MultimEDia transport for mobile Video Applications

Future Network Technologies Workshop
ETSI, Sophia Antipolis, 26th September 2011

Michelle Wetterwald¹, Telemaco Melia², Carlos J. Bernardos³
¹EURECOM, ²Alcatel Lucent, ³UC3M
Outline

• Why do we need MEDIEVAL?
• The MEDIEVAL project
• The MEDIEVAL architecture
• Contributions to standards
Why do we need MEDIEVAL?

- **Video** is a major **challenge** for the future Internet

 ![Graph showing petabytes per month for different types of traffic](image)

 VoIP traffic forecasted to be 0.4% of all mobile data traffic in 2015.
 Source: Cisco VNI Mobile, 2011

- **Current mobile Internet IS NOT designed for video**
 - Today’s architectures are very inefficient when handling video
 - Future Internet architecture should be tailored to efficiently support the requirements of this type of traffic
 - Specific **enhancements for video** should be introduced **at all layers** of the protocol stack where needed

September 26, 2011
Future Network Technologies Workshop
• evolutionary path for a truly video-for-all philosophy
The MEDIEVAL project

• MEDIEVAL is an **operator-driven** project specifying and demonstrating a **mobile video** architecture with **cross-layer** mechanisms to provide high quality of experience to users.
MEDIEVAL project details

• Project Coordinator
 – Dr. Telemaco Melia
 – Alcatel-Lucent Bell Labs France
 – Email: telemaco.melia@alcatel-lucent.com

• Project website: http://www.ict-medieval.eu/

• 9 partners from 6 different countries

• Duration: July 2010 – June 2013

• Funding scheme: STREP

• Total Cost: €5,369,788m

• EC Contribution: €3,470,885m

• Contract Number: INFSO-ICT-258053
Video Services

- Personal Broadcast
 - Each user (organization, private individual) can generate content
 - In general, relies on broadcast or multicast

- Mobile TV
 - Evolution of traditional TV to handhelds

- Video on Demand
 - The user selects a video and has it sent to his device

- Interactive Video
 - Interactive video chatting, integrates other media
MEDIEVAL Architecture

• Medieval architecture is divided into 4 subsystems
 – Video Service Control (WP2)
 • Links the applications and services to the underlying network delivery entities
 – Transport Optimization (WP5)
 • Provides optimized video traffic in the mobile operator's core network
 – Mobility Management (WP4)
 • Evolves today's mobile Internet architecture to more efficiently support growth of video services, based on flow mobility and DMM
 – Wireless Access (WP3)
 • Provides enhanced video delivery in the last (wireless) hop, mainly focusing on novel access techniques and technology abstraction

• Strong level of cross-layer interactions between the subsystems

September 26, 2011 Future Network Technologies Workshop
Physical View

LEGENDA

MAR: Mobility Access Router
PoA: Point of Access
MN: Mobile Node
ALTO: Application Layer Transport Optimization
LTE: Long Term Evolution
WLAN: Wireless LAN
mMAR: mobile MAR
CDN: Content Distribution Network
• Linked with WP3 and WP4
• 802.11aa Robust streaming of Audio Video Transport Streams
 – 802.11 Video Streams transport
 – assessment of draft standard (Groupcast)
• 802.21 Media Independent Handover Services
 – Video Support in heterogeneous networks
 – Already submitted 7 contributions
 – Contributions show the new concepts regarding mobility, configuration of interfaces and new video related extensions developed within MEDIEVAL
Contributions to standards - IETF

- Linked with WP4 and WP5
- Already submitted 16 contributions
- NETEXT
 - PMIPv6 extensions, including Logical Interface concept and flow base mobility (WG documents)
- MEXT
 - Distributed Mobility Management
- MultiMob
 - Multicast Mobility, including source Mobility
- ALTO
 - Mobile Content distribution network (new extensions to mobile Core)

September 26, 2011
Future Network Technologies Workshop
Contributions to standards - 3GPP

- Linked with WP5 (and other technical work packages)
- 3GPP SA2
 - Extending the mobile traffic management framework with application awareness (video) and congestion handling (→ SAPP, TDF, UPCON,...)
 - QoE-based traffic management concept
 - User plane traffic management targeting network congestion handling
 - Ongoing work for Rel. 11 and beyond
 - Discussion paper submitted to SA2#86 supporting UPCON SID
- 3GPP SA1 (other SDO?)
 - Splitting and merging IP video flows to increase the allocated bandwidth
 - Tight relation between Content adaptation and network events such as mobility and resource change
Conclusion

• MEDIEVAL aims at improving video traffic distribution over the Future Internet
• Results from research is pushed to standards
• MEDIEVAL consortium is active in several SDOs (IEEE, IETF, 3GPP)
• Concrete impacts on industrial and operator partners
 – workshops and demos
 – future product development
Thank you for your attention

http://www.ict-medieval.eu/
michelle.wetterwald@eurecom.fr
telemaco.melia@ALCATEL-LUCENT.COM

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-ICT-2009-5) under grant agreement n. 258053 (MEDIEVAL project).