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A Coordinated Approach to Channel Estimation in
Large-Scale Multiple-Antenna Systems
Haifan Yin, David Gesbert Fellow, IEEE, Miltiades Filippou, and Yingzhuang Liu

Abstract—This paper addresses the problem of channel es-
timation in multi-cell interference-limited cellular networks. We
consider systems employing multiple antennas and are interested
in both the finite and large-scale antenna number regimes (so-
called ”massive MIMO”). Such systems deal with the multi-cell
interference by way of per-cell beamforming applied at each base
station. Channel estimation in such networks, which is known
to be hampered by the pilot contamination effect, constitutes a
major bottleneck for overall performance. We present a novel
approach which tackles this problem by enabling a low-rate
coordination between cells during the channel estimation phase
itself. The coordination makes use of the additional second-order
statistical information about the user channels, which are shown
to offer a powerful way of discriminating across interfering users
with even strongly correlated pilot sequences. Importantly, we
demonstrate analytically that in the large-number-of-antennas
regime, the pilot contamination effect is made to vanish com-
pletely under certain conditions on the channel covariance.
Gains over the conventional channel estimation framework are
confirmed by our simulations for even small antenna array sizes.

Index Terms—massive MIMO, pilot contamination, channel
estimation, scheduling, covariance information.

I. INTRODUCTION

FULL reuse of the frequency across neighboring cells leads
to severe interference, which in turn limits the quality of

service offered to cellular users, especially those located at the
cell edge. As service providers seek some solutions to restore
performance in low-SINR cell locations, several approaches
aimed at mitigating inter-cell interference have emerged in
the last few years. Among these, the solutions which exploit
the additional degrees of freedom made available by the use
of multiple antennas seem the most promising, particularly so
at the base station side where such arrays are more affordable.
In an effort to solve this problem while limiting the re-

quirements for user data sharing over the backhaul network,
coordinated beamforming approaches have been proposed in
which 1) multiple-antenna processing is exploited at each base
station, and 2) the optimization of the beamforming vectors at
all cooperating base stations is performed jointly. Coordinated
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beamforming does not require the exchange of user message
information (e.g., in network MIMO). Yet it still demands
the exchange of channel state information (CSI) across the
transmitters on a fast time scale and low-latency basis, making
almost as challenging to implement in practice as the above
mentioned network MIMO schemes.

Fortunately a path towards solving some of the essential
practical problems related to beamforming-based interference
avoidance was suggested in [1]. In this work, it was pointed
out that the need for exchanging Channel State Information at
Transmitter (CSIT) between base stations could be alleviated
by simply increasing the number of antennas, M , at each
transmitter (so-called massive MIMO). This result is rooted in
the law of large numbers, which predicts that, as the number of
antennas increases, the vector channel for a desired terminal
will tend to be more orthogonal to the vector channel of a
randomly selected interfering user. This makes it possible to
reject interference at the base station side by simply aligning
the beamforming vector with the desired channel (”Maximum
Ratio Combining” or spatial matched filter). Hence in theory,
a simple fully distributed per-cell beamforming scheme can
offer performance scaling (withM ) similar to a more complex
centralized optimization.

Unfortunately, the above conclusion only holds without
pilot-contaminated CSI estimates. In reality, channel informa-
tion is acquired on the basis of finite-length pilot sequences,
and crucially, in the presence of inter-cell interference. There-
fore, the pilot sequences from neighboring cells would con-
taminate each other. It was pointed out in [1] that pilot contam-
ination constitutes a bottleneck for performance. In particular,
it has been shown that pilot contamination effects [2], [3],
[4] (i.e., the reuse of non-orthogonal pilot sequences across
interfering cells) cause the interference rejection performance
to quickly saturate with the number of antennas, thereby
undermining the value of MIMO systems in cellular networks.

In this paper, we address the problem of channel esti-
mation in the presence of multi-cell interference generated
from pilot contamination. We propose an estimation method
which provides a substantial improvement in performance.
It relies on two key ideas. The first is the exploitation of
dormant side-information lying in the second-order statistics
of the user channels, both for desired and interfering users. In
particular, we demonstrate a powerful result indicating that the
exploitation of covariance information under certain subspace
conditions on the covariance matrices can lead to a complete
removal of pilot contamination effects in the largeM limit. We
then turn to a practical algorithm design where this concept
is exploited. The key idea behind the new algorithm is the

0733-8716/13/$31.00 c© 2013 IEEE



YIN et al.: A COORDINATED APPROACH TO CHANNEL ESTIMATION IN LARGE-SCALE MULTIPLE-ANTENNA SYSTEMS 265

use of a covariance-aware pilot assignment strategy within
the channel estimation phase itself. While diversity-based
scheduling methods have been popularized for maximizing
various throughput-fairness performance criteria [5], [6], [7],
[8], the potential benefit of user-to-pilot assignment in the
context of interference-prone channel estimation has received
very little attention so far.
More specifically, our contributions are the following: We

first develop a Bayesian channel estimation method making
explicit use of covariance information in the inter-cell inter-
ference scenario with pilot contamination. We show that the
channel estimation performance is a function of the degree
to which dominant signal subspaces pertaining to the desired
and interference channel covariance overlap with each other.
Therefore we exploit the fact that the desired user signals and
interfering user signals are received at the base station with
(at least approximately) finite-rank covariance matrices. This
is typically the case in realistic scenarios due to the limited
angle spread followed by incoming paths originating from
street-level users [9]. Finally, we propose a pilot sequence
assignment strategy based on assigning carefully selected
groups of users to identical pilot sequences. The gains are
shown to depend on system parameters such as the typical
angle spread measured at the base station and the number of
base station antennas. Performance close to the interference-
free channel estimation scenario is obtained for moderate
numbers of antennas and users.
The notations adopted in the paper are as follows. We use

boldface to denote matrices and vectors. Specifically, IM de-
notes the M×M identity matrix. Let (X)T , (X)∗, and (X)H

denote the transpose, conjugate, and conjugate transpose of
a matrix X respectively. E {·} denotes the expectation, ‖·‖F
denotes the Frobenius norm, and diag{a1, ..., aN} denotes a
diagonal matrix or a block diagonal matrix with a1, ..., aN at
the main diagonal. The Kronecker product of two matrices X
and Y is denoted by X⊗Y. � is used for definitions.

II. SIGNAL AND CHANNEL MODELS

We consider a network of L time-synchronized1 cells, with
full spectrum reuse. Estimation of (block-fading) channels in
the uplink is considered,2 and all the base stations are equipped
withM antennas. To simplify the notations, we assume the 1st
cell is the target cell, unless otherwise notified. We assume the
pilots, of length τ , used by single-antenna users in the same
cell are mutually orthogonal. As a result, intra-cell interference
is negligible in the channel estimation phase. However, non-
orthogonal (possibly identical) pilots are reused from cell to
cell, resulting in pilot contamination from L − 1 interfering
cells. For ease of exposition, we consider the case where a
single user per cell transmits its pilot sequence to its serving
base. The pilot sequence used in the l-th cell is denoted by:

sl = [ sl1 sl2 · · · slτ ]T . (1)

1Note that assuming synchronization between uplink pilots provides a worst
case scenario from a pilot contamination point of view, since any lack of
synchronization will tend to statistically decorrelate the pilots.
2Similar ideas would be applicable for downlink channel estimation,

provided the UE is equipped with multiple antennas as well, in which case
the estimation would help resolve interferences originating from neighboring
base stations.

The powers of pilot sequences are assumed equal such that
|sl1|2 + · · ·+ |slτ |2 = τ, l = 1, 2, . . . , L.
The channel vector between the l-th cell user and the target

base station is hl. Thus, h1 is the desired channel while hl, l >
1 are interference channels. All channel vectors are assumed
to beM ×1 complex Gaussian, undergoing correlation due to
the finite multipath angle spread at the base station side [10]:

hl = R
1/2
l hWl, l = 1, 2, . . . , L, (2)

where hWl ∼ CN (0, IM ) is the spatially white M × 1 SIMO
channel, and CN (0, IM ) denotes zero-mean complex Gaus-
sian distribution with covariance matrix IM . In this paper, we
make the assumption that covariance matrix Rl � E{hlh

H
l }

can be obtained separately from the desired and interference
channels (see Section VI for how this could be done in
practice).
During the pilot phase, the M × τ signal received at the

target base station is

Y =

L∑
l=1

hls
T
l +N, (3)

where N ∈ CM×τ is the spatially and temporally white ad-
ditive Gaussian noise (AWGN) with zero-mean and element-
wise variance σ2

n.

III. COVARIANCE-BASED CHANNEL ESTIMATION

A. Pilot Contamination

Conventional channel estimation relies on correlating the
received signal with the known pilot sequence (referred here
as Least Squares (LS) estimate for example). Hence, using the
model in (3), an LS estimator for the desired channel h1 is

ĥLS1 = Ys1
∗(s1T s1∗)

−1
. (4)

The conventional estimator suffers from a lack of orthogo-
nality between the desired and interfering pilots, an effect
known as pilot contamination [2], [11], [12]. In particular,
when the same pilot sequence is reused in all L cells, i.e.,
s1 = · · · = sL = s, the estimator can be written as

ĥLS1 = h1 +
L∑

l �=1

hl +Ns∗/τ . (5)

As it appears in (5), the interfering channels leak directly
into the desired channel estimate. The estimation performance
is then limited by the signal to interfering ratio at the base
station, which in turns limits the ability to design an effective
interference-avoiding beamforming solution.

B. Bayesian Estimation

We hereby propose an improved channel estimator with the
aim of reducing the pilot contamination effect, and taking
advantage of the multiple antenna dimensions. We suggest
to do so by exploiting side information lying in the second
order statistics of the channel vectors. The role of covariance
matrices is to capture structure information related to the
distribution (mainly mean and spread) of the multipath angles
of arrival at the base station. Due to the typically elevated
position of the base station, rays impinge on the antennas with
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a finite angle-of-arrival (AOA) spread and a user location-
dependent mean angle. Note that covariance-aided channel
estimation itself is not a novel idea, e.g., in [13]. In [14],
the authors focus on optimal design of pilot sequences and
they exploit the covariance matrices of desired channels and
colored interference. The optimal training sequences were
developed with adaptation to the statistics of disturbance. In
our paper, however, the pilot design is shown not having an
impact on interference reduction, since fully aligned pilots
are transmitted. Instead, we focus on i) studying the limiting
behavior of covariance-based estimates in the presence of
interference and large-scale antenna arrays, and ii) how to
shape covariance information for the full benefit of channel
estimation quality.
Two Bayesian channel estimators can be formed. In the first,

all channels are estimated at the target base station (including
interfering ones). In the second, only h1 is estimated. By
vectorizing the received signal and noise, our model (3) can
be represented as

y = S̃h+ n, (6)

where y = vec(Y), n = vec(N), and h ∈ CLM×1 is obtained
by stacking all L channels into a vector. The pilot matrix S̃
is defined as

S̃ �
[
s1 ⊗ IM · · · sL ⊗ IM

]
. (7)

Applying Bayes’ rule, the conditional distribution of the
channels h given the received training signal y is

p(h|y) = p(h)p(y|h)
p(y)

. (8)

We use the multivariate Gaussian probability density function
(PDF) of the random vector h and assume its rows h1, · · · ,hL

are mutually independent, giving the joint PDF:

p(h) =

exp

(
−

L∑
l=1

hH
l R−1

l hl

)
πLM (detR1 · · ·detRL)

M
. (9)

Note that we derive this Bayesian estimator under the stan-
dard condition of covariance matrix invertibility, although we
show later this hypothesis is actually challenged by reality
in the large-number-of-antennas regime. Fortunately, our final
expressions for channel estimators completely skip the covari-
ance inversion.
Using (6), we may obtain:

p(y|h) =
exp

(
−(y − S̃h)

H
(y − S̃h)/σ2

n

)
(πσ2

n)
Mτ

. (10)

Combining the equations (9) and (10), the expression of (8)
can be rewritten as

p(h|y) = exp (−l(h))
AB

, (11)

where
A � p(y)(πσ2

n)
Mτ , B � πLM (detR1 · · · detRL)

M =
πLM (detR)M , and

l(h) � hHR̄h+ (y − S̃h)H(y − S̃h)/σ2
n, (12)

in which R � diag(R1, · · · ,RL), R̄ � R−1.

Using the maximum a posteriori (MAP) decision rule, the
Bayesian estimator yields the most probable value given the
observation y [15]:

ĥ = arg max
h∈CLM×1

p(h|y)
= arg min

h∈CLM×1
l(h)

= (σ2
nILM +RS̃HS̃)−1RS̃Hy. (13)

Interestingly, the Bayesian estimate as shown in (13) coin-
cides with the minimum mean square error (MMSE) estimate,
which has the form

ĥMMSE = RS̃H(S̃RS̃H + σ2
nIτM )−1y. (14)

(13) and (14) are equivalent thanks to the matrix inversion
identity (I+AB)−1A = A(I +BA)−1.

C. Channel Estimation with Full Pilot Reuse

Previously we have given expressions whereby interfering
channels are estimated simultaneously with the desired chan-
nel. This could be of use in designing zero-forcing type re-
ceivers. Even though it is clear that Zero-Forcing (ZF) type (or
other sophisticated) receivers would give better performance
at finite M (see [3] for an analysis of this problem), in this
paper, however, we focus on simple matched filters, since
such filters are made more relevant by the users of massive
MIMO. Matched filters require the knowledge of the desired
channel only, so that interference channels can be considered
as nuisance parameters. For this case, the single user channel
estimation shown below can be used. For ease of exposition,
the worst case situation with a unique pilot sequence reused
in all L cells is considered:

s = [ s1 s2 · · · sτ ]T . (15)

Similar to (7), we define a training matrix S̄ � s⊗ IM . Note
that S̄H S̄ = τIM . Then the vectorized received training signal
at the target base station can be expressed as

y = S̄

L∑
l=1

hl + n. (16)

Since the Bayesian estimator and the MMSE estimator are
identical, we omit the derivation and simply give the expres-
sion of this estimator for the desired channel h1 only:

ĥ1 = R1S̄
H

(
S̄

(
L∑

l=1

Rl

)
S̄H + σ2

nIτM

)−1

y (17)

= R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄Hy. (18)

Note that the MMSE channel estimation in the presence of
identical pilots is also undertaken in other works such as [3].
In the section below, we examine the degradation caused

by the pilot contamination on the estimation performance. In
particular, we point out the role played by the use of covari-
ance matrices in dramatically reducing the pilot contamination
effects under certain conditions on the rank structure.
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We are interested in the mean squared error (MSE) of
the proposed estimators, which can be defined as: M �
E{‖ĥ− h‖2F }, or for the single user channel estimateM1 �
E{‖ĥ1 − h1‖2F }.
The estimation MSE of (13) is

M = tr

⎧⎨⎩R

(
ILM +

S̃H S̃

σ2
n

R

)−1
⎫⎬⎭ . (19)

Specifically, when identical pilots are used in all cells, the
MSEs are

M = tr

{
R

(
ILM +

τJLL ⊗ IM
σ2
n

R

)−1
}
, (20)

M1 = tr

⎧⎨⎩R1 −R2
1

(
σ2
n

τ
IM +

L∑
l=1

Rl

)−1
⎫⎬⎭ , (21)

where JLL is an L × L unit matrix consisting of all 1s. The
derivations to obtain M and M1 use standard methods and
the details are omitted here due to lack of space. However,
similar methods can be found in [16]. Of course, it is clear
from (20) and (21) that the MSE is not dependent on the
specific design of the pilot sequence, but on the power of it.
We can readily obtain the channel estimate of (18) in an

interference-free scenario, by setting interference terms to
zero:

ĥno int1 = R1

(
σ2
nIM + τR1

)−1
S̄H(S̄h1 + n), (22)

where the superscript no int refers to the ”no interference
case”, and the corresponding MSE:

Mno int
1 = tr

{
R1

(
IM +

τ

σ2
n

R1

)−1
}
. (23)

D. Large Scale Analysis

We seek to analyze the performance for the above estimators
in the regime of large antenna numberM . For tractability, our
analysis is based on the assumption of uniform linear array
(ULA) with supercritical antenna spacing (i.e., less than or
equal to half wavelength).
Hence we have the following multipath model3

hi =
1√
P

P∑
p=1

a(θip)αip, (24)

where P is the arbitrary number of i.i.d. paths, αip ∼
CN (0, δ2i ) is independent over channel index i and path index
p, where δi is the i-th channel’s average attenuation. a(θ) is
the steering vector, as shown in [17]

a(θ) �

⎡⎢⎢⎢⎣
1

e−j2πD
λ cos(θ)

...

e−j2π
(M−1)D

λ cos(θ)

⎤⎥⎥⎥⎦ , (25)

3Note that the Gaussian model (2) can well approximate the multipath
model (24) as long as there are enough paths. Since the number of elementary
paths is typically very large, we have P � 1 this assumption is valid in
practice.

where D is the antenna spacing at the base station and λ
is the signal wavelength, such that D ≤ λ/2. θip ∈ [0, π]
is a random AOA. Note that we can limit angles to [0, π]
because any θ ∈ [−π, 0] can be replaced by −θ giving the
same steering vector.
Below, we momentarily assume that the selected users

exhibit multipath AOAs that do not overlap with the AOAs for
the desired user, i.e., the AOA spread and user locations are
such that multipath for the desired user are confined to a region
of space where interfering paths are very unlikely to exist.
Although the asymptotic analysis below makes use of this
condition, it will be shown in Section IV how such a structure
can be shaped implicitly by the coordinated pilot assignment.
Finally, simulations reveal in Section V the robustness with
respect to an overlap between AOA regions of desired and
interference channels (for instance in the case of Gaussian
AOA distribution).
Our main result is as follows:

Theorem 1. Assume the multipath angle of arrival θ yielding
channel hj , j = 1, . . . , L, in (24), is distributed according to
an arbitrary density pj(θ) with bounded support, i.e., pj(θ) =
0 for θ /∈ [θmin

j , θmax
j ] for some fixed θmin

j � θmax
j ∈ [0, π] . If

the L − 1 intervals [θmin
i , θmax

i ] , i = 2, . . . , L are strictly
non-overlapping with the desired channel’s AOA interval4

[θmin
1 , θmax

1 ], we have

lim
M→∞

ĥ1 = ĥno int1 . (26)

Proof: From the channel model (24), we get

Ri =
δ2i
P

P∑
p=1

E{a(θip)a(θip)H} = δ2iE{a(θi)a(θi)H},

where θi has the PDF pi(θ) for all i = 1, . . . , L. The proof of
Theorem 1 relies on three intermediate lemmas which exploit
the eigenstructures of the covariance matrices. The proofs of
the lemmas are given in the appendix. The essential ingredient
is to exhibit an asymptotic (at large M ) orthonormal vector
basis for Ri constructed from steering vectors at regularly
sampled spatial frequencies.

Lemma 1. Define α(x) � [ 1 e−jπx · · · e−jπ(M−1)x ]T

and A � span{α(x), x ∈ [−1, 1]}. Given b1, b2 ∈ [−1, 1] and
b1 < b2, define B � span{α(x), x ∈ [b1, b2]}, then

• dim{A} = M
• dim{B} ∼ (b2 − b1)M/2 when M grows large.

Proof: See Appendix A.
Lemma 1 characterizes the number of dimensions a linear

space has, which is spanned by α(x), in which x plays the
role of spatial frequency.

Lemma 2. With a bounded support of AOAs, the rank of
channel covariance matrix Ri satisfies:

rank(Ri)

M
� di, as M →∞,

4This condition is just one example of practical scenario leading to
non-overlapping signal subspaces between the desired and the interference
covariances, however, more general multipath scenarios could be used.
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where di is defined as

di �
(
cos(θmini )− cos(θmaxi )

) D
λ
.

Proof: See Appendix B.
Lemma 2 indicates that for large M , there exists a null

space null(Ri) of dimension (1−di)M . Interestingly, related
eigenstructure properties of the covariance matrices were
independently derived in [18] for the purpose of reducing the
overhead of downlink channel estimation and CSI feedback in
massive MIMO for FDD systems.

Lemma 3. The null space null(Ri) includes a certain set of
unit-norm vectors:

null(Ri) ⊃ span

{
a(Φ)√
M

, ∀Φ /∈ [θmini , θmaxi ]

}
, as M →∞.

Proof: See Appendix C.
This lemma indicates that multipath components with AOA

outside the AOA region for a given user will tend to fall in
the null space of its covariance matrix in the large-number-
of-antennas case.
We now return to the proof of Theorem 1. Ri can be

decomposed into
Ri = UiΣiU

H
i , (27)

where Ui is the signal eigenvector matrix of size M ×mi, in
whichmi ≤ diM . Σi is an eigenvalue matrix of sizemi×mi.
Due to Lemma 3 and the fact that densities pi(θ) and p1(θ)
have non-overlapping supports, we have

UH
i U1 = 0, ∀i �= 1, as M →∞. (28)

Combining the channel estimate (18) and the channel model
(16), we obtain

ĥ1 = R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄H

(
S̄

L∑
i=1

hi + n

)
.

According to (28), matrices R1 and
L∑

l=2

Rl span orthogonal

subspaces in the large M limit. Therefore we place ourselves

in the asymptotic regime for M , when τ
L∑

l=2

Rl can be eigen-

decomposed according to

τ

L∑
l=2

Rl = WΣWH , (29)

where W is the eigenvector matrix such that WHW = I
and span {W} is included in the orthogonal complement of
span {U1}. Now denote V the unitary matrix correspond-
ing to the orthogonal complement of both span {W} and
span {U1}, so that the M ×M identity matrix can now be
decomposed into:

IM = U1U
H
1 +WWH +VVH . (30)

Thus, for large M ,

ĥ1 ∼ U1Σ1U
H
1

(
σ2
nU1U

H
1 + σ2

nVVH + σ2
nWWH

+τU1Σ1U
H
1 +WΣWH

)−1

(
τ

L∑
i=1

hi + S̄Hn

)
.

Due to asymptotic orthogonality between U1, W and V,

ĥ1 ∼ U1Σ1(σ
2Im1 + τΣ1)

−1UH
1 (τ

L∑
i=1

hi + S̄Hn)

∼ U1Σ1(σ
2Im1+τΣ1)

−1τ(UH
1 h1+

L∑
i=2

UH
1 hi+

S̄Hn1

τ
).

However, since hi ⊂ span
{
a(θ), ∀θ ∈ [θmini , θmaxi ]

}
, we have

from Lemma 3 that
‖UH

1 hi‖
‖UH

1 h1‖ → 0, for i �= 1 when M →∞.
Therefore

lim
M→∞

ĥ1 = τU1Σ1

(
σ2
nIm1 + τΣ1

)−1
(
UH

1 h1 +
S̄Hn

τ

)
,

which is identical to ĥno int1 if we apply the EVD decomposi-
tion (27) for R1 in (22). This proves Theorem 1.
We also believe that, although antenna calibration is needed

as a technical assumption in the theorem, orthogonality of co-
variance’s signal subspaces will occur in non-tightly calibrated
settings provided the AOA regions do not overlap.

IV. COORDINATED PILOT ASSIGNMENT

We have seen from above that the performance of the
covariance-aided channel estimation is particularly sensitive
to the degree with which the signal subspaces of covariance
matrices for the desired and the interference channels overlap
with each other. In the ideal case where the desired and
the interference covariances span distinct subspaces, we have
demonstrated that the pilot contamination effect tends to
vanish in the large-antenna-array case. In this section, we
make use of this property by designing a suitable coordination
protocol for assigning pilot sequences to users in the L
cells. The role of the coordination is to optimize the use
of covariance matrices in an effort to try and satisfy the
non-overlapping AOA constraint of Theorem 1. We assume
that in all L cells, the considered pilot sequence will be
assigned to one (out of K) user in each of the L cells. Let
G � {1, . . . ,K}, then Kl ∈ G denotes the index of the user
in the l-th cell who is assigned the pilot sequence s. The set
of selected users is denoted by U in what follows.
We use the estimation MSE (21) as a performance metric

to be minimized in order to find the best user set. (20) is
an alternative if we take the estimates of interfering channels
into consideration. For a given user set U , we define a network
utility function

F(U) �
|U|∑
j=1

Mj(U)
tr {Rjj(U)} , (31)

where |U| is the cardinal number of the set U . Mj(U) is
the estimation MSE for the desired channel at the j-th base
station, with a notation readily extended from M1 in (21),
where this time cell j is the target cell when computingMj .
Rjj(U) is the covariance matrix of the desired channel at the
j-th cell.
The principle of the coordinated pilot assignment consists

in exploiting covariance information at all cells (a total of
KL2 covariance matrices) in order to minimize the sum MSE
metric. Hence, L users are assigned an identical pilot sequence
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TABLE I
BASIC SIMULATION PARAMETERS

Cell radius 1 km
Cell edge SNR 20 dB
Number of users per-cell 10
Distance from a user to its BS 800 m
Path loss exponent 3
Carrier frequency 2 GHz
Antenna spacing λ/2
Number of paths 50
Pilot length 10

when the corresponding L2 covariance matrices exhibit the
most orthogonal signal subspaces. Note that the MSE-based
criterion (31) implicitly exploits the property of subspace
orthogonality, e.g., at high SNRs, the proposed MSE-based cri-
terion will be minimized by choices of users with covariance
matrices showing maximum signal subspace orthogonality,
thereby implicitly satisfying the conditions behind Theorem
1. In view of minimizing the search complexity, a classical
greedy approach is proposed:
1) Initialize U = ∅
2) For l = 1, . . . , L do:
Kl = argmin

k∈G
F(U ∪ {k})

U ← U ∪ {Kl}
End
The coordination can be interpreted as follows: To minimize

the estimation error, a base station tends to assign a given
pilot to the user whose spatial feature has most differences
with the interfering users assigned the same pilot. Clearly,
the performance will improve with the number of users, as it
becomes more likely to find users with discriminable second-
order statistics.

V. NUMERICAL RESULTS

In order to preserve fairness between users and avoid having
high-SNR users being systematically assigned the considered
pilot, we consider a symmetric multicell network where the
users are all distributed on the cell edge and have the same
distance from their base stations. In practice, users with
greater average SNR levels (but equal across cells) can be
assigned together on a separate pilot pool. We adopt the model
of a cluster of synchronized and hexagonally shaped cells.
Some basic simulation parameters are given in Table I. We
keep these parameters in the following simulations, unless
otherwise stated.
The channel vector between the u-th user in the l-th cell

and the target base station is

hlu =
1√
P

P∑
p=1

a(θlup)αlup, (32)

where θlup and αlup are the AOA and the attenuation of the
p-th path between the u-th user in the l-th cell and the target
base station respectively. Note that the variance of αlup, ∀p is
δ2lu, which includes the distance-based path loss βlu between
the user and the target base station (which can be anyone of
the L base stations):

βlu =
α

dγlu
, (33)

where α is a constant dependent on the prescribed average
SNR at cell edge. dlu is the geographical distance. γ is the
path-loss exponent.
Two types of AOA distributions are considered here, a non-

bounded one (Gaussian) and a bounded one (uniform):
1) Gaussian distribution: For the channel coefficients hlu,

the AOAs of all P paths are i.i.d. Gaussian random variables
with mean θ̄lu and standard deviation σ. Here we suppose
all the desired channels and interference channels have the
same standard deviation of AOA. Note that Gaussian AOA
distributions cannot fulfill the conditions of non-overlapping
AOA support domains in Theorem 1, nevertheless the use
of the proposed method in this context also gives substantial
gains as σ2 decreases.
2) Uniform distribution: For the channel hlu, the AOAs

are uniformly distributed over [θ̄lu− θΔ, θ̄lu + θΔ], where θ̄lu
is the mean AOA.
Two performance metrics are used to evaluate the proposed

channel estimation scheme. The first one is a normalized
channel estimation error

err � 10log10

⎛⎜⎜⎜⎝
L∑

j=1

∥∥∥ĥjj − hjj

∥∥∥2
F

L∑
j=1

‖hjj‖2F

⎞⎟⎟⎟⎠ , (34)

where hjj and ĥjj are the desired channel at the j-th
base station and its estimate respectively. Note that we only
consider the estimation error of the desired channel. The
second performance metric is the per-cell rate of the downlink
obtained assuming standard MRC beamformer based on the
channel estimates. The beamforming weight vector of the j-
th base station is wMRC

j = ĥjj . We define the per-cell rate as
follows:

C �

L∑
j=1

log2(1 + SINRj)

L
,

where SINRj is the received signal-to-noise-plus-interference
ratio (SINR) by the scheduled user in the j-th cell.
Numerical results of the proposed channel estimation

scheme are now shown. In the figures, ”LS” stands for conven-
tional LS channel estimation. ”CB” denotes the Covariance-
aided Bayesian estimation (without coordinated pilot as-
signment), and ”CPA” is the proposed Coordinated Pilot
Assignment-based Bayesian estimation.
We first validate Theorem 1 in Fig. 1 with a 2-cell network,

where the two users’ positions are fixed. AOAs of desired
channels are uniformly distributed with a mean of 90 degrees,
and the angle spreads of all channels are 20 degrees, yielding
no overlap between desired and interfering multipaths. The pi-
lot contamination is quickly eliminated with growing number
of antennas.
In Fig. 2 and Fig. 3, the estimation MSEs versus the

BS antenna numbers are illustrated. When the AOAs have
uniform distributions with θΔ = 10 degrees, as shown in Fig.
2, the performance of CPA estimator improves quickly with
M from 2 to 10. In the 2-cell network, CPA has the ability
of avoiding the overlap between AOAs for the desired and
interference channels. For comparison, Fig. 3 is obtained with
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Fig. 1. Estimation MSE vs. BS antenna number, 2-cell network, fixed
positions of two users, uniformly distributed AOAs with θΔ = 20 degrees,
non-overlapping multipath.
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Fig. 2. Estimation MSE vs. antenna number, uniformly distributed AOAs
with θΔ = 10 degrees, 2-cell network.

Gaussian AOA distribution. We can observe a gap remains
between the CPA and the interference-free one, due to the
non-boundedness of the Gaussian PDF. Nevertheless, the gains
over the classical estimator remain substantial.
We then examine the impact of standard deviation σ of

Gaussian AOAs on the estimation. Fig. 4 shows that the
estimation error is a monotonically increasing function of σ.
In contrast, an angle spread tending toward zero will cause
the channel direction to collapse into a deterministic quantity,
yielding large gains for covariance-based channel estimation.
Figs. 5 and 6 depict the downlink per-cell rate achieved

by the MRC beamforming strategy and suggest large gains
when the Bayesian estimation is used in conjunction with
the proposed coordinated pilot assignment strategy and in-
termediate gains when it is used alone. Obviously the rate
performance almost saturates with M in the classical LS case
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Fig. 3. Estimation MSE vs. antenna number, Gaussian distributed AOAs
with σ = 10 degrees, 2-cell network.
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Fig. 4. Estimation MSE vs. standard deviation of Gaussian distributed AOAs
with M = 10, 7-cell network.

(due to pilot contamination) while it increases quickly with
M for the proposed estimators, indicating the full benefits of
massive MIMO systems are exploited.

VI. DISCUSSIONS

In this paper, we assumed the individual covariance matrices
can be estimated separately. This could be done in practice
by exploiting resource blocks where the desired user and
interference users are known to be assigned at different times.
In future networks, one may imagine a specific training
design for learning second-order statistics. Since covariance
information varies much slower than fast fading, such training
may not consume a substantial amount of resources.
The proposed coordinated estimation method would intro-

duce information exchange between base stations. Although
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Fig. 5. Per-cell rate vs. antenna number, 2-cell network, Gaussian distributed
AOAs with σ = 10 degrees.

the second-order statistics vary much slower than the instan-
taneous CSI, base stations still have to update the covariance
information every now and then so as to maintain performance.
Clearly, the overhead depends on the degree of user mobility.

VII. CONCLUSIONS

This paper proposes a covariance-aided channel estimation
framework in the context of interference-limited multi-cell
multiple antenna systems. We develop Bayesian estimators and
demonstrate analytically the efficiency of such an approach for
large-scale antenna systems, leading to a complete removal
of pilot contamination effects in the case covariance matrices
satisfy a certain non-overlapping condition on their dominant
subspaces. We suggest a coordinated pilot assignment strategy
that helps shape covariance matrices toward satisfying the
needed condition and show channel estimation performance
close to interference-free scenarios.
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APPENDIX

A. Proof of Lemma 1:

Define the series

xi � −1 + 2(i− 1)

M
, i = 1, . . . ,M,

and

μi �
α(xi)√

M
.

Then we have μi ⊂ A, ∀i = 1, . . . ,M and

μH
k μi =

1− e−j2π(i−k)

M(1− e−
j2π(i−k)

M )
= 0, k �= i.
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Fig. 6. Per-cell rate vs. standard deviation of AOA (Gaussian distribution)
with M = 10, 7-cell network.

Thus {μi |i = 1, . . . ,M } forms an orthogonal basis of A, and
therefore

dim{A} = M.

Define

B̃ �{
μi

∣∣∣∣i ∈ Z ∩
[
�M(b1+1)

2
+1�+ 1, �M(b2 + 1)

2
+1�−1

]}
,

where �x� and �x� are rounded-above and rounded-below
operators respectively. Then B̃ is part of an orthogonal basis
of the space B, which indicates dim{B} � |B̃|. By counting
vectors in B̃, we have that

dim{B} � �M(b2 + 1)

2
+ 1� − �M(b1 + 1)

2
+ 1� − 1

= �M(b2 + 1)

2
� − �M(b1 + 1)

2
� − 1. (35)

Now we define

C̃ �
{
μi

∣∣∣∣i ∈ Z and i ∈
[
1, �M(b1 + 1)

2
+ 1�

]
∪
[
�M(b2 + 1)

2
+ 1�,M

]}
.

Then C̃ is part of an orthogonal basis of A. Furthermore,

|C̃| = �M(b1 + 1)

2
+ 1�+M − �M(b2 + 1)

2
+ 1�+ 1

= M − �M(b2 + 1)

2
�+ �M(b1 + 1)

2
�+ 1.

Consider the equivalent form of B

B =

{∫ b2

b1

f(x)α(x)dx

∣∣∣∣∣ ∀|f(x)| <∞, x ∈ [b1, b2]

}
.
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Taking any vector μi ∈ C̃ , we have

μH
i

∫ b2

b1

f(x)α(x)dx =
1√
M

∫ b2

b1

f(x)α(xi)
Hα(x)dx

=
1√
M

∫ b2

b1

f(x)
1− e−jπM(x−xi)

1− e−jπ(x−xi)
dx.

Since μi ∈ C̃ , we can observe xi /∈ [b1, b2], thus

lim
M→∞

μH
i

∫ b2

b1

f(x)α(x)dx = 0.

Therefore C̃ ⊂ B⊥ when M →∞. Hence we have
dim{B⊥} = M − dim{B} � |C̃|

⇒ dim{B} � �M(b2 + 1)

2
� − �M(b1 + 1)

2
� − 1. (36)

Combining (35) and (36), we can easily obtain

dim{B} ∼ �M(b2 + 1)

2
� − �M(b1 + 1)

2
� − 1

∼ M(b2 − b1)

2
+ o(M),

and Lemma 1 is proved.

B. Proof of Lemma 2:

We define

b(x) � a

(
cos−1(x

λ

D
)

)
, x ∈ [−D

λ
,
D

λ
]. (37)

It is clear from Lemma 1 that b(x) = α(2x). Hence, for any
interval [xmin, xmax] in [− 1

2 ,
1
2 ],

dim
{
span

{
b(x), ∀x ∈ [xmin, xmax]

}}
∼ (xmax − xmin)M when M is large. (38)

Additionally, for i = 1, . . . , L, we have

span {Ri} = span

{∫ π

0

a(θ)a(θ)Hpi(θ)dθ

}
,

Thus, due to the bounded support of pi(θ), we can obtain

span {Ri}= span

{∫ θmax
i

θmin
i

a(θ)a(θ)
H
pi(θ)dθ

}

= span

{∫ θmax
i

θmin
i

b(
D

λ
cos(θ))bH(

D

λ
cos(θ))pi(θ)dθ

}
.

Then, by interpreting the integral as a (continuous) sum, we
have

span {Ri}⊂span
{
b(x), ∀x ∈ [

D

λ
cos(θmax

i ),
D

λ
cos(θmin

i )]

}
.

From (38), we obtain

rank(Ri) ≤
(
cos(θmin

i )− cos(θmax
i )

) D
λ
M,

for large M , and Lemma 2 is proved.

C. Proof of Lemma 3:

Take an angle Φ /∈ [θmini , θmaxi ] and define

u � a(Φ)√
M

.

Then we have

uHRiu =
1

M
a(Φ)HRia(Φ)

=
1

M
aH(Φ)E

{
a(θ)aH (θ)

}
a(Φ)

=
1

M
E

{∣∣aH(Φ)a(θ)
∣∣2}

=
1

M
E

⎧⎨⎩
∣∣∣∣∣
M−1∑
m=0

e2πj(m−1)D
λ (cos(Φ)−cos(θ))

∣∣∣∣∣
2
⎫⎬⎭

=

∫ θmax
i

θmin
i

∣∣∣∣∣ 1M
M−1∑
m=0

e2πj(m−1)D
λ (cos(Φ)−cos(θ))

∣∣∣∣∣
2

pi(θ)dθ.

According to the well-known result on the sum of geometric
series, we can easily obtain

lim
M→∞

∣∣∣∣∣ 1M
M−1∑
m=0

e2πj(m−1)D
λ (cos(Φ)−cos(θ))

∣∣∣∣∣
2

= 0,

since Φ �= θ, ∀θ ∈ [θmini , θmaxi ]. Thus

lim
M→∞

uHRiu = 0,

which proves Lemma 3.
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