
SMART: Secure and Minimal Architecture for
(Establishing a Dynamic) Root of Trust

Karim El Defrawy
UC Irvine

keldefra@uci.edu

Aurélien Francillon
Institute EURECOM
francill@eurecom.fr

Daniele Perito
INRIA

perito@inrialpes.fr

Gene Tsudik
UC Irvine

gene.tsudik@uci.edu

Abstract

Remote attestation is the process of securely veri-
fying internal state of a remote hardware platform. It
can be achieved either statically (at boot time) or dy-
namically, at run-time in order to establish a dynamic
root of trust. The latter allows full isolation of a code
region from preexisting software (including the oper-
ating system) and guarantees untampered execution of
this code. Despite the untrusted state of the overall
platform, a dynamic root of trust facilitates execution
of critical code. Prior software-based techniques lack
concrete security guarantees, while hardware-based
approaches involve security co-processors that are too
costly for low-end embedded devices.

In this paper, we develop a new primitive (called
SMART) based on hardware-software co-design.
SMART is a simple, efficient and secure approach
for establishing a dynamic root of trust in a re-
mote embedded device. We focus on low-end micro-
controller units (MCU) that lack specialized memory
management or protection features. SMART requires
minimal changes to existing MCUs (while providing
concrete security guarantees) and assumes few restric-
tions on adversarial capabilities. We demonstrate both
practicality and feasibility of SMART by implementing
it – via hardware modifications – on two common
MCU platforms: AVR and MSP430. Results show that
SMART implementations require only a few changes
to memory bus access logic. We also synthesize both
implementations to an 180nm ASIC process to confirm
its small impact on MCU size and overall cost.

1. Introduction

Verifying internal state of a remote embedded device
is an important task in many scenarios and applica-
tion settings, e.g., smart meters, implantable medical

devices (IMDs) and actuators in industrial control
systems that perform critical functions and operate
unattended for long periods of time. In addition,
increasing adoption of wireless networking prompts
concerns about remote exploits of such devices. The
recent Stuxnet worm [15] demonstrated the magnitude
of damage from attacks on embedded devices. Stuxnet
infected Programmable Logic Controllers (PLC) used
in industrial control systems and caused considerable
physical damage by modifying their control software.
Embedded devices are also sometimes placed in phys-
ically inaccessible locations, e.g., IMDs, military or
industrial sensors and actuators. In such settings, it is
hard to physically connect to an external interface to
verify the state of a target device.

The discussion above motivates the need for at-
testation techniques to detect, and possibly disable,
malicious code prior to performing critical operations.
Current attestation methods fall somewhat short of
meeting requirements for a wide range of embedded
devices. They generally fall into two extremes on
the design spectrum: hardware- and software-based
techniques. The former rely on specialized hardware
(e.g., a TPM [6]) or on the availability of special
CPU instructions [24] to perform attestation, either
statically (at boot time) or dynamically, during normal
run-time operation. These techniques have attracted a
lot of attention from both the research community and
industry. They are best-suited for higher-end devices,
such as laptops and smart-phones. Experimental de-
vices that include a full TPM as a separate chip have
been constructed [23]. However, this approach cannot
provide a dynamic root of trust and is expensive 1 for
low-end devices.

Several software-based attestation methods have
been proposed for commodity [37] and embedded

1. The cost of a TPM chip is close to that of a low-end MCU.

devices [38], [36], [25], [35], [47]. However, they
generally offer uncertain security guarantees [41] and
some have been subject to attacks [8]. Furthermore, all
current software-based techniques involve restrictive
assumptions on adversarial capabilities that make them
unsuitable for many realistic applications. In particular,
they typically assume “adversarial silence”, meaning
that, during each attestation process, only the intended
prover (device being attested) is communicating with
the verifier (entity that performs attestation). In other
words, even though the prover might have malware
installed, it is not aided – or impersonated – by any
external party during attestation. The same assumption
is sometimes referred to as “no collusion”. Any attes-
tation technique that makes this assumption is limited
to close-range (one-hop) communication between the
prover and the verifier and its security often relies on
strict round-trip time measurements. It is easy to see
that the adversarial silence assumption is necessary as
long as no secret information can be maintained on the
prover. Maintaining secrets, however, requires secure
storage, which, in turn, prompts the need for hardware
support.

Software-based attestation also assumes that the
adversary impersonating (or colluding with) the prover
must use the same hardware as the genuine prover.
While this assumption might hold in a few specific
settings, it is unrealistic for many applications.

Finally, there are some proprietary techniques for
embedded processors currently on the market. For
example, ARM TrustZone [3] provides an additional
– secure – processor mode of execution. It includes a
new set of shadow registers, a few KBytes of on-chip
SRAM 2, and allows controlling access to peripherals
by the operating system. Though TrustZone inherently
relies on secure boot, it can be used to provide a
dynamic root of trust [26], [12]. However, it targets
more powerful devices than those considered in this
paper3.

The problem with the static root of trust is that,
in general, it does not offer any guarantees about the
current state of a device, since adversarial exploits
can occur post-boot. Even worse, a static root of trust
(e.g., TPM v1.1 or Secure Boot) is unsuitable for
detecting a powerful attack class based on Return-

2. In contrast with our target MCUs, most devices with TrustZone
do not all include RAM and Flash on chip.

3. TrustZone is available on the high-end ARM processors
(ARM11 and Cortex-AX series). However, to the best of our knowl-
edge, it is unavailable for low-end ARM devices that correspond to
MCU-s we focus on, e.g., ARM Cortex-M1. Low-end ARM cores
with security extensions are known as SecureCore. However, no
detailed information is publicly available about them [4].

Oriented Programming (ROP) [39]. ROP allows execu-
tion of an arbitrary return-oriented program by merely
manipulating the return addresses on the stack, i.e.,
without changing code. In order to detect such attacks,
techniques that do not rely on the code isolation
provided by a dynamic root of trust have to check
areas of memory that are highly volatile, e.g., stack
and heap.

1.1. Roadmap

In this paper, we stay clear of both efficient-but-
limited software-based techniques and heavy-weight
TPM-based approaches to attestation. We focus on the
design space area that has not been previously explored
by utilizing a software/hardware co-design approach
to architect an attestation mechanism with minimal
hardware requirements.

Our main design guideline is to carefully justify each
component necessary to achieve secure establishment
of a dynamic root of trust in a remote embedded de-
vice. Following this guideline leads us to an approach –
called: SMART: Secure and Minimal Architecture for
(Establishing a Dynamic) Root of Trust – that entails
minimal hardware modifications to current embedded
MCU-s. To the best of our knowledge, this represents
the first minimal hardware solution for establishing a
dynamic root of trust in low-end embedded devices.
We implemented it on two widely available low-cost
MCU platforms: Atmel AVR and Texas Instruments
MSP430, by modifying open-source implementations
of these MCU-s in VHDL and Verilog. (Both obtained
from the OpenCores Project [31]).
Organization: Section 2 discusses our goals and build-
ing blocks. Then, Section 3 presents SMART details
and features. Security issues are addressed in Section
4. Next, Section 5 presents several concrete protocols
utilizing SMART as a primitive. Implementation de-
tails are discussed in Section 6 and related work in
Section 7.

2. Goals and Design Elements

The main result of this paper is the development of
a new primitive called: SMART: Secure and Minimal
Architecture for (Establishing a Dynamic) Root of
Trust. SMART is executed by the prover, PRV , and,
in doing so, attests a region of code and jumps to
it. A proof of execution is computed and sent to
the verifier, VRF . SMART guarantees that attested
code is executed even if the entire prover system is

compromised (except SMART ROM code). In the rest
of this section, we describe our security objectives,
adversarial assumptions and SMART’s main building
blocks.

2.1. Security Objectives

SMART has three security objectives based upon
successful completion of the attestation protocol:

• Prover Authentication: VRF obtains entity au-
thentication of PRV .

• External Verification: VRF is assured that mem-
ory segment [a, b] on PRV contains the expected
content.

• Guaranteed Execution: VRF is assured that code
at location x was executed by PRV .

2.2. Adversarial Assumptions

We assume that the adversary, ADV , has complete
control over the software state, code and data of PRV
before and after SMART execution. In particular,
ADV can modify any writable code on PRV and
learn any secret that is not explicitly protected by
the MCU on PRV . Furthermore, ADV has complete
control over the communication channel and – during
the protocol – can use multiple colluding devices in
order to pass or subvert attestation.

We also assume that ADV does not perform hard-
ware attacks on PRV . Specifically, it does not alter
code stored in ROM, induce hardware faults or retrieve
K using external side-channels. Likewise, ADV has no
means of interrupting execution of ROM-resident code
on PRV .

Protection against hardware-based attacks could be
added by encasing the MCU in tamper-resistant coat-
ing and employing standard techniques to prevent side-
channel key leakage. Since our approach is confined
to the MCU, employing such techniques is quite natu-
ral. Furthermore, hardware attacks could be mitigated
using well-known tamper-resistance techniques, such
as anomaly detection, internal power regulators and
additional metal layers or meshes for tamper detection.

Some processor peripherals might be capable of
modifying memory without interaction with the MCU
core, e.g., a DMA engine. We assume that such pe-
ripherals can be disabled during SMART execution.

Finally, we assume that PRV and VRF share a
secret key K. This key can be pre-loaded onto PRV at
production time or later. We do not address the details
of this procedure.

2.3. Building Blocks

Our design relies on four main components that
reside on PRV:

• Attestation Read-Only Memory: Memory region
in ROM inside the MCU. The key K can only be
accessed from this region.

• Secure Key Storage: Memory region inside the
CPU; it can be accessed only from SMART code
in ROM.

• MCU Access Controls: Controls access to K and
prevents non-SMART code from accessing it.

• Reset and Memory Erasure: If any error is re-
ported by the above components, a hardware reset
of the MCU is performed. Upon reset, hardware
enforces a memory cleanup.

We argue that these four components are both neces-
sary and sufficient for building a dynamic root of trust
in a low-end embedded system. We detail their purpose
in the next section.

2.4. SMART Overview

As discussed above, the central goal of SMART
is guaranteed execution of a piece of code on the
prover (PRV) to an external verifier (VRF), even
when the prover is fully compromised. SMART relies
on a challenge-based protocol – initiated by VRF –
that leverages special hardware features of PRV . At
the start of SMART (Figure 1), VRF sends several
parameters to PRV: attestation region boundaries a
and b; address x where PRV optionally passes control
after attestation if xflag is set; and nonce n to prevent
replay attacks. A ROM-resident code segment on PRV
computes a cryptographic checksum C of a region
[a, b] in PRV’s memory (using nonce n) and then
passes control to x. After execution of code starting
at x, PRV returns C to VRF . The latter verifies
correctness of C by re-computing it using the same
parameters and K. We refer to ROM-resident code as
RC and code optionally executed thereafter – as HC.
The sequence of operations of SMART is shown in
Figure 1 and the corresponding pseudo-code of RC is
illustrated in Algorithm 1.

We note that a non-keyed function, such as a crypto-
graphic hash (e.g., SHA-256), is unsuitable for attes-
tation. This is because, without a secret key, anyone
can compute a hash of any input and fake a reply
by PRV . In particular, malware that infected PRV
can do so. Therefore, our cryptographic checksum is
implemented as HMAC keyed with K that resides

Verifier VRF
Generates nonce n

if C is correct then
 Accept
else
 Reject

Prover PRV

C = SMART(n, a, b, x, xflag , −, −)
if xflag == True then
 Exec(x)

(n, a, b, x, x
flag)

C

Figure 1: Overview of Protocol Using SMART.

Program Memory Address Space Data Memory Address Space

RC: SMART ROM Code

K: Protected KEY

User's Application Code Registers/IO

Application Data
Memory

HC: Code to Attest

Stack Area

Data read / write
Control flow

HMAC Result
1 2

2

3

4

C is executed (optional) 4

1 User application starts SMART

Code attestation is performed
using the protected key

2

HMAC result is written to global
memory, at a predefined location

3

a=x

b

Figure 2: SMART Operation Overview.

in secure storage on PRV’s MCU 4. Usage of, and
access to, K is restricted by the MCU such that only
(trusted and immutable) RC is allowed to use it. For
its part, RC only uses K to compute HMAC and then
passes control to HC. RC is instrumented using both
static and dynamic analysis tools to prevent accidental
leakage of K.

In addition, when xflag is set, interrupts remain
disabled after execution of RC. This is to ensure
that HC is subsequently executed, and to prevent
Time-of-check-to-time-of-use (TOCTTOU) attacks. A
TOCTTOU attack could entail installing a malicious
interrupt handler and scheduling an interrupt (e.g., a
timer) to occur during the first instructions of HC.

4. If minimality was not a primary goal, public key cryptography
could be used to improve key management.

Such an interrupt handler could allow reading or
writing memory between executions of RC and HC.
Furthermore, hardware modifications to the MCU are
added to avoid code reuse attacks.

3. SMART in Detail

This section describes, in detail, features and com-
ponents of SMART.

3.1. Attestation ROM

ROM is a standard feature in many commodity
MCUs. Generally, it incurs very little overhead in
the design and construction of the MCU, since it
constitutes a cheap form of storage. Typically, ROM
is hardwired during manufacturing, rendering it im-
mutable. What makes our attestation ROM special is
its exclusive hardware-enforced ability to access K.
ROM Code. RC must guarantee the following prop-
erties:

1) Key Isolation: K must not be leaked from ROM.
2) Memory Safety: Software bugs should not allow

temporary memory exposure or K leakage.
3) Atomic Execution: ROM code must be executed

atomically and cannot be invoked partially.
Property (3) is guaranteed by the MCU, as discussed
in Section 3.3 below. Properties (1) and (2) are guaran-
teed by using two code instrumentation tools: CQUAL
[19] and Deputy [11].

As shown in Algorithm 1, SMART computes an
HMAC of a particular memory segment and then
jumps – without being interrupted – to a verifier-
specified address within that segment. The implemen-
tation consists of approximately 500 lines of C code,
which makes checking its correctness both feasible and
relatively easy.

Algorithm 1: SMART code in ROM.
input : a, b start/end addresses for attestation

x address to jump to after attestation
xflag jump or not?
n nonce sent by verifier
out output address where to store

checksum
in (optional) input parameter

output: HMAC output
begin

/* Disable interrupts during SMART code
execution */
DisableIRQ();
/* Attestation key K is unlocked
automatically by the MCU */
InitHmac(K);
/* Attest all parameters */
HmacProcess(a||b||x||xflag||n||in||out);
/* Attest memory region [a, b] */
for i ∈ [a, b] do

HmacProcess(Mem[i]);
end
C ←− FinishHmac();
/* Store HMAC result in global variable */
Copy(∗out, C);
/* Erase temporary variables */
ResetMemory();
if xflag = True then

/* If execute flag set, exec function at
address x */
Call(x, in);

else
/* Restore interrupts status as before
SMART exec*/
RestoreIRQ();

end
end

Key Secrecy. Upon termination, SMART passes con-
trol to the untrusted portion of PRV , where malicious
code can sift through memory and search for traces
of K or intermediate states used in HMAC compu-
tation. This could lead to disclosure of K. For this
reason, we instrumented SMART code with CQUAL
– a tool that detects information leakage in C pro-
grams. Specifically, K is marked with a SECRET type.
CQUAL propagates this type to each variable that is
computed with any involvement of any other variable
of type SECRET. Each function is equipped with a
check for leakage of any SECRET variable. CQUAL

instrumentation is performed off-line; it does not incur
any overhead during operation of SMART. The end-
result is simple: each variable marked SECRET by
CQUAL is zeroed out at the end of each function.
The only variables not erased are the outputs of each
function. Also, the memory location of K is no longer
accessible upon completion of SMART.
Memory Safety. Key isolation alone does not prevent
key leakage, since our code could contain vulner-
abilities that allow ADV to retrieve K by running
SMART on malicious (or malformed) inputs. Fortu-
nately, SMART involves only around 500 lines of
code. This relatively small size allows manual inspec-
tion for memory corruption bugs. We also enhance
manual inspection using Deputy – a C compiler
based on GCC, that provides an annotation language
for describing memory boundaries in C. For example,
a C array can be augmented with information about
its size. The compiler adds instructions to check all
memory accesses to the array and detects memory
corruptions. Once SMART code is reinforced with
Deputy, whenever a memory corruption is detected, a
special reset is performed by Deputy instrumentation
code. As for other error conditions that could cause a
reset, we deal with them by making sure that, at each
reset, all memory (stack, heap, and registers) is erased.

Furthermore, the stack and out pointers might be
controlled by ADV when SMART code is called.
If invalid values are provided 5, memory corruption
may occur during SMART execution. This could be
exploited by ADV to abuse SMART, e.g., recover bits
of K or skip execution of important code. Therefore,
both stack pointer and out pointers are checked at the
beginning of SMART code.
Side-Channels. Another avenue for ADV to extract
K is via side-channel attacks. Since hardware side-
channels are out of scope of this work, we focus on
software side-channels, i.e., malware on PRV trying
to learn K by observing SMART execution. Low-
end MCUs (such as MSP430 or AVR) do not have
caches that could be used for timing attacks based
on hits and misses. Also, differences in execution
time due to bus contention are data-independent and
cannot leak K 6. Finally, a software-only timing side-
channel attack against HMAC-SHA used in SMART

5. For example, a stack pointer that points to an invalid memory
region, such as I/O register space. Or, the out pointer pointing to
the stack itself, leading to corruption of the stack region used by
SMART when the HMAC result is written to it.

6. There is no bus contention on AVR due to its Harvard architec-
ture. On MSP430, we manually verified rare cases of bus contention.
On other processors, wait cycles can be added to address this issue
(only needed when executing SMART code).

is not viable. Code used for HMAC computation does
not have conditional branching instructions, resulting
in constant execution time. Moreover, to the best of
our knowledge, no timing attacks have been reported
against HMAC-SHA.

3.2. Secure Key Storage

The next question is where to store K used for
computing HMAC. Clearly, it cannot be stored in
normal memory, since malware could easily access
it and pass attestation. We use a special hardware-
controlled memory location to house a single symmet-
ric key, K. This storage must be immune to software
attacks. Recall that hardware attacks are out of scope of
this work. We also note that hardware attacks require
direct physical access or at least very close physical
proximity to the target device. This is improbable
in many access-restricted settings, e.g., manufacturing
plants, utility stations, fabrication labs or implantable
medical devices (IMDs).

Although details of K initialization are not discussed
in this paper, there are at least two viable approaches.
In the first, K is hard-coded at production time and
never changed again, i.e., in addition to be being
access-restricted, K storage location is read-only. Al-
ternatively, there could be a secure means of modifying,
but not reading, K by an authorized party (e.g., the
verifier) that would rely on a special authenticated
channel.7

3.3. MCU Access Controls

Simplicity and minimal cost are some of the primary
objectives of SMART. Hardware modifications are
limited to memory access checking and availability of
ROM. We now describe the hardware modifications
necessary to enforce key protection and to restrict
execution of RC.
Key Access Controls. To enforce K secrecy we need
to ensure that it can be accessed only when the program
counter (PC) is in the RC memory region. One simple
method to enforce this is to connect the data bus to K
memory when the program counter is in ROM range
and the data address is pointing to K address range.
The internal reset signal is triggered if K memory is
accessed while the program counter is not in ROM
range. Figure 3 shows how access to K is controlled
in the MCU.

7. This topic is deferred to future work.

ROM Execution Control. Since RC is authorized to
access K, its usage must be controlled to prevent re-
covery by malware. For example, ADV can attempt to
selectively execute portions of RC by using code reuse
techniques (e.g., return to libc [42], borrowed code
chunks [27] or Return-Oriented Programming [39], [7],
[9]). To prevent such attacks, we provide additional
access controls upon RC entry and exit. The program
counter is only allowed to move into ROM starting at
SMART initial address. Similarly, the program counter
can leave ROM only from the last SMART address.
These controls ensure that RC cannot be invoked
partially: once any attempt to do otherwise is detected,
the MCU is immediately reset. This necessitates for
RC to be compiled such that any valid termination of
SMART execution is ended by a return from the its
last instruction address.

3.4. Cleaning Memory on Reset

When an invalid operation takes place, such as an
attempt to violate SMART memory access controls, a
hardware exception occurs, leading to an immediate
MCU reset. However, if SMART code does not termi-
nate properly, it cannot clean up its working memory
and keying material could remain in memory after
reset. (The situation is similar if a power loss occurs.)
This technique was used in several attacks on MCUs
to recover keying material or store information across
resets [20], [21]. Therefore, it is mandatory to perform
memory cleanup upon each reset. In SMART, memory
cleanup is performed by processor logic triggered upon
every boot or reset.

We note that the aforementioned phenomenon is
similar to cold boot attacks [22] whereby a computer is
stopped during execution and its memory is removed
in order to recover keying material. However, since
a typical MCU features processor and memory in a
single “package”, the latter cannot be accessed directly.
If debugging interfaces are permanently deactivated
and memory is freed upon each reset, only hardware
attacks (that are out of scope of SMART) would allow
recovery of parts of memory.

4. Security Analysis

Our present security argument is informal. A more
substantial argument (or a proof) would require formal
analysis and verification of SMART code, which is
planned as part of future work. The security argument
is based on the following assertions:

GT

LT

A[15:0]

B[15:0]

C O M P M 1 6

GT

LT

A[15:0]

B[15:0]

C O M P M 1 6

PC

GT

LT

A[15:0]

B[15:0]

C O M P M 1 6

GT

LT

A[15:0]

B[15:0]

C O M P M 1 6

DATA_ADDR_BUS

KEY_LOW

ROM_MAX

KEY_HIGH

ROM_MIN

AND3

Internal_reset

OR2

AND4

SRAM_BUS

M U X F 8
I0

I1

S

O DATA_BUS

KEY_MEM_BUS

Figure 3: Schematic view of access control for attestation key.

A1 Cryptographic checksum C computed by PRV
cannot be forged. Since C is a result of secure
HMAC function (e.g., HMAC-SHA) we assume
that, for any ADV – external to PRV – that ob-
serves a polynomial number of such checksums,
finding HMAC collisions and/or learning bits of
the attestation key is infeasible.

A2 Physical and hardware-based attacks on PRV are
beyond ADV’s capabilities.

A3 Attestation key K can be accessed only from
within ROM-resident SMART code. This is guar-
anteed by MCU-based access controls.

A4 SMART code cannot be modified since it resides
in ROM.

A5 SMART code can be only invoked at its be-
ginning. The hardware checks that, except for
the very first instruction in RC, if the program
counter is inRC range, then the previous executed
instruction must also be in ROM.

A6 RC execution can only terminate at the very last
instruction address in RC. The hardware checks
that, except for the very last instruction in RC,
if the program counter is not in RC range, then
the previous instructions must also be outside RC
range.

A7 Upon each invocation of SMART, all interrupts

are disabled 8 and remain so if, upon completion
of SMART, control is passed to HC.

A8 K cannot be extracted by any software-based
ADV internal to PRV . Upon completion of
SMART execution, K is no longer accessible.
Also, all memory used by SMART code is se-
curely erased. The only value based (statistically
dependent) on K is the output C.

A9 For each invocation, SMART computes C based
on the contents of the requested memory segment
[a, b]. Although C is guaranteed to be computed
correctly, it may or may not result in PRV pass-
ing attestations, since [a, b] might be previously
corrupted by ADV .

A10 Any erroneous state (e.g., violation of assertions
A3, A5, A6) leads to a hardware reset. Upon reset,
all data memory and registers are erased, which
prevents K leakage. This boot-time memory era-
sure also guarantees that, if power loss occurs
during SMART execution, no information about
K is retained in memory.

A11 Observing normal execution of SMART should
leak no information about K. Therefore, SMART
execution time and amount of memory used must
not be key-dependent.

8. From the security perspective, executing SMART with inter-
rupts disabled is redundant with respect to assertions A5 and A6.
However, this (assertion A7) prevents a reset if an interrupt occurs
during SMART execution, thus improving reliability.

Key Protection Guarantee. Assertion A3 implies
that K is not directly available to untrusted software.
Assertions A5 and A6 guarantee that code reuse attacks
to recover K are impossible. A10 implies that, when
error condition occurs, execution is stopped and no
information about K is leaked. A11 guaranties that
side-channels cannot be used to gather information
about K by untrusted software executing on the MCU.
Other side-channels commonly used in key recov-
ery attacks rely on power consumption analysis and
electromagnetic emanations [34]. However, these are
hardware/physical attacks 9.

Given the above assertions and the key protection
guarantee and assuming that VRF receives and suc-
cessfully verifies C, we argue that postulated security
objectives are satisfied:
Prover Authentication. If C is correctly computed
and n is a random nonce of sufficient bit-length, VRF
concludes that C was computed by PRV within the
interval of time between the initial request message
and the receipt of C. This yields fresh authentication
of PRV .
External Verification. Assertions A1-A8 imply that C
was computed by SMART code on PRV . Therefore,
memory region [a, b] on PRV contained code or data
expected by VRF .
Guaranteed Execution. Assertion A6 implies that,
immediately after computing C, PRV executes code
at x, if xflag is set. If C is deemed correct by VRF
and x = a, VRF is assured that the expected code at
location a was executed.

5. Other Uses of SMART

In this section we describe several techniques that
can be implemented using SMART as a building block.

5.1. Remote Attestation of Parts of Memory

The most natural usage of SMART is to attest a
memory segment and verify that it contains data (or
code) that it is expected to contain. This can be
achieved by invoking SMART with the start and end
addresses of the memory range to be attested, as shown
in Algorithm 2.

9. We note that these side-channels might be exploitable in very
specific cases by a local attacker, e.g., if hardware to perform such
measurements is available as a peripheral of the device, e.g., a
coulomb counter that measures remaining battery power. This could,
in theory, provide information on power consumption of SMART
code. We assume that such features are not available on the device.

Algorithm 2: SMART usage to attest a memory
range.

input : n nonce sent by VRF
a start address to attest
b end address to attest
H HMAC result (global variable)

output: HMAC output
begin

SMART(a, b, ∅, False,n,&H ,∅);
Send(H);

end

5.2. Remote Proof of Reset

Some applications need to ensure that a device has
been reset successfully. This can be easily done with
SMART, as shown in Algorithm 3. HMAC guarantees
that the reset function (R) has been verified and
executed. Here, we assume that output of HMAC is not
erased during reset, e.g., stored in Flash or EEPROM.

5.3. Attested Reading of Measurements

Some applications need to make sure that values
read from a peripheral device cannot be forged by
malware possibly present on that device. For example,
large-scale incorrect reports of current electricity con-
sumption by smart meters might lead to power outages.
Or, an IMD that returns incorrect values when queried
by a physician might result in an incorrect prescrip-
tion issued to a patient, with potentially catastrophic
consequences. Predictably, attestation of measurements
should provide: (1) freshness of the values read, (2)
proof of reading the values from the peripheral and
(3) integrity of the values.

Freshness is provided via a nonce, present by default
in SMART invocation. Proof of reading the value is
provided by calling SMART to attest and run HC, that
reads the values. Finally, HC calls SMART a second
time, as a normal HMAC function, to protect integrity
of the read values. Algorithm 4 presents this primitive.

Although this approach, using hash chains, bears
some resemblance to the extend operation of a TPM,
there are some important differences: HMAC attests
each output of SMART with the secret key of the
device. This allows for a simpler design. Besides
integrity, HMAC correctness confirms that it was
produced by SMART. This is fundamentally different
from the extend operation preformed by a TPM, since
integrity of the PCR is enforced by hardware.

Algorithm 3: SMART usage to securely reset a
device.

input : n nonce sent by VRF
R reset function address
|R| the reset function size
H HMAC result (global variable)

output: HMAC output
begin

SMART(R, R+ |R|, R, True,n,&H ,∅);
end
// ResetFunction: R()
begin

ShutdownDevices();
EraseAllMemoryButH();
PC = 0 ;

end
// The value H will be returned to VRF
// after boot is completed.

Algorithm 4: SMART usage to attest a measure-
ment, e.g., a reading from a peripheral accessed
from memory mapped I/O.

input : n nonce sent by VRF
in address to read from device
R reading function address
|R| the reading function size
H1 first HMAC (global variable)
H2 second HMAC (global variable)

output: HMAC output
begin

SMART(R, R+ |R|, R, True,n,&H1,in);
/* Function R will be called by SMART code
*/
Send(V,H2);

end
// ReadingFunction: R(in)
begin

V ←− ReadValueFromHW(in) ;
tmp=V ||H1 ;
SMART(&tmp,&tmp+
sizeof(tmp),0,False,n,&H2,∅);
RestoreIRQ();

end

We note that the Send function, that sends the
HMAC to VRF , is not guaranteed to be executed
since it is not verified by SMART. However, this does
not impact validity of the HMAC or the obtained
measurements.

5.4. Further Uses and Extensions

A primitive providing a dynamic root of trust, such
as SMART, can be used many other purposes. For
example, if certain known malware propagates over
a network of embedded devices, VRF can introduce
detection or disinfection code. This code could be
launched by SMART to perform remote search for
known malicious patterns in code or data. Using
SMART, validity of returned HMAC would guarantee
that detection code was executed uninterrupted and that
the detection result is genuine.
SMART can also facilitate mutual authentication

and shared key generation between two (or more)
previously paired devices. In this case, each device
acts as both a PRV and VRF . SMART guarantees
that, even in the event of full software compromise
of either device, a device’s long-term attestation key
cannot be modified or disclosed. Consequently, the
adversary cannot clone a genuine device or eavesdrop
on communication between two devices. One possible
application example is in car key fobs. Such a fob,
paired with the car’s on-board Embedded Compute
Unit (ECU) could share a key protected by SMART.

Fine-grained access control to sensitive peripherals
can be limited to HC only with simple hardware
extensions to SMART. For example, HC code can be
provided in a bundle with its own HMAC and a bit field
that describes authorization to access specific memory
regions corresponding to memory mapped peripherals.
Access to these memory regions would, in turn, be
authorized only if HMAC is validated. This is useful
in many applications, e.g., pacemakers where it could
control delivery of pacing impulses.

6. Implementation

To assess feasibility, practicality and impact of
SMART we implemented it on two low-end commodity
MCU platforms. We believe that this is the best way
to understand its benefits and limitations as well as to
evaluate the impact of required MCU modifications.
We chose to base our implementation on two fully
open-source clones of widely used off-the-shelf MCU-
s: Atmel AVR and Texas Instruments MSP430. These
processors share many features. They both have a
limited memory address space with 16-bit addresses.
Common memory sizes in both devices are between
2 − 16 KBytes of SRAM used as data memory and
between 16 − 64 KBytes of flash memory used for
program storage. Both are designed for low-power
as well as low-cost and are widely adopted in many

application areas, e.g., in the automotive industry,
utility meters, consumer devices and peripherals.

AVR and MSP430 also have some major architec-
tural differences. Notably, MSP430 is a 16-bit Von
Neumann architecture processor with common data
and code address spaces. Whereas, AVR is an 8-
bit Harvard architecture processor that has separate
address spaces for data and program memory. Another
prominent difference is in the instruction set: AVR is
a RISC architecture with most instructions requiring a
single 16-bit word and executing in one clock cycle.
In contrast, MSP430 can perform multiple memory
accesses within a single instruction. Its instruction
execution time can range from 1 to 6 clock cycles,
and instruction length can vary from 16 to 48 bits.

The differences between AVR and MSP430 makes
them good representatives of architectures commonly
used in many modern embedded systems.

6.1. Implementation Details

SMART implementation consists of three main com-
ponents:

• Processor modifications to add ROM code, key
storage and memory access controls.

• Largely architecture-independent SMART routine
stored in ROM that implements Algorithm 1.
This C code has a small number of architecture-
dependent lines.

• One or more software protocol implementations
that utilize the SMART primitive.

Implementation on AVR and MSP430 Cores. We
first implemented the hardware part of SMART on
the AVR processor, an Atmega103 [5] clone from
the OpenCores Project [31]. Figure 4a illustrates the
execution core and its memory. Parts that had to be
modified or added are shaded. They mainly correspond
to memory and memory access controls on memory
buses.

Next, we implemented SMART on MSP430. We
used the open-source OpenMSP430 core from the
OpenCores Project [31] and ported SMART to it. The
port consists of processor modifications, adaptation of
ROM code to MSP430 architecture as well as testing
and synthesizing the resulting core. These tasks were
performed in one week by one developer with mod-
erate Verilog knowledge and no previous experience
with the OpenMSP430 core. Processor modifications
were limited to implementing and adding modules
for ROM code and key memory. In addition, minor
modifications and address checks were required in the

Component Original Changed
Lines Lines Ratio

AVR, core (VHDL) 3932 151 3.84%
AVR, tests 2244 760
MSP430, core (Verilog) 4593 182 3.96%
MSP430, tests 17665 1122

Table 1: Changes made (in # of HDL lines of code) in
AVR and MSP430 processors, respectively, excluding
comments and blank lines.

Data Size Cycles Time at 8MHz
1 KByte 2302281 287 ms

512 Bytes 1281049 160 ms
32 Bytes 387471 48 ms

Table 2: HMAC execution timing.

memory backbone module of the OpenMSP430 core.
The memory backbone module performs arbitration of
memory accesses. Figure 4b presents required modifi-
cations (shaded) for MSP430.

In both processors, less than 200 lines of code
(Table 1) were changed to implement these modi-
fications. In addition to processor modifications, we
extended existing regression tests (or test benches) to
verify correct implementation of each of assertion from
Section 4 that is relevant here: A3, A5, A6, and A10.
ROM-Resident Code. This code corresponds to 487
lines of portable C and uses a standard SHA-1 imple-
mentation [13]. It requires 4KBytes of ROM for the
AVR and 6KBytes for MSP430. It executes in 10-s to
100-s of milliseconds (see Table 2), depending on the
size of HC to attest.

Memory usage in SMART has to be carefully man-
aged. SMART code cannot reserve memory for its own
usage. Memory should only be allocated on the stack
(i.e. local functions variables). It should not attempt
to use global variables or heap allocated memory.
Doing so allows us to avoid relying on untrusted data.
Finally, the code is compiled and linker scripts are used
to generate the ROM image suitable to the modified
processor.
Hardware Footprint. Simulating the design demon-
strates its functional status. Whereas, comparing the
number of lines of code of its implementation pro-
vides insights into the amount of effort required to
implement SMART on a given MCU. However, this is
insufficient to assess real impact of SMART in terms
of hardware overhead, i.e., surface increase due to its
presence on an actual manufactured device. A single
line of HDL can add a simple wire, a register or an
entire memory block; each of these would be counted

(a) AVR: Dark gray boxes represent logic added to the processor. Core
control signals provide information about internal processor status to
memory bus controls.

(b) MSP430: Memory backbone was modified to control access to
ROM and K. Since MSP430 is based on Von Neumann architecture,
concurrent access can occur to different memory parts (e.g., instruc-
tion fetch and read data). In that case, memory backbone arbitrates
bus access and temporarily saves/restores data.

Figure 4: Modifications to AVR and MSP430.

as one line of code, although they have very different
impact on synthesized hardware. We synthesized the
original and SMART-ified designs for both AVR and
MSP430. This provides an initial estimate of the im-
pact of SMART on the final devices. Synthesizing is
the act of transforming (or compiling) the design from
a high-level description language (Verilog or VHDL)
into a set of wires and elementary gates that serve as
building blocks of an Application-Specific Integrated
Circuit (ASIC).

Synthesis needs to be performed for a specific target
hardware. We used the library from UMC 180nm
process [18] and Synopsys Design Compiler [44].
For better performance, RAM and ROM memories
were generated with a specific tool [17], [16]. Flash
memory numbers were gleaned from publicly avail-
able information [10]. Results can vary substantially
depending on many parameters, such as: required
maximum frequency, latency, placement and routing
and availability of better memory IP. However, our
current measurements (in Table 3) show that the impact
of SMART on surface area is minimal. Adding SMART
to both AVR and MSP430 caused only a 10% increase
in their respective surface areas. As mentioned before,
most of that added area is due to the ROM housing

SMART code. Modifications to the core required only
1K and 0.7K gate equivalents in AVR and MSP430,
respectively. This could probably be reduced as we did
not perform optimizations.

Component Size in kGE
Orig. with SMART Ratio

AVR MCU 103 113 10%
Core 11.3 11.6 2.6%
SRAM 4 kB 26,6 26.6 0%
Flash 32 kB 65 65 0%
ROM 6 kB - 10.3 -
MSP430 MCU 128 141 10%
Core 7.6 8.3 9.2%
SRAM 10 kB 55.4 55.4 0%
Flash 32 kB 65 65 0%
ROM 4 kB - 12.7 -

Table 3: Comparison of chip surface used by each com-
ponent of the original MCU to its modified version.
kGE stands for thousands of Gate Equivalents (GE-
s). One GE is proportional to the surface of the chip
and computed form the module surface divided by the
surface of a NAND2 gate, 9, 37 ∗ 10−6mm2 with this
library.

6.2. Lessons Learned From Experiments

The first observation from our experiments is that
implementing SMART is not a complex task and port-
ing it to a different architecture is even easier. Second,
additional footprint of our implementation is minimal.
One change that impacted chip surface area the most
is the additional ROM storing SMART code.

Another important result is that, in both cases,
we did not have to change the processor core itself.
Instead, we only had to modify the memory access
controller.10 Therefore, SMART might be also well-
suited to settings where the processor core is available
only as a “black box” and provides enough information
about accessed memory on its external interface, e.g.,
low-end ARM cores.

One limitation is that we rely on “reasonably” fast
HMAC computation, which might make SMART too
slow for some applications. This is a consequence
of the conscious trade-off made when we chose to
limit the amount of hardware changes in the processor.
Depending on the application, it may be possible to use
a hardware-based SHA-1 implementation (e.g., [30]),
which would significantly improve performance with-
out requiring major processor modifications.

7. Related Work

Related work falls into several categories:

Hardware Attestation. Secure boot [2] checks the
integrity of a system at power-on. The root of trust,
usually a small bootloader, computes a hash of loaded
memory, and compares it to a signed value, a device
is allowed to boot-up only if all checks are passed.
Trusted Platform Modules (TPM) [45] are secure co-
processors that are nowadays present in most com-
modity systems. TPMs compute integrity checksums
of loaded memory at boot time and send them to be
verified by a remote verifier. TPMs also protect data
against compromised operating system, i.e. make an
encryption key available only when Platform Config-
uration Registers (PCRs) are in a given state. The
integrity measurements are stored in PCRs inside the
TPM. Security is based on the following facts: (1)
PCRs are only accessible through the TPM and (2)
measurements stored in PCRs can only be extended by
including the previous values in the computation. Each
extension is computed using a cryptographic hash of

10. The only exception is that, in some cases, we needed informa-
tion about the execution engine state (e.g., detection of wait states).

the current measurement and the previous PCR value.
Trust is established because the very first extension
is performed by BIOS upon boot. Several approaches
have been proposed that rely on the TPM as a common
foundation [33], [14], [25].

Software Attestation. Pioneer [37] provides device
attestation without relying on any specialized hardware
or secure co-processor. It computes a checksum of
memory using a function that relies on “enough” side-
effects of computation (status registers, etc.) such that
malicious emulation of this function incurs a temporal
overhead that is sufficient to detect cheating. Attes-
tation that relies on timed software checksums has
been also adapted to embedded devices in [36], [38],
[40]. However, security of such solutions has been
challenged by [41] and several attacks on such schemes
have been proposed [8]. Other hybrid solutions (e.g.,
[32]) rely on ROM and fill prover’s entire memory to
ensure absence of malicious code and then restore a
device to a known secure state. All software solutions
rely on strong assumptions on adversarial capabilities
and do not consider that colluding devices can actively
participate in the protocol to defeat attestation. This,
combined with the high overhead of software solutions,
makes the application of software attestation for time
critical devices questionable.

Dynamic Root of Trust. Recently a dynamic root of
trust mechanism has been added to the TPM spec-
ifications [46] and has been implemented as AMD
SVM [1] and Intel TXT [24]. This provides a way
to perform attestation dynamically after boot. This is
accomplished by allowing a specific CPU instruction
to atomically reset the state of some PCRs, isolate a
region of memory, hash the contents of that memory
and execute it. Several hardware protections measures,
such as disabling DMA, debugging and resetting the
TPM PCRs, are included to prevent fraudulent attesta-
tion. The Flicker system architecture [29] establishes
a dynamic root of trust on commodity computers,
leveraging AMD and Intel advances, by running a
Piece of Application Logic (PAL) on the prover. The
execution of PAL is guaranteed even if BIOS, OS and
DMA of the system are all compromised. This was
further extended into TrustVisor [28] which provides
a dynamic root of trust for PALs directly from a
minimal hypervisor. This significantly improves the
performance of the Dynamic Root of Trust mechanism.
Flicker and Trustvisor are the closest to the approach
considered in this paper. However, their complexity
and reliance on a TPM and Intel or AMD architectures
inhibits their use in low-cost commodity embedded

devices.
Other Hardware-Based Techniques. SPM [43] is a
hardware-based mechanism for process isolation. It
relies on a special vault module that must be boot-
strapped with a static root of trust. This vault bootstraps
SPM protected programs that gain exclusive control
over the protection of their own memory pages. SPM
and SMART share some key features, such as the use
of program counter to restrict access to secret storage,
and code entry point enforcement. However, unlike
SMART, SPM does not provides a dynamic root of
trust. It also involves a larger TCB and is generally
oriented towards higher-end embedded systems with
an MMU or an MPU. Furthermore, SPM requires new
custom instructions to be added to the core. Finally, its
feasibility (i.e., effort needed to implement on a real
hardware platform) and footprint remain unclear.

8. Conclusions

This paper is motivated by lack of currently feasible
techniques for providing dynamic root of trust on
remote embedded devices. We proposed SMART a
very simple, lightweight and low-cost architecture that
nonetheless offers concrete security guarantees in the
presence of any kind of non-physical attacks. Future
work will consist in formally verifying the ROM-
resident code in order to obtain a strong security proof
for the entire architecture; this is likely to be a chal-
lenging task. More experiments using current MCU
implementations need to be performed to better assess
the overhead. We also plan to implement and evaluate
SMART on several other common MCU platforms and
among a larger project we plan to produce a few test
ASIC samples of microcontrollers with SMART.

9. Acknowledgements

We thank Frank K. Gürkaynak for his help with
ASIC design as well as Travis Goodspeed, Kasper
Rasumussen, Srdjan Ĉapkun and NDSS’12 anonymous
reviewers for their insightful comments that helped us
improve this paper.

Daniele Perito was supported in part by the Eu-
ropean Commission within the STREP WSAN4CIP
project. Aurélien Francillon was supported by the
European Commission within the STREP TAMPRES
project. The views and conclusions contained herein
are those of the authors and should not be interpreted as
representing the official policies or endorsement of the
WSAN4CIP or TAMPRES projects or the European
Commission.

References

[1] ADVANCED MICRO DEVICES. AMD, Secure Virtual
Machine Architecture Reference Manual. Publication
No. 33047, Revision 3.01, May 2005.

[2] ARBAUGH, W. A., FARBER, D. J., AND SMITH, J. M.
A secure and reliable bootstrap architecture. In SP
’97: Proceedings of the 1997 IEEE Symposium on
Security and Privacy (Washington, DC, USA, 1997),
IEEE Computer Society, p. 65.

[3] ARM CORPORATION. Building a secure system using
TrustZone technology. Publication number: PRD29-
GENC-009492C.

[4] ARM CORPORATION. Securcore processors, 2011.
http://www.arm.com/products/processors/securcore/
index.php.

[5] ATMEL CORPORATION. 8-bit microcontroller with
128k bytes in-system programmable flash.

[6] ATMEL CORPORATION. ATMEL Trusted Platform
Module AT97SC3201, June 2005. http://www.atmel.
com/atmel/acrobat/doc5010.pdf.

[7] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND
SAVAGE, S. When good instructions go bad: generaliz-
ing return-oriented programming to RISC. In CCS ’08:
Proceedings of the 15th ACM conference on Computer
and Communications Security (2008), ACM.

[8] CASTELLUCCIA, C., FRANCILLON, A., PERITO, D.,
AND SORIENTE, C. On the difficulty of software-
based attestation of embedded devices. In CCS 09:
Proceedings of 16th ACM Conference on Computer and
Communications Security (November 2009).

[9] CHECKOWAY, S., DAVI, L., DMITRIENKO, A.,
SADEGHI, A.-R., SHACHAM, H., AND WINANDY, M.
Return-oriented programming without returns. In Pro-
ceedings of CCS 2010 (Oct. 2010), A. Keromytis and
V. Shmatikov, Eds., ACM Press, pp. 559–72.

[10] CHINGIS TECHNOLOGY CORPORATION. Embedded
e2 Flash IP, PF32K17E, 32Kbyte (16K x16) Embedded
Flash Macro (EFM), 2011. Details available online at:
http://www.chingistek.com/pfusion 03.asp?seq=9.

[11] CONDIT, J., HARREN, M., ANDERSON, Z., GAY, D.,
AND NECULA, G. Dependent types for low-level pro-
gramming. In Programming Languages and Systems,
R. De Nicola, Ed., vol. 4421 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2007,
pp. 520–535.

[12] COSTAN, V., SARMENTA, L. F., DIJK, M., AND DE-
VADAS, S. The trusted execution module: Commodity
general-purpose trusted computing. In Proceedings
of the 8th IFIP WG 8.8/11.2 international conference
on Smart Card Research and Advanced Applications
(Berlin, Heidelberg, 2008), CARDIS ’08, Springer-
Verlag, pp. 133–148.

http://www.arm.com/products/processors/securcore/index.php
http://www.arm.com/products/processors/securcore/index.php
http://www.atmel.com/atmel/acrobat/doc5010.pdf
http://www.atmel.com/atmel/acrobat/doc5010.pdf
http://www.chingistek.com/pfusion_03.asp?seq=9

[13] EASTLAKE, D., AND JONES, P. RFC 3174 - US Secure
Hash Algorithm 1 (SHA1). IETF RFC, September
2001.

[14] ENGLAND, P., LAMPSON, B., MANFERDELLI, J.,
PEINADO, M., AND WILLMAN, B. A trusted open
platform. IEEE Computer 36, 7 (2003).

[15] FALLIERE, N., MURCHU, L. O., AND CHIEN, E.
W32.stuxnet dossier, version 1.4. Symantec Security
Response, February 2011.

[16] FARADAY TECHNOLOGY CORPORATION. 0.18µm
synchronous VIA1 programmable ROM compiler,
FSA0A C SP, 2004. Details available online at: http:
//www.faraday-tech.com.

[17] FARADAY TECHNOLOGY CORPORATION. 0.18um
synchronous high speed single port memory compiler
fsa0a c su, 2004. Details available online at: http:
//www.faraday-tech.com.

[18] FARADAY TECHNOLOGY CORPORATION. Faraday
FSA0A C 0.18 µm ASIC standard cell library, 2004.
Details available online at: http://www.faraday-tech.
com.

[19] FOSTER, J. S., TERAUCHI, T., AND AIKEN, A. Flow-
sensitive type qualifiers. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation (New York, NY, USA,
2002), PLDI ’02, ACM, pp. 1–12.

[20] FRANCILLON, A., AND CASTELLUCCIA, C. Code
injection attacks on Harvard-architecture devices. In
CCS 08: Proceedings of the 15th ACM Conference
on Computer and Communications Security (2008),
P. Ning, P. F. Syverson, and S. Jha, Eds., ACM.

[21] GOODSPEED, T. Extracting keys from second genera-
tion zigbee chips. Black Hat USA, July 2009.

[22] HALDERMAN, J. A., SCHOEN, S. D., HENINGER,
N., CLARKSON, W., PAUL, W., CALANDRINO, J. A.,
FELDMAN, A. J., APPELBAUM, J., AND FELTEN,
E. W. Lest we remember: Cold boot attacks on en-
cryption keys. In USENIX Security Symposium (2008),
USENIX Association, pp. 45–60.

[23] HU, W., TAN, H., CORKE, P., SHIH, W. C., AND JHA,
S. Toward trusted wireless sensor networks. ACM
Trans. Sen. Netw. 7 (August 2010), 5:1–5:25.

[24] INTEL CORPORATION. Intel Trusted Execution Tech-
nology (Intel TXT) – Software Development Guide,
December 2009. Document Number: 315168-006.

[25] KIL, C., SEZER, E. C., AZAB, A. M., NING, P.,
AND ZHANG, X. Remote attestation to dynamic sys-
tem properties: Towards providing complete system
integrity evidence. In DSN 09: Proceedings of the
39th IEEE/IFIP Conference on Dependable Systems
and Networks (June 2009).

[26] KOSTIAINEN, K., DMITRIENKO, A., EKBERG, J.-E.,
SADEGHI, A.-R., AND ASOKAN, N. Key attestation
from trusted execution environments. In Proceedings of
the 3rd international conference on Trust and trustwor-
thy computing (Berlin, Heidelberg, 2010), TRUST’10,
Springer-Verlag, pp. 30–46.

[27] KRAHMER, S. x86-64 buffer overflow exploits and
the borrowed code chunks exploitation technique.
Tech. rep., suse, September 2005. available at
http://www.suse.de/ krahmer/no-nx.pdf.

[28] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA,
A., GLIGOR, V. D., AND PERRIG, A. TrustVisor:
Efficient TCB reduction and attestation. In Proceedings
of IEEE Symposium on Security and Privacy (Oakland
2010) (May 2010).

[29] MCCUNE, J. M., PARNO, B. J., PERRIG, A., REITER,
M. K., AND ISOZAKI, H. Flicker: an execution infras-
tructure for TCB minimization. In Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008 (New York, NY, USA, 2008),
Eurosys ’08, ACM, pp. 315–328.

[30] O’NEILL (MCLOONE), M. Low-Cost SHA-1 Hash
Function Architecture for RFID Tags. In Workshop on
RFID Security – RFIDSec’08 (Budapest, Hungary, July
2008).

[31] The Opencores Project. http://opencores.org/.

[32] PERITO, D., AND TSUDIK, G. Secure code update for
embedded devices via proofs of secure erasure. In
Proceedings of the 15th European conference on Re-
search in computer security (Berlin, Heidelberg, 2010),
ESORICS’10, Springer-Verlag, pp. 643–662.

[33] SAILER, R., ZHANG, X., JAEGER, T., AND VAN
DOORN, L. Design and implementation of a tcg-
based integrity measurement architecture. In SSYM’04:
Proceedings of the 13th conference on USENIX Secu-
rity Symposium (Berkeley, CA, USA, 2004), USENIX
Association, pp. 16–16.

[34] SCHRAMM, K., LEMKE, K., AND PAAR, C. Embedded
cryptography: Side channel attacks. In Embedded
Security in Cars, K. Lemke, C. Paar, and M. Wolf,
Eds. Springer Berlin Heidelberg, 2006, pp. 187–206.

[35] SESHADRI, A., LUK, M., AND PERRIG, A. SAKE:
Software attestation for key establishment in sensor
networks. In DCOSS ’08: Proceedings of the 4th IEEE
international conference on Distributed Computing in
Sensor Systems (2008).

[36] SESHADRI, A., LUK, M., PERRIG, A., VAN DOORN,
L., AND KHOSLA, P. SCUBA: Secure code update by
attestation in sensor networks. In WiSe ’06: Proceed-
ings of the 5th ACM workshop on Wireless security
(2006), ACM.

http://www.faraday-tech.com
http://www.faraday-tech.com
http://www.faraday-tech.com
http://www.faraday-tech.com
http://www.faraday-tech.com
http://www.faraday-tech.com
http://opencores.org/

[37] SESHADRI, A., LUK, M., SHI, E., PERRIG, A., VAN
DOORN, L., AND KHOSLA, P. Pioneer: verifying code
integrity and enforcing untampered code execution on
legacy systems. In SOSP ’05: Proceedings of the twen-
tieth ACM symposium on Operating systems principles
(2005), ACM.

[38] SESHADRI, A., PERRIG, A., VAN DOORN, L., AND
KHOSLA, P. K. SWATT: SoftWare-based ATTestation
for embedded devices. In IEEE Symposium on Security
and Privacy (2004), IEEE Computer Society.

[39] SHACHAM, H. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In CCS ’07: Proceedings of the 14th ACM
conference on Computer and Communications Security
(2007), ACM.

[40] SHANECK, M., MAHADEVAN, K., KHER, V., AND
KIM, Y. Remote software-based attestation for wireless
sensors. In ESAS (2005).

[41] SHANKAR, U., CHEW, M., AND TYGAR, J. D. Side
effects are not sufficient to authenticate software. In
Proceedings of the 13th USENIX Security Symposium
(August 2004).

[42] SOLAR DESIGNER. return-to-libc attack. Bugtraq
mailing list, August 1997.

[43] STRACKX, R., PIESSENS, F., AND PRENEEL, B. Ef-
ficient isolation of trusted subsystems in embedded
systems. In Proceedings of ICST Conference on Se-
curity and Privacy in Communication Networks (Se-
cureComm’10) (2010).

[44] SYNOPSYS, INC. Design compiler 2010, 2010. http:
//www.synopsys.com/home.aspx.

[45] TRUSTED COMPUTING GROUP. TCPA main specifica-
tion, version 1.1b.

[46] TRUSTED COMPUTING GROUP. TPM main specifica-
tion level 2 version 1.2.

[47] YANG, Y., WANG, X., ZHU, S., AND CAO, G. Dis-
tributed software-based attestation for node compro-
mise detection in sensor networks. In SRDS (2007),
IEEE Computer Society.

http://www.synopsys.com/home.aspx
http://www.synopsys.com/home.aspx

	1 Introduction
	1.1 Roadmap

	2 Goals and Design Elements
	2.1 Security Objectives
	2.2 Adversarial Assumptions
	2.3 Building Blocks
	2.4 SMART Overview

	3 SMART in Detail
	3.1 Attestation ROM
	3.2 Secure Key Storage
	3.3 MCU Access Controls
	3.4 Cleaning Memory on Reset

	4 Security Analysis
	5 Other Uses of SMART
	5.1 Remote Attestation of Parts of Memory
	5.2 Remote Proof of Reset
	5.3 Attested Reading of Measurements
	5.4 Further Uses and Extensions

	6 Implementation
	6.1 Implementation Details
	6.2 Lessons Learned From Experiments

	7 Related Work
	8 Conclusions
	9 Acknowledgements
	References

