
CHECKER: On-site Checking in RFID-based Supply Chains

Kaoutar Elkhiyaoui
EURECOM

2229, route des Cretes
06560 Sophia Antipolis,

France
elkhiyao@eurecom.fr

Erik-Oliver Blass
∗

College of Computer and
Information Science

Northeastern University
Boston, MA 02115

blass@ccs.neu.edu

Refik Molva
EURECOM

2229, route des Cretes
06560 Sophia Antipolis,

France
molva@eurecom.fr

ABSTRACT
Counterfeit detection in RFID-based supply chains aims at prevent-
ing adversaries from injecting fake products that do not meet qual-
ity standards. This paper introduces CHECKER, a new protocol for
counterfeit detection in RFID-based supply chains through on-site
checking. While RFID-equipped products travel through the sup-
ply chain, RFID readers can verify product genuineness by check-
ing the validity of the product’s path. CHECKER uses a polynomial-
based encoding to represent paths in the supply chain. Each tag T
in CHECKER stores an IND-CCA encryption of T ’s identifier ID
and a signature of ID using the polynomial encoding of T ’s path
as secret key. CHECKER is provably secure and privacy preserv-
ing. An adversary can neither inject fake products into the supply
chain nor trace products. Moreover, RFID tags in CHECKER can
be cheap read/write only tags that do not perform any computation.
Per tag, only 120 Bytes storage are required.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous

General Terms
Security

Keywords
Privacy, RFID, Supply chain management

1. INTRODUCTION
One important application of RFID tags is product tracking and

counterfeit detection in supply chains. In such a context, RFID tags
are attached to products to enable product tracking along different
partners in the supply chain.

In this paper, we propose a solution for genuineness verification
based on RFID tags that allows product tracking while protecting
the privacy of tags and partners in the supply chain. The main idea
is to verify the genuineness of a product by verifying the validity

∗Work done while at EURECOM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’12, April 16–18, 2012, Tucson, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1265-3/12/04 ...$10.00.

of the path (sequence of partners) that the product went through in
the supply chain as suggested by Blass et al. [4].

However, the solution presented in [4] has two major drawbacks:
1.) It requires a centralized, trusted party called “manager” to carry
out the path verification; otherwise, the manager is able to inject
fake products into the supply chain. 2.) The verification can only
be performed once the tags arrive at the manager, but not before.
This limits the wide deployment of such a solution, especially in
a context where partners do not trust each other and demand to be
able to verify product genuineness in real-time “on-site”.

Contrary to Blass et al. [4], the solution presented in this paper
addresses on-site checking by enabling each reader in the supply
chain to verify the validity of the path taken by the tag, instead of
a global path verification performed by a trusted party that only
takes place at the final stage of the supply chain. Though such a so-
lution will allow a faster and a more practical counterfeit detection,
it comes with new threats to supply chain security and privacy.

With respect to security, the readers have to be able to verify the
genuineness of a product by only reading the tag attached to the
product. However, we have to make sure that these readers can by
no means succeed in injecting fake products in the supply chain.

Furthermore, a product tracking system must take into account
privacy concerns. Any solution that aims at tracking and tracing
products is inherently exposed to malicious attacks targeting sensi-
tive information about internal details and strategic relationships in
the supply chain. Another requirement is the unlinkability of tags
so that a reader in the supply chain must not be able to trace or tell
tags apart once they leave its site. Moreover, a reader must not be
able to learn any information about the path stored in a tag which
has not visited its site.

Also, a secure and privacy preserving RFID-based solution has
to be lightweight to allow wide deployment. Ideally, it should be
suited to the cheapest RFID tags, i.e., read/write only tags. These
tags come only with some re-writable memory and cannot perform
any computation, let alone cryptographic operations. Moreover, the
path verification at the readers should not be computationally heavy
to avoid overloading readers and, thus hindering supply chain per-
formance.

This paper introduces CHECKER, a secure and privacy preserv-
ing protocol for on-site genuineness verification and product track-
ing in supply chains using RFID tags. CHECKER stores in each tag
T the tag identifier ID along with a signature of ID. The main idea
behind CHECKER is that the secret key used to sign ID is an encod-
ing of the path that T went through, thanks to an original combi-
nation of path encoding and signature. By verifying the signature
in the tag, each reader thus validates the path taken that far, and by
signing the ID the reader updates the path encoding. To protect T ’s

privacy, we encrypt T ’s ID and ID’s signature using elliptic curve
Cramer-Shoup encryption [8].

To summarize, CHECKER’s main contributions are:

• In contrast to [4], CHECKER does not require a trusted party
to perform path verification. Instead, CHECKER allows each
reader in the supply chain to individually verify on-site whether
a tag went through a valid path or not.

• CHECKER relies only on read/write only tags that are cheap
and thus could allow wide deployment of CHECKER. A tag
T in CHECKER is not required to perform any computation.
T is only required to store its state that will be updated by
readers along the supply chain.

• CHECKER is provably secure: an adversary cannot forge new
tags. That is, an adversary cannot forge or change a tag T ’s
state to convince a reader in the supply chain that T went
through a valid path.

• CHECKER is provably privacy preserving: only readers in the
supply chain can verify the validity of paths that tags have
taken in the supply chain. Furthermore, an adversary cannot
trace or link tags’ interactions in the supply chain.

• Finally, CHECKER overcomes some limitations of the formal
security and the privacy definitions of [4].

2. BACKGROUND
We use terms and notations in accordance with the ones used by

Ouafi and Vaudenay [18] and by Blass et al. [4].
In this paper, the supply chain consists of a set of valid paths: an

ordered sequence of steps, i.e., partner sites, that genuine products
are allowed to visit.

Now, each read/write only RFID tag is attached to a product and
it stores a history of the path that the product has taken. As in
[4], each step of the supply chain is equipped with an RFID reader.
Each reader reads out the state of tags in its vicinity and checks
whether these tags went through a valid path in the supply chain or
not. Finally, the reader updates the state of tags accordingly.

2.1 Entities
CHECKER involves the following entities:
Tags Ti: Each tag is attached to a single product or item. Each

tag Ti is equipped with a re-writable memory storing Ti’s current
“state” denoted sjTi .

Issuer I: The issuer I initializes tags at the beginning of the
supply chain. It attaches each tag Ti to a product and writes an
initial state s0Ti into Ti.

Readers Rk: Each reader is associated with a single step in the
supply chain. A reader Rk interacts with tags Ti in its range. He
reads Ti’s current state sjTi and based on a setKVk = {K1

k ,K
2
k , ...,

K
νk
k } of νk verification keys decides whether Ti went through a

valid path or not. Once the verification phase is finished, Rk writes
an updated state sj+1

Ti
into Ti.

2.2 Supply chain
A supply chain is modeled as a digraph G = (V,E), where V is

the set of vertexes and E is the set of edges. Each vertex vk ∈ V is
a step in the supply chain that is uniquely associated with a reader
Rk. On the other hand, each edge e ∈ E, e := −−→vivj, denotes a
valid transition from vi to vj. The issuer I is represented in G as
being the only vertex with indegree equals to 0 denoted v0.

A path in a supply chain P is a finite ordered set of steps P =
{v0, v1 . . . , vl}, where ∀i ∈ {0, . . . , l− 1} : −−−−→vivi+1 ∈ E, and l is
the length of path P.

Naturally, the supply chain contains a set of valid paths Pvalidi ,
which are the set of paths that genuine products are allowed to go
through.

Contrary to [4], in this paper we do not assume the existence of
a “manager” that checks the validity of the path that a product has
undertaken. Instead, CHECKER attempts to allow each reader in
the supply chain to verify whether the products that it is presented
with went through a valid path or not.

2.3 A CHECKER System
A CHECKER system comprises the following:

• A supply chain G = (V,E).

• A set T of n tags.

• A set of possible states S that could be stored into tags.

• A setR of η readers Rk.

• Each reader Rk knows a set Pk = {P1
k, P

2
k, ..., P

νk
k } of νk

valid paths leading to Rk.

• Also, reader Rk has a set KkV = {K1
k ,K

2
k , ...,K

νk
k } of νk

verification keys. Each verification key Kj
k corresponds to a

valid path P
j
k.

• Issuer I .

• A set of valid states Svalid. If tag Ti stores a state sjTi ∈
Svalid, then this implies that Ti took a valid path in the supply
chain with high probability.

• A function ITERATESUPPLYCHAIN: When called, tags ad-
vance by one step in the supply chain and they are read and
re-written by readers.

• A function READ : T → S that reads tag Ti and outputs Ti’s
current state sjTi .

• A function WRITE: T ×S → S that writes a new state sj+1
Ti

into tag Ti.

• A function CHECK: R× T → {0, 1} performed by readers
in the supply chain. Based on Ti’s current state sjTi and the
set of verification key KVk of a reader Rk, CHECK decides
whether Ti went through a valid path in the supply chain that
is leading to Rk or not.

CHECK(Rk, Ti) : S →

8><>:
1, if tag Ti went through a
valid path P

j
k ∈ Pk

or 0, if @ P
j
k ∈ Pk that matches

Ti’s state.

3. ADVERSARY MODEL
Readers in CHECKER are supposed to read the state stored into

tags, check whether the tags took a valid path in the supply chain
and then update the tags’ states accordingly. We assume that read-
ers’ corruption is possible. That is, readers can try tracking tags in
order to spy on other readers, as well as injecting fake products in
the supply chain.

Moreover, we assume that the issuer I in CHECKER is honest
and cannot be corrupt by adversaries. This implies that when tags
are initialized at the beginning of the supply chain by I , these tags

will definitely meet the supply chain requirements and quality stan-
dards. However, these tags may later in the supply chain be corrupt
by adversaries.

As CHECKER relies on read/write only tags to implement prod-
uct tracking, an adversaryA against CHECKER is not only allowed
to eavesdrop on tags’ communication but to also tamper with tags’
internal state. A can as well have access to the communication
between tags and readers and know the steps vk that a tag T is vis-
iting. He can also monitor a step vk in the supply chain by eaves-
dropping on tags going into or leaving the step vk.

To capture these capabilities in our definitions, an adversary A
has access to the following oracles:

• ODraw(condition): When queried with a condition c,ODraw

randomly selects a tag T from the n tags T in the supply
chain that satisfies the condition c and returns T to A. For
example:

1. To have access to a tag T which just entered the supply
chain, i.e., T is at step v0, A queries the oracle ODraw

with condition c = “tag at step v0”.
2. To have access to a tag T whose identifier is ID,A calls

the oracleODraw with condition c = “tag with identifier
ID”. ODraw returns a tag with identifier ID if there is
any.

3. To have access to a tag T whose next step in the sup-
ply chain is step vk, A queries the oracle ODraw with
condition c = “tag’s next step is vk”.

We indicate that adversaryA can query the oracleODraw with
any combination of disjunctions or conjunctions of condi-
tions.

• OCheck(Rk, T): On input of reader Rk and tag T , OCheck re-
turns the output of the CHECK function performed by reader
Rk for tag T .

• OStep(T): On input of tag T , the oracleOStep(T) returns the
next step of tag T in the supply chain.

• OFlip(T0, T1): On input of two tags T0 and T1,OFlip flips a
coin b ∈ {0, 1} and returns tag Tb to A.

• OCorrupt(Rk): On input of reader Rk, the oracle OCorrupt

returns the secret information Sk associated with reader Rk
to A. We say that A corrupted the step vk associated with
reader Rk.

Note that whenever A is given access to a tag T , A is allowed
to read from T by calling the function READ and to write into T
through the function WRITE.

By having access to these oracles, an adversary A is able 1.) to
corrupt readers, 2.) to have an arbitrary access to tags, and 3.) to
monitor readers in the supply chain.

3.1 Security
The security goal of CHECKER is to prevent an adversaryA from

forging a valid state for a tag Ti that did not go through a valid path
in the supply chain. This goal matches the soundness property of
the CHECK function.

More formally, if on input of a of tag Ti and reader Rk, the
function CHECK(Rk, Ti) outputs 1, i.e., there is a path P

j
k ∈ Pk

that corresponds to the state sTi stored into Ti, then we conclude
that Ti must have gone through P

j
k (with high probability).

It is important to note that when we say that a tag Ti went through
path P = −−−−−→v0v1...vl, this means that tag Ti was issued by I and that

the state of Ti has been updated correctly by using the secrets of
readers R1, R2, ..., Rl in that order. It does not mean that Ti went
actually through the steps composing the path P. If we imagine a
scenario where an adversary A knows all the readers’ secrets, A
can update the state of any tag Ti and make it look as if Ti went
through some path P.

Now, we say that CHECKER is sound, if and only if, a reader
Rk in the supply chain accepts a tag Ti only when the state of tag
Ti has been updated correctly using the secrets of readers in some
valid path leading to Rk.

We formalize soundness using an experiment-based definition as
in [4]. In this experiment, an adversary A runs in two phases. First
in the learning phase as depicted in Algorithm 1, A can corrupt up
to r readers Ri of his choice by calling the oracle OCorrupt.

Then, A is allowed to iterate the supply chain up to ρ times by
calling the function ITERATESUPPLYCHAIN. Whenever called, the
function ITERATESUPPLYCHAIN advances the tags to their next
step.

In each iteration of the supply chain,A can call the oracleODraw

to get up to s tags T(i,j) that satisfy some condition c(i,j) specified
by A. A can read from and write into these tags T(i,j). He can as
well query the function CHECK for each tag T(i,j).

for i := 1 to r do
Si ← OCorrupt(Ri);

end
for i := 1 to ρ do

ITERATESUPPLYCHAIN;
for j := 1 to s do

T(i,j) ← ODraw(c(i,j)) ;
siT(i,j)

:=READ(T(i,j));

WRITE(T(i,j), s
′i
T(i,j)

);
bT(i,j) ← OCheck(RT (i,j), T(i,j));

end
end

Algorithm 1: Security learning phase of A

Tc ← A;
for i := 1 to η do

b(i,Tc) ← OCheck(Ri, Tc);
end

Algorithm 2: Security challenge phase of A

Finally in the challenge phase, A selects a challenge tag Tc that
he gives to the oracleOCheck, cf., Algorithm 2. OCheck outputs a set
of η bits b(i,Tc) such that b(i,Tc) = CHECK(Ri, Tc).
A is said to be successful if and only if:
i.) ∃ Ri such that CHECK(Ri, Tc) = 1, i.e., there is a path P

j
i

that corresponds to Tc’state; ii.) ∃ v ∈ P
j
i such that step v is not

corrupted by A; iii.) and finally, Tc did not go through step v.

DEFINITION 1 (SECURITY). CHECKER provides security⇔
For adversary A, inequality Pr[A is successful] ≤ |Svalid|

S + ε
holds, where ε is negligible.

The adversaryA captured by the definition above is a non narrow
strong adversary in the sense of [22]. He can access tags arbitrarily
and tamper with their states. He is also allowed to access the out-
put of the protocol and corrupt readers. In the real world, such an
adversary corresponds to a partner in the supply chain whose goal
is to inject fake products.

Note. As we use read/write only tags, completeness of CHECK-
ER cannot be ensured. An adversary A can always tamper with

tags’ internal states by writing dummy data into them. Thus, A
can always invalidate the state of Ti leading the CHECK function
to output 0.

Cloning. CHECKER targets read/write only tags to perform on-
site checking. As a result, any malicious entity can read and re-
write the content of tags, and therewith, it can clone tags. Such an
attack cannot be prevented in a setting that relies on read/write only
tags which cannot implement any reader authentication.

To mitigate this problem, each partner Pi in the supply chain
keeps a database DBi that contains the identifiers of tags present
at Pi’s site. Then, time is divided into epochs ek (typically, the
duration of an epoch ek is one day) and partners are required to
update their databases at the beginning of each epoch ek.

To detect clones, each pair of partners Pi and Pj invoke a proto-
col for privacy preserving set intersection [9, 10] at the beginning
of each epoch ek, to check whether there is an identifier ID that is
present in both of their databases. At the end of the privacy pre-
serving set intersection protocol, both partners obtain a set of iden-
tifiers S(i,j) = DBi ∩ DBj that represent the clones in their sites. If
S(i,j) 6= ∅, then Pi and Pj can discard the clones and investigate
where the clones come from.

3.2 Privacy
In line with previous work [4], a privacy preserving verification

of product genuineness in the supply chain should meet the two
following requirements:

1.) An adversaryA must not be able to distinguish between tags
based on their interactions with the readers in the supply chain or
based on their interactions with A. This requirement deals with
tracking attacks. If the adversary is not able to tell tags apart, he
will not be able to track tags along the supply chain. We call this re-
quirement tag unlinkability in accordance with [4, 15]. Notice that
tag unlinkability is a stronger requirement than tag confidentiality.
If an adversary A is able to jeopardize tag confidentiality, then he
is automatically able to tell tags apart. Consequently, if CHECKER
ensures tag unlinkability, then it ensures tag confidentiality as well.

2.) An adversary A must not be able to learn any information
about the path of a tag Ti in the supply chain. Such a requirement
ensures the privacy of the internal processes of the supply chain.
Being unable to disclose any information about the path that tags
took, the adversary cannot tell the origin of a tag Ti he is having
access to, either the steps that Ti went through or the pallet of tags
that Ti belongs to. In [4], this privacy requirement was captured by
the notion of step unlinkability. More precisely, given two tags Ti
and Tj , an adversaryAmust not be able to tell whether Pi ∩ Pj =
{v0} or not, where Pi and Pj denote the paths of tags Ti and Tj
respectively. Observe that, all tags are issued by issuer I and thus,
they all go through step v0. For further details on step unlinkability,
the interested reader may refer to Appendix A.1.

However, the definitions of tag unlinkability and step unlinkabil-
ity as presented in [4] have two limitations:

1.) It is assumed that the manager M performing path verifica-
tion cannot be corrupt. In this paper, path verification is performed
by readers along the supply chain and these readers can behave ar-
bitrarily, i.e., can be corrupt.

2.) It is assumed that adversary A has only a random access to
tags in the supply chain. That is, A cannot choose tags he wants
from T . In this work, adversary A has more freedom in picking
tags through the oracleODraw. We recall thatA can query the oracle
ODraw with a set of conditions ci, and ODraw has to return a tag T
satisfying these conditions if there is any.

To address these limitations, we extend the privacy definitions
of [4] by considering a more realistic adversary A who is allowed

to corrupt readers and to select tags according to some conditions
determined by him through the oracle ODraw.

One result of our modifications to privacy definitions is proving
that if CHECKER ensures tag unlinkability, then it will as well en-
sure step unlinkability, see Appendix A.2 for a thorough analysis.
Henceforth, we only focus on tag unlinkability.

Tag unlinkability
Read/write only tags cannot perform any computation. As a result,
a tag Ti in CHECKER relies on readers in the supply chain to update
its state, i.e., Ti’s state does not change in between two protocol
executions. Therefore, it is impossible to ensure tag unlinkability
against an adversary who monitors all of Ti’s interactions. Accord-
ingly, there has to be at least one unobserved interaction between
Ti and an honest reader outside the range of the adversary A. This
is in compliance with previous work dealing with read/write only
tags, see Ateniese et al. [1], Dimitrou [11], Sadeghi et al. [19] and
Blass et al. [4].

However, this assumption alone is not sufficient to ensure tag un-
linkability against readers Rk along the supply chain. Notice that
the genuineness verification of tags require readers Rk to have ac-
cess to tags’ identifiers or tags’ pseudonyms. Although, adversary
A does not observe all of Ti’s interaction, he will be always able to
link the interactions of tag Ti with corrupt readers.

Thus, we consider that adversaryA is successful in mounting an
attack against tag unlinkability if he is able to distinguish between
two tags T0 and T1 which are not present at corrupt readers, and
if T0 and T1 had at least one interaction with an honest reader Ri
outside the range of A.

We illustrate tag unlinkability by an experiment depicted in Al-
gorithm 3 and Algorithm 4.

In the learning phase,A(r, s, ρ, ε) can call the oracleOCorrupt to
corrupt up to r readers Ri. A is provided then with two challenge
tags T0 and T1 that just entered the supply chain (tags at step v0)
from the oracleODraw. AdversaryA starts iterating the supply chain
up to ρ times.

Before each iteration of the supply chain, A can read and write
into tags T0, T1. He can also query the oracle OStep to get the next
steps of tags T0 and T1. Moreover, the oracleODraw suppliesAwith
s tags T(i,j) fulfilling some condition c(i,j). A can read from and
write into tags T(i,j). A is also supplied with the next step of tags
T(i,j). A then iterates the supply chain and reads the state stored
into tags T(i,j).

In the challenge phase, cf., Algorithm 4, A is provided with the
next step of tags T0 and T1. He is also allowed to read and write
into T0 and T1 one more time. Then, the supply chain is iterated first
outside the range of A. That is, tags T0 and T1 has an unobserved
interaction with an honest reader outside the range of A.

The oracle OFlip supplies A with the tag Tb which A can read.
At the end of the challenge phase,A is required to output his guess
of bit b.
A is said to be successful if i.) his guess of b is correct, ii.) the

readers associated with steps vk+1
T0

and vk
′+1

T1
are not corrupt, and

iii.) the reader associated with the next step of tag Tb at the end of
the challenge phase is not corrupt by A.

DEFINITION 2 (TAG UNLINKABILITY). CHECKER provides
tag unlinkability⇔ For adversaryA, inequality Pr(A is success-
ful) ≤ 1

2
+ ε holds, where ε is negligible.

In a real world scenario, the adversary A against the above ex-
periment corresponds to a set of r partners {P1, P2, ..., Pr} in the
supply chain that collude in order to compromise the privacy of
another partner P , through eavesdropping and tampering with tags

for i := 1 to r do
Si ← OCorrupt(Ri);

end
T0 ← ODraw(“tag at step ”v0);
T1 ← ODraw(“tag at step ”v0);
for i := 0 to ρ− 1 do

vi+1
T0
← OStep(T0);

siT0 :=READ(T0);
WRITE(T0, s

′i
T0);

vi+1
T1
← OStep(T1);

siT1 :=READ(T1);
WRITE(T1, s

′i
T1);

for j = 1 to s do
T(i,j) ← ODraw(c(i,j));
vT(i,j) ← OStep(T(i,j));
sT(i,j) :=READ(T(i,j));
WRITE(sT(i,j) , s

′
T(i,j)

);
end
ITERATESUPPLYCHAIN;
for j = 1 to s do

READ(T(i,j));
end

end
Algorithm 3: A’s tag unlinkability learning phase

vk+1
T0
← OStep(T0);

skT0 :=READ(T0);
WRITE(T0, s

′k
T0);

vk
′+1

T1
← OStep(T1);

sk
′

T1 :=READ(T1);
WRITE(T1, s

′k′
T1);

ITERATESUPPLYCHAIN; // Outside the range of A
Tb ← OFlip{T0, T1};
sTb :=READ(Tb);
OUTPUT b;

Algorithm 4: A’s tag unlinkability challenge phase

present at P ’s site.
Note on tag unlinkability. The adversary A defined above is a
narrow adversary as defined by Vaudenay [22]. That is,A does not
have access to the output of the protocol in the challenge phase.
In CHECKER’s case, this corresponds to not accessing the result of
the CHECK function. Note that if we allow A to have access to the
output of the CHECK function, A can mount a trivial attack where
he writes garbage, i.e., “dummy data” into a tag Ti. Tag Ti will not
be accepted by any reader in the supply chain with high probability,
and thus A can always distinguish Ti from legitimate tags.

4. PROTOCOL

Protocol overview
In CHECKER, a tag T stores a state sjT which consists of the en-
cryption of T ’s identifier ID and the encryption of a path signature
that encodes the sequence of steps that T has visited.

To efficiently encode paths in the supply chain, we rely on a
polynomial-based representation as introduced by Blass et al. [4].
That is, each path P in the supply chain will match the evaluation
of a unique polynomial QP in a fixed value x0, i.e., a path P in the
supply chain is mapped to QP(x0) ∈ Fq .

A tag T going through a valid path P stores a randomly encrypted
state sjT = (Enc(ID), Enc(σP(ID))), such that ID is T ’s identifier,
σP(ID) = H(ID)QP(x0), and H is a cryptographic hash function.
The state sjT could be regarded as a message ID and a signature on
this message using the secret key QP(x0).

In CHECKER, the issuer I initializes a tag T by writing an initial
encrypted state s0T . A reader Rk in CHECKER reads the encrypted
state sjT stored into T and decrypts it using its secret key skk to
get the pair (ID, σP(ID)). Rk then uses its set of νk verification
keys KVk = {K1

k ,K
2
k , ...,K

νk
k } to verify whether T went through

a valid path leading to Rk or not. After path verification, reader
Rk uses an update function fk to update the state stored into tag T
accordingly. Finally, Rk encrypts the new state of tag T using the
public key of T ’s next step.

Privacy and security overview
To protect privacy of tags in the supply chain against readers, tags
store an IND-CCA secure encryption of their states. For ease of
presentation, we use Cramer-Shoup’s scheme (CS for short) [8] as
the underlying encryption. As CHECKER takes place in subgroups
of elliptic curves that support bilinear pairings, we note that any
IND-CCA secure scheme that takes place in DDH-hard groups can
be used to encrypt the tag state. Furthermore, readers in the supply
chain do not share the same CS pair of keys, instead each reader
Rk is equipped with a matching pair of CS public and secret keys
(skk, pkk).

To ensure security, a tag T in CHECKER stores a signature of its
ID using the polynomial-based encoding of the path it took. With-
out having access to the polynomial-based encoding of valid paths,
an adversary cannot forge a valid state; otherwise, we show that
there is an adversary who is able to break the bilinear computa-
tional Diffie-Hellman (BCDH) assumption.

First, we introduce some of the definitions, notations and as-
sumptions that will be used in the rest of the paper.

4.1 Preliminaries
CHECKER takes place in subgroups of elliptic curves that sup-

port bilinear pairings. Similar to related work on elliptic curves
supporting bilinear pairings, we use multiplicative group notation [1,
2, 5]. If G is a subgroup of order q of some elliptic curve E , then
for all g ∈ G and x ∈ Zq , gx denotes point multiplication of g by
x.

4.1.1 Bilinear pairings
Let G1, G2 and GT be groups, such that G1 and GT have the

same order q.
A pairing e: G1 ×G2 → GT is a bilinear pairing if:

1. e is bilinear: ∀x, y ∈ Zq , g ∈ G1 and h ∈ G2, e(gx, hy) =
e(g, h)xy;

2. e is computable: there is an efficient algorithm to compute
e(g, h) for any (g, h) ∈ G1 ×G2;

3. e is non-degenerate: if g is a generator of G1 and h is a
generator of G2, then e(g, h) is a generator GT .

CHECKER’s security and privacy rely on the Bilinear Computa-
tional Diffie-Hellman (BCDH) assumption and the Symmetric Ex-
ternal Diffie-Hellman (SXDH) assumption [3, 20].

DEFINITION 3 (BCDH ASSUMPTION). Let g be a generator
of G1 and h be a generator of G2. We say that the Bilinear Compu-
tational Diffie-Hellman assumption holds if, given g, gx, gy, gz ∈
G1 and h, hx, hy ∈ G2 for random x, y, z ∈ Fq , the probability to
compute e(g, h)xyz is negligible.

DEFINITION 4 (SXDH ASSUMPTION). The Symmetric Exter-
nal Diffie-Hellman assumption holds if G1 and G2 are two groups
with the following properties:

1. There exists a bilinear pairing e : G1 ×G2 → GT ;

2. the decisional Diffie-Hellman problem (DDH) is hard in both
G1 and G2.

Hence, CHECKER uses bilinear groups where DDH is hard, see
Ateniese et al. [1, 2], Ballard et al. [3], Scott [20]. These groups
can be chosen as specific subgroups of non supersingular elliptic
curves such as Miyaji-Nakabayashi-Takano (MNT for short) curves
[16]. Moreover, results by Galbraith et al. [13] indicate that these
elliptic curves are the most efficient setting to implement pairing-
based cryptography.

4.1.2 Polynomial-based path encoding
In this section, we briefly recall the polynomial-based path en-

coding as presented in [4]. In a nutshell, each step vi, 0 ≤ i ≤ η,
in the supply chain is associated with a unique random number
ai ∈ Fq , where q is a large prime (|q| = 160 bits).

Each path in the supply chain is mapped to a unique polynomial
in Fq . The polynomial corresponding to path P = −−−−−→v0v1...vl is
defined as:

QP(x) = a0x
l +

lX
i=1

aix
l−i (1)

To have a compact representation of paths, a path P is encoded
as the evaluation of QP at x0, where x0 is a generator of F∗q . Con-
sequently, providing an efficient encoding of paths that does not
depend on the length of the paths.

We point out that when the coefficients ai are chosen randomly
in Fq , then the above encoding has the following property: for any
two different paths P and P′, QP(x0) 6= QP′(x0) with high proba-
bility, see [17] for more details.

In the remainder of this paper, we denote φ(P) = QP(x0) the
polynomial-based encoding of path P.

For all paths P and for all steps vk in the supply chain, the fol-
lowing holds:

φ(
−→
Pvk) = x0 · φ(P) + ak

4.1.3 Path signature in CHECKER

Let T be a tag with the unique identifier ID ∈ G1 that went
through the path P = −−−−−→v0v1...vl. In CHECKER we define the path
signature of tag T as:

σP(ID) = H(ID)φ(P)

where H is a cryptographic hash function H : G1 → G1. For
any ID ∈ G1, such a hash function can be computed using the
algorithms proposed by Icart [14] and Brier et al. [6]. In the security
analysis, we view H as a random oracle.

Note that σP(ID) is a signature of ID using the secret key φ(P).
More precisely, it is an aggregate signature using the secret coeffi-
cients ai of readers Ri in path P.

The identifier ID and the path signature σP(ID) are encrypted
and stored into tag T . A reader Rk that is visited by tag T , de-
crypts T ’s state, verifies the validity of the state and updates the
path signature σP(ID). Without loss of generality, we assume that
T has gone through the path P, and now it arrives at step vk in
the supply chain. T stores the encrypted pair (ID, σP(ID)) and Pk

denotes the path
−→
Pvk. To obtain σPk (ID), reader Rk computes its

state update function fRk defined as:

fRk (x, y) = xx0H(y)ak (2)

Thus,
fRk (σP(ID), ID) = σP(ID)

x0 H(ID)ak

= H(ID)φ(P)·x0 H(ID)ak

= H(ID)x0·φ(P)+ak

= H(ID)φ(
−→
Pvk) = σPk (ID)

Therefore, we obtain the path signature of Pk =
−→
Pvk from the

path signature of P.

4.1.4 Cramer-Shoup encryption
An elliptic curve Cramer-Shoup encryption consists of the fol-

lowing operations:

• Setup: The system outputs an elliptic curve E over a finite
field Fp. Let G1 be a subgroup of E of a large prime order q
(|q| = 160 bits), where DDH is intractable. Let (g1, g2) be a
pair of generators of the group G1.

• Key generation: The secret key is the random tuple sk =
(x1, x2, y1, y2, z) ∈ F5

q . The system computes then (c, d, f)
= (gx1

1 gx2
2 , gy11 gy22 , gz1). Let G be a cryptographic hash

function. The public key is pk = (g1, g2, c, d, f,G).

• Encryption: Given a message m ∈ G1, the encryption algo-
rithm chooses r ∈ Fq at random. Then it computes u1 =
gr1 , u2 = gr2 , u = mfr, α = G(u1, u2, u), v = crdrα.
The encryption algorithm outputs the ciphertext Encpk(m) =
(u1, u2, u, v).

• Decryption: On input of a ciphertext C = (u1, u2, u, v),
the decryption algorithm first computes α = G(u1, u2, u),
and tests if v = ux1+y1α

1 ux2+y2α
2 . If this condition does

not hold, the decryption algorithm outputs ⊥; otherwise, it
outputs Decsk(C) = u

uz1
.

4.2 Protocol description
CHECKER consists of an initial setup phase, the initialization of

tags by the issuer, and finally the path verification and tag state
update by the readers.

4.2.1 Setup
A trusted third party (TTP) outputs (q,G1,G2,GT , g1, g2, h,H,

G, e), where G1, GT are subgroups of prime order q. g1 and g2 are
random generators of G1. h is a generator of G2. H : G1 → G1

is a secure hash function. G : G3
1 → Fq is a secure hash function,

and e : G1 ×G2 → GT is a bilinear pairing.
The TTP generates η+1 pairs of matching public and secret keys

for the Cramer-Shoup encryption: skk = (x(1,k), x(2,k), y(1,k),

y(2,k), zk) ∈ F5
q and pkk = (g1, g2, ck, dk, fk, G), 0 ≤ k ≤ η.

The TTP generates as well η + 1 random coefficients ak ∈ Fq .
Then, it selects a generator x0 of Fq .

Through a secure channel, the TTP sends to each readerRk, 1 ≤
k ≤ η, the tuple (x0, ak, skk, pkk, H) and sends the tuple (x0, a0,
sk0, pk0, H) to the issuer I .

The TTP computes the verification keys for each reader Rk in
the supply chain. Let Pk be a path leading to reader Rk. To obtain
the verification key corresponding to path Pk, the TTP computes
the path encoding φ(Pk). Then, the TTP outputs the corresponding
verification key K(Pk) = hφ(Pk) ∈ G2.

Once the verification keys are computed, the TTP provides each
reader Rk with its set KkV of verification keys.

We assume that the public keys pkk, 0 ≤ k ≤ η, are known to
all parties in the system.

4.2.2 Tag initialization
For each new tag T in the supply chain, I chooses a random

identifier ID ∈ G1. The issuer computes the hashH(ID), and using
his secret coefficient a0, he computes H(ID)a0 . Provided with the
public key of T ’s next step, the issuer computes a CS encryption
of both ID and σv0(ID) = H(ID)a0 . Without loss of generality,
we assume that T ’s next step is v1. The public key of step v1 is
pk1 = (g1, g2, c1, d1, f1, G).

Issuer I draws two random number rID and rσ in Fq and com-
putes the following ciphertexts:

c0ID = Encpk1(ID) = (u(1,ID), u(2,ID), uID, vID)

= (grID1 , grID2 , ID frID1 , crID1 drIDαID
1)

αID = G(u(1,ID), u(2,ID), uID)

c0σ = Encpk1(σv0(ID)) = (u(1,σ), u(2,σ), uσ, vσ)

= (grσ1 , grσ2 , σv0(ID) f
rσ
1 , crσ1 drσασ1)

ασ = G(u(1,σ), u(2,σ), uσ)

Finally, I writes state s0T = (c0ID, c
0
σ) ∈ G8

1 into tag T . T then
enters the supply chain.

4.2.3 Path verification by readers
Assume a tag T arrives at steps vk in the supply chain. The

reader Rk associated with step vk reads the state sjT = (cjID, c
j
σ)

stored in tag T . Without loss of generality, we assume T went
through path P. Rk using its secret key skk decrypts the CS ci-
phertexts cjID and cjσ and gets respectively the pair (ID, σP(ID)).

Let KkV denote the set of verification keys KkV = {K1
k ,K

2
k , ...,

K
νk
k } = {hφ(P1k), hφ(P2k), ..., hφ(P

νk
k

)} corresponding to the valid
paths leading to step vk.

To verify whether the tag T went through a valid path or not,
Rk computes the hash H(ID) and checks whether there exists i ∈
{1, 2, ..., νk}, such that:

e(σP(ID), h) = e(H(ID),Ki
k)

= e(H(ID), hφ(Pik))

If so, this implies that T went through a valid path leading to step
vk. Otherwise, the reader concludes that tag T is illegitimate and
rejects T .

4.2.4 Tag state update by readers
If the verification succeeds, the reader Rk in the supply chain is

required to update the state of tag T . Using the update function
fRk , the reader computes the new path signature σ−→

Pvk
(ID).

fRk (σP(ID), ID) = σP(ID)
x0 H(ID)ak

= H(ID)x0φ(P)+ak = H(ID)φ(
−→
Pvk)

= σ−→
Pvk

(ID)

Without loss of generality, we assume that the tag’s next step
is vk+1. The reader Rk prepares tag T for reader Rk+1 by en-
crypting the pair (ID, σ−→

Pvk
(ID)) using the public key pkk+1 =

(g1, g2, ck+1, dk+1, fk+1, G). Reader Rk obtains therefore, two
ciphertexts cj+1

ID and cj+1
σ .

Finally, Rk writes the state sj+1
T = (cj+1

ID , cj+1
σ) into T .

5. SECURITY AND PRIVACY ANALYSIS
In this section, we state the main theorems regarding CHECK-

ER’s security and privacy.

5.1 Security analysis

THEOREM 1. CHECKER is secure under the BCDH assump-
tion in the random oracle model.

PROOF. Assume there is an adversary A who breaks the secu-
rity of CHECKER with a non negligible advantage ε, we build an
adversary A′ that uses A as a subroutine to break the BCDH as-
sumption with a non negligible advantage ε′.

LetOBCDH be an oracle that selects randomly x, y, z ∈ Fq , and
returns g, gx, gy, gz ∈ G1, and h, hx, hy ∈ G2.
Proof overview. If A has a non negligible advantage in breaking
the security of CHECKER, thenA will be able to output a challenge
tag Tc that stores a valid encrypted state sTc , and:

i.) ∃ Rk such that CHECK(Rk, Tc) = 1, i.e., there is a path P
j
k

that corresponds to Tc’state;
ii.) ∃ v ∈ P

j
k such that step v is not corrupted by A;

iii.) Tc did not go through step v.
To break BCDH, adversaryA′ simulates a CHECKER system for
A where he provides a step vi in the supply chain with the tuple
(x0, g

x, ski, pki) instead of the tuple (x0, ai, ski, pki).
Without loss of generality, we assume in the rest of the proof that

vi = v0 and thatA corrupts all readers Rk (but not issuer I) in the
supply chain.

Now,A′ must convinceA that v0 is associated with secret coef-
ficient a0 = x that corresponds to the pair (gx, hx) received from
the oracle OBCDH. Accordingly, A′ has to be able to compute
H(ID)x only by knowing (gx, hx). To tackle this issue, A′ simu-
lates a random oracleH that computes the hash function H .

When H is queried in the learning phase with identifier IDj , A′
picks a random number rj and computes H(IDj) = grj .

Before the challenge phase,A queries the random oracleH with
an identifier IDc, where IDc is the identifier of the challenge tag Tc.
SimulatingH,A′ picks a random number rc, computes H(IDc) =
gzrc , and returns H(IDc) to A.

In the challenge phase, A supplies A′ with the challenge tag Tc.
As adversary A has a non negligible advantage in the security

experiment, the challenge tag Tc stores an encrypted valid state that
corresponds to the pair (IDc, σc) such that σc = H(IDc)

φ(Pvalid),
and Tc did not go through step v0.

Using σc, A′ is able to identify the path Pvalid that corresponds
to the state of tag Tc. We assume that Pvalid =

−→
v0P, and we denote

l the length of path Pvalid.
By definition, φ(Pvalid) = a0x

l
0 + φ(P) = xxl0 + φ(P), and

given σc and the encoding φ(P) of the sub-path P, A′ computes:

σc
H(IDc)φ(P)

=
H(IDc)

φ(Pvalid)

H(IDc)φ(P)
= H(IDc)

xxl0

H(IDc)
x =

„
H(IDc)

φ(Pvalid)

H(IDc)φ(P)

« 1
xl0

A′ thus have access to H(IDc)
x = (gzrc)x = gxzrc , and accord-

ingly, he computes (gxzrc)
1
rc = gxz .

Finally, A′ computes e(gxz, hy) = e(g, h)xyz , and this breaks
the BCDH assumption which leads to a contradiction.
Simulation of the random oracleH. To respond to the queries to
the random oracleH,A′ keeps a table TH of tuples (IDj , rj , coin(
IDj), hj) as explained below.

On a query H(IDi), A′ replies as follows:

1.) If there is a tuple (IDi, ri, coin(IDi), hi) that corresponds to
IDi, then A′ returns H(IDi) = hi.

2.) If IDi has never been queried before, thenA′ picks a random
number ri ∈ Fq . A′ flips a random coin coin(IDi) ∈ {0, 1} such
that: coin(IDi) = 1 with probability p, and is equals to 0 with
probability 1 − p. The probability p will be determined later. If
coin(IDi) = 0, then A′ answers with H(IDi) = gri . Otherwise,
A′ answers with hi = H(IDi) = (gz)ri . Finally, A′ stores the
tuple (IDi, ri, coin(IDi), hi) in table TH .
Construction. We detail below howA′ breaks the BCDH assump-
tion.

• First, A′ queries OBCDH to receive g, gx, gy, gz ∈ G1 and
h, hx, hy ∈ G2. Then, A′ simulates a CHECKER system:

1.) A′ generates η+1 pairs of matching CS public and secret
keys (skk, pkk). Then, he generates η random coefficients
ak.

2.) A′ provides each reader Rk in CHECKER with the tuple
(x0, ak, skk, pkk).

3.) A′ provides the issuer I with the tuple (x0, g
x, sk0, pk0),

as if a0 = x.

4.) A′ computes the verification keys for each reader Rk
in the supply chain. Without loss of generality, a valid path
Pvalid in the supply chain could be represented as Pvalid =
−−−−→
v0P
′
valid. Thus, the corresponding verification keyK(Pvalid)

is computed as: K(Pvalid) = (hx)x
l
0hφ(P′valid) = hφ(Pvalid),

where l is the length of path Pvalid.

Once the verification keys are computed for all the readers
Rk, A provides each reader Rk with his set KkV of verifica-
tion keys.

A′ then calls the adversary A.

• A′ simulates the issuer I and creates n tags Tj of CHECKER.

A′ selects randomly IDj ∈ G1. He simulates the oracle H.
A′ gets the tuple (IDj , rj , coin(IDj), hj).

If coin(IDj) = 1, i.e., hj = H(IDj) = gzrj , then A′
cannot computeH(IDj)

x = gxzrj as he does not know both
x and z. Consequently, A′ stops the security experiment.

Otherwise, using rj A′ computes H(IDj)
x = (gx)rj .

Finally, A′ encrypts both IDj and σv0(IDj) using the public
key of the tag Tj’s next step. A′ stores the resulting cipher-
texts (c0(ID,j), c

0
(σ,j)) into tag Tj .

• A′ simulates the oracle OCorrupt for A. For ease of under-
standing, we assume that A corrupts all readers Rk in the
supply chain.

• A′ simulates readers Rk along the supply chain. Let Tj be a
tag which went through path P and arrives at step vk.

A′ decrypts the tag Tj’s state using CS secret key skk of
reader Rk and gets the pair (IDj , σP(IDj)). He verifies the
path of tag Tj using KVk . Then, A′ updates the path of tag
Tj using the secret coefficient ak.

Then using the public key of Tj’s next step,A′ encrypts Tj’s
identifier and Tj’s path signature.

• In the challenge phase, A outputs a tag Tc.

• A′ simulates all the readers in the supply chain and verifies
whether the encrypted state stored into tag Tc matches a valid
path in the supply chain. That is, A′ verifies whether there
exists a readerRk in the supply chain that outputs CHECK(Rk,
Tc) = 1 or not.

Adversary A has a non negligible advantage in the security
experiment, consequently, i.) ∃Rk such that CHECK(Rk, Tc)
= 1, and ii.) Tc did not go through step v0.

We assume without loss of generality that Tc’s state corresponds to
the pair (IDc, σc), and that Tc’s path signature σc corresponds to
path Pvalid =

−→
v0P.

• A′ first checks whether coin(IDc) = 1 or not.

If coin(IDc) = 0, thenA′ stops the experiment. Notice that
if hc = H(IDc) = grc , A′ will not be able to break the
BCDH assumption.

If coin(IDc) = 1, i.e., hc = H(IDc) = gzrc , then A′
continues the experiment, and computes e(g, h)xyz .

Let l denote the length of path Pvalid. Accordingly,

φ(Pvalid) = a0x
l
0 + φ(P) = xxl0 + φ(P)

and,

H(IDc)
xxl0 =

σc
H(IDc)φ(P)

=
H(IDc)

φ(Pvalid)

H(IDc)φ(P)

H(IDc)
x =

„
H(IDc)

φ(Pvalid)

H(IDc)φ(P)

« 1
xl0

e(H(IDc)
x, hy) = e((gzrc)x, hy) = e(g, h)xyzrc

Provided with the random number rc, A′ finally computes

e(g, h)xyz = (e(g, h)xyzrc)
1
rc

Here, we compute the advantage of A′.
Notice thatA′ succeeds in breaking the BCDH assumption if he

does not stop the security experiment.

1.) A′ halts the experiment, if during the initialization phase of the
n tags Tj of the CHECKER system, the simulated random oracle
H returns (IDj , rj , coin(IDj), hj) such that coin(IDj) = 1.
This event occurs with probability p. Hence, the probability
that A′ does not stop the experiment during the learning phase
is: (1− p)n.

2.) A′ stops the experiment during the challenge phase, if coin(IDc)
= 0. As a result, A′ does not stop the experiment in the chal-
lenge phase with probability p.

Let E denote the event: A′ does not abort the security experiment.
Let E1 denote the event: A′ does not abort security experiment

in the learning phase, Pr(E1) = (1− p)n.
Let E2 denote the event: A′ does not abort security experiment

in the challenge phase, Pr(E2) = p. Hence,

π = Pr(E) = Pr(E1)Pr(E2)

= p(1− p)n

Now, if A has a non negligible advantage ε in breaking the secu-
rity of CHECKER, then A′ can break the BCDH assumption with
advantage ε′ = πε, leading to a contradiction.

Remark that π is maximal when p = 1
n

and πmax =
(1− 1

n)n

n
'

1
en

. Consequently, the advantage ε′ in breaking BCDH is in this
case ε′ = ε

en
.

5.2 Privacy analysis

Tag unlinkability
THEOREM 2. CHECKER provides tag unlinkability under the

SXDH assumption.
PROOF. To prove tag unlinkability, we use the IND-CCA prop-

erty of Cramer-Shoup encryption ensured under the SXDH assump-
tion.

Before presenting the proof, we introduce the definition of IND-
CCA.

Let Odecryption be the oracle that, on input of a ciphertext c en-
crypted with public key pk, outputs the underlying plaintext m.

Let Oencryption be the oracle that, provided with two messages
m0, m1 and public key pk, randomly chooses b ∈ {0, 1}, encrypts
mb using public key pk, and returns the challenge ciphertext cb.

Let A (r, s, ε) be an adversary that is allowed to make r calls
to the oracle Odecryption with arbitrary ciphertexts ci. Then, A
selects two messages m0 and m1 which he provides to the oracle
Oencryption. Oencryption returns the challenge ciphertext cb. After
receiving cb, A can still query the decryption oracle Odecryption

with s ciphertexts c′i, with the only restrictions that cb 6= c′i. Fi-
nally,A is required to output his guess of b. An encryption is IND-
CCA secure, ifA (r, s, ε) has a negligible advantage ε in outputting
a correct guess of b.

Assume there is an adversaryAwho breaks the security of CHE-
CKER with a non negligible advantage ε, we show that there is an
adversaryA′ that usesA as a subroutine and breaks the IND-CCA
property of Cramer-Shoup encryption with a non-negligible advan-
tage ε′.
Proof overview. The idea of the proof is to build a CHECKER sys-
tem such that there is a step vi in the supply chain that is associated
with the public key pk, where pk is the challenge public key from
the IND-CCA security experiment.

In the learning phase, A′ is required to simulate reader Ri. This
implies that A′ has to be able decrypt the state of tags arriving at
step vi. Hence the need to a decryption oracle and therewith to
an IND-CCA secure encryption. Now, whenever a tag T arrives at
step vi, A′ first calls the decryption oracle for the Cramer-Shoup
encryption Odecryption that returns the underlying plaintexts, i.e.,
(ID, σP(ID)). Then, A′ verifies the validity of the pair and updates
the state of T accordingly.

In the challenge phase, A returns the challenge tags T0 and T1

to A′. A′ decrypts the state of tags T0 and T1 and gets their iden-
tifiers ID0 and ID1 respectively. Then, A′ queries the encryption
oracle Oencryption with message ID0 and ID1. Oencryption returns
the challenge ciphertext cb = Encpk(IDb), b ∈ {0, 1}. A′ iterates
the supply chain outside the range ofA, and simulatesOFlip by re-
turning Tb which stores the ciphertext cb along with an encryption
of Tb’s path signature. AsA′ makes a guess for the value of b to up-
date Tb’s path signature, this latter will be correct with probability
1
2

.
IfA has a non-negligible advantage ε in breaking the tag unlink-

ability experiment, then he outputs a correct guess for the value of
b. If b = 0, then this implies that Tb stores an encryption of ID0

and thus cb = Encpk(ID0); otherwise, cb = Encpk(ID1).
Construction. To break the IND-CCA property of Cramer and
Shoup encryption, A′ proceeds as follows:

• A′ creates a supply chain for the CHECKER protocol.

• A′ calls the adversary A. A queries the oracle OCorrupt with
the identity of r readersRk. A′ simulates the oracleOCorrupt

and assigns to each reader Rk a tuple (x0, ak, skk, pkk) that
he returns to A.

• Now,A′ selects a readerRi from the set of uncorrupt readers
and assigns to Ri the tuple (x0, ai, pki = pk). Without loss
of generality, we assume that step vi in the supply chain is
associated with reader Ri.

• Simulating ODraw, A′ supplies A with two challenge tags T0

and T1 that have just been issued by issuer I , i.e., just entered
the supply chain.

• A iterates the supply chain ρ times. Before each iteration j
of the supply chain:

1.) A reads and writes into tags T0, T1.

2.) Simulating OStep, A′ provides A with the next step of
tags T0, T1.

3.) A′ simulates ODraw and supplies A with s tags T(i,j). A
is also provided with T(i,j)’s next step. A then iterates the
supply chain and reads the states stored into tags T(i,j).

• If a tag T in the learning phase arrives at step vi, then A′
simulates reader Ri as follows:

1.) A′ reads the state stored into T and gets two CS cipher-
texts cID and cσ .

2.) A′ queries the oracle Odecryption with the ciphertexts
cID and cσ . The oracleOdecryption returns the corresponding
plaintexts ID and σ.

3.) A′ checks then if the pair (ID, σ) corresponds to a valid
path leading to step vi.

4.) Finally, A′ updates the path signature of T accordingly
and encrypts both the identifier ID and the path signature us-
ing the public key of T ’s next step.

• In the challenge phase, tags T0 and T1 are submitted to A′.
A′ decrypts the states stored into T0 and T1, and gets ID0 and
ID1 respectively.

• A′ queries the oracle Oencryption with messages ID0 and
ID1. Oencryption returns c(ID,b) = Encpk(IDb).

• A′ prepares the tag Tb for the adversary A:

1.) A′ updates the path of tags T0 and T1 and encrypts the
path signature using the public key pk. He obtains two ci-
phertexts: c(σ,0) and c(σ,1).

2.) A′ randomly selects b′ ∈ {0, 1} and stores the state
sTb = (c(ID,b), c(σ,b′)) in Tb. Therefore, Tb’s next step is
step vi associated with public key pk.

• Simulating OFlip, A′ provides A with the challenge tag Tb.
A is allowed to read from tag Tb.

Notice that if b = b′, then the state sTb = (c(ID,b), c(σ,b′)) com-
puted by A′ when simulating CHECKER corresponds to a well
formed pair (IDb, σP(IDb)), and consequently, the simulation of
CHECKER by A′ does not differ from an actual CHECKER system.
A can accordingly output his guess for the tag corresponding to the
challenge tag Tb with a non-negligible advantage ε.

If A outputs b = 0, this means that Tb stores an encryption of
ID0, andA′ outputs 0. IfA outputs b = 1, this means that Tb stores
an encryption of ID1, and A′ outputs 1.

If b 6= b′, then the probability thatA′ breaks the IND-CCA prop-
erty of CS is at worst a random guess, i.e., 1

2
.

Now, we quantify the advantage of A′(q, 0, ε′), (q ≤ 2(sρ +
2ρ+ 2), in breaking the IND-CCA property of CS.

– Let E1 be the event that A′ breaks the IND-CCA property of
CS.

– Let E2 be the event that b = b′.
Since b′ is selected randomly, the probability that b = b′ is 1

2
.

Therefore,

Pr(E1) = Pr(E1|E2) · Pr(E2) + Pr(E1|E2) · Pr(E2)

=
1

2
Pr(E1|E2) +

1

2
Pr(E1|E2)

=
1

2

„
1

2
+ ε

«
+

1

2
Pr(E1|E2)

≥ 1

2

„
1

2
+ ε+

1

2

«
=

1

2
+
ε

2

Thus, the advantage ofA′ to break the IND-CCA property of CS
is at least ε′ = ε

2
. Therefore, if A has a non-negligible advantage

ε to break CHECKER, then A′(q, 0, ε′) will have a non-negligible
advantage ε′ to break the IND-CCA property of Cramer and Shoup
encryption, which leads to a contradiction.

6. RELATED WORK
Ouafi and Vaudenay [18] propose a solution that allows prod-

uct tracking. However, this solution assumes that tags can perform
hash functions. We argue that a wide implementation of such track-
ing systems requires using the cheapest kind of tags which corre-
spond to read/write only tags.

Also Burbridge and Soppera [7] suggest the use of proxy re-
signature to allow path segment verification while using read/write
only tags. The tag stores a signature of the last trusted party it has
visited. To prevent product injection in the supply chain, partners
in the supply chain do not have secret keys to sign tags’ identifiers,
but rather secret proxy keys that only allow partners to transform
a valid signature of one partner to their own signature. The paper
however does not address the problem of implementing practical
proxy re-signatures without trusted third party.

Although these two previous schemes ensure secure product track-
ing in the supply chain, they fail at providing a privacy preserving
solution. We emphasize that any solution dealing with product/tag
tracking should preserve tag privacy in order to protect the privacy
of the internal processes of partners in the supply chain.

Blass et al. [4] propose a tracking system using read/write only
tags that preserve tags’ privacy in the supply chain. They use poly-
nomial based path encoding to represent efficiently the paths in the
supply chain, and they rely on the use of homomorphic and prob-
abilistic encryption to preserve tag privacy against readers in the
supply chain and external adversaries. However, contrary to the
work at hand, [4] relies on the assumption that the path verifica-
tion is carried out by a trusted party called manager M . Thus, it
does not permit the readers in the supply chain to perform the path
verification which is the main application scenario for CHECKER.

7. EVALUATION
CHECKER targets read/write only tags that do no feature any

computational capabilities. A tag in CHECKER is required to store a
pair of IND-CCA encryptions of its identifier ID and its path signa-
ture σPvalid(ID) = H(ID)φ(Pvalid). In this paper, we use Cramer-
Shoup’s scheme as the underlying encryption. This results in an
overall tag storage of 2 · 4 · 160 = 1280 bits. We emphasize that
any IND-CCA secure encryption in DDH-hard subgroups of ellip-
tic curve is sufficient to implement CHECKER. One possible choice
of encryption scheme is CS-lite [8]: a light variant of CS encryp-
tion which is IND-CCA secure and costs 480 bits per encryption

instead of 640 bits. Also, there is a variant of Elgamal proposed by
Fujisaki and Okamoto [12] which is IND-CCA secure in the ran-
dom oracle model, and whose storage requirements are comparable
to Elgamal’s.

We believe that CHECKER can be implemented in current ISO
18000-3 HF tags, such as UPM RFID MiniTrack tags [21] that fea-
ture 1 kbit of memory.

Moreover, a reader Rk in the supply chain is required to decrypt
the state stored into tags using its secret key skk, then to verify
the validity of the paths that tags went through, and to update and
encrypt the state of tags. This amounts to performing: 1.) two de-
cryptions in G1 where |G1| = 160 bits, 2.) νk bilinear pairings’
computation in GT , where νk is the number of verification keys of
reader Rk and |GT | = 1024 bits, 3.) two exponentiations in G1

to update the path signature, and finally 4.) two encryptions in G1.
The costly operation at readerRk is the verification of the path sig-
nature which is linear in the number of valid paths leading to reader
Rk. We can further decrease the computation load at the readers by
allowing tags to store the verification key that corresponds to the
path that they took in the supply chain.

We recall that a verification key of path Pvalid is hφ(Pvalid) ∈
G2. Now, instead of storing an encrypted pair (ID, H(ID)φ(Pvalid)),
a tag T stores the encrypted tuple (ID, H(ID)φ(Pvalid), hφ(Pvalid)).
When T arrives at step vk, the reader Rk decrypts T ’s state and
gets a tuple (α, β, γ). First, Rk checks whether γ is in his set of
verification keys KkV or not. If so, Rk proceeds in verifying the
path signature of tag T . Consequently, the cost of the verification
of the path signature at the readers is constant. On the one hand
however, readers are required to perform an additional table lookup,
one decryption, two exponentiations and one encryption in G2. On
the other hand, tags have to store three encryptions of size 640 bits
in the case of Cramer-Shoup, and of size 480 in the case of CS-lite.

8. CONCLUSION
In this paper, we presented CHECKER for a secure and privacy

preserving product genuineness verification in supply chains. CHE-
CKER relies solely on read/write RFID tags that do not feature any
computational capabilities. CHECKER allows on-site checking by
providing the readers with the means to verify the validity of the
paths that products took. CHECKER’s main idea is to sign the tag’s
identifier using the encoding of the path that the tag took. Then,
each reader in CHECKER is supplied with a set of public keys that
correspond to the set of valid paths in the supply chain. This grants
readers the ability to verify the genuineness of products, while pre-
venting them from injecting fake products. CHECKER’s security
and privacy rely on standard assumptions: the BCDH and the DDH
assumptions. Finally, CHECKER does not involve a trusted party
and therefore, it is well suited for the distributed and heterogeneous
setting of supply chains.

Bibliography
[1] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable

RFID tags via insubvertible encryption. In CCS ’05: Proceed-
ings of the 12th ACM conference on Computer and communi-
cations security, pages 92–101, New York, NY, USA, 2005.
ACM. ISBN 1-59593-226-7.

[2] G. Ateniese, J. Kirsch, and M. Blanton. Secret Handshakes
with Dynamic and Fuzzy Matching. In Proceedings of the
Network and Distributed System Security Symposium, NDSS.
The Internet Society, 2007.

[3] L. Ballard, M. Green, B. de Medeiros, and F. Monrose.
Correlation-Resistant Storage via Keyword-Searchable En-

cryption. Cryptology ePrint Archive, Report 2005/417, 2005.
http://eprint.iacr.org/.

[4] E-O Blass, K Elkhiyaoui, and R Molva. Tracker: security
and privacy for RFID-based supply chains. In NDSS’11, 18th
Annual Network and Distributed System Security Symposium,
6-9 February 2011, San Diego, California, USA, ISBN 1-
891562-32-0, 02 2011.

[5] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
the weil pairing. Journal of Cryptology, 17:297–319, 2004.
ISSN 0933-2790.

[6] E. Brier, J.S. Coron, T. Icart, D. Madore, H. Randriam, and
Mehdi Tibouchi. Efficient indifferentiable hashing into ordi-
nary elliptic curves. In Advances in Cryptology – CRYPTO
2010, volume 6223 of Lecture Notes in Computer Science,
pages 237–254. Springer Berlin / Heidelberg, 2010. ISBN
978-3-642-14622-0.

[7] T. Burbridge and A. Soppera. Supply chain control using a
RFID proxy re-signature scheme. In RFID, 2010 IEEE Inter-
national Conference on, pages 29 –36, april 2010.

[8] R. Cramer and V. Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In
CRYPTO ’98, pages 13–25. Springer-Verlag, 1998.

[9] E. De Cristofaro and G. Tsudik. Practical private set intersec-
tion protocols with linear complexity. In Radu Sion, editor,
Financial Cryptography and Data Security, volume 6052 of
Lecture Notes in Computer Science, pages 143–159. Springer
Berlin / Heidelberg, 2010. ISBN 978-3-642-14576-6.

[10] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity
private set intersection protocols secure in malicious model.
In Masayuki Abe, editor, Advances in Cryptology - ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Computer
Science, pages 213–231. Springer Berlin / Heidelberg, 2010.
ISBN 978-3-642-17372-1.

[11] T. Dimitrou. rfidDOT: RFID delegation and ownership trans-
fer made simple. In Proceedings of International Conference
on Security and privacy in Communication Networks, Istan-
bul, Turkey, 2008. ISBN 978-1-60558-241-2.

[12] E. Fujisaki and T. Okamoto. How to Enhance the Security of
Public-Key Encryption at Minimum Cost. In Proceedings of
the Second International Workshop on Practice and Theory
in Public Key Cryptography, PKC ’99, pages 53–68, London,
UK, 1999. Springer-Verlag. ISBN 3-540-65644-8.

[13] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings
for cryptographers. Discrete Appl. Math., 156:3113–3121,
September 2008. ISSN 0166-218X.

[14] T. Icart. How to Hash into Elliptic Curves. In Advances in
Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 303–316. Springer Berlin / Hei-
delberg, 2009. ISBN 978-3-642-03355-1.

[15] A. Juels and S.A. Weis. Defining Strong Privacy for RFID.
In PerCom Workshops, pages 342–347, White Plains, USA,
2007. ISBN 978-0-7695-2788-8.

[16] A. Miyaji, M. Nakabayashi, and S. Takano. New
Explicit Conditions of Elliptic Curve Traces for FR-
Reduction. TIEICE: IEICE Transactions on Communica-
tions/Electronics/Information and Systems, 2001.

[17] G. Noubir, K. Vijayan, and H. J. Nussbaumer. Signature-
based method for run-time fault detection in communication
protocols. Computer Communications Journal, 21(5):405–
421, 1998. ISSN 0140-3664.

[18] K. Ouafi and S. Vaudenay. Pathchecker: an RFID Application
for Tracing Products in Suply-Chains. In Workshop on RFID
Security – RFIDSec’09, pages 1–14, Leuven, Belgium, 2009.
http://www.cosic.esat.kuleuven.be/
rfidsec09/Papers/pathchecker.pdf.

[19] A.R. Sadeghi, I. Visconti, and C. Wachsmann. Anonymizer-
Enabled Security and Privacy for RFID. In 8th International
Conference on Cryptology And Network Security – CANS’09,
Kanazawa, Ishikawa, Japan, December 2009. Springer. ISBN
978-3-642-10432-9.

[20] M. Scott. Authenticated ID-based Key Exchange and re-
mote log-in with simple token and PIN number. Cryptology
ePrint Archive, Report 2002/164, 2002. http://eprint.
iacr.org/.

[21] UPM RFID Technology. UPM Raflatac MiniTrak datasheet,
2011.
http://www.upmrfid.com/rfid/images/
MiniTrack_SLI_datasheet.pdf/$FILE/
MiniTrack_SLI_datasheet.pdf.

[22] S. Vaudenay. On Privacy Models for RFID. In Proceedings of
ASIACRYPT, pages 68–87, Kuching, Malaysia, 2007. ISBN
978-3-540-76899-9.

APPENDIX
A. STEP UNLINKABILITY

A.1 Definition
As explained in Section 3.2, step unlinkability captures the abil-

ity of an adversary A of telling if the paths of two tags T0 and T1

have a step in common besides the step v0. Notice that step un-
linkability as defined hereafter makes sense only when the system
comprises at least two tags.

We use an experiment based definition as in Section 3.2. In ad-
dition to the oracles presented earlier, A has access to the oracle
OPath. When OPath is queried with a path P, it flips a fair coin
b ∈ {0, 1}. If b = 1, then OPath selects randomly a tag T which is
going through a step v ∈ P\{v0} in the next supply chain iteration.
Otherwise, OPath selects randomly a tag T which is going through
a step v 6∈ P. Finally, OPath returns the tag T to A.

An adversaryA(r, s, t, ρ, ε) against step unlinkability has access
to CHECKER in two phases. In the learning phase as illustrated in
Algorithm 5, A calls the oracle Ocorrupt that furnishes A with the
secret information of r readers Ri of his choice. Now, A controls
steps vi associated with readersRi. A then queries the oracleODraw

which supplies A with a tag T0 entering the supply chain.
A is allowed to iterate the supply chain up to ρ times. Before

each iteration i of the supply chain, A can read and re-write the
internal state of tag T0. He also queries the oracleOStep that returns
the next step vi+1

T0
of tag T0 in the supply chain. A then calls the

oracle ODraw which gives A s tags T(i,j), that are going through
vi+1
T0

in the next supply chain iteration. Also, A can query the
oracleODraw again to provide him with t other tags T ′(i,j), that fulfill
some condition c(i,j) specified by A. Now, A has a full access to
these tags, i.e.,A can read from and write into them, he can as well
have access to the next step of tags T ′(i,j). Finally, A iterates the
supply chain by calling ITERATESUPPLYCHAIN and reads the state
stored into the tags T(i,j) and T ′(i,j).

Let PT0 denote the path that tag T0 went through.
In the challenge phase, cf., Algorithm 6, A queries the oracle
OPath with path PT0 . OPath returns a tag T1. A is allowed to read
and re-write the state of tag T1.

for i := 1 to r do
Si ← OCorrupt(Ri) ;

end
T0 ← ODraw(“tag at step ”v0);
for i := 0 to ρ− 1 do

vi+1
T0
← OStep(T0);

siT0 :=READ(T0);
WRITE(T0, s

′i
T0);

for j := 1 to s do
T(i,j) ← ODraw(“tag’s next step is vi+1

T0
”));

sT(i,j) :=READ(T(i,j));
WRITE(T(i,j), s

′
T(i,j)

);
end
for j := 1 to t do

T ′(i,j) ← ODraw(c(i,j));
vT ′

(i,j)
← OStep(T

′
(i,j));

sT ′
(i,j)

:=READ(T ′(i,j));

WRITE(T ′(i,j), s
′
T ′
(i,j)

);

end
ITERATESUPPLYCHAIN;
for j := 1 to s do

READ(T(i,j));
end
for j := 1 to t do

READ(T ′(i,j));
end

end
Algorithm 5: A’s step unlinkability learning phase

T1 ← OPath(PT0);
skT1 :=READ(T1);
WRITE(T1, s

′k
T1);

ITERATESUPPLYCHAIN;
sk+1
T1

:=READ(T1);
OUTPUT b;

Algorithm 6: A’s step unlinkability challenge phase

A iterates the supply chain, and reads the state stored into tag T1.
Let vT1 denote the step that tag T1 went through during the chal-

lenge phase. A’s goal is to decide whether the step vT1 ∈ PT0 or
not. If vT1 ∈ PT0 , then A outputs b = 1; otherwise, A outputs
b = 0.

The adversary A is successful, if i.) his guess of bit b is correct,
and if ii.) the step vT1 is not corrupted by A.

DEFINITION 5 (STEP UNLINKABILITY). CHECKER provides
step unlinkability⇔ For adversaryA, inequality Pr(A is success-
ful) ≤ 1

2
+ ε holds, where ε is negligible.

A.2 Tag unlinkability and step unlinkability
The following theorem states that if CHECKER ensures tag un-

linkability, it will as well ensure step unlinkability.

THEOREM 3. If CHECKER ensures tag unlinkability, then it also
ensures step unlinkability.

PROOF. Assume there is an adversary A who breaks the step
unlinkability with a non negligible advantage ε. We show that there
is an adversary A′ who uses A to break the tag unlinkability as
defined in Section 3.2 with a non negligible advantage ε′.

Proof overview. In the proof below, we show that if adversary
A has a non-negligible advantage ε in breaking step unlinkability,
thenA′ can construct a statistical distinguisher that tells tags T0 and
T1 apart in the tag unlinkability experiment with a non negligible
advantage ε′.

In a nutshell, adversary A′ supplies adversary A in the learning
phase of step unlinkability with the first challenge tag T0 that he
receives in the tag unlinkability experiment.

Then, at the beginning of the challenge phase of the step unlink-
ability experiment,A′ providesA with the second challenge tag T1

of tag unlinkability.
Finally, at the end of the challenge phase of step unlinkability,
A′ replaces tag T1 by tag Tb that was returned by OFlip.

If b = 1, then A breaks the step unlinkability of CHECKER with
a non-negligible advantage ε. Otherwise, A’s advantage is negligi-
ble in breaking step unlinkability.

Now, the statistical distinguisher works as follows: whenever A
outputs a correct guess for the step unlinkability experiment, then
A′ outputs b = 1; otherwise, A′ outputs b = 0.
Construction. A′ simulates CHECKER to adversaryA whose goal
is to break step unlinkability.
I.) In the learning phase of step unlinkability:

• WheneverA wants to corrupt a reader Ri,A′ makes a query
to the oracleOCorrupt with Ri’s identity. OCorrupt returns the
secrets of reader Ri toA′, who then returns the same secrets
to A.

• When A queries A′ to get a tag T0, A′ queries the oracle
ODraw. ODraw returns two challenge tags T0 and T1 for the tag
unlinkability experiment which just entered the supply chain.
Then, A′ picks for instance tag T0 and returns T0 to A.

• When A queries A′ to supply him with the next step of tag
T0,A′ queries the oracleOstep with tag T0. Ostep returns the
next step vi+1

T0
of tag T0 to A′, who then returns vi+1

T0
to A.

• If A queries A′ for tags whose next step is vi+1
T0

, then A′
queries the oracle ODraw with the condition “tag’s next step
vi+1
T0

”. ODraw supplies A′ with tags T(i,j) satisfying the con-
dition. Finally, A′ gives A the same set of tags T(i,j).

• IfA queriesA′ for tags satisfying some condition c(i,j), then
A′ queries the oracle ODraw with c(i,j). ODraw furnishes A′
with tags T ′(i,j) fulfilling the condition c(i,j). A′ then returns
the tags T ′(i,j) to A.

• A′ iterates the supply chain.

• After iterating the supply chain, A′ gives A the tags T(i,j)

and T ′(i,j) that A can read from.

II.) In the challenge phase of step unlinkability:

• A′ simulates the oracle OPath(PT0) and prepares tag T1 for
adversary A.

1. A′ queries the oracle OStep with the challenge tags T0

and T1. A′ gets therefore the next step vk+1
T0

and vk
′+1

T1
of tags T0 and T1 respectively.

Note that if the reader associated with step vk
′+1

T1
is cor-

rupt by A, and therewith by A′, then A′ stops the ex-
periment as his attack against tag unlinkability is trivial.

2. A′ reads from tag T1 and provides A with T1.

• A can read and write into tag T1. Then, tag T1 is given back
to A′.

• The supply chain is iterated outside the range of A′. The
oracle OFlip returns tag Tb, b ∈ {0, 1}.

• A′ returns tag Tb to A. Now, A can read from tag Tb.

• A then outputs his guess for the bit b′ for the step unlinka-
bility experiment, i.e., b′ = 1, if vk

′+1
T1

is a step in T0’s path;
otherwise b′ = 0.

If Tb = T1, then A′’s simulation of the CHECKER system is
perfect, and A will have a non-negligible advantage in guessing
the value of the bit b′.

If Tb = T0, thenA’s view of the step unlinkability experiment is
independent of b′, and thus A’s advantage is negligible.

This therefore leads to a statistical distinguisher between tags T0

and T1. When A succeeds in the step unlinkability experiment, A′
outputs b = 1, otherwise A′ outputs b = 0.

Hence, if there is an adversaryA(r, s, t, ρ, ε) who breaks the step
unlinkability of CHECKER, then there is an adversary A′(r, s +
t, ρ, ε) who breaks the tag unlinkability of CHECKER.

