
Redundancy Management for P2P Backup
Laszlo Toka

Eurecom, France
Pasquale Cataldi

British Sky Broadcasting, UK
Matteo Dell’Amico

Eurecom, France
Pietro Michiardi
Eurecom, France

Abstract—We propose a redundancy management mechanism
for peer-to-peer backup applications. Since, in a backup system,
data is read over the network only during restore processes
caused by data loss, redundancy management targets data dura-
bility rather than attempting to make each piece of information
availabile at any time.

Each peer determines, in an on-line manner, an amount of
redundancy sufficient to counter the effects of peer deaths, while
preserving acceptable data restore times. Our experiments, based
on trace-driven simulations, indicate that our mechanism can
reduce the redundancy by a factor between two and three with
respect to redundancy policies aiming for data availability. These
results imply an according increase in storage capacity and
decrease in time to complete backups, at the expense of longer
times required to restore data. We believe this is a very reasonable
price to pay, given the nature of the application.

I. INTRODUCTION

Many users do not backup their data regularly; costs and
poor usability are among the main reasons why existing
backup solutions are not used. A P2P approach to backup
can be a viable technique to overcome these issues, providing
a seamless and extremely cheap way to keep data safe.

As we discuss in Sec. II, the focus is on durability, i.e.
guaranteeing that data is not lost. A specialized backup appli-
cation has to fulfill less stringent requirements than a generic
P2P storage application in several aspects. First, backups
should only be readable by their owner, making confidential-
ity requirements easy to satisfy with standard cryptographic
techniques. Second, backup involves the bulk transfer of poten-
tially large quantities of data, both during regular backups and,
in the event of data loss, during restore operations. Therefore,
read and write latencies of hours have to be tolerated by users.
Third, owners have access to the original copy of their data,
making it easy to inject additional redundancy in case data
stored remotely is partially lost. Fourth, since data is read
only during restore operations, the application does not need
to guarantee that any piece of the original data should be
promptly accessible in any moment, as long as the time needed
to restore the whole backup remains under control. For all
these reasons, we claim that it is sensible to design peer-to-
peer applications that perform exclusively backup.

We design and evaluate a new redundancy management
mechanism for backup, which achieves data durability without
requiring high redundancy levels nor fast mechanisms to detect
node failures. In our mechanism, which is described in Sec. III,
the redundancy level applied to backup data is computed in an
on-line manner. Given a time window that accounts for failure
detection and data repair delays and a system-wide statistic

on peer deaths, peers determine the redundancy rate while
backing up data. A byproduct of our approach is that, if the
system state changes, then peers can adapt to such dynamics
and modify the redundancy level on the fly.

We evaluate our redundancy management scheme via trace-
driven simulations. In Sec. IV, we show that our approach
drastically decreases strain on resources, reducing the storage
and bandwidth requirements by a factor between two and
three, as compared to redundancy schemes that use a fixed,
system-wide redundancy factor. This result yields higher stor-
age capacity for the system and shorter backup times at the
expense of longer restores, which is a very reasonable price
to pay considering the requirements of backup applications.

II. APPLICATION SCENARIO

We assume data owners to specify one local folder contain-
ing important data to backup. Backup data remains available
locally to data owners, unlike many online storage applications
in which data is only stored remotely.

We consider the problem of long-term storage of backup
objects: large, immutable, and opaque pieces of data. They
consist of encrypted archives of changes to files, such that
recovering them allows reconstructing the history of data.

Backup objects are stored on inherently unreliable peers,
which join and leave the system unpredictably (churn). More-
over, peers may crash and possibly abandon the P2P applica-
tion (death). As such, their connectivity must be continuously
tracked, since it cannot be determined a priori [1].

While the literature provides a vast array of solutions to
guarantee data availability when using failure-prone machines
to store data [1], [2], we claim that online data backup
applications should instead target data durability. Moreover,
backup applications often involve the bulk transfer of a large
quantity of data. Therefore, such applications should aim for
throughput rather than aiming at low-latency read operations,
in addition to be resilient against peer churn and deaths.

Data durability can be achieved by injecting a sufficient
level of data redundancy in the system to make sure data
gets never lost, despite peer churn and peer deaths, which
cause the data redundancy level to drop. Hence, the focus of
our work is to design a redundancy management mechanism
that is tailored to the peculiar data access patterns of backup
applications and that strives for data durability.

Using erasure coding, a backup object of size o is encoded
in n fragments of a fixed size f which are ready to be placed
on remote peers. Any k out of n fragments are sufficient
to recover the original data; when using optimal erasure



2

coding techniques, k = �o/f�. The redundancy management
mechanism determines the redundancy level r = nf/o.

During the backup phase, data owners upload fragments
to some selected remote peers. The backup phase completes
when all n fragments are placed on remote peers.

Once the backup is completed, the maintenance phase
begins: should the redundancy level decrease in the system
due to peer deaths, it has to be reestablished by re-injecting
new fragments. The crux of data maintenance is to determine
when the redundancy is too low to allow data recovery and
to generate other fragments to rebalance it. In the event of
a peer death, the system may trigger the maintenance phase
immediately (eager repairs) or may wait for a number of
fragments to be tagged as lost before proceeding with the
repairs (lazy repairs) [1], [3], [4]. As such, it is important
to discern unambiguously permanent deaths from the normal
online behavior of peers: this is generally achieved by setting
a time-out value, Θ, for long-term peer unavailability.

As peers hold a local copy of their data, maintenance can
be executed solely by the data owner, or it can be delegated.
In both cases, it is important to consider the timeframe in
which data cannot be maintained. First, fragments may be lost
before a host failure is detected using the time-out mechanism
outlined above. This problem is exacerbated by the availability
pattern of the entity (data owner or other peers) in charge
of the maintenance operation: indeed, host failures cannot be
detected during the offline periods. Second, data loss can occur
during the restore process. For these reasons, in Sec. III, we
consider a redundancy management policy that ensures data
is not lost in the time-window w = Θ + aoff , where aoff is
the (largest) transient off-line period of the entity in charge
of data maintenance. For example, if the data owner executes
data maintenance: first, it needs to be on-line to generate new
fragments and upload them, and second, the timeout Θ has to
be expired. Additionally, our mechanism selects a redundancy
level such that data loss does not occur before the restore
process is completed.

In the unfortunate case of a disk or host crash, the restore
phase takes place. Data owners contact the remote machines
holding their fragments, download at least k of them, and
reconstruct the original backup data.

Before proceeding, we now define the performance metrics
we are interested in for this work. Overall, we compute the
performance of a P2P backup application in terms of the
amount of time required to complete the backup and the restore
phases, labelled time to backup (TTB) and time to restore
(TTR). Moreover, in the following sections, we use baseline
values for backup and restore operations which bound both
TTB and TTR. We compute such bounds as follows: let us
assume an ideal storage system with unlimited capacity and
uninterrupted online time that backs up user data. In this case,
TTB and TTR only depend on the size of a backup object
and on uplink bandwidth and availability of the data owner.
We label these ideal values minTTB and minTTR. Formally,
we have that a peer i with upload and download bandwidth
ui and di, starting the backup of an object of size o at time

t, completes its backup at time t�, after having spent o
ui

time
online. Analogously, i restores a backup object with the same
size at t�� after having spent o

di

time online. Hence, we have
that minTTB(i, t) = t� − t and minTTR(i, t) = t�� − t.

III. REDUNDANCY MANAGEMENT

Data can be considered as durable if the probability to lose
it, due to the permanent failure of hosts in the system, is
negligible. The problem of designing a system that guarantees
data durability can be approached under different angles.

As noted in previous works [5], [6], data availability implies
data durability: a system that injects sufficient redundancy for
data to be available at any time, coupled with maintenance
mechanisms, automatically achieves data durability. These
solutions are, however, too expensive in our scenario: the
amount of redundancy needed to guarantee availability is much
higher than what is needed to obtain durability.

Instead of using high redundancy, data durability can also
be achieved with efficient maintenance. For example, in a
datacenter, each host is continuously monitored: based on
statistics such as the mean time to failure of machines and
their components, it is possible to store data with very little
redundancy and rely on system monitoring to detect and react
immediately to host failures. Failed machines are replaced
and data is rapidly repaired due to the dedicated and over-
dimensioned nature of datacenter networks. Unfortunately, this
approach is not feasible in a P2P setting. First, the interplay
of transient and permanent failures makes failure detection a
difficult task. Since it is difficult to discern deaths from the
ordinary online behavior of peers, the detection of permanent
failures requires a delay during which data may be lost.
Furthermore, data maintenance is not immediate: in a P2P
application deployed on the Internet, bandwidth scarceness and
peer churn make the repair operation slow.

In summary: on the one hand durability could be achieved
with high data redundancy, but the cost in terms of resources
required by peers would be overwhelming. On the other hand,
with little redundancy, durability could be achieved with timely
detection of host failures and fast repairs, which are not
realistic in a P2P setting.

Our goal is to design a mechanism that achieves data
durability without requiring high redundancy or fast failure
detection and repair. Since data is written once, during backup,
and read (hopefully) rarely, during restores, we design a
mechanism that injects only the data redundancy level required
to compensate failure detection and data repair delays. That
is, we define data durability as follows.

Definition 1. Data durability d is the probability to be able
to access data after a time window t, during which no
maintenance operations can be executed.

Definition 2. The time window t is defined as t = w+TTR,
where w accounts for failure detection delays and TTR is the
time required to download a number of fragments sufficient to
recover the original data.



3

As discussed in Sec. II, w depends on whether the mainte-
nance is executed by the data owner or is delegated, and can
be thought of a parameter of our scheme.

A peer with n fragments on remote peers could lose its
data if more than n − k of them would get lost as well
within the time window t. Let the data redundancy required to
avoid this event be r = n/k. Now, let us assume peer deaths
to be memoryless events, with constant probability for any
peer and at any time. Then peer lifetimes are exponentially
distributed stochastic variables with a parametric average τ .
Hence, the probability for a peer to be alive after a time t is
e−t/τ . Assuming death events are independent, data durability
is d =

�n
i=k

�

n
i

� �

e−t/τ
�i �

1− e−t/τ
�n−i

.
The value of d depends on t which, in turn, is a function

of TTR. We thus propose to use the following heuristic to
estimate the TTR of a generic peer p0. In case of a crash, we
assume p0 to remain online during the whole restore process.
Therefore, assuming no network bottlenecks, p0’s TTR can be
either bounded by the download bandwidth D0 of peer p0,
or the upload rate of remote peers holding p0’s data. Let us
focus on the second case: we define the expected upload rate
µi of a generic remote peer pi holding a backup fragment of
p0 as the product of the availability of peer pi and its upload
bandwidth, that is µi = uiai.

Peer p0 needs to download at least k fragments to fully
recover a backup object. Let us assume these k fragments are
served by the k remote peers with the highest expected upload
rate µi. In this case, the “bottleneck” is the k-th peer with the
lowest expected upload rate µk. Then, an estimation of TTR,
that we label eTTR, can be obtained as follows:

eTTR = max

�

o

D0

,
o

kµk

�

. (1)

Our redundancy management scheme works as follows:
the redundancy level applied to backup data is computed
by the combination of d and eTTR. Let us assume, for the
sake of simplicity, the presence of a central coordinator that
performs membership management of the P2P network: the
coordinator keeps track of users subscribed to the application,
along with short-term measurements of their availability, their
(application-level) uplink capacity and the average death rate τ
in the system. While a decentralized approach to membership
management and system monitoring is an appealing research
subject, it is common practice (e.g., Wuala) to rely on a
centralized infrastructure and a simple heartbeat mechanism.

During a backup operation, peers query the coordinator to
obtain remote hosts that can be used to store fragments, along
with their availability. A peer constructs a backup object, and
subsequently uploads k fragments to distinct, randomly se-
lected available remote hosts. Then the peer continues to inject
redundancy in the system, by sending additional fragments
to randomly selected available peers, until a stop condition
is met. Every time new fragments are uploaded, the peer
computes d and eTTR: the stop condition is met if d ≥ σ1

and eTTR ≤ σ2. While selecting an appropriate σ1 is trivial,
in the following we define σ2 as σ2 = α · minTTR, where

α is a parameter that specifies the degradation of TTR with
respect to an ideal system, tolerated by users.

We now study the impact of the ratio w+eTTR
τ :

• τ � w + eTTR: this case is representative of a “ma-
ture” P2P application in which the dominant factor that
characterizes peer deaths are permanent host failures,
rather than users abandoning the system. Hence, e−t/τ

is close to 1, which implies that the target durability σ1

can be achieved with a small n. As such, the condition
on eTTR ≤ σ2 prevails on d ≥ σ1 in determining
the redundancy level to apply to backup data. This
means that the accuracy of the estimate eTTR plays an
important role in guaranteeing acceptable restore times;
instead, errors on eTTR have only slight impact on data
durability.

• τ ∼ w + eTTR: this case is representative of a P2P
application in the early stages of its deployment, where
the abandon rate of users is crucial in determining the
death rate. In this case, e−t/τ can be arbitrarily small,
which implies that n � k, i.e., the target durability
d requires higher data redundancy. In this case, the
condition d ≥ σ1 prevails on eTTR ≤ σ2. Hence,
estimation errors on the restore times may have an impact
on data durability: e.g., underestimating the TTR may
cause n to be too small to guarantee the target σ1.

IV. PERFORMANCE EVALUATION

We proceed with a trace-driven system simulation, and focus
on the performance metrics outlined in Sec. II. We perform
a comparative study of the results achieved by a system
using our redundancy management scheme and the traditional
approach used for storage applications. For the latter case, we
implement a technique in which the coding rate is set once and
for all, based on a system-wide average of host availability.

We use traces as input to our simulator that cover both
the online behavior of peers and their uplink and downlink
capacities. Instead, long-term failures and the events of peers
abandoning the applications, which constitute the peer deaths,
follow a simple model, driven by the parameter τ , as explained
in Sec. III. Due to the lack of traces that represent the realistic
“data production rate” of Internet users, in this simulation
study we confine our attention to a homogeneous setting: each
user has an individual backup object of the same size.

Availability traces: The online behavior of users, i.e.,
their patterns of connection and disconnection over time,
is difficult to capture analytically. We simulate a backup
application using a real application trace that exhibits both
heterogeneity and correlated user behavior. Our traces capture
user availability, in terms of login/logoff events, from an
instant messaging (IM) server for a duration of roughly 3
months. We argue that the behavior of regular IM users
constitutes a representative case study. Indeed, for both IM
and online backup, users are generally signed in for as long
as their machine is connected to the Internet.

We only consider users that are online for an average of at
least four hours per day, as done in Wuala. Once this filter



4

0 0.5 1
0

0.5

1

Fraction of time spent online

E
m

pi
ri

ca
l C

D
F

(a) CDF of host availability

10−2 100 102 1040

0.5

1

Time [hour]
E

m
pi

ri
ca

l C
D

F minTTB
minTTR

(b) CDF of minTTB and minTTR.

Fig. 1. Data resulting from the input traces. Note that users spending less
than 4 hours per day online are filtered out.

is applied, we obtain the trace of 376 users. Since in P2P
storage systems the number of neighbors each node interacts
with is very often limited by design and scalability issues [7],
we believe this trace size is acceptable. As shown in Fig. 1(a),
most users are online for less than 40% of the trace length,
while some of them are almost always connected.

Bandwidth distribution: Uplink capacities of peers are
obtained by sampling a real bandwidth distribution measured
at more than 300,000 unique Internet hosts for a 48 hour period
from roughly 3,500 distinct ASes across 160 countries [8].
These values have a highly skewed distribution, with a median
of 77 KBps and a mean of 428 KBps. To represent typical
asymmetric residential Internet lines, we assign to each peer
a downlink speed equal to four times its uplink.

Simulation Settings: The trace-driven online behavior of
a peer is overridden only during the restore phase: we make
the assumption that in such case, a peer remains online for the
whole duration of the restore process.

In our study, each peer has o = 10 GB of data to backup
(as soon as the simulation begins), and dedicates 50 GB of
storage space to the application. The high ratio between these
two values lets us disregard issues due to insufficient storage
capacity. The fragment size is set to 160 MB, implying a
minimum of k = 64 fragments needed for restores.

We define peers’ lifetimes to be exponentially dis-
tributed random variables with an expected value τ =
{90days, 1year, 4years} (see Sec. III). Besides peer deaths,
we study the impact of the parameter w, which contributes
to the length of the time-window for which our redundancy
management policy guarantees data durability, without main-
tenance (see Sec. III). As a reminder (see Sec. II), w accounts
for failure detection delays. In our experiments w takes values
from 0 to 4 weeks.

Our adaptive redundancy policy uses the following pa-
rameters: we set the thresholds σ1 = 0.9999, so that the
durability d ≥ σ1 and σ2 ≤ max (1 day, 2 ·minTTR) so
that eTTR ≤ σ2. We compare against a baseline redundancy
policy that aims to guarantee data availability [1], labeled here
as “availability-based”. We set a target data availability of
0.99, and use the system-wide average availability a = 0.36
as computed from our availability traces. We obtain a value
n = 228 and a redundancy rate r = 3.56.

For each set of parameters, the simulation results are ob-

tained by averaging ten simulation runs.
Results: Fig. 1(b) shows the cumulative distribution func-

tions (CDF) of minTTB and minTTR obtained using the input
traces discussed above. While backups generally take days to
complete, restores are around an order of magnitude faster, due
to asymmetric bandwidth and the fact that peers stay online
during restore operations.

We now compare our scheme to the traditional fixed-
redundancy scheme. First, we focus on the data redundancy
level (that is, the code rate r) imposed by each approach.
In Fig. 2(a), we show the average redundancy factor for our
mechanism and the one computed for the fixed availability-
based scheme, as a function of the parameter w and for
different values of τ . We omit error bars from the plot as the
variance around the mean is negligible. Clearly, for increasing
values of w the redundancy rate increases. Note that our
simulations account for a realistic bandwidth distribution and
for real on-line user behavior, which influence the eTTR com-
putation. When the dominant effect of non-transient failures is
the reliability of Internet hosts (i.e., τ is large), our mechanism
achieves data durability (and a controlled TTR) with a small
redundancy factor. Instead, when peer deaths are dominated by
peers abandoning the system (i.e., τ is small), our mechanism
compensates with a larger redundancy rate. In summary, our
scheme obtains a redundancy factor ranging roughly between
half and a third of the availability-based scheme, increasing
the storage capacity of the system by a corresponding factor
between two and three. Since the amount of data to upload in
case of a crash is proportional to redundancy, the impact of
maintenance on bandwidth decreases accordingly.

In addition to improving the aggregate storage capacity
of the system, our scheme impacts both backup and restore
operations. Fig. 2(b) and 2(c) report the CDF of the ratio
of TTB and TTR over their respective ideal counterparts,
minTTB and minTTR. These plots are obtained with different
values of w, for a fixed τ = 3 months, and illustrate the results
of our mechanism and the availability-based scheme. Fig. 2(b)
indicates that, due to a lower redundancy factor, the median of
the distribution of TTB is roughly reduced by a factor of four.
Moreover, increasing values of w have essentially little impact
on TTB. The price to pay for fast backup operations is shown
in Fig. 2(c): restore operations take more time to complete
w.r.t. a traditional approach to redundancy management. Here
the w parameter plays an important role: for small w values,
little redundancy is applied to backup data. As such, the
opportunity to retrieve enough encoded fragments to restore
data is largely affected by peer availability. Instead, when w is
large, restore operations are more efficient and less sensitive
to peer availability.

In summary, our results support the rationale underlying
the design of our redundancy management scheme: TTB is
generally several times larger than TTR, even in an ideal case
(as shown in Fig. 1(b)). Because of this unbalance, we argue
that it is reasonable to use a redundancy management scheme
that trades longer TTR (which affects only users that suffer a
crash) for shorter TTB (which affects all users).



5

0 1 2 3 4

1

1.5

2

2.5

3

3.5

w (weeks)

R
ed

un
da

nc
y

fa
ct

or
(r

) eTTR, τ = 3 months
eTTR, τ = 1 year
eTTR, τ = 4 years
availability-based

(a) Redundancy rate as a function of w.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

TTB

minTTB

C
D

F

eTTR,w = 0 weeks
eTTR, w = 1 weeks
eTTR, w = 2 weeks
eTTR, w = 3 weeks
availability-based

(b) CDF of TTB for τ = 3 months.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

TTR

minTTR

C
D

F

eTTR, w = 0 weeks
eTTR, w = 1 weeks
eTTR, w = 2 weeks
eTTR, w = 3 weeks
availability-based

(c) CDF of TTR for τ = 3 months.

Fig. 2. Experimental results.

TABLE I
CATEGORIZATION OF DATA LOSS EVENTS

Avg. lifetime Total Incomplete backup Failed
(τ ) events Total Unavoidable restore
3 months 13% 10.4% 8.4% 2.6%
1 year 2.6% 2.6% 2.3% None
4 years 0.5% 0.5% 0.25% None

The main reason for errors on eTTR are due to the fact that
the heuristic defined in Eq. 1 assumes k encoded fragments to
be downloaded from the k fastest peers that hold backup data.
In practice, however, the k encoded fragments are downloaded
from the peers that are available when a restore operation
is executed. Depending on the bandwidth distribution of the
peers in the system, such difference can cause the estimated
TTR value to be different from what achieved in practice.

Data loss can be caused by underestimating eTTR, when τ
is small and the redundancy rate is bound by the durability
estimation. In Table I, we illustrate the effects discussed by
quantifying data loss events for w = 2 weeks. Here we count
the percentage of peers that have not been able to restore their
data after a local disk crash, averaged over 10 simulation runs.
We break down the data loss cases between incomplete backup
and failed restore: the latter case encompasses all cases where
peers lose data after completing their backup. Furthermore,
we also specify the percentage of unavoidable cases in which
peers fail before minTTB: in this case, not even an ideal
system could guarantee a safe backup. Most data loss episodes
are simply due to node failure before the backup is completed;
this result confirms that it is sensible to optimize time to
backup by reducing redundancy and hence also network load.
In addition, it can be noted that a large majority of data loss
episodes are unavoidable with any online storage solution:
nodes with low bandwidth risk crashing before completing
uploads even if saving data to a reliable server. “Failed restore”
events – present only in unstable systems with low τ – are
imputable to the impact of estimation error on durability, as
discussed above. However, we remark that even in such a
situation this effect is outnumbered by the unavoidable data
loss episodes; this leads us to conclude that nodes with very
low lifetime are intrinsically unsuited to any kind of online

storage solution, and not only to P2P backup.

V. CONCLUSION

We focused on P2P backup systems, and designed a redun-
dancy management mechanism tailored to the specific data
access patterns that characterize data backup. The goal of our
mechanism was to achieve data durability without requiring
large redundancy factors nor fast failure detection mechanisms.

Our experiments showed that, in a realistic setting, a re-
dundancy that aims for data durability an be less than half
of what is needed to guarantee availability. This results in
a system where storage capacity is more than doubled, and
backups are much faster (up to a factor of 4) than on a system
using traditional redundancy management. This latter property
is particularly desirable since, in most of the cases, peers suf-
fering data loss were those that could not complete the backup
before crashing. The price to pay for efficient backup was a
decreased (but controlled) performance of restore operations.

Finally, we studied data loss events: our results indicated
that such events are practically negligible for a mature P2P
application in which permanent host failures dominate peer
deaths. We also showed the limitations of our technique for a
system characterized by a high application-level churn, which
is typical of new P2P applications that must conquer user trust.

REFERENCES

[1] R. Bhagwan, K. Tati, Y. chung Cheng, S. Savage, and G. M. Voelker,
“Total recall: System support for automated availability management,” in
USENIX NSDI, 2004.

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer, “FARSITE:
Federated, available, and reliable storage for an incompletely trusted
environment,” ACM SIGOPS Operating Systems Review, vol. 36, 2002.

[3] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” in IEEE INFOCOM,
2007.

[4] A. Duminuco and E. Biersack, “Hierarchical codes: How to make erasure
codes attractive for peer-to-peer storage systems,” in IEEE P2P, 2008.

[5] A. Duminuco, E. Biersack, and T. En-Najjary, “Proactive replication
in distributed storage systems using machine availability estimation,” in
ACM CoNEXT, 2007.

[6] L. Pamies-Juarez and P. Garcia-Lopez, “Maintaining data reliability
without availability in p2p storage systems,” in ACM SAC, 2010.

[7] L. Toka, M. Dell’Amico, and P. Michiardi, “Data transfer scheduling for
p2p storage,” in IEEE P2P, 2011.

[8] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bittorrent,” in USENIX NSDI,
2007.


