge requests for operation invoca-
tion. The protocol is self-descriptive, so all information
about the message verifications and transformations are
specified to let the recipient informed about the message
state.

As future works, we intend to provide several extensions.
The protocol will handle other security constraints. For
instance, we can think of carrying encrypted basic authen-
tication tokens, signed P3P claims, or even convey autho-
rization token decisions. We would also like to investigate
an automated way to configure services to enable security
transformations when necessary, i.e. when the resource is
sensitive or contains restricted information.

ACKNOWLEDGMENT

This work was partially supported by the ANR project
CESSA (Compositional Evolution of Secure SOA’s with
Aspects), grant number 09-SEGI-002-01.

REFERENCES

[1] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000.

[2] OASIS, “Web Services Security : SOAP Message Secu-
rity 1.1,” http://www.oasis-open.org/committees/wss, Febru-
ary 2006.

[3] IETF, “Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile,” http://tools.ietf.org/
html/rfc5280\#section-4.1.2.2, 2008.

[4] W. Dai, “Crypto++ 5.6.0 benchmarks,” http://www.cryptopp.
com/benchmarks.html, 2009.

[5] Amazon, “Amazon Simple Storage Service REST Secu-
rity Model,” http://docs.amazonwebservices.com/AmazonS3/
latest/dev/RESTAPILhtml, 2006.

[6] Yahoo, “OAuth Authorization Model,” http://developer.yahoo.
com/oauth/.

[7] IETF, “The OAuth 1.0 Protocol,” http://tools.ietf.org/html/
rfc5849, 2010.

[8] Twitter, “Security Best Practices,” https://dev.twitter.com/
docs/security-best-practices, 2011.

[9] Facebook, “Facebook Authentication,”
facebook.com/docs/authentication/, 2012.

http://developers.

[10] IETF, “The OAuth 2.0 Authorization Protocol,” http://tools.
ietf.org/html/draft-ietf-oauth-v2-23, 2012.

[11] Dropbox, “REST APL” https://www.dropbox.com/
developers/reference/api, 2012.
[12] E Lascelles, “RESTful Web services and signa-

tures,” http://flascelles.wordpress.com/2010/10/02/
restful-web-services-and-signatures/, October 2010.

[13] J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Secu-
rity multiparts for mime: Multipart/signed and multipart/en-
crypted,” IETF, Network Working Group, Tech. Rep., October
1995, http://tools.ietf.org/html/rfc1847.

[14] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web
services vs. “big” web services: making the right architectural
decision,” in WWW. ACM, 2008, pp. 805-814.

[15] M. A. Rahaman and A. Schaad, “Soap-based secure conver-
sation and collaboration,” in /CWS. IEEE Computer Society,
2007, pp. 471-4380.

[16] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley,
and E. Pelegri-Llopart, “Fast web services,” Sun Developer
Network, 2003.

[17] T. Suzumura, T. Takase, and M. Tatsubori, “Optimizing
web services performance by differential deserialization,” in
ICWS. 1EEE Computer Society, 2005, pp. 185-192.

