
Automatic Configuration of PVCs in
ATM Networks with Software Agents

M. Cheikhrouhou, P. Conti, J. Labetoulle
Corporate Communications Department
Address: Institut Eurécom, BP 193 – 06904 Sophia-Antipolis Cédex – France
fMorsy.Cheikhrouhou, Pierre.Conti, Jacques.Labetoulleg@eurecom.fr
Tel: +33 4 93 00 26 48

Abstract

This paper describes an agent-based approach to the automatic provision of Per-
manent Virtual Channels (PVC) in ATM networks. The agent framework described
fosters flexibility and seamless evolution by the definition of capability skills. Skills
are plugged into the agent’s brain which is responsible for the coordination of the
agent’s behavior. The application of this agent framework to the problem of PVC
configuration resulted in the definition of a set of skills, among which, only one skill
is device-dependent. Therefore, the implemented application can easily support new
types of ATM switches. Moreover, it is efficient in terms of performance and band-
width saving.

Keywords

Distributed Network Management, Intelligent Agents, ATM Management.

1. Introduction

Currently, there is no standard protocol to automate the provision of Permanent Virtual
Circuits (PVC) in ATM networks [1]. Moreover, each ATM vendor provides its own
interface to manage PVCs. This makes the task of PVC creation and management
particularly intricate in heterogeneous environments.

To the best of our knowledge, two other research projects tackled the problem
of PVC provisioning. The Utopia Project [2] provides a Web-based interface to the

1



management of ATM cross connects. However, at the time this paper was written, the
Utopia product did not offer a global view of end-to-end PVCs and only allowed to
configure PVCs switch by switch.

The second project is described in [1] where an approach based on the concept of
Mobile Agents (for example, see [3, 4, 5] for a description of the mobile agent concept)
is described and compared to other classical approaches in network management. The
implementation is experimented in a simulated testbed.

Alternatively, in our paper we present another approach based on the use of flexible
software agents. Software agents [6, 7, 8] represent a new rapidly evolving paradigm
for developing software applications [9]. There is little consensus on how an (a soft-
ware) agent could be defined [6] or how it is designed [7].

We consider the agent concept as a software entity that acts autonomously on be-
half of a user and capable of social communication with other agents. Within the DI-
ANA (Distributed Intelligent Agents for Network Administration) project 1, we are de-
veloping an agent framework for Network Management (NM). Our architecture aims
to foster agent flexibility and ease of development with a modular approach. The work
presented in this paper was achieved during a case study that was implemented to test
and improve the agent framework.

In the following section, we provide the reader with the necessary background in
ATM PVC management. The problem scenario that is to be implemented is described
in Section 3.. Section 4. describes the agent framework and its concepts. It also de-
scribes the steps to be followed to build an agent-based application. Section 5. presents
how the case study of PVC configuration is designed using our agent framework. Im-
plementation related results and result assessment is presented in section 6.. We show
how our solution is efficient for example in terms of management traffic which is kept
small. Also, our solution is easily portable towards new types of ATM fabrics. Finally,
we conclude the paper with remarks and future directions.

2. ATM Background

There are two main types of end-to-end circuits or VCCs (Vitual Channel Circuits) in
ATM networks: Switched Virtual Circuits and Permanent Virtual Channels. Switched
Virtual Channels (SVC) are established automatically using ATM signalling protocols
UNI and PNNI [10]; whereas Permanent Virtual Channels (PVC) are established by
the human operator on a switch-by-switch basis. PVCs can be useful in many cases.
For example, most of the existing ATM switches cannot offer SVCs with all the stan-
dardized traffic contracts (e.g. [11]). Currently, most of the ATM fabrics can only
support SVCs with either UBR or CBR traffic. Moreover, PVCs are permanent con-
nections. They can be established permanently between two end-hosts in order to have
at any time, QoS-guaranteed and immediately usable connection. PVCs are more ef-
ficient for connections between hosts that communicate frequently since there is no

1The work achieved in the DIANA project was financially supported by SwissCom.

2



waiting time due to the establishment of the connection using the ATM signalling pro-
tocol. Finally, an ATM equipment may not support a complete implementation of the
ATM signalling protocol. In fact, current implementations of signalling mechanisms
are not completely compatible between devices from different providers. Furthermore,
some ATM equipment providers implement proprietary signalling mechanisms such
as SPANS [12]. Therefore, SVCs cannot be established in a heterogeneous ATM net-
work. In this case, the only way to establish end-to-end connections is to use PVCs.

The establishment of a PVC is not a simple task. Firstly, a physical end-to-end
route between the source and the destination must be selected. The route is a non-
empty list of nodes. Each node is a triplet that identifies a switch and its selected input
port and output port that are going to be used. There might be several physical routes
and one of them must be chosen.

Once a route is identified, the next step will be to plan which Virtual Paths (VP)
are going to be used to contain the PVC. The simplest way is to use the permanently
established VP with identifier 0 (VP 0 for short). VP 0 is created and maintained on
each port of any ATM hardware as soon as it is switched on. However, VP 0 cannot be
used indefinitely since each VP has a limited capacity and can support only a limited
range of VCI (Virtual Channel Identifier) values.

Instead, the approach used by ATM operators generally consists in creating Virtual
Paths between each consecutive switches on the route. Though this shows to be far
from being an optimal solution in terms of the number of supported VCCs, it presents
the advantage of easily and quickly establishing PVCs.

The final step is to attribute VCIs on each switch and to create the VC route entry.
On each switch, a VCI is needed for the input port and another for the output port. The
output VCI of an intermediate switch must be the same as the input VCI of the next
switch. In the case where local VPs are created on each switch to transport the PVC,
the outgoing VPI of a switch must also be the same as the incoming VPI of the next
switch. If one of these constraints is not satisfied, then data transmitted on this PVC
will not reach its destination. These are the sources of difficult configuration errors
that are hard to diagnose.

But what actually hardens the task of PVC creation even more is the problem of
fabrics heterogeneity. Untill now, every ATM fabric provider elaborates its own man-
agement interface. In most of the cases, a telnet configuration and administration
interface is offered. Moreover, even when SNMP is supported as a management proto-
col on most of the ATM switches, each provider uses a different MIB than the others.
Therefore, the human network operator must know all these management interfaces to
be able to appropriately create an end-to-end PVC.

Finally, each end-to-end ATM connection have a Usage Parameter Control (UPC)
contract that specifies the characteristics of the traffic that is going to be transferred.
For the same PVC, each switch that conveys this PVC must be configured to the same
UPC traffic contract, i.e. using the same parameters. If a UPC parameter is wrongly
configured at any switch, then the whole traffic on the PVC could be affected. Again,
troubleshooting such abnormal behavior is particularly hard. At least, it requires to

3



check the UPC parameters on each switch that routes the PVC.
In summary, the establishment of a PVC between end systems needs to take into

account a lot of parameters and has to satisfy some constraints that are hard to check
especially in a heterogeneous environment. Therefore, a management application that
allows to automate the provision of PVCs can really help ATM network operators in
providing a more rapid service to their customers.

3. Problem Scenario

Let us suppose an ATM network operator is providing a Virtual Private Network (VPN)
for a customer enterprise. Two distant users in the enterprise may want to establish
a video-conference with high audio and video quality. In this case, a Constant Bit
Rate (CBR) traffic contract is required with a Peak Cell Rate of about 500Kbit/s, a
Cell Delay Variation Tolerance of 0.1ms and a maximum Cell Transfer Delay of 1
second [13]. If there are devices among the ATM equipment that do not support SVCs
with CBR traffic, then there will be no Quality of Service guarantee during the video-
conference. A possible alternative could be to establish two opposite PVCs with the
desired QoS that allow the two users’ hosts to communicate with a guaranteed QoS.

If no automatic PVC provision system is available, then one of the users should
contact the network operator (by phone for example). The latter then checks whether
it is possible to create the PVC, and later, contacts back the requester to inform him
that the PVC is now ready to be used. He also has to provide him with the VPI:VCI
values in order to configure the ATM software at his host in order to use the VCC with
those values. The whole process takes at least several minutes to be completed. It
could last even longer if there are more than one ATM network provider that have to
cooperate together to establish the PVC.

Now, suppose that the user has a special software, a kind of User Assistant Agent,
that automatically detects that he wants to use the video-conference software. The
User Agent obtains the destination address and determines which UPC best fits the
communication requirements. It then takes the initiative to contact another software
on the network operator side and to request the establishment of the PVC with the
other user equipment. In a matter of seconds, it shall receive an answer as to whether
the PVC could be created and in that case, it will be supplied with the VPI:VCI pa-
rameters. The user agent can then automatically setup the ATM software layer on the
user equipment and inform the user that he is ready to start his video-conference.

4. DIANA agent architecture

Our agent architecture aims at providing flexible and dynamic software agents. Agents
are wanted to be able to acquire new capabilities and skills seamlessly without inter-
rupting their operation. This is essential for network management purposes where
network elements may need to be upgraded frequently and therefore, the management

4



application needs to be easily adaptable. For these reasons, our agent architecture is
based on two major component types: the Brain and the skills. Skills provide the agent
with capabilities and behaviors, while the Brain is the “headmaster” that accepts and
manages agent skills.

4.1 The Agent’s Brain

The Brain (Figure 1) offers basic and innate facilities necessary for the agent operation.
These facilities are either local facilities, i.e. for the agent’s local operation; or inter-
agent facilities, i.e. responsible for communications and social interactions with the
other agents.

Database Manager

Skill Base
Manager

Knowledge

Communication 
Module (COM)Social Manager

Inter-agent Communication

Skill Management

Information Management

Brain

Analyzer

Capability Skill

Capability Skill

Capability Skill

Capability Skill

Information Information

Figure 1: DIANA agent architecture

Local Facilities

Locally, the Brain is responsible for maintaining the agent’s information database. The
information database holds network management information as well as information
about the other agents and about the agent itself. The agent’s information can be ac-
cessed concurrently during its operation. Therefore, the Brain includes an information
manager that ensures the coherent access to the information database and maintains
its integrity. The low-level term “information” is used purposely because there is no
commitment in our agent architecture to any particular structure of this information.

As a general rule, a skill that creates a certain information in the information
database is marked as the owner of this information. Whenever another skill tries
to update this information, the brain is reponsible for notifying the owner skill. In
this way, the owner skill is able to check whether the update is allowed or not, thus
ensuring the coherence of the information database.

5



The Brain is also responsible for the management of the agent’s skills. Skills can
be downloaded on-the-fly and integrated into the agent inside its skill base. If a loaded
skill is of no more use to the agent operation, it can be disposed off so that to keep the
agent as small as possible in size. Newly loaded skills may require pre-requisite skills,
and the Brain is responsible for checking whether or not these skills are available and
are already loaded into the agent. If a skill is necessary for another one, and is not
yet loaded, the Brain is responsible for searching for it either locally or via the help of
other agents.

When a skill becomes active, it makes use of the agent’s database by creating,
updating or deleting pieces of information. A skill operation may depend on the in-
formation maintained or generated by other skills, and the Brain is therefore in charge
of dispatching asynchronously this information and its updates to the interested skills
in a transparent way. These facilities are provided by the knowledge manager which
holds the necessary information about the skills in the skill base.

These three functions are governed by the brain analyzer which is responsible for
the parsing of the messages that the Brain receives, either from the skills or from the
inter-agent communication.

Inter-agent Facilities

The Brain offers also inter-agent communication facilities that allow skills from differ-
ent agents to interact in a transparent way. A communication module inside the agent
is responsible for sending to and receiving requests from the other agents. Another
module, the social manager, holds information about the other agents, such as the host
on which they run as well as its address. Therefore, skills only deal with the sym-
bolic names of the distant agents they want to interact with, and they are not aware of
distribution-related details in the agent system.

In our current implementation, the communication module can use HTTP, raw
TCP, UDP and SMTP to exchange messages between the agents. Future versions will
provide support to distributed computational environments such as CORBA and Java
RMI.

4.2 Skills

An agent skill is a piece of software specialized in a network management area and can
be plugged-in dynamically into the agent to enrich it with a new capability. It offers
new services and more elaborated pieces of information to other skills. For this, it may
use the information and the services offered by other skills that are supposed to operate
at a lower level.

The skill has an interface that communicates initialization information to the Brain.
This information declares, using a proprietary lisp-like language, the pre-requisite
skills it needs for its operation, the set of services it offers to higher-level skills. For
each service, the required type of information, the requested services from other skills

6



and the produced information are declared. During skill initialization, this informa-
tion allows the Brain to determine whether all the necessary pre-requisite skills are
available or not. During the skill operation, the Brain can determine which skill is
concerned by a service request and automatically forward it to that skill. Furthermore,
it is able to determine, according to which services are currently requested from that
skill, which information should be dispatched to the skill when this information is
created, updated or deleted.

Agent skills can be related in many possible ways according to the characteristics
of the management application to be developed. One possible way to organize skills
is to have an abstraction hierarchy in which the lower-level skills provide abstraction
means to higher-level skills. For example, a high-level skill can provide a uniform view
to access and manage any ATM switch. This skill will be based on low-level skills that
are dedicated to specific ATM switches. The low-level skill produces information
elements that are close to the proprietary information model provided by the switch’s
management interface. The brain is therefore responsible for notifying the high-level
skill of any change that occurs in the low-level skill. In this way, the high-level skill
is able to build its uniform view of the ATM switch and keep this view constantly
updated. Conversely, the higher-level skill can be asked by other skills to perform
management operation on an ATM switch. These management operations are therefore
translated into calls to the low-level skill. Interestingly, the low-level skill and the high-
level skill can be deployed on two separate agents in a transparent way. This is due to
the inter-agent facilities and to the transparent communication mechanism offered by
the brain.

4.3 Developing Agents

This section provides an overview of the agent development process suggested for our
skill-based agent architecture. Mainly, the process is divided in three phases: macro-
design, micro-design and agent deployment.

1. Macro-design

In this phase, the developer tries to identify the major agent roles needed for
the system to be developed. In general, agents are conceived as peer-to-peer
entities but with different roles: Each agent is specialized in some aspect of the
overall system. Let us insist on the fact that the roles of an agent can be changed
dynamically during their lifetime according to the skills that an agent has at a
moment.

Once the major roles are identified, the behavior of the agent system can be
described using interaction scenarios between the agents.

2. Micro-design

This phase is a refinement of the Macro-design. Its focus is on the skills that
implement the determined roles instead of on the agents themselves. A set of

7



skills must be designed to ensure each of the roles identified in the first phase.
The developer decides which lower-level skills are going to be used to build the
new ones upon.

A skill is specified when the pre-requisite skills, the services it requests from
them, the services it offers to the other skills and the information it uses are
known. This allows to refine the scenarios described in the first phase to go
down to the details of the interaction between the skills themselves.

3. Implementation and Deployment

The skills can be written without paying attention to distribution-related issues
(thanks to the Brain inter-agent facilities). The problem of agent attribution to
hosts can be handled just after the skills are ready. At this stage, parameters such
as CPU load balancing, response time and bandwidth usage can be optimized by
placing the agents appropriately throughout the network.

5. Agent Design for PVC Provision

In this section, we describe how our agent-based solution is designed. At a first stage,
we identify the different agent roles and address the distribution issues. Agent roles
describe the responsibility of each agent in terms of abstract high-level tasks. Dis-
tribution issues include agent location assignment and global agent communication
requirements. However, this is only a conceptual distribution and depends only on the
agent roles. It does not take into consideration the actual implementation of the ATM
network.

At a second stage, we focus on the micro-design for agents with the same roles.
This will identify the different skills needed for each agent to assume a particular role
and establish the interactions between the skills.

5.1 Macro Design

The problem scenario described in section 3. suggests that the user initiates a request
to establish an end-to-end PVC from his site to another remote site. Therefore, the
role of a User Agent (UA) is introduced. In a general view, the UA is in charge of
perceiving the user requirement for a connection to a remote site with a determined
Quality of Service. It may also capture the user constraints such as the price range
he prefers or imposes for the connection billing. The UA may then negotiate these
requirements with the ATM network provider.

The network operator is represented by a set of agents with a different role. The
agents on the ATM network side accept PVC requests from different UAs and do their
best to establish them. Obviously, the best place where these agents can be located
is directly on the ATM equipment (or at least as close as possible). This will reduce
network management traffic since PVC configuration operations require the exchange

8



of a lot of management messages with the ATM network equipment. Therefore, an
agent is affected to each ATM switch, and are thus called Switch Agents (SA).

When a switch agent receives a connection demand from a UA, it will be the re-
sponsible for the establishment of the corresponding PVC. Relatively to a particular
PVC request, we call such SA the Master Agent. Indeed, it will be up to it to globally
coordinate with the other SAs the action sequences that should be taken for the PVC
creation. These other SAs are then called Slave Agents. A Switch Agent may there-
fore have different roles according to whether it is the responsible for a PVC creation
or not.

5.2 Micro Design

The User Agent Skills

As we have previously seen in the description of its role, the UA behavior can be im-
plemented using two skills. The Contract Negotiation Skill is responsible for sending
PVC requests to the SA and negotiating the service contract as well as the price. The
User Interface Skill is responsible for capturing user requests for a connection estab-
lishment and to formulate them for the Contract Negotiation Skill.

The current implementation of this case study provides a simplified version of these
two skills. The User Interface Skill is only composed of a Graphical User Interface that
allows the user to specify the destination that he wishes to communicate with and the
desired QoS contract. This request is then forwarded to the Contract Negotiation Skill
which, in its turn, delegates the task of PVC establishment to the SA which manages
the ATM switch to which the user is connected.

The Switch Agent Skills

The switch agent role is ensured by four skills: the Switch Skill, the Slave Skill, the
Master Skill and the Topology Skill.

� The Switch Skill

A switch agent is responsible for PVC configuration operations of the switch
it is affected to. The Switch Skill is therefore designed to provide services to
create and delete VPs and VCs using the SNMP management protocol. There
is a switch skill for each different ATM equipment family. For example, the
current implementation runs on FORE ATM switches, and therefore, a FORE
ATM Switch Skill is developed. Actually, the switch skill is the unique part of
the whole system that should be adapted for each product family. However, this
should be a temporary situation untill standard ATM management MIBs (e.g.
[14]) are deployed in the future ATM devices.

In addition, the switch skill provides information related to the status of the
current VPs and PVCs existing on the ATM switch. This information is used by

9



the Slave Skill to decide on the local parameters for the establishment of a new
PVC.

� The Slave Skill

The Slave Skill is responsible for the local configuration operations that create
or delete a PVC fragment on the switch managed by the corresponding SA.
For example, it is up to the slave skill to decide whether to create a new local
VP in order to convey the PVC within, or to use an already existing VP with
sufficient bandwidth available. Also, it determines which VPI/VCI couples are
to be assigned to the newly created VPs and PVCs.

� The Master Skill

The Master Skill is responsible for the global supervision of the PVC estab-
lishment. Once a physical end-to-end route is found between the source and
destination end-systems, the master skill contacts the slave switch agents on that
route in order to ask them to perform the necessary operations to create the PVC.
It is also responsible for handling creation errors that might occur on switches.

� The Topology skill

Finally, the Topology Skill helps the master skill to identify a physical route
between the source and the destination. The physical route identifies which
switches must be traversed by the PVC. For each switch, it determines the input
and the output ports that shall be used.

Finding a physical route is of a minor concern for us since we are more con-
cerned with the PVC configuration than with the routing issues. Yet the topology
of the network is hard-coded inside the topology skill source, since the experi-
mental network on which we run the application is not large.

5.3 PVC Creation Steps

The creation of an end-to-end PVC requires three major steps that are coordinated
by the master skill. These steps are detailed in Figure 2 that shows the interactions
between all the skills of a user agent (on the left) and two switch agents (symobolically
identified by “baltazar” and “douchka”).

1. Finding a physical route. The master skill queries the topology skill for a phys-
ical route that links the source to the destination. The topology skills indicates
which are the set of switches to be traversed and which input and output ports
to be used on each switch on the route. The interaction between the master
and topology skills is performed through the second and the third messages in
Figure 2.

2. PVC reservation. In this phase, the master skill asks the slave skills on the
switch agents (including its own agent) to reserve the PVC (messages 4 and 5).

10



Master Skill Topology Skill Slave Skill Switch Skill
Switch Agent 1 (Baltazar)

Master Skill Topology Skill Slave Skill Switch Skill
Switch Agent 2 (Douchka)

Create PVC
Find Path

Suggested Path

Reserve PVC

PVC Reserved

Reserve PVC

PVC Reserved

Create PVC

Create PVC
Configure Incoming VP
Configure Outgoing VP

Configure Cross Connect

Config Ok

Configure Incoming VP

Configure Outgoing VP

Configure Cross Connect

Config Ok

Creation Ok

Creation Ok

PVC ready

1

10
11

14

15

16

2

3

4

6

5

7

8
9

12

13

User Agent

Skill
Contract Negotiation

PV
C

 C
re

at
io

n
PV

C
 R

es
er

va
tio

n
Fi

nd
in

g 
a 

ro
ut

e

Figure 2: PVC Creation Scenario

Each slave agent then determines whether it is possible or not to accept the PVC
(messages 6 and 7). If it can be accepted, then all the parameters (e.g. VC and
VP identifiers) of the PVC are determined at this phase.

3. PVC creation. If the SA that is responsible for the global creation of the PVC
receives positive acknowledgments from the other SAs, then the PVC can be
effectively created. Again, the master skill sends creation commitments to the
switch agents where the slave skills execute the commitment using the services
of the switch skill.

Finally, when all the creation positive acknowledgments are received, the master
skill can send back a message to the UA indicating that the PVC is now created
and can be used to communicate with the remote host.

6. Implementation Results

The agent system code is entirely written in Java. Therefore, it is completely portable,
and the agents actually can be run on Sun/Solaris machines as well as on PC/Windows
NT machines.

We have experimented the developed agent system on an experimental ATM net-
work. The experimental ATM equipment is composed of two FORE switches (FORE
Runner LE and FORE ASX 200 switches). The network scheme is represented in
Figure 3. We have attributed the switch agent Baltazar to the FORE Runner LE, and
switch agent Douchka to the FORE ASX 200. Actually, these two agents run on
proxy machines other than the ATM switches themselves. This is because the avail-

11



able switches do not support the Java Virtual Machine yet. In the near future, network
equipment will be Java-enabled and it will be possible to run agents directly on them.
Also, we have launched two user agents, Snoopy on host “lys” and Shiva on host “vi-
olette”.

Using the simple GUI that the UAs Snoopy and Shiva provide, we could establish
PVCs with determined traffic contracts between lys (resp. violette) and the other hosts.
The time taken for the total establishment of the PVC ranges in general between 1 and
3 seconds, and never exceeds 4 or 5 seconds. This response time should however be
even more interesting if the switch agents are run directly on the switches.

Lys

Agent "Snoopy"

Violette

Agent "Shiva"

FORE Runner LE FORE ASX 200

Agent "Douchka"
Agent "Baltazar"

Nelke

Giroflee

Figure 3: Experimental ATM network and Agent distribution

The experiment showed the gain we obtain on the cost of management traffic com-
pared to a centralized approach. If a centralized approach was used, all the SNMP
requests and responses would be transmitted on the network, between the manage-
ment station and the ATM switches. In our implementation, only high-level agent
communications are exchanged via the network. All the many SNMP primitives are
performed locally on the switch.

This makes our agent-based solution highly scalable. Since every switch is sup-
posed to run its own agent, there is no potential bottleneck for the processing capacity
as in centralized approaches. Also, there is no global central control of the agent
system. Therefore, the management traffic is also distributed throughout the ATM net-
work. Here also, there is no potential bottleneck like that in the centralized approach
were management traffic is high around the central management station.

The only part that is switch-dependent inside the agent is the switch skill. It offers
a common logical view to manage PVCs which is then translated to switch-specific
management operations. These operations can be carried out via any management
interface offered by the switch. In our case, we developed a unique switch skill for

12



both FORE switches. This skill uses SNMP to access FORE ATM MIB that allows to
create and delete PVCs.

All the other skills are independent from the ATM switch. This makes the appli-
cation easily portable and extensible to any new kind of ATM device. Moreover, the
agent is able to dynamically integrate new skills or new versions of skills seamlessly
during its operation. Therefore, the network operator need not stop the agent system
in the case of a management software upgrade in ATM switches.

Finally, our approach has an interesting property of graceful degradation. The
agent system can operate even though one of the switch agents crashes for some reason
or another. Obiously, no more PVCs can be established via the switch that has been
running the crashed switch agent; However, if another route avoiding that switch can
be found, the PVC still can be established.

7. Conclusion

The paper described an agent approach to implement a system for the automatic pro-
vision of PVCs in ATM networks. Our agent framework is based on two main com-
ponents: the agent’s brain and the skills. Skills can be dynamically integrated into
a running agent to provide it with new capabilities. They can be fetched on-demand
from any location in the agent system. Moreover, the whole agent framework is writ-
ten in Java. These features made our agents very flexible and easily deployable in
heterogeneous and dynamic environments.

The implementation of the PVC provision system lead to the definition of two main
agent roles: the User Agent and the Switch Agent. The User Agents are deployed on
the end-user machines, whereas the Switch Agents are deployed inside the switches
and ATM fabrics in the network. A few set of concise skills were enough to implement
both agent roles.

Using the implemented system, we could create and delete end-to-end PVCs easily,
by simply specifying the source, the destination and the traffic contract. The generated
configuration traffic is kept small in size since the switch agents perform management
operations directly on the switches. Only high-level agent communication is trans-
ported on the network.

Thanks to the modularity offered by the concept of skill, the application was easily
and dynamically portable to any new kind of ATM switches. Only one skill should be
tailored for this reason, while all the others are device-independent.

References

[1] Bernard Pagurek, Yanrong Li, Andrzej Bieszczad, and Gatot Susilo. Network
configuration management in heterogeneous ATM environments. In Sahin Al-
bayrak and Francisco J. Garijo, editors, Intelligent Agents for Telecommunication

13



Applications - IATA’98, number 1437 in Lecture Notes in Artificial Intelligence,
Paris, France, July 1998.

[2] Utopia user manual version 4.1. http://wwwsnmp.cs.utwente.nl/
nm/research/projects/utopia/release4.1/manual4.1.html, 1998.

[3] T. Magedanz, K. Rothermel, and S. Krause. Intelligent agents: An emerging
technology for next generation telecommunications? In INFOCOM’96, pages
464–472, USA, March 24-28 1996. IEEE.

[4] Mario Baldi and Gian Pietro Picco. Evaluating the tradeoffs of mobile code
design paradigms in network management applications. In R. Kemmerer and
K. Futatsugi, editors, 20th International Conference on Software Engineering
(ICSE’97), Kyoto (Japan), 1997.

[5] Mobile agent facility specification, June 1997. OMG TC Document cf/xx-x-xx.

[6] Hyacinth S. Nwana. Software agents: An overview. Knowledge En-
gineering Review, 11(3):205–244, October/November 1996. Available at
http://www.cs.umbc.edu/agents/introduction/ao/.

[7] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory and
Practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[8] Morsy Cheikhrouhou, Pierre Conti, Raúl Texeira Oliveria, and Jacques
Labetoulle. Intelligent agents in network management, a state of
the art. Networking and Information Systems, 1(1):9–38, 1998.
http://www.eurecom.fr/˜cheikhro/docs/StateOfTheArt.ps.gz.

[9] Nicholas R. Jennings and Michael J. Wooldridge. Agent Technology: Foun-
dations, Applications and Markets, chapter Applications of Intelligent Agents.
Springer-Verlag, February 1998.

[10] Uyless Black. Signaling in broadband networks, volume ATM: Volume II.
Prentice-Hall, 1998.

[11] ForeRunner ATM switch configuration manual
. http://www.fore.com/products/manuals.htm, March 1997.

[12] SPANS: Simple protocol for ATM network signaling.
http://www.mi.infn.it/INFN/atm/articles/spansfore.ps, 1998.

[13] Anthony Phlipponneau and Jean-François Milhomme. ATM to VPN perfor-
mance management. Second term project, Institut Eurécom, November 1997.
ACTS Project AC052: PROSPECT.

[14] M. Ahmed and K. Tesink. Definitions of managed objects for ATM
management version 8.0 using SMIv2. RFC1695, August 1994.
ftp://ftp.nus.sg/pub/docs/rfc/rfc1695.txt.

14


