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Prof. Constantinos Papadias, Athens Information Technology (AIT) Rapporteurs
Prof. Philippe Ciblat, Télécom ParisTech Examinateur
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Abstract

During the last two decades there has been a great interest in blind and semi-
blind channel estimation due to the advantages offered by these techniques
over training-based ones. The most prominent is the augmentation of the
throughput as a result of reducing the length of the training sequence/pilots
required to estimate the channel at the receiver. Moreover, semi-blind tech-
niques have the potential to estimate the channel in some situations where
the training-based techniques fail. There exists a slew of algorithms that
exploit either the second order statistics (SOS) or the higher order statistics
(HOS) that have been derived and analyzed in the literature. Recently, this
topic has been treated in the context of Space Time Block Coding (STBC),
neural networks, multiuser scenario and cognitive radio, to name a few. In
the first part of this thesis, we treat the blind channel estimation in the con-
text of SIMO and MIMO cyclic prefix (CP) systems. We propose a novel
approach to structure the sample covariance matrix, which in turn leads to
a significant enhancement in the estimation quality, even when there is only
a single OFDM symbol available at the receiver. On the other hand, we pro-
vide an analytical performance analysis of some CP SOS-based algorithms
that permits to highlight some features of these algorithms and inspires the
derivation of enhanced versions. At the end of this part, we introduce the
variational Bayesian approach to carry out the joint ML/MAP estimation
of channel and symbols. In the second part, we introduce and elaborate
a classical Bayesian approach to estimate the channel and the symbols in
the context of blind and semi-blind SIMO systems. As a consequence, six
different ML/MAP estimators are derived and their performances are com-
pared numerically by conducting Monte-Carlo simulations. Furthermore,
we derive the corresponding Cramer-Rao Bounds (CRBs) for the various
scenarios of these estimators. At the end of this part, we propose a novel
quasi-Bayesian approach that exploits the knowledge of the power delay
profile (PDP) to estimate only part of the channel taps while neglecting the
rest. This approach can be applied to various deterministic algorithms that
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ii Abstract

exist in the literature, allowing their extension to a point that is midway be-
tween deterministic and Bayesian approaches. We show by simulations and
by deriving the corresponding CRBs how this approach leads to a consider-
able improvement in the performance of many deterministic algorithms in
terms of both Normalized Mean Squared Error (NMSE) and Symbol Error
Probability (SER). Finally, in the third part we focus on the performance of
Zero-Forcing (ZF) Linear Equalizers (LEs) or Decision-Feedback Equalizers
(DFEs) for fading channels when they are based on (semi-)blind channel
estimates. Although it has been known that various (semi-)blind channel
estimation techniques have a receiver counterpart that is matched in terms
of symbol knowledge hypotheses, we show here that these (semi-)blind tech-
niques and corresponding receivers also match in terms of diversity order:
the channel becomes (semi-)blindly unidentifiable whenever its correspond-
ing receiver structure goes in outage. In the case of mismatched receiver and
(semi-blind) channel estimation technique, the lower diversity order domi-
nates. Various cases of (semi-)blind channel estimation and corresponding
receivers are considered in detail.



Résumé

Au cours des deux dernières décennies il y a eu un grand intérêt dans
l’estimation aveugle et semi-aveugle de canal en raison des avantages offerts
par ces techniques sur celles utilisant des séquences pilote. L’avantage le plus
connu est l’augmentation du débit en raison de la réduction de la longueur de
la séquence pilote nécessaire pour l’estimation du canal dans le récepteur.
Par ailleurs, les techniques semi-aveugles sont capables d’estimer le canal
dans certaines situations où l’utilisation des pilotes échoue. Il existe un tas
d’algorithmes qui exploitent soit les statistiques du second ordre (SOS) ou
les statistiques d’ordre supérieur (HOS) qui ont été développés et analysés
dans la littérature. Récemment, ce sujet a été traité dans le contexte du
codage block espace-temps (STBC), des réseaux neurones, du scenario multi-
utilisateurs, et de la radio cognitive pour n’en citer que quelques-uns. Dans
la première partie de cette thèse, nous traitons l’estimation aveugle de canal
dans le contexte des systèmes SIMO et MIMO avec préfixe cyclique (CP).
Nous proposons une nouvelle approche qui consiste à structurer la réalisation
de la matrice de covariance permettant ainsi une amèlioration significative de
la qualité d’estimation, même quand seulement un seul symbole OFDM est
disponible au niveau du récepteur. D’autre part, nous fournissons une anal-
yse analytique de la performance de certains algorithmes SOS avec préfixe
cyclique (CP) qui permet de mettre en évidence certaines caractéristiques
de ces algorithmes et inspire la dérivation de versions améliorées. A la fin
de cette partie, nous introduisons l’approche variationelle Baysienne pour
effectuer l’estimation jointe ML/MAP d’estimation du canal et des sym-
boles. Dans la deuxième partie, nous introduisons et élaborons une ap-
proche Baysienne classique pour estimer le canal et les symboles dans le
contexte des systèmes SIMO aveugles et semi-aveugles. En conséquence,
six différents estimateurs ML / MAP sont dérivés et leurs performances
sont comparés numériquement en effectuant des simulations Monte-Carlo.
Par ailleurs, nous dérivons les bornes de Cramer-Rao (CRB) correspondant
aux différents scénarios de ces estimateurs. A la fin de cette partie, nous
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proposons une nouvelle approche quasi Bayesienne qui exploite la connais-
sance du profil de délai de puissance (PDP) du canal pour estimer une
partie des coefficients de canal tout en négligeant les autres. Cette approche
peut être mise en œuvre dans diverses algorithmes déterministes qui ex-
istent dans la littérature, ce qui permet leur extension vers une catégorie
qui se situe à mi-chemin entre les techniques déterministes et Bayesiennes.
Nous montrons par des simulations et en dérivant les CRBs correspondant
que cette approche conduit à une amélioration considérable de la perfor-
mance de nombreux algorithmes déterministes tant en termes de l’erreur
quadratique moyenne normalisé (NMSE) ou de la probabilité d’erreur sur
les symboles (SER). Enfin, dans la troisième partie, nous nous concentrons
sur les performances des égaliseurs linéaires et des égaliseurs à retour de
décision ”Decision Feedback” (DFE) à forçage à zéro (ZF) pour des canaux
à évanouissements quand ils sont basés sur l’estimation (semi-) aveugle du
canal. Bien qu’il est connu que les diverses techniques d’estimation de canal
(semi-) aveugle ont en contrepartie un récepteur qui leur est adapté en ter-
mes d’hypothèses sur les connaissances des symboles, nous montrons ici que
ces techniques (semi-) aveugles et les récepteurs correspondant concordent
aussi en termes de l’ordre de la diversité : le canal devient non-identifiable en
(semi-) aveugle dès que le récepteur correspondant subit un évanouissement.
Dans le cas d’un récepteur et une technique d’estimation de canal (semi-
aveugle) non-concordants, c’est l’ordre inférieur de la diversité qui domine.
Différents cas d’estimation (semi-) aveugle de canal et de récepteurs corre-
spondants sont examinés en détail.
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Chapter 1

Introduction

The ever-growing demands of high-speed and high-quality wireless communi-
cation services have stimulated research on further promotion of the related
technologies, including digital signal processing, antenna, and semiconduc-
tor. High-speed wireless communication systems typically require a much
larger radio spectrum that may suffer from severe ISI due to the frequency-
selective characteristics of the radio channels (including the effects of mul-
tipath propagation and limited channel bandwidth). Also, they may suffer
from MAI when multiple users share the common radio resources. Mitiga-
tion of both the ISI and MAI is accordingly essential to the various types
of systems. Familiar examples are single-carrier modulation systems with
time-domain equalization, multicarrier modulation systems with frequency-
domain equalization, and spread spectrum systems with RAKE reception
[1].

1.1 Training Sequence Based Channel Estimation

Conventional designs of receivers that mitigate such distortions require ei-
ther the knowledge of the channel or the access to the input so that certain
training signals can be transmitted. The latter is the case in many, if not
most, communication systems design. The transmission of training signals
obviously decreases communications throughput although, for time invari-
ant channels, the loss is insignificant because only one training is necessary.

1
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For time varying channels, however, the loss of throughput becomes an is-
sue. For example, in high-frequency (HF) communications, the time used
to transmit training signals can be as much as 50 percent of the overall
transmission.

1.2 Blind Channel Estimation

The alternative for transmitting training sequence is to depend solely on
the received signal to estimate the channel. This is called blind channel
estimation. The word blind stems from the fact that there is no cooperation
between the transmitter and the receiver since the former does not aid the
latter at all to accomplish the channel estimation. At first glance, this
estimation problem may not seem tractable. How is it possible to distinguish
the signal from the channel when neither is known?

1.2.1 SOS

The essence of blind channel estimation rests on the exploitation of the
structure of the channel and the properties of the input. A familiar case is
when the input has known probabilistic description, such as distributions
and moments. In such a case, the problem of estimating the channel using
the output statistics is related to time series analysis. In communications
applications, for example, the input signals may have the finite alphabet
property, or sometimes exhibit cyclostationarity. This last property was
exploited in [2] to demonstrate the possibility of estimating a nonminimum
phase channel using only the second-order statistics (SOS), which led to the
development of many subspace-based blind channel estimation algorithms.
The most popular second-order statistics based estimation techniques suffer
from a lack of robustness: channel must satisfy diversity conditions and
many blind SOS methods fail when the channel length is overestimated.
Furthermore, the blind techniques leave an indeterminacy in the channel
or the symbols, a scale or constant phase or a discrete phase factor. This
suggests that SOS blind techniques should not be used alone but with some
form of additional information. However, the same may also be true for
TS based methods, especially when the training sequence is too short for a
certain channel length. For an overview of the SOS based methods see [3],
[4] and [5].
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1.2.2 HOS

Apart from algorithms based on the SOS, there is a family of HOS-based
algorithms for blind equalization of single- input, single-output (SISO) chan-
nels (i.e., single user case). These statistics, known as cumulants, and their
associated Fourier transforms, known as polyspectra, not only reveal ampli-
tude information about a process, but also reveal phase information. This is
important, because, as it is well known, second-order statistics (i.e., correla-
tion) are phase blind. Cumulants, on the other hand, are blind to any kind of
a Gaussian process, whereas correlation is not; hence, cumulant-based signal
processing methods handle colored Gaussian measurement noise automati-
cally, whereas correlation-based methods do not. Consequently, cumulant-
based methods boost signal-to-noise ratio when signals are corrupted by
Gaussian measurement noise. Higher-order statistics are applicable when
we are dealing with non-Gaussian (or, possibly, nonlinear) processes, and,
many real world applications are truly non-Gaussian. In the past, due to
the lack of analytical tools, we have been forced to treat such applications as
though they were Gaussian. With the new results that are being developed,
it should be possible to reexamine every application and/or method that
has ever made use of second-order statistics, using higher-order statistics, to
see if better results can be obtained.

These algorithms can be divided into two classes: implicit and explicit
methods [6]. The former, using higher-order moments implicitly, is also
known as the Bussgang-type algorithms, which includes the Sato algorithm
[7] and the constant modulus algorithm (CMA) (or Godard-2 algorithm) [8]
as special cases. In digital communications, the CMA has been a widely
applied approach to alleviating the ISI effect induced by telephone, cable,
or radio channels [9]. Moreover, its counterparts for blind equalization of
multipleinput, multiple-output (MIMO) channels (i.e., multiuser case) have
been applied to multiuser detection in DS/CDMA systems, blind beamform-
ing, and source separation in multiple-antenna systems [10]. On the other
hand, the explicit SISO methods using HOS include the IFC-based algorithm
[11], the super-exponential algorithm (SEA) [12] and polyspectra-based al-
gorithms [13]. The IFC-based algorithm and SEA are suitable for seismic
exploration as well as blind equalization of communication channels, and
their MIMO counterparts have been also applied in multiuser detection,
blind beamforming, and source separation [14], [15], see also [16] and the
references therein.

The biggest drawback to-date to the use of polyspectral methods (HOS)
is that they require longer data lengths than do correlation-based methods.
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Longer data lengths are needed in order to reduce the variance associated
with estimating the higher-order statistics from real data using sample av-
eraging techniques. For an overview of HOS please refer to [16] and [17] and
the references there in.

1.3 Semi-Blind Channel Estimation

The remedy for the symptoms of illness revealed in blind or training based
channel estimation may lie in the semi-blind channel estimation. Hence, the
natural question that may raise here, what does semi-blind mean? In order
to answer this question, we commence with the definition of the non-blind
(training based) and blind channel estimation. Training sequence meth-
ods base the parameter estimation only on the received signal containing
known symbols and all the other observations, containing (some) unknown
symbols, are ignored. On the other hand, blind methods are based on the
whole received signal, containing known and unknown symbols, possibly us-
ing hypotheses on the statistics of the input symbols, like the fact that they
are i.i.d. for example, but no use is made of the knowledge of some input
symbols. Now, the purpose of semi–blind methods is to combine both train-
ing sequence and blind information (see figure 1.1) and exploit the positive
aspects of both techniques. Semi-blind techniques, because they incorpo-
rate the information of known symbols, avoid the possible pitfalls of blind
methods and with only a few known symbols, any channel, single or mul-
tiple, becomes identifiable. Furthermore, exploiting the blind information
in addition to the known symbols, allows one to estimate longer channel
impulse responses than possible with a certain training sequence length, a
feature that is of interest for the application of mobile communications in
mountainous areas. For methods based on the second-order moments of the
data, one known symbol is sufficient to make any channel identifiable. In
addition, semi-blind techniques allow one to use shorter training sequences
for a given channel length and desired estimation quality, compared to a
training approach. Apart from these robustness considerations, semi-blind
techniques appear also very attractive from a performance point of view, as
their performance is superior to that of training sequence or blind techniques
separately. Semi-blind techniques are particularly promising when TS and
blind methods fail separately: the combination of both can be successful in
such cases. For an overview of semi-blind channel estimation and the related
issues, please refer to [18].
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Figure 1.1: Semi-Blind Principle
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1.4 The Multichannel Model

We consider here linear modulation (nonlinear modulations such as GMSK
can be linearized with good approximation [19], [20]) over a linear channel
with additive noise. The received signal after a linear receiver filter is then
the convolution of the transmitted symbols with an overall channel impulse
response, which is itself the convolution of the transmit shaping filter, the
propagation channel and the receiver filter. The communication system is
presented in figure 1.2. The overall channel impulse response is modeled
as FIR which for multipath propagation in mobile communications appears
to be well justified. In mobile communications terminology, this thesis will
mostly consider the single-user case; some work has also been done for the
multi-user case in which the received signal contains a mixture of multiple
users. We describe the FIR multichannel model used throughout the thesis.
This multichannel model applies to different cases (see figure 1.3): oversam-
pling w.r.t. the symbol rate of a single received signal [21], [22], [23] or the
separation into the real (inphase) and imaginary (quadrature) component of
the demodulated received signal if the symbol constellation is real [24], [25].
In the context of mobile digital communications, a third possibility appears
in the form of multiple received signals from an array of sensors (figure 1.3,
3rd part). These three sources for multiple channels can also be combined.

Figure 1.2: Communication System

1.5 Applications of Blind and Semi-blind Signal
Processing

It is worth noting that the principle of blind and semi-blind is not limited
to the channel estimation field, it has been exploited in many other research
areas, among which we will mention the following:

• Wired, Wireless and optical Communications.
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Figure 1.3: Multichannel model: case of oversampling, multiple antennas
and separation of inphase and quadrature components when the input sym-
bols are real. Example of a multichannel with 2 subchannels.
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• Biomedical (EEG, MEG, ECG).

• Acoustic applications (Sonar, Cocktail-party problem).

• In computer networks where links between terminal and central com-
puters need to be established in an asynchronous way such that, in
some instances, training is impossible [26].

• High-Definition Television (HDTV) broadcasting.

• Geophysical data processing.

• Image deblurring applications.

As for the main notations related to the channel estimation problem used
through this thesis, we shall present them below:

M Output Burst Length

MU Number of Unknown Symbols

MK Number of Known Symbols

L Channel Length

p Number of Receiving Antennas

q Number of Transmitting Antennas

h Variable Channel Vector

ho True Channel Vector

T (h) Convolution Channel Matrix in Time Domain

H Channel Matrix in Frequency Domain

A Input Symbol Vector in Time Domain

AK Vector of Known Symbols in Time Domain

AU Vector of Unknown Symbols in Time Domain

X Input Symbol Vector in Frequency Domain

V Noise Vector at the Receiver in Time Domain

W Noise Vector at the Receiver in Frequency Domain

Y Received Signal Vector in Time Domain

U Received Signal Vector in Frequency Domain

Table 1.1: Summary of main notations used through this thesis

1.6 Organization of the Thesis

This dissertation is composed of an introduction chapter, three parts and a
general conclusion. In the first part, comprising Chapter 2 through 4, we
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treat the blind channel estimation in the context of SIMO and MIMO cyclic
prefix (CP) systems. In the second part, comprising Chapters 5 through 8,
we treat blind and semi-blind channel estimation in the context of SIMO FIR
non-CP systems. Finally, in the third part we treat the diversity aspect of
blind and semi-blind channel estimation in the context of both CP and non-
CP systems. An abstract and an introduction are provided at the beginning
of each chapter and a conclusion is drawn at the end of each one. Finally,
a general conclusion and some perspectives for future work are presented at
the end of this dissertation.

1.6.1 SIMO and MIMO Cyclic Prefix Systems

In chapter 2, which is based on [27], we provide an analytical performance
analysis of a weighted and unweighted Signal Subspace Fitting (SSF) algo-
rithm. We also make use of the performance analysis provided in [28] for
Denoised Iterative Quadratic Maximum Likelihood (DIQML) and Pseudo
Quadratic Maximum Likelihood (PQML) for SIMO FIR channel to derive
simple formulas for the SIMO-CP case.

In chapter 3, which is based on [29], see also [30], inspired by the iterative
sample covariance matrix (SCM) structure enhancement techniques of Cad-
zow and others [31], we develop an algorithm to structure the sample block
circulant covariance matrix by enforcing two essential properties: rank and
FIR structure. The novel enhancement procedure leads to an interesting
enhanced SCM, even for the single CP symbol case.

In chapter 4, which is based on [32], we explore a Bayesian approach to
(semi-)blind channel estimation, exploiting a priori information on fading
channels. In the case of deterministic unknown input symbols, it suffices to
augment the classical blind (quadratic) channel criterion with a quadratic
criterion reflecting the Rayleigh fading prior. In the case of a Gaussian
symbol model the blind criterion is more involved. The joint ML/MAP
estimation of channels, deterministic unknown symbols, and channel pro-
file parameters can be conveniently carried out using Variational Bayesian
techniques. Variational Bayesian techniques correspond to alternating maxi-
mization of a likelihood w.r.t. subsets of parameters, but taking into account
the estimation errors on the other parameters. To simplify exposition, we
elaborate the details for the case of MIMO OFDM systems.
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1.6.2 SIMO FIR Systems

Blind channel estimation techniques were developed and usually evaluated
for a given channel realization, i.e. with a deterministic channel model. On
the other hand, in wireless communications the channel is typically modeled
as Rayleigh fading, i.e. with a Gaussian (prior) distribution expressing vari-
ances of and correlations between channel coefficients. In chapter 5 which
is based on [33], we explore a Bayesian approach to blind channel estima-
tion, exploiting a priori information on fading channels. We mainly focus
on joint ML/MAP estimation of channels and symbols on one hand, and
on ML/MAP estimation of channels with elimination of symbols on the
other hand. As a consequence, a unified framework in addition to three new
Bayesian estimators are introduced where their performance is compared
by simulations to three existing non-Bayesian estimators. In the same con-
text, we provide an insightful discussion of the accurate way of deriving the
Bayesian Cramér-Rao bound (BCRB) with an emphasis on its singularity.
In the same spirit, we extend in chapter 6, which is based on [34], the frame-
work and the techniques introduced in chapter 5 into the semi-blind case.
In chapter 7 which is based on [35], we present the CRBs that exist in the
literature and fit to some of the algorithms discussed in chapter 6, and derive
the others. In chapter 8 which is based on [36], we introduce in the context
of semi-blind channel estimation a new approach that relies on the partial
exploitation of the PDP of the channel (assumed known or estimated from
the received data) to reduce the channel estimation error. Based on this
approach, we have shown that, by neglecting some taps at the tail of the
channel that are immersed in noise, the quality of the channel estimation has
been improved considerably. The proposed approach has been implemented
to a series of deterministic and Bayesian estimators introduced in chapter 6.

1.6.3 Receiver Diversity with Blind and Semi-blind channel
Estimates

In chapter 9 which is based on [37] and [38], we analyze the diversity or-
der of MMSE-ZF Linear and Decision-Feedback Equalization for frequency-
selective SIMO channels, with the receivers being constructed from match-
ing (semi-)blind channel estimates. The matching is furthermore interpreted
here in a strict sense in which both the symbols and the channel get esti-
mated on the basis of the same block of data.



Part I

SIMO and MIMO Cyclic
Prefix Systems
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Chapter 2

Performance Analysis Of
Algorithms Based on SOS

Blind channel estimation problem was a hot topic during the previous decade.
Many algorithms were proposed but only few of them were analytically ana-
lyzed. In this chapter, we deal with a Cycic Prefix (CP), Single Carrier (SC)
or OFDM, SIMO transmission system. At the receiver there exists an FFT
block which is responsible for transforming the received signal into the fre-
quency domain. The advantage of CP system is its ability to transform the
frequency selective channel into flat fading at each tone. In this chapter, we
reintroduce a framework that exploits this fact to easily derive an analytical
performance analysis of a category of blind channel estimation algorithms
that are based on the second order statistics of the received signal. Based on
that framework, we provide an analytical performance analysis of a weighted
and unweighted Signal Subspace Fitting (SSF) algorithm by exploiting the
analogy in the formulation of the blind channel estimation problem of the flat
fading channel at each tone with the sensor array processing. We also make
use of the performance analysis for Denoised Iterative Quadratic Maximum
Likelihood (DIQML) and Pseudo Quadratic Maximum Likelihood (PQML)
for SIMO FIR channel to derive simple formulas for the SIMO-CP case. We
also propose an enhanced version of DIQML where the denoising process
is performed on a tone basis and derive its performance analytically. On
the other hand, we present a performance analysis for Subchannel Response

13
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Matching (SRM) algorithm which is much simpler than the one that already
exists in the literature. On the top of that the latter is valid at the whole
SNR range while the former becomes cumbersome at low SNR. Finally, all
the analytical formulas are verified by simulation.

2.1 Introduction

Initially, the proposed algorithms for blind channel estimation were based
on the higher-order statistics of the received signal. The defect of such
algorithms is its need to a long data lengths in order to reduce the vari-
ance associated with estimating the higher-order statistics from real data
using sample averaging techniques. For an overview of algorithms based on
higher-order statistics see [17], [16]. However, in most wireless communica-
tion systems the channel is varying rapidly so it is very difficult to gather
a long data through which the channel doesn’t change. In 1991 Tong et al,
proposed a new algorithm for channel estimation based solely on the second
order statistics of the received signal. Since then, a complete new branch
has been established and many new algorithms were introduced. Two types
of techniques can be considered, treating the unknown input symbols as ei-
ther deterministic unknowns or Gaussian white noise. In the first case, the
techniques are often based on the subspace structure induced in the data
by the multichannel aspect. Many of the deterministic input approaches
are also quite sensitive to a number of hypotheses such as correct channel
length (filter order) and no channel zeros. In general this means that these
blind channel estimates can often become ill-conditioned, when the channel
impulse response is tapered (e.g. due to a pulse shape filter) or when the
channel is close to having zeros. In fact this means that the blind informa-
tion on the channel can be substantial, but is only limited to part of the
channel. An overview of blind channel estimation techniques can be found
in [18] for SIMO systems and in [5] for MIMO systems, see also [3]. Many of
the algorithms mentioned above were evaluated by running computer sim-
ulations and few were assessed by analytical analysis. In this chapter, we
exploit the simple structure of the flat fading channel within the framework
of the SIMO cyclic prefix system to derive an analytical performance anal-
ysis of a number of algorithms which are based on the 2nd order statistics.
It is worthy to note that we proposed this framework initially in [39] see
also [29]. The derivations for some algorithms (Signal Subspace Fitting) are
made by analogy with sensor array processing presented in [40] while for
the rest they are concluded from those of FIR channel derived in [28]. This



2.2 SIMO Cyclic Prefix Block TX Systems 15

chapter is organized as follows: In section 2 we introduce the SIMO CP
block TX system, in section 3 we show a generic form of the cost function
which is valid for different algorithms presented in this chapter in addition,
we introduce the concept of linear parameterization of the noise subspace
upon which all the algorithms presented in this chapter are based. In sec-
tion 4 we develop different versions of SSF algorithm then in section 5 we
develop DML algorithm with its derivatives namely, IQML, DIQML, PQML
in addition to SRM. In section 6 we propose a framework for performance
analysis of SIMO CP systems then we use that framework to derive analyti-
cally the performance of all the algorithms discussed in this chapter. Finally,
in section 7 we validate all the analytical formulas by simulations.

2.2 SIMO Cyclic Prefix Block TX Systems

Consider a SIMO system with p outputs:

y[m]︸︷︷︸
p×1

=
∑L−1

j=0 h[j]︸︷︷︸
p×1

a[m−j]︸ ︷︷ ︸
1×1

+v[m]︸︷︷︸
p×1

= H(q)︸ ︷︷ ︸
p×1

a[m]︸︷︷︸
1×1

+v[m]︸︷︷︸
p×1

(2.1)

where H(q) =
L−1∑

j=0

h[j] q−j is the SIMO system transfer function correspond-

ing to the z transform of the impulse response h[.], a[.] denotes the transmit-
ted symbol and v[.] denotes a white Gaussian noise vector. Equation (2.1)
mixes time domain and z transform domain notations to obtain a compact
representation. In H(q), z is replaced by q to emphasize its function as
an elementary time advance operator over one sample period. Its inverse
corresponds to a delay over one sample period: q−1a[m] = a[m−1].

Consider a (OFDM or single-carrier) CP block transmission system with
N samples per block. The introduction of a cyclic prefix ofK samples means
that the last K samples of the current block (corresponding to N samples)
are repeated before the actual block. If we assume w.l.o.g. that the current
block starts at time 0, then samples a[N−K] · · ·a[N−1] are repeated at
time instants −K, . . . , −1. This means that the output at sample periods
0, . . . , N−1 can be written in matrix form as




y[0]
...

y[N−1]


 = Y[0] = H A[0] + V[0] (2.2)
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where the matrix H is not only (block) Toeplitz but even (block) circulant:
each row is obtained by a cyclic shift to the right of the previous row.
Consider now applying an N -point FFT to both sides of (2.2) at block m:

FN,pY[m] = FN,pH F−1
N FNA[m] + FN,pV[m] (2.3)

or with new notations:

U[m] = H X[m] + W[m] (2.4)

where FN,p = FN ⊗ Ip (Kronecker product: A ⊗ B = [aijB]), FN is the
N -point N ×N DFT matrix, H = diag {h0, . . . ,hN−1} is a block diagonal

matrix with diagonal blocks hn =
∑L−1

l=0 h[l] e−j2π 1
N

nl, the p × 1 channel
transfer function at tone n (frequency = n/N times the sample frequency).
In OFDM, the transmitted symbols are in X[m] and hence are in the fre-
quency domain. The corresponding time domain samples are in A[m]. The
OFDM symbol period index is m. In Single-Carrier (SC) CP systems, the
transmitted symbols are in A[m] and hence are in the time domain. The
corresponding frequency domain data are in X[m]. The components of V are
considered white noise, hence the components of W are white also. At tone
(subcarrier) n ∈ {0, . . . , N−1} we get the following input-output relation

un[m]︸ ︷︷ ︸
p×1

= hn︸︷︷︸
p×1

xn[m]︸ ︷︷ ︸
1×1

+wn[m]︸ ︷︷ ︸
p×1

(2.5)

where the symbol xn[m] belongs to some finite alphabet (constellation) in
the case of OFDM. It should be noted that in the sequel both k and n are
used interchangeably to denote the frequency index (tone), while m is used
to denote the time index.

2.3 Some Generalities for CP System Methods

2.3.1 General form of the cost function

The basic idea relies on the fact that to get the cost function or information
for the temporal channel response it suffices to sum up the cost functions or
information over the tones after transforming back to the time domain. To
be a bit more explicit, let h be the vectorized channel impulse response then
there exists transformation matrices Gk (containing DFT portions)such that

hk = Gk h . (2.6)
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To be more accurate, Gk is of size p× pL such that it contains the first pL
elements of the kth block row of FN,p. Now, if at tone k we have a cost
function of the form:

F(hk) = hH
k Qk hk (2.7)

then this induces a cost function for the overall channel impulse response of
the form:

F(h) = hH

[
N−1∑

k=0

GH
k Qk Gk

]
h (2.8)

and similarly for Fisher information matrices. So in what follows, we shall
concentrate on the cost function for a given tone.

2.3.2 Linear Parameterization of the Noise Subspace

As we shall see later in (2.15 and 2.20), the Deterministic Maximum Like-
lihood (DML) and the Signal Subspace Fitting (SSF) criteria are highly
nonlinear and their direct optimization would require cumbersome optimiza-
tion techniques. The key to a computationally attractive solution of these
problems is a linear parameterization of the noise subspace. We consider
here a linear parameterization of the noise subspace in terms of channel
coefficients (a parameterization in terms of prediction quantities was also
presented in [41]). Let h⊥

k (m× p), (m ≥ p− 1), be such a parametrization:
it verifies h⊥

k hk = 0 and consequently P⊥
hk

= Ph⊥H
k

. In the case p = 2 in

which the multichannel has 2 subchannels, the obvious choice for h⊥
k is:

h⊥
k = [−hk,2 hk,1] (2.9)

For a larger number of subchannels, different choices are available [42, 43].
An example is [43],[44]:

h⊥
k,bal,min =




−hk,2 hk,1 0 · · · 0

0 −hk,3 hk,2 · · · ...
...

. . .
. . . 0

0 · · · 0 −hk,p hk,p−1

hk,p 0 · · · 0 −hk,1




(2.10)

which has size (p−δp,2) × p where δp,2 equals one when p = 2 and zero
elsewhere. This matrix is balanced in the sense that every subchannel ap-
pears the same number of times, in this case twice. A balanced h⊥

k leads to
tr
{
h⊥

k h⊥H
k

}
= α ||hk||2 and α = 2−δp,2. h⊥

k appearing in (2.10) is balanced
with minimal number of rows m = p−δp,2.
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2.4 Signal Subspace Fitting (SSF)

Let us focus in particular on the signal subspace fitting method, for the
(spatiotemporally) white noise case (and assuming spatiotemporally white
symbols for simplicity), the eigendecomposition of the covariance matrix of
a block of signal in the time domain can in fact be easily computed from the
eigendecompositions at each tone. Indeed the covariance matrix is given by:

RYY = σ2
a H HH + σ2

v INp

⇒ FN,pRYYF
−1
N,p

= σ2
a FN,pHF

−1
N FNHHF−1

N,p + σ2
v FN,pF

−1
N,p

= σ2
a HHH + σ2

v INp

(2.11)

where the matrix HHH is block diagonal. Hence the eigenvectors in the
time domain are the IDFTs of the eigenvectors at each tone, and the eigen-
values are the same in time or frequency domain. This exact relationship
no longer holds for the eigenvectors based on sample covariances in time
and frequency domain due to the noise (it remains true in the absence of
noise). Nevertheless this relationship encourages us to develop subspace fit-
ting problems in the frequency domain, involving eigendecompositions of N
p×p matrices instead of the eigendecomposition of one Np×Np matrix. Let
Ê denote a sample average, then the details of the signal subspace fitting
method are:

• rk = Euk[n]uH
k [n] = σ2

x hkh
H
k + σ2

wk
Ip

= VS,kΛS,kV
H
S,k + σ2

wk
VN ,kV

H
N ,k

• r̂k = Êuku
H
k = V̂S,kΛ̂S,kV̂

H
S,k + V̂N ,kΛ̂N ,kV̂

H
N ,k

Where VS,k and VN ,k deonte respectively the signal and the noise sub-
space at tone k. The basic idea of the SSF is to fit the true signal subspace
which is spanned by the column of hk to the estimated signal subspace V̂S,k

that we obtain from the sampled spectrum r̂k.

min
hk,T

||V̂S,k − hkT ||Wk
(2.12)

where T is a square transformation matrix and ||X||W = tr{XHWX}. The
cost function in (2.12) is separable. In particular, it is quadratic in T.
Minimization w.r.t. T leads to T = h+

k V̂S,k and V̂S,k −hkh
+
k V̂S,k = P⊥

hk
V̂S,k

where P⊥
hk

= I − Phk
.
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Hence,

min
hk,T

||V̂S,k − hkT ||Wk
= min

hk

||P⊥
hk
V̂S,k||Wk

= min
hk

tr
{
P⊥

hk
V̂S,kWkV̂

H
S,k

} (2.13)

As mentioned earlier, we attempt to minimize the SSF jointly over all the
tones subject to a single constraint to avoid introducing N constraints and
to exploit the correlation that exists between the different tones. Therefore,
the SSF cost functions takes the following form:

min
h

N−1∑

k=0

tr
{
P⊥

hk
V̂S,kWkV̂

H
S,k

}

min
h

N−1∑

k=0

tr
{
Ph⊥H

k
V̂S,kWkV̂

H
S,k

}

min
h

N−1∑

k=0

tr

{(
h⊥

k h⊥H
k

)+
h⊥

k V̂S,kWkV̂
H
S,kh

⊥H
k

}
(2.14)

Where we have used the result shown in the linear parameterization of
the noise subspace section namely, P⊥

hk
= Ph⊥H

k
. On the other hand, the

Moore-Penrose pseudo–inverse needs to be introduced since h⊥
k h⊥H

k is singu-

lar for p > 2. Let R(hk)
△
= h⊥

k h⊥H
k and denoting the constant denominator

R(hk) = R, then (2.14) becomes:

min
h

N−1∑

k=0

tr
{
R+h⊥

k V̂S,kWkV̂
H
S,kh

⊥H
k

}

min
h

N−1∑

k=0

hH
k D

SSF
k hk

min
h

hH

{
N−1∑

k=0

GH
k D

SSF
k Gk

}
h

(2.15)

We solve (2.15) iteratively in such a way that at each iteration a quadratic
problem appears. In iteration (i), the “denominator” R is computed based
on the estimate from the previous iteration/initialization ĥ(i−1) and is con-
sidered as constant for the current iteration. Moreover, h⊥

k being linear in
hk, the criterion (2.15) becomes quadratic. Since we are starting from a cost
function per tone then it is not very costly to introduce optimal weighting
(Wk) as we shall see in the following sections.
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2.5 Deterministic Approach

2.5.1 Deterministic Maximum Likelihood (DML)

The problem is to estimate the deterministic (vector) parameter θ given
the probabilistic model of the observation. Specifically, let f(uk/θ) be the
probability density function. Given an observation uk, θ is estimated by
maximizing max

θ
f(uk/θ) where f(uk/θ), when viewed as a function of θ is

referred to as the likelihood function. When the noise is zero-mean Gaussian
with covariance σ2

w,kIp, the ML estimates can be obtained by the nonlinear
least squares optimization:

min
hk,xk

||uk − hkxk||2 (2.16)

The joint optimization of the likelihood function in both the channel and
the symbols is difficult. Fortunately, the observation is linear in both the
channel and the symbols. In other words, we have a separable nonlinear
LS problem, which allows us to reduce the complexity considerably. The
nonlinear LS optimization can be achieved sequentially as:

min
hk

{
min
xk

||uk − hkxk||2
}

(2.17)

The inner minimization problem yields:

x̂k =
1

||h2
k||

hH
k uk (2.18)

Substitute (2.18) in (2.17) we get:

min
hk

uH
k P

⊥
hk

uk

min
hk

tr
{
P⊥

hk
uku

H
k

}

min
hk

tr
{
P⊥

hk
r̂k

} (2.19)

However, we are interested in estimating the channel impulse response h,
hence we gather the cost functions over all the tones:

min
h

N−1∑

k=0

tr
{
P⊥

hk
r̂k

}
(2.20)
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2.5.2 Subchannel Response Matching (SRM):

The Subchannel Response Matching (SRM) algorithm, which was (re)invented
four times in [45, 46, 47, 42], is based on a linear parameterization of the
noise subspace in terms of the channel coefficients. Using the commutativity
of convolution and the linearity of h⊥

k in hk, we can write h⊥
k uk as:

h⊥
k uk = Ukhk (2.21)

where Uk is a matrix filled with the elements of the observation vector uk.
In the noiseless case, uk = hkxk and we have h⊥

k uk = Ukhk = 0: from
this relation, the channel can be uniquely determined up to a scale factor [47,
42], as the unique right singular vector of Uk corresponding to the singular
value zero. When noise is present, Ukhk 6= 0 and the SRM criterion is solved
in the least–squares sense under the constraint ‖hk‖ = 1. Thus, the per tone
cost function is given by:

min
‖hk‖=1

hH
k UH

k Uk hk

min
‖hk‖=1

tr
{
h⊥

k

{
uku

H
k

}
h⊥H

k

}

min
‖hk‖=1

tr
{
h⊥

k r̂kh
⊥H
k

} (2.22)

Where by the law of large numbers, asymptotically uku
H
k can be replaced

by its expected value rk. Practically, rk is not available so it is replaced by
the sampled spectrum per each tone r̂k which is computed directly from the
Fourier transformed version of the received data.

The overall cost function is given by:

min
h

hH

(∑

k

GH
k E

{
UH

k Uk

}
Gk

)
h (2.23)

The solution is h = Vmin(
∑

k G
H
k E

{
UH

k Uk

}
Gk), the eigenvector of∑

k G
H
k E

{
UH

k Uk

}
Gk corresponding to its smallest eigenvalue. Different

choices for the linear parameterization of the noise subspace give different
channel estimates. Note that E hH

(∑
k G

H
k

{
UH

k Uk

}
Gk

)
h =(∑

k |xk|2hH
k h⊥H

k h⊥
k hk

)
+σ2

wtr
{∑

k h⊥
k h⊥H

k

}
. Since tr

{∑
k h⊥

k h⊥H
k

}
is con-

stant, hence it doesn’t affect the minimization problem. Therefore, a bal-
anced h⊥

k yields asymptotically unbiased and consistent channel estimates
whereas unbalanced h⊥

k yields biased and inconsistent estimates. SRM may
be viewed as a non-weighted version of the Iterative Quadratic ML (IQML)
algorithm described below, and was used in [42] to initialize IQML. We will
use it to initialize our algorithms also.



22 Chapter 2 Performance Analysis Of Algorithms Based on SOS

2.5.3 Iterative Quadratic ML (IQML):

Since P⊥
hk

= Ph⊥H
k

, the DML problem (2.20) can be written as:

min
h: ‖h‖=1

∑

k

uH
k h⊥H

k

(
h⊥

k h⊥H
k

)+
h⊥

k uk (2.24)

where again the Moore-Penrose pseudo–inverse needs to be introduced since
h⊥

k h⊥H
k is singular for p > 2. As discussed in SSF case, the Iterative

Quadratic ML (IQML) algorithm [48] solves (2.24) iteratively in such a way

that at each iteration a quadratic problem appears. Let R(hk)
△
= h⊥

k h⊥H
k ,

then (2.24) becomes:

min
h: ‖h‖=1

∑

k

uH
k h⊥H

k R+(hk) h⊥
k uk . (2.25)

In iteration (i) of IQML, the “denominator” R(hk) is computed based on the
estimate from the previous iteration/initialization ĥ(i−1) and is considered
as constant for the current iteration. Hence, h⊥

k being linear in hk, the cri-
terion (2.25) becomes quadratic. Again, denoting the constant denominator
R(hk) = R, the IQML criterion can be rewritten as:

min
h: ‖h‖=1

hH
∑

k

GH
k UH

k R+Uk Gk h. (2.26)

Under constraint ‖h‖ = 1, we get h = Vmin(
∑

k G
H
k UH

k R+Uk Gk).
In an alternative interpretation, IQML can be viewed as the optimally

weighted least-squares version of the SRM least-squares problem: the covari-
ance matrix of the noise contribution in h⊥

k uk = Ukhk is indeed σ2
w R(hk)

and we use for hk in R(hk) the best estimate available.
In the noise-free case, the IQML algorithm behaves very well: the IQML

criterion becomes indeed equivalent to:

min
h: ‖h‖=1

∑

k

|xk|2hH
k h⊥H

k R+h⊥
k hk (2.27)

As h⊥
k hk = 0, ho nulls exactly the criterion, regardless of the initialization.

At high SNR, a first iteration of IQML gives a consistent estimate of the
channel whatever the initialization of R(hk) And it can be proved [42] that
a second iteration gives the exact DML estimate.

At low SNR however, the IQML estimate is biased. Indeed, consider the
asymptotic situation in which the number of Rx blocks (OFDM or SCCP)M
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grows to infinity. By the law of large numbers, the IQML criterion becomes
essentially equivalent to its expected value,viz.

1
M

∑
k uH

k h⊥H
k R+ h⊥

k uk = 1
M tr{∑k h⊥H

k R+h⊥
k E(uku

H
k )} + Op(

1√
M

)

= 1
M

[∑
k tr{|xk|2h⊥H

k R+h⊥
k hkh

H
k } + σ2

w

∑
k tr{h⊥H

k R+h⊥
k }
]
+ Op(

1√
M

)

(2.28)
The expectation operator E works along the time axis represented by the
Rx (OFDM or SCCP) blocks. We conclude from (2.28)that in the presence
of noise IQML performs poorly even if initialized by a consistent channel
estimate.

In the next section we will show how to “denoise” the IQML criterion:
this denoised criterion, solved in the IQML style, will correct the IQML bias
and provide a consistent channel estimate.

2.5.4 Denoised IQML (DIQML):

2.5.4.1 Asymptotic Amount of Data

The asymptotic noise contribution to the DML criterion is
∑

k σ
2
w,ktr

{
Ph⊥H

k

}

(see (2.28)). The denoising strategy simply consists in removing this asymp-

totic noise term, or more exactly an estimate of it,
∑

k σ̂
2
w,ktr

{
Ph⊥H

k

}
, from

the DML criterion which becomes:

min
‖h‖=1

∑

k

tr
{
Ph⊥H

k

(
uku

H
k − σ̂2

w,k I
)}

⇔

min
‖h‖=1

{∑

k

hH
k UH

k R+Ukhk −
∑

k

σ̂2
wk

tr{h⊥H
k R+h⊥

k }
} (2.29)

Note that this operation does not change the optimizer of the DML criterion
as
∑

k σ̂
2
w,ktr {Ph⊥H

k
} = p

∑
k σ̂

2
w,k is constant w.r.t. h. We take σ̂2

w,k to be

a consistent estimate of the noise variance at tone k.

Where the denoised DML criterion (2.29) is now solved in the IQML
way: considering R(hk) = R as constant, the optimization problem becomes
again quadratic in h:

min
‖h‖=1

∑

k

hH
k UH

k R+Ukhk −
∑

k

σ̂2
wk

hH
k B̂khk

min
‖h‖=1

hH

{∑

k

GH
k ÂkGk −

∑

k

σ̂2
wk
GH

k B̂kGk

}
h

(2.30)
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where Âk = UH
k R+Uk and the matrix B̂k(hk) is such that h“ H

k B̂kh
′

k =
tr {h“⊥H

k R+(hk)h
‘⊥
k }.

If in (2.30) the noise is considered white so its variance σ̂2
wk

is constant
over all the tones. Hence, σ̂2

wk
is replaced by σ̂2

w and we call this method of
denoising a global denoising. Hence,

min
h

hH
(
Â− σ̂2

w B̂
)
h (2.31)

Where Â =
∑

k G
H
k ÂkGk and B̂ =

∑
k G

H
k B̂kGk.

Asymptotically in the number of data, DIQML is globally convergent.
Indeed, asymptotically it is essentially equivalent to the denoised criterion:

1

M
hH

{∑

k

GH
k UH

k R+UkGk − σ̂2
w

∑

k

GH
k B̂kGk

}
h =

1

M
hH
∑

k

GH
k h⊥H

k R+h⊥
k Gk h + Op(

1√
M

) (2.32)

if σ̂2
w − σ2

w = Op(
1√
M

). The denoised criterion (the first term of the RHS of

(2.32)) corresponds to the IQML criterion in the noiseless case and hence
leads to h = αho for some scaling factor α, under the identifiability con-
ditions of SRM. One iteration of DIQML hence yields an estimate h =
αho + Op(

1√
M

). So the DIQML algorithm behaves asymptotically at any

SNR like the IQML algorithm behaves at high SNR:

• the first iteration gives a consistent estimate of the channel,

• this behavior holds whatever the initialization.

The second iteration gives asymptotically the global minimizer of DIQML.
Unlike in the high SNR IQML case though, this global minimizer at an
arbitrary SNR is not the DML minimizer [28]. As the SNR increases, the
difference between DIQML and IQML disappears and we have global con-
vergence, to the DML solution.

2.5.4.2 Finite Amount of Data

The choice of σ̂2
w turns out to be crucial. In practice, with large but finite

amount of data (No. of Rx CP blocks) M , and the true noise variance

value, the central matrix Q =
∑

k G
H
k UH

k R+UkGk − σ̂2
w

∑
k G

H
k B̂kGk in

(2.30) is indefinite, and the minimization problem is no longer well posed.
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The solution in this case would be Vmin(Q) corresponding to the smallest
eigenvalue λmin(Q), which is negative. Simulations have shown that per-
formance does not improve upon IQML in this case. The central matrix Q
should be constrained to be positive semi-definite [28].

For the consistent estimate of σ2
w, we choose here a certain λ that renders

Q = Q(R+) =
∑

k G
H
k UH

k R+UkGk − λ
∑

k G
H
k B̂kGk exactly positive semi-

definite with one singularity. The DIQML criterion becomes:

min
‖h‖=1,λ

hH

{∑

k

GH
k UH

k R+UkGk − λ
∑

k

GH
k B̂kGk

}
h

min
‖h‖=1,λ

hH
(
Â− λ B̂

)
h

(2.33)

with the constraint that Q be positive semi-definite. The solution is:
λ = λmin(

∑
k G

H
k UH

k R+UkGk,
∑

k G
H
k B̂kGk), the minimal generalized eigen-

value of
∑

k G
H
k UH

k R+UkGk and
∑

k G
H
k B̂kGk, and

h = Vmin(
∑

k G
H
k UH

k R+UkGk,
∑

k G
H
k B̂kGk), the corresponding general-

ized eigenvector.
Asymptotically, the DIQML criterion (2.33) becomes

1
M hH

{∑
k G

H
k UH

k R+UkGk − λ
∑

k G
H
k B̂kGk

}
h =

1
M hH

∑
k G

H
k h⊥

k R+h⊥H
k Gkh + 1

M (σ2
w − λ)hH

∑
k G

H
k B̂kGkh + Op(

1√
M

) .

(2.34)
Optimization w.r.t. λ, subject to the non-negativity constraint, leads to
λ = σ2

w + Op(
1√
M

), regardless of channel initialization (in R and B̂k), and

the criterion (2.33) in h and λ becomes equivalent to the criterion (2.32)
in h. Hence, asymptotic global convergence applies for h and for λ (to
σ2

w), with the same properties as mentioned earlier (independently from the
initialization).

On the other hand, if the noise is colored then we should denoise the
IQML cost function on a tone by tone basis as shown in (2.30). We call
this method a denoising per tone. Moreover, as we will show later in our
simulations, even if the noise is white it is better to denoise on a tone by
tone basis. One way to interpret this result is by noting that σ̂2

wk
guarantees

that Âk − σ̂2
wk

B̂k to be positive semi-definite whatever the tone k is. On
the contrary, σ̂2

w can’t guarantee this condition to be fullfilled for all the
tones. As our simulations show, the fulfillment of this condition is crucial
in making DIQML outperforms IQML.

The solution for denoising on a tone by tone basis is given by:

h = Vmin

(∑
k G

H
k ÂkGk −∑k σ̂

2
wk
GH

k B̂kGk

)
where σ̂2

wk
= λmin( Âk, B̂k),
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the minimal generalized eigenvalue of Âk and B̂k. Of course, one can now
go further in denoising and replace r̂k − σ̂2

wk
Ip by its pure signal subspace

part.

2.5.5 Pseudo Quadratic Maximum Likelihood (PQML)

The cost function of DML per tone is given by (2.20):

min
hk

tr
{
R+h⊥

k r̂kh
⊥H
k

}

min
hk

uH
k h⊥H

k R+h⊥
k uk

(2.35)

The principle of PQML has been introduced in the context of sinusoids
in noise estimation [49] and then applied to DML channel estimation in
[50]. The gradient of the DML cost function may be arranged as P(hk)hk,
where P(hk) is ideally a positive semi-definite matrix with a one-dimensional
nullspace. The DML estimate satisfies

P(hk) hk = 0, (2.36)

which is solved for hk under the constraint ‖hk‖ = 1. The DML gradient
in (2.36) is the same as the gradient of the (pseudo-)quadratic cost function
hH

k P(ĥk)hk evaluated at ĥk = hk. The PQML strategy is now the follow-

ing. At iteration (i), P(ĥ
(i−1)
k ) ≥ 0 is fixed. The problem minhk: ‖hk‖=1 hH

k

P(ĥ
(i−1)
k )hk is quadratic and its solution is ĥ

(i)
k = Vmin(P(ĥ

(i−1)
k )). This so-

lution is used to reevaluate P(hk) and further iterations may be performed.

The difficulty consists in defining the right P(hk) in the DML gradient,
especially with the positive semi-definiteness constraint. In general, and in
particular for the DML problem at hand, the choice for P(hk) is indeed not
unique. The gradient of the DML cost function consists of two terms (here
we write the gradient w.r.t. hk,j , which is also component j of the gradient
w.r.t. hk):

(
P(hk)hk

)
(j) = uH

k

∂h⊥H
k

∂hk,j
R+h⊥

k uk −uH
k h⊥H

k R+h⊥
k

∂h⊥H
k

∂hk,j
R+h⊥

k uk (2.37)

In each iteration, P(hk) will be considered as constant. The question now is
which factors hk should be considered as variable and which instances of hk

are considered as part of P(hk). hk in (2.37) designates those instances of
hk that we consider as variable (on which minimization will be done) and hk
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designates those instances of hk that are considered as part of the constant
P(hk). The first term of P(hk)hk is UH

k R+(hk)Ukhk, which is the IQML
gradient, and the second term is BH(hk)B(hk)hk, with uH

k h⊥H
k R+(hk)h

⊥
k =

hk
TBT (hk) (note that uH

k Ph⊥H
k

uk =
(
uH

k Ph⊥H
k

uk

)∗
). Then P(hk) has the

following form:
P(hk) = UH

k R
+Uk − BH(hk)B(hk) (2.38)

The second term of 1
M P(hk) asymptotically tends to its expected value

by the law of large numbers. The matrix P(hk) is indefinite for a finite
number of receiving blocks M , and applying the PQML strategy directly
will not work. In [50], hk is chosen as the eigenvector corresponding to the
smallest eigenvalue magnitude of P(hk); it gives poor performance except
at high SNR.

PQML is closely related to DIQML as the first term of (2.30) and (2.38)
are the same and E(BH(ho

k)B(ho
k)) = σ2

w,k B̂k(h
o
k). By analogy with DIQML

for which Q was also indefinite for finite M if an arbitrary σ̂2
w,k were to

be used, we introduce a variable λk such that UH
k R+Uk − λk BH

k Bk is ex-
actly positive semi-definite. PQML then becomes the following minimization
problem:

min
‖hk‖=1,λ

hH
k

{
UH

k R+Uk − λk BH
k Bk

}
hk (2.39)

with a semi-definite positivity constraint on the central matrix. However,
the overall cost function is as follows:

min
||h||=1,λ

hH

{∑

k

GH
k UH

k R
+UkGk − λ

∑

k

GH
k BH

k BkGk

}
h (2.40)

The solution is again
h = Vmin(

∑
k G

H
k UH

k R
+UkGk,

∑
k G

H
k BH

k BkGk) corresponding to:
λ = λmin(

∑
k G

H
k UH

k R
+UkGk,

∑
k G

H
k BH

k BkGk). Asymptotically for a con-
sistent initialization, there is global convergence for h, as described previ-
ously, as well as for λ (→ 1). However, for a finite amount of data, and for
an arbitrary h,

λ = λmin(
∑

k G
H
k UH

k R
+UkGk,

∑
k G

H
k BH

k BkGk)

= min
ĥ

ĥH
∑

k G
H
k UH

k R
+UkGkĥ

ĥH
∑

k G
H
k BH

k BkGkĥ
≤ hH

∑
k G

H
k UH

k R
+UkGkh

hH
∑

k G
H
k BH

k BkGkh
= 1

(2.41)
which means that using λ = 1, as in the original PQML algorithm, system-
atically leads to an indefinite P(h). On the other hand, we can proceed
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with denoising per tone as in the case of DIQML such that the cost function
becomes:

min
||h||=1,λ

hH

{∑

k

GH
k UH

k R
+UkGk −

∑

k

λkG
H
k BH

k BkGk

}
h (2.42)

Where λk = λmin(UH
k R

+Uk,BH
k Bk), the minimal generalized eigenvalue of

UH
k R

+Uk and BH
k Bk and h is given by Vmin

(∑
k G

H
k UH

k R
+UkGk −∑k λkG

H
k

BH
k BkGk

)
. However, as we will see later, the asymptotic performance of

PQML with per tone denoisng or global denoising are equivalent. More-
over, for a finite amount of data, PQML with global denoising outperforms
that with per tone denoising.

2.6 Performance Analysis

2.6.1 Cramer-Rao Bound (CRB)

Before we proceed in the derivations of the performance of different algo-
rithms mentioned earlier we need to derive a reference or a lower bound for
the estimation process at our hands. It is well known that CRB is one of
the famous bounds used extensively by the statisticians as a lower bound
for any unbiased estimation process. To derive a formula for CRB for our
case we start with the derivation of the FIM per tone k for the deterministic
case then we can deduce the overall FIM. It is well known that FIM for such
a case is given by:

Jθkθk
= Euk/θk

(
∂Lnf(uk/θk)

∂θ∗k

)(
∂Lnf(uk/θk)

∂θ∗k

)H

(2.43)

Where θk =
[
xH

k hH
k

]H
Knowing that f(uk/θk) = 1

(πσ2
w,k

)p exp

(
− 1

σ2
w,k

||uk−
hkxk||2

)
, we get:

∂Lnf(uk/θk)

∂h∗
k

=
1

σ2
w,k

x∗
k (uk − xkhk) (2.44)

∂Lnf(uk/θk)

∂x∗
k

=
1

σ2
w,k

hH
k (uk − xkhk) (2.45)

Hence we get:

Jθkθk
= 1

σ2
w,k

[
hH

k

x∗
kIp

]
[hk xkIp]

Jθkθk
=

[
Jxkxk

Jxkhk

Jhkxk
Jhkhk

] (2.46)
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Using Schur’s complement we get:

Jhkhk
(θ) = Jhkhk

− Jhkxk
J−1
xkxk

Jxkhk

Jhkhk
(θ) = |xk|2

σ2
w,k

(
Ip − hkhH

k

||hk||2
)

Jhkhk
(θ) = |xk|2

σ2
w,k

P⊥
hk

(2.47)

As we mentioned earlier in section III, the overall FIM can be obtained from
the FIMs at different tones by:

Jhh =
∑

k

|xk|2
σ2

w,k

GH
k P

⊥
hk
Gk (2.48)

Hence, the deterministic CRB under the constraints that will be shown in
the next section can be obtained [51] as the pseudo inverse of Jhh:

CRBdet = J+
hh =

{∑

k

|xk|2
σ2

w,k

GH
k P

⊥
hk
Gk

}+

(2.49)

2.6.2 Fixing the ambiguity by constraints

The channel can only be estimated blindly up to a scale factor. To make
the estimation problem well posed, constraints on the channel need to be
introduced to fix its unidentifiable components. We compute the asymptotic
performance under the following constraints:

(1) a unit norm constraint:
||h||2 = 1 (2.50)

which allows to fix the norm of the channel to unity. This constraint
appears naturally when h is obtained as an eigenvector corresponds to
the minimum eigenvalue of the cost function Q in (2.8).

(2) An additional constraint is necessary to adjust the scalar ambiguity:

hoHhLin = hoHho (2.51)

Where ho denotes the true channel impulse response, h denotes the esti-
mated channel that we obtain from (2.8) subject to (2.50) and hLin = βh
stands for the estimated channel after imposing the linear constraint in
(2.51)with β designates the scalar ambiguity. The solution we get from
(2.51) is :

hLin =
hoHho

hoHh
h. (2.52)
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However, sometimes it is possible to find the optimal solution by min-
imizing (2.8) subject directly to the constraint in (2.51), hence we obtain:

min
hoHhLin=hoHho

hH Q h. Applying the Lagrange multiplier, the solution is:

hLin =
hoHho

hoHQ−1ho
Q−1ho (2.53)

When Q is singular like in the case of DIQML and PQML, the solution in
(2.53) can’t be applied and consequently we refer to the solution in (2.52).
The particular constraints in (2.50, 2.51) were chosen to characterize the
asymptotic performance because they yield the minimal MSE, E‖h−ho‖2,
for a minimal number of independent constraints [51].

2.6.3 Framework for performance analysis

The constraints (2.50), (2.51) are of the form K(h) = 0, K : RpL → R. We
denote by Mho the tangent subspace to the constraint set at the point ho:

Mho =

{
Z ∈ RpL ;

(
∂KH(ho)

∂h∗

)H

Z = 0

}
. (2.54)

For the constraints (2.50), (2.51), we get
∂KH(ho)

∂h∗ = ho For the asymptotic

performance, any constraint set that leads to the same tangent subspace
Mho is equivalent. Let Vo

R be a matrix whose columns form an orthonor-
mal basis of Mho

R
. Then locally we can write ∆h = Vo θ where θ are the

unconstrained parameter variations. A Taylor series expansion of F(h) at
ho in terms of θ gives

F(h) = F(ho)+θHVo H ∂F(ho)

∂h∗ +

[
∂F(ho)

∂h∗

]H

Voθ+θHVo H ∂
2F(ho)

∂h2
Voθ+O(||θ||3) .

(2.55)
Optimization of (2.55) up to second order w.r.t. θ gives for ∆h = Vo θ:

∆h = Vo

(
Vo H ∂

∂h∗

(
∂F(ho)

∂h∗

)H

Vo

)−1

Vo H ∂F(ho)

∂h∗ . (2.56)

For the constraints (2.50), (2.51) or equivalent, the columns of Vo form a
basis for the orthogonal complement of ho. We shall also require





J1 = E

(
∂F(ho)

∂h∗

)(
∂F(ho)

∂h∗

)H

J2 = E
∂

∂h∗

(
∂F(ho)

∂h∗

)H

.

(2.57)
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Note that if F would have been the log likelihood function, then J1 = −J2,
but this equality does not hold here. We now obtain





h̃ = Vo
(
Vo HJ2Vo

)−1 Vo H ∂F(ho)

∂h∗ + Op(
1
M )

C
h̃h̃

= Vo
(
Vo HJ2Vo

)−1 Vo HJ1Vo
(
Vo HJ2Vo

)−1 Vo H + o( 1
M )

C
h̃h̃

=
(
VoVo HJ2VoVo H

)+
J1

(
VoVo HJ2VoVo H

)+
+ o( 1

M )

C
h̃h̃

=
(
P⊥

hoJ2P
⊥
ho

)+
J1

(
P⊥

hoJ2P
⊥
ho

)+
(2.58)

where VoVo H = P⊥
F , F = ∂KH(ho)

∂h∗ , K(h) = hoHh − hoHho = 0. Hence,
F = ho and P⊥

F = P⊥
ho .

We know from (2.8) that the over all cost function can be written as:

F(h) = hH
[∑N−1

k=0 G
H
k Qk Gk

]
h .

Hence the gradient of the cost function is given by:
F ′

(h) = ∂F(h)
∂h∗ =

∑
k G

H
k QkGkh =

∑
k G

H
k Qkhk =

∑
k G

H
k F ′

k(hk), where

F ′

k(hk) is the gradient of the cost function per tone k, F(hk).
Thus the covariance matrix of the gradient is given by:

J1 =
∑

k

∑
nG

H
k E

{
Qkhkh

H
n Qn

}
Gn

=
∑

k

∑
nG

H
k E

{
F ′

k(hk)F
′H
n (hn)

}
Gn

=
∑

k

∑
nG

H
k J1,k,nGn

(2.59)

On the other hand, the hessian matrix of the cost function is given by:

J2 = E
{
F ′′

(h)
}

= E

{
∂F ′H(h)

∂h∗

}

=
∑

k G
H
k E {Qk}Gk

=
∑
Gk E

{
F ′′

k (hk)
}
GH

k

=
∑
GkJ2,kG

H
k

(2.60)

Where F ′′

k (hk) is the hessian of the cost function per tone k, Fk(hk). In
the sequel, we will focus on the derivation of J1 and J2 for different channel
estimation algorithms.

2.6.4 Performance Analysis of SSF

In [40] Ottersten et al derived formulas for J1 and J2 for signal subspace
fitting method within the frame work of sensor array processing. In their
derivation they considered the parameters to be estimated as real unknowns.
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In our case, the paramters to be estimated are the channel coefficients which
are complex. However, we can readily play around this problem by splitting
the complex coefficients into their real and imaginary parts and treat them
all as real parameters. Once we get J1 and J2 for the real case, we can
deduce their corresponding formulas for the complex case as we shall see
later. Moreover, we consider first that the channel is flat to be consistent
with [40] hence all the aforementioned tasks are done first at a tone level
then we exploit the relations deriverd in (2.59) and (2.60) to extend the
results to a frequency selective case. Hence, our goal is to derive J1,k and
J2,k for the channel coefficients per tone k by making an analogy with the
sensor array processing problem then J1 and J2 follows directly. Hence by
analogy with (50) and (51) in [40] we can write:

Jreal
2,k (i, j) = 2Re

[
tr
{

∆hH
k,jP

⊥
ho

k
∆hk,ih

o+
k VS,kWkV

H
S,kh

o+H
k

}]
(2.61)

Jreal
1,k (i, j) = 2σ2

w,kRe
[
tr
{

∆hH
k,jP

⊥
ho

k
∆hk,ih

o+
k VS,kWkΛS,kΛ̃

−2
S,kWkV

H
S,kh

o+H
k

}]

(2.62)

Where ∆hk,j =
∂ho

k

h̄k,j
, h̄k,j is the jth element of h̄k, h̄k = [horT

k ,hosT
k ]T is

a (2p × 1) element vector containing the real part hor
k = Re [ho

k], and the
imaginary part hos

k = Im [ho
k]. Finally, Wk is the weight used per tone k for

signal subspace fitting method.

Let C2(h
o
k) = ho+

k VS,kWkV
H
S,kh

o+H
k in Jreal

2,k and C1(h
o
k) = ho+

k VS,kWkΛS,k

Λ̃−2
S,kWkV

H
S,kh

o+H
k in Jreal

1,k , As we will see later, both C2(h
o
k) and C1(h

o
k) yield

real scalar values. Moreover, knowing that i and j varies between 1 and 2p

and let Pk(i, j) = 2Re
[
tr
{

∆hH
k,jP

⊥
ho

k
∆hk,i

}]
then the matrix Pk(h

o
k) has 4

states as follows:

i ≤ p , j ≤ p Prr
k (ho

k) = 2
||ho

k
||2
[
||ho

k||2Ip − hor
k horT

k − hos
k hosT

k

]

i > p , j ≤ p Psr
k (ho

k) = 2
||ho

k
||2
[
hor

k hosT
k − hos

k horT
k

]

i ≤ p , j > p Prs
k (ho

k) = 2
||ho

k
||2
[
hos

k horT
k − hor

k hosT
k

]

i > p , j > p Pss
k (ho

k) = 2
||ho

k
||2
[
||ho

k||2Ip − hor
k horT

k − hos
k hosT

k

]

(2.63)
Now to transform our formulas from real to complex we exploit the following
relationship:
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Pcomplex
k (ho

k) = 1
4 [Ip jIp]

[
Prr

k (ho
k) Prs

k (ho
k)

Psr
k (ho

k) Pss
k (ho

k)

] [
Ip

−jIp

]

Pcomplex
k (ho

k) =
(
Ip − ho

k
hoH

k

||ho
k
||2
)

Pcomplex
k (ho

k) = P⊥
ho

k

(2.64)

On the other hand, we know that VS,k =
ho

k

||ho
k
|| , ΛS,k = λS,k = |xk|2||ho

k||2+
σ2

w,k, Λ̃S,k = λS,k − σ2
w,k = |xk|2||ho

k||2. Therefore, we are now ready to con-
clude J2 and J1 for all versions of SSF methods namely, UnWeighted Signal
Subspace Fitting (UWSSF), Weighted Signal Subspace Fitting (WSSF), Op-
timally Weighted Signal Subspace Fitting (OWSSF).

2.6.4.1 Case of UWSSF

In this method, the weighting matrix Wk is scalar and it is replaced by a

unity 1, C2(h
o
k) = 1

||ho
k
||2 and C1(h

o
k) =

|xk|2||ho
k
||2+σ2

w,k

|xk|4||ho
k
||6 . Making use of (2.61),

(2.62), (2.64) and the above mentioned relations, we conclude that:

JUWSSF
2 =

∑

k

1

||ho
k||2

GH
k P

⊥
ho

k
Gk (2.65)

JUWSSF
1 =

∑

k

(|xk|2||ho
k||2 + σ2

w,k)σ
2
w,k

|xk|4||ho
k||6

GH
k P

⊥
ho

k
Gk (2.66)

Hence, the error covariance matrix of UWSSF is given by:

C
h̃

=
(
P⊥

hoJUWSSF
2 P⊥

ho

)+
JUWSSF

1

(
P⊥

hoJUWSSF
2 P⊥

ho

)+
C

h̃
= JUWSSF+

2 JUWSSF
1 J+UWSSF

2
(2.67)

Where we have used the fact that in this case
(
P⊥

hoJUWSSF
2 P⊥

ho

)
=

JUWSSF
2 . This is obvious since JUWSSF

2 has already a singularity in the
direction ho. This fact will be reused in the sequel for both WSSF and
OWSSF.

2.6.4.2 Case of WSSF

The scalar weight is given by [40]: Wk = Λ̃S,k = ΛS,k−σ2
w,kI = λS,k−σ2

w,k =

|xk|2||ho
k||2, C2(h

o
k) = |xk|2 and C1(h

o
k) =

|xk|2||ho
k
||2+σ2

w,k

||ho
k
||2 . Again making use

of (2.61), (2.62), (2.64) and the above mentioned relations, we conclude that:
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JWSSF
2 =

∑

k

|xk|2GH
k P

⊥
ho

k
Gk (2.68)

JWSSF
1 =

∑
k

(|xk|2||ho
k
||2+σ2

w,k
)σ2

w,k

||ho
k
||2 GH

k P
⊥
ho

k
Gk

= σ2
wJ2 + σ4

w

∑
k

1
||ho

k
||2G

H
k P

⊥
ho

k
Gk

= σ2
wJ2 + σ4

w J
′

(2.69)

Where in the last two equalities in (2.69) we have assumed that the noise
is temporally white so σ2

w,k = σ2
w ∀ k. Hence, the error covariance matrix

of WSSF is given by:

C
h̃

=
(
P⊥

hoJ2P
⊥
ho

)+
J1

(
P⊥

hoJ2P
⊥
ho

)+
C

h̃
= J+

2 J1 J
+
2

C
h̃

= J+
2 (σ2

wJ2 + σ4
w J

′

)J+
2

C
h̃

= σ2
wJ

+
2 + σ4

wJ
+
2 J

′

J+
2

= CRB + σ4
wJ

+
2 J

′

J+
2

(2.70)

However, in [40] it was proved that SSF with this weighting achieves
asymptotically the same performance as DML. Moreover, it is that at very
high SNR, the second term in (2.70) is negligible compared to the first term,
hence CWSSF

h̃
−→ CRBdet. This means that WSSF as well as DML achieves

asymptotically CRBdet.

2.6.4.3 Case of OWSSF

The scalar weight is given by [40]: Wk = Λ̃2
S,kΛ

−1
S,k = λ̃2

S,kλ
−1
S,k =

|xk|4||ho
k
||4

|xk|2||ho
k
||2+σ2

w,k

,

C2(h
o
k) =

|xk|4||ho
k
||2

|xk|2||ho
k
||2+σ2

w,k

and C1(h
o
k) =

|xk|4||ho
k
||2

|xk|2||ho
k
||2+σ2

w,k

. Note that C1(h
o
k) =

C2(h
o
k). Again making use of (2.61), (2.62), (2.64) and the above mentioned

relations and on the top of that we assume that the noise is temporally
white, we conclude that:

JOWSSF
2 =

∑

k

|xk|4||ho
k||2

|xk|2||ho
k||2 + σ2

w

GH
k P

⊥
ho

k
Gk (2.71)

JOWSSF
1 =

∑

k

|xk|4||ho
k||2σ2

w

|xk|2||ho
k||2 + σ2

w

GH
k P

⊥
ho

k
Gk (2.72)
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It is obvious that JOWSSF
1 = σ2

wJ
OWSSF
2 , hence,

C
h̃

= σ2
wJ

+
2

= σ2
w

(∑
k

|xk|4||ho
k
||2

|xk|2||ho
k
||2+σ2

w
GH

k P
⊥
ho

k
Gk

)+ (2.73)

We have used here the fact that P⊥
hoJOWSSF

2 P⊥
ho = JOWSSF

2 . This relation
is also true for DIQML and PQML as we will see later.
Remark: It is worthy to note that with this scalar weighting, SSF attains the
stochastic CRB [40]. However, at very high SNR the term

(
|xk|2||ho

k||2 + σ2
w

)
→

|xk|2||ho
k||2 in (2.73) hence, COWSSF

h̃
→ CRBdet = CRBsto.

Another important remark is that for flat fading channel (single tap
channel) all SSF methods (UWSSF, WSSF and OWSSF) yield the same
performance as shown below:

C
h̃

= σ2
w

( |xk|2||ho
k||2 + σ2

w

|xk|4||ho
k||2

GH
k P

⊥
ho

k
Gk

)+

(2.74)

This means that the importance of weighting starts to appear once we have
frequency selective fading channel.

2.6.5 Performance Analysis of SRM

The performance of SRM which is sometimes called cross relation has been
investigated in [52]. The methodology of that analysis is similar to the case
of subspace fitting presented in [40] since it is based on the asymptotic co-
variance matrix of the eigenvectors of RY Y . However, as we can readily
notice from the simulation section in [52], the analytical performance anal-
ysis provided over there is only valid for moderate and high SNR. However,
at low SNR where the simulation plots start to level off due to the constraint
used to fix the scalar ambiguity, the analytical ones don’t level off at all and
consequently, it is no more valid at that SNR range. The shortcomings of
the previously mentioned analysis encourage us to proceed in our work in
order to provide a different way of performance analysis which is much more
simpler and on the top of that which is valid over the the whole SNR range.
To proceed with our analysis we start with the overall cost function of SRM
which is given by (2.23):

min
h

hH

(∑

k

GH
k E

{
UH

k Uk

}
Gk

)
h (2.75)

Again, we are interested in computing J1 and J2 based on (2.59) and (2.60)
respectively. Hence, J2 =

∑
k G

H
k J2,kGk and J2,k = EQk = EUH

k Uk hence,
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E
{
UH

k Uk

}
is required to be computed. J1 =

∑
k

∑
nG

H
k J1,k,nGn hence,

J1,k,n = E
{
Qkh

o
kh

oH
n Qn

}
is also required. To compute E

{
UH

k Uk

}
, we will

start with E
{
hH

k UH
k Ukhk

}
.

= E
{
uH

k h⊥H
k h⊥

k uk

}

= E tr
{
h⊥H

k h⊥
k uku

H
k

}

= E tr
{
h⊥H

k h⊥
k (ho

kxk + wk)
(
x∗

kh
oH
k + wH

k

)}

= |xk|2tr
{
h⊥

k ho
kh

oH
k h⊥H

k

}
+ σ2

wtr
{
h⊥H

k h⊥
k

}

= |xk|2hH
k

{
ho⊥H

k ho⊥
k

}
hk + σ2

wα||hk||2
= |xk|2hH

k D
(1)
k hk + σ2

wα||hk||2

(2.76)

Where α = 2 − δp,2. Therefore, J2,k = |xk|2D(1)
k + ασ2

wI and consequently:

JSRM
2 =

∑

k

GH
k

(
|xk|2D(1)

k + ασ2
wI
)
Gk (2.77)

It is worthy to note here that unlike different versions of SSF, P⊥
hoJSRM

2 P⊥
ho 6=

JSRM
2 . Now to compute E

{
Qkh

o
kh
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}
we will start with E
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Substituting uk by hkxk + wk and let Ck = h⊥H
k ho⊥

k , Cn = ho⊥H
n h⊥

n and
knowing that ho⊥

k ho
k = 0 then (2.78) yields:
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(2.79)

Knowing that the noise is temporally-spatially uncorrelated, we have
Ewkw

H
n = 0 (k 6= n), Ewkw

H
n = σ2

wI (k = n) then: P1 vainshes for k 6= n,
while for k = n it becomes as follows:
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P2 is developed as follows using the formula of the mean of quartic forms
of a Guassian variable [53]:
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On the other hand, P3 and P4 vanishes since the 3rd order moment of the

Gaussian noise is null. Thus, E
{
hH

k Qkh
o
kh

oH
n Qnhn

}
yields: |xk|2σ2
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Consequently, J1,k,n = |xk|2σ2
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1 can be written as follows:
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(2.82)

2.6.6 Performance Analysis of DIQML

In [28] the performance of DIQML for FIR channel is derived, hence, we
can easily deduce the performance for CP (SCCP or OFDM) channel. The
error covariance matrix for channel impulse response is given by (36) in [28]
as follows:

CDIQML

h̃h̃
= CRB + CRB(B − BhohoHB

hoHBho
)CRB (2.83)

B is defined similarly as B̂ in the DIQML section with h being replaced by
ho. Substitute (2.49) in (2.83) and use (2.58) we get:

JDIQML
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JDIQML,Global
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wJ
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2 + σ4
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hoHBho
) (2.85)

On the other hand, for denoising per tone we start with J2,k and J1,k

which can be deduced directly from (36) in [28] for the case of one channel
tap. Afterwards, J2 and J1 will be concluded. Hence from (2.83) we get:
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o
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Where from (2.49) CRBk =
σ2

w,k

|xk|2P
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ho
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.

Therefore, J2,k = |xk|2P⊥
ho

k
and consequently J2 is the same as for global

denoising. However, for J1 we have:
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2.6.7 Performance Analysis of PQML

In [28] the performance of PQML for FIR channel is derived. By analogy,
from (37) in [28] we can deduce the performance for CP (SCCP or OFDM)
channel as follows:

JPQML
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k

|xk|2GH
k P
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Gk (2.88)
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k. Hence D
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, where J
′

has been

stated earlier in the WSSF case. It is worthy to note here that for spatio-
temporally white noise unlike DIQML both versions of PQML (global de-
noising and per tone denoising) attain the same performance. Now we pro-
ceed with the error covariance matrix we get:
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Moreover, comparing (2.88) and (2.49) we have CRB = σ2
wJ

PQML+

2 hence,

CPQML

h̃
= CRB + CRB J

′

CRB = CWSSF
h̃

= CDML
h̃

(2.91)

We conclude that asymptotically both PQML and WSSF attains the same
performance as DML. Another important remark is that DML doesn’t attain
CRB even asymptotically (in the number of data). However, as SNR gets
higher and higher then CRB J

′

CRB, the second term in (2.91) which
is proportional to σ4

w becomes negligible compared to the first term and
consequently CDML

h̃
−→ CRB. Moreover, it should be noted that DML

and all its approximations has an important drawback. Since the symbols
are considered as unknown parameters, it follows that the dimension of the
parameter vector grows without bound with increasing N or M. For this
reason consistent estimation of all model parameters is impossible. More
precisely, the DML estimate of h is consistent, whereas the estimate of A is
inconsistent. To conclude the analysis part, we show in Table 1 J2 and J1

of all algorithms.
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Table 2.1: A summary of performance analysis of all algorithms

2.7 Simulations

In all the simulations we run in the sequel, except when otherwise stated,
we use the fading channel shown below which is composed of five taps and
corresponds to 3 antennas at the receiver. On the other hand, each (OFDM
or single-carrier) CP block transmission system is composed of either 128
or 32 tones and the symbols are drawn from a 16 QAM constellation. As

for the analytical NMSE, it is computed as follows: NMSE =
tr(C

h̃
)

||ho||2 while

that of simulation is given by: NMSE = ||ho−h||2
||ho||2 . All the algorithms are

initialized by SRM where the scalar ambiguity that results from the SRM is
fixed using the solution stated in (2.52). However, in what follows the scalar
ambiguity of all versions of SSF is fixed using the solution in (2.53) while for
DIQML and PQML we use the solution in (2.52) because Q is singular. On
the other hand, when M receiving blocks are used at the receiver to estimate
the channel then the analytical formulas of both CRB and C

h̃
are divided

by M.
We start the simulation part by plotting in Fig. 2.1 the analytical NMSE
of different SSF algorithms versus the SNR. The analytical NMSE is com-
puted as shown above where C

h̃
for USSF, WSSF and OWSSF algorithms

are obtained from (2.67, 2.70 and 2.73) respectively. It can be observed
that UWSSF attains inferior performance compared to the other versions
of SSF. However, OWSSF outperforms WSSF algorithm only at very low
SNR, while both attain CRBdet at high SNR. In Fig. 2.2 we show how the
simulation results (markers) match the analytical ones (solid lines) for dif-
ferent SSF. In this case we run 500 Monte-Carlo simulations with different
noise realizations. Knowing that the analytical results are valid only asymp-
totically, hence in the simulation we consider the channel to be fixed over
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10 transmission blocks in order to be able to use a large data amount. It
is clear from the Fig. that the simulated and analytical results for differ-
ent versions of SSF are congruent except at low SNR where it seems we
need to gather more data amount. In Fig. 2.3 we show the variation of
NMSE of different SSF algorithms versus the number of iterations at SNR
= 10 dB. We use 100 Rx blocks to estimate the channel and the results
are averaged over 500 Monte-Carlo simulations. We can easily notice from
the Fig. that the performance of UWSSF is inferior to that of SRM while
both WSSF and OWSSF achieve the same performance and it is superior
to that of SRM. However, for all SSF algorithms only one or two iterations
are required for convergence to occur. Moreover, the performance of the
simulation is only fraction of dB away from that of the analytical one. In
Fig. 2.4 we show the variation of NMSE of different versions of DIQML and
PQML algorithms versus the number of iterations at SNR = 10 dB. We use
10 Rx blocks to estimate the channel and the results are averaged over 100
Monte-Carlo simulations. Concerning DIQML, it is obvious that DIQML
with denoising per tone outperforms DIQML with global denoising as ex-
plained previously. However for PQML with a finite amount of data the
Fig. shows that PQML with global denoising outperforms that with denois-
ing per tone. On the other hand, it is clear that one or two iterations are
sufficient for both DIQML and PQML to converge to a position just frac-
tion of dB away from the analytical performance. Moreover, since PQML
attains asymptotically the same performance as DML we label the analyt-
ical result for PQML as DML. In Fig. 2.5 we repeat the same simulation
but this time we increase the number of transmission blocks over which the
channel considered fixed to 100. Doing so, we note that both DIQML and
PQML attain exactly their corresponding analytical performance with one
iteration. Moreover, It is worthy to note that the analytical performance of
DIQML with per tone denoising as well as that of both versions of PQML
attain that of the DML. To shed light on the superiority of denoising per
tone over the global denoising for DIQML we show in Fig. 2.6 the simulated
NMSE versus SNR for both versions of DIQML and PQML where the noise
is temporally colored spatially white. The results are averaged over 100
Monte-Carlo simulations where in each simulation we use different Rayleigh
channel realization. We can notice from the Figure how DIQML with per
tone denoising outperforms considerably DIQML with global denoising at
moderate SNR. Moreover, it is also clear that the performance of DIQML
with per tone denoising is equivalent to that of PQML and once again we
notice that there is no difference in this case between PQML with global or
per tone denoising. In Fig. 2.7 we show how the analytical performance of
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SRM (solid line) matches the simulation (markers) along the whole range
of SNR. It should be noted here that the scalar ambiguities of SRM and
IQML are fixed using the solution in (2.53) and as a consequence of that the
NMSE levels off at low SNR. We average the result over 100 Monte-Carlo
simulation where in each one we use different Rayleigh channel realization.
We can also observe that SRM outperforms considerably IQML at low and
moderate SNR while their performance are congruent at very high SNR.

h =




0.814 + 1.096i −1.027 − 0.389i −0.257 − 0.832i 1.165 + 0.696i 0.486 − 0.018i
−0.713 + 0.659i −1.178 − 0.057i −0.044 + 1.355i −0.802 − 0.444i −0.445 + 0.187i
0.966 + 0.103i 0.478 + 0.724i −0.943 + 0.645i −1.202 + 0.321i 1.523 + 0.244i




(2.92)
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Figure 2.1: Analytical performance for different SSF algorithms.
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Chapter 3

Spatio-Temporal Sample
Covariance Matrix
Enhancement

Multichannel aspect allows the introduction of blind channel estimation
techniques. Most existing such techniques for frequency-selective channels
are quite complex. In this chapter, we consider the blind channel estimation
problem for Single Input Multi Output (SIMO) cyclic prefix (CP) systems.
We have shown [39] that blind channel estimation becomes computationally
much more attractive and more straight forward to analyze in terms of per-
formance in CP systems. Inspired by the iterative sample covariance matrix
(SCM) structure enhancement techniques of Cadzow and others [31], we de-
velop in this chapter an algorithm to structure the sample block circulant
covariance matrix by enforcing two essential properties: rank and FIR struc-
ture. These two properties are exhibited by the true covariance matrix in the
case of FIR SIMO channels with spatially white noise and CP transmission.
The novel enhancement procedure leads to an interesting enhanced SCM,
even for the single CP symbol case. A simulation study for some classical
channel estimators that depend on the SCM (with and without structuring)
is presented, indicating that structuring allows for a considerable perfor-
mance gain in terms of the channel normalized mean square error (NMSE)
over a wide SNR range.

45
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3.1 Introduction

A wealth of blind channel estimation techniques have been introduced for
spatio-temporal channels over the past decade, based on the singularity of
the received signal power spectral density matrix [4]. This singularity can
be exploited to separate the white noise contribution. The main problem
characteristic in fact that allows channel identifiability is the minimum phase
characteristic of the Single-Input Multiple-Output (SIMO) or MIMO matrix
channel transfer function of the spatio-temporal channel. Spatio-temporal
channels arise in mobile communications when multiple antennas or polar-
izations or beams are used at the receiver. Physical multi-channels can also
arise in xDSL systems when the receiver has access to a complete cable
bundle. Other problem formulations that lead to multi-channel models are
the use of oversampling at the receiver or the decoupling of inphase and in-
quadrature components when real symbols get modulated or the reception of
multiple signal copies in ARQ protocols. A variety of blind symbol/channel
estimation strategies can be developed depending on the amount of a pri-
ori information that gets formulated on the unknown symbols. In general,
the less structure that gets exploited about the symbol alphabet, the less
problems that tend to be encountered with local minima. Of course, more
estimation accuracy is obtained by exploiting more information. A reason-
able strategy is hence to exploit a progressive range of algorithms exploiting
increasing a priori information levels. The algorithm at the next level can
be initialized with the estimate obtained at the previous level of a priori
information. The memory introduced by a convolutive channel leads to
the requirement of having to treat all available data in a contiguous ob-
servation interval in one shot if no suboptimality is allowed. This leads to
problem formulations with large convolution matrices, large covariance ma-
trices and high complexity. Attempts have been made by our own group
to introduce asymptotic approximations, by approximating large Toeplitz
convolution matrices by circulant matrices, to allow transformation to the
frequency domain, or by others by introducing approximate DFT opera-
tions. Cyclic prefixes have been introduced in a number of existing systems
such as OFDM systems for ADSL and wireless LANs. Recently, Orthog-
onal Frequency Division Multiple Access (OFDMA) has been adopted as
a multiple access scheme for the Frequency Domain Duplexing Down-Link
(FDD-DL)in LTE (Long Term Evolution) systems. The introduction of a
cyclic prefix renders the transformation to the frequency domain clean and
exact even for a finite data length. The resulting algorithmic simplifications
will be detailed for a number of classical blind channel estimation methods.
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Furthermore, the same framework can be used to analyze the performance of
the algorithms and the algorithmic simplifications also translate into much
simplified performance expressions, which allow a direct and insightful ana-
lytical performance comparison between a number of algorithms.

This chapter is organized as follows. Section 2 starts with the description
of the basic baseband SIMO-cyclic prefix model. In section 3 we develope
a unified framework for cyclic prefix system channel estimators. Section 4
defines some classical blind channel estimators within the framework intro-
duced in section 3. The algorithm for structuring the covariance matrix is
developed in section 5. In section 6, we provide the experimental results
and finally a conclusion is drawn in Section 7.

3.2 SIMO Cyclic Prefix Block TX Systems

We are using the same model used in chapter 2, section 2.2.

3.3 Frequency domain Framework for CIR Esti-
mation

In what follows, we shall see that for various methods, we get a cost function
or information at each tone for the channel response at that tone, and to
get the cost function or information for the temporal channel response, it
suffices to sum up the cost functions or informations over the tones after
transforming back to the time domain. Now, if we follow the same steps
mentioned in chapter 2, section 2.3 we will end up again with 2.8 which we
will restate here:

F(h) = hH

[
N−1∑

k=0

GH
k Qk Gk

]
h = hH Q h (3.1)

and similarly for Fisher information matrices (FIM) as we will see in the
sequel. So in what follows, we shall concentrate on the cost function for a
given tone.

3.4 Blind SIMO Channel Estimation

3.4.1 Subchannel Response Matching (SRM)

This algorithm has been elaborated in detail in chapter 2, section 2.5.2. it
is based on a linear parametrization of the noise subspace in terms of the
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channel coefficients [54] so that P⊥
hk

= Ph⊥H
k

where h⊥
k is given by 2.10.

In the noiseless case, uk = hkxk and we have h⊥
k uk = Ukhk = 0. Based

on this relation the channel at tone k can be uniquely determined up to a
scale factor [47],[42], as the unique right singular vector of Uk corresponding
to the singular value zero. When noise is present, Ukhk 6= 0 and the SRM
criterion is solved in the least-squares sense ||h⊥

k uk||22 = tr{h⊥
k uku

H
k h⊥H

k }.
By the law of large numbers, asymptotically this criterion can be replaced
by its expected value: tr{h⊥

k Sukuk
h⊥H

k } where Sukuk
= Euku

H
k . Practi-

cally, Sukuk
is not available so it is replaced by the sampled spectrum per

each tone Ŝukuk
which is computed directly from the Fourier transformed

version of the received data as we will show in the next section. More-
over, the SRM criterion can be written in the form shown in (2.8) where
Qk =

∑p
i=1DiŜ

∗
ukuk

DH
i where Di+1 = CDiC.

D1 =




0 1 0 · · ·
−1 0 · · ·
0

...
. . .

...



. (3.2)

C =




0 · · · 0 1
1 0 · · · 0

0
. . .

...
... 0 1 0



. (3.3)

Then, we attempt to minimize the sum of the SRM criteria (cost func-
tions) over all tones jointly to obtain an estimate of the channel impulse
response h. The SRM cost function is shown below:

min
h

hH

[
N−1∑

k=0

GH
k

{
p∑

i=1

DiŜ
∗
ukuk

DH
i

}
Gk

]
h (3.4)

We denote the matrix between the braces in (3.4) by QSRM , it has the
size of pL× pL. The estimated channel impulse response ĥSRM that is ob-
tained by solving (3.4) is the eigen vector that corresponds to the minimum
eigen value of QSRM . This solution has a scalar ambiguity that can be
solved by forcing a least square constraint as follows: min

α
||ho − αĥSRM ||2.

This yields the following solution:

ˆ̂
hSRM =

ĥH
SRMho

||ĥSRM ||2
ĥSRM (3.5)
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3.4.2 Noise Subspace Fitting (NSF)

The sampled spectrum per each tone Ŝukuk
can be decomposed into signal

and noise subspace contributions:

Ŝukuk
= Ŝuk,S + Ŝuk,N
= Ês,kΛ̂s,kÊ

H
s,k + Ên,kΛ̂n,kÊ

H
n,k

(3.6)

The basic idea of the NSF is to fit the estimated noise subspace that
we obtain from the sampled spectrum to the true noise subspace which is
spanned by the columns of h⊥H

k .

min
hk,T

||h⊥H
k − Ên,kT ||F (3.7)

where ||X||F = tr{XHX} and T is a square transformation matrix. This
criterion differs from the original subspace fitting strategy proposed in [55],
which would propose min

hk,T
||Ên,k − h⊥H

k T ||F as criterion. We propose (3.7)

because it leads to a simpler optimization problem. Both approaches can be
made to be equivalent by the introduction of column space weighting. The
cost function in (3.7) is separable. In particular, it is quadratic in T. Mini-
mization w.r.t. T leads to T = ÊH

n,kh
⊥H
k and h⊥H

k −Ên,kÊ
H
n,kh

⊥
k = P⊥

Ên,k
h⊥H

k

where P⊥
Ên,k

= I−PÊn,k
= PÊs,k

and PÊn,k
, PÊs,k

denote respectively the pro-

jection matrix on the noise subspace (Ên,k) and the signal subspace (Ês,k).

Hence,

min
hk,T

||h⊥H
k − Ên,kT ||F = min

hk

||PÊs,k
h⊥H

k ||F
= min

hk

tr{h⊥
k Ês,kÊ

H
s,kh

⊥H
k } (3.8)

Similar to the case of SRM, the NSF criterion can be written in the form
shown in (2.8) where Qk =

∑p
i=1DiÊs,kÊ

H
s,kD

H
i and Di is the same as for

the SRM criterion. Again, we attempt to minimize the NSF jointly over
all the tones subject to the least square constraint to avoid introducing N
constraints and to exploit the correlation that exists between the different
tones. Therefore, the NSF cost functions takes the following form:

min
h

hH

[
N−1∑

k=0

GH
k

{
p∑

i=1

DiÊs,kÊ
H
s,kD

H
i

}
Gk

]
h (3.9)
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Following the same discussion as in case of SRM we get the following
solution:

ˆ̂
hNSF =

ĥH
NSFho

||ĥNSF ||2
ĥNSF (3.10)

The substanial computational power saving offered by our farmework
namely, working per tones instead of working in the time domain, is eluci-
dated by remarking that we perform Eigen Value Decomposition (EVD) of
N matrices Ŝukuk

each of size (p× p), while working in the time domain re-
quires the EVD of a huge matrix ŜY Y of size (pN × pN). Knowing that the
number of operations required to perform the EVD of a matrix is propor-
tional to the cubic of its size and the number of tones N for some systems
(eg. LTE downlink) may reach to 2048, then the great advantage of our
framework in terms of computational power saving becomes evident.

3.5 Block Toeplitz Covariance Matrix Enhance-
ment

Here we go back to sample covariance refinements suggested by Cadzow in
the eighties [31] and which we tried to exploit to enhance the dereverberation
of the acoustic channel [30]. The idea is to iteratively reinforce several
structural properties, the reinforcement of which consists of a projection
onto a convex set. The iterations then converge to the joint reinforcement
of all properties. Theoretically, the matrix valued vector signal spectrum is
of the form

Suu(z) = h(z)Sxx(z)h†(z) + Sww(z) (3.11)

where .† denotes paraconjugate which is defined as h†(z) = h(1/z∗)H and
Sww(z) = σ2

w I is the white noise spectrum. Saking for the simplicity of
notations, we omit the index k in Suu. The signal part of the spectrum,
h(z)Sxx(z)h†(z) is singular, not because of spectral poverty as in the SISO
case, but because of limited rank in the matrix dimension. In the SISO
case, a stationary signal covariance matrix can only be singular if the signal
consists of a number of (complex) sinusoids, with their number being smaller
than the covariance matrix dimension. Singularity in the SIMO case has
nothing to do with spectral poverty but with matrix singularity of the matrix
spectrum at every frequency.

Inspired by [31], (3.11) suggests the following procedure. First we start
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with the sample spectrum at each tone:

Ŝuu(zn) = 1
M

∑M
m=1 un[m]uH

n [m] ,

n = 0, . . . , N − 1
(3.12)

where M is the number of OFDM symbols over which we compute the sample
spectrum and zn = ej2πn/N , with the following properties: Ŝ†

u(zn) = ŜH
u (zn)

(Hermitian transpose).

Now, at each frequency bin n, Suu(zn) is of the form

Suu(zn) = Su,S(zn) + Su,N (zn)

= h(zn)Sx(zn)h†(zn) + σ2
w Ip

= Vmax,n (λmax,n − σ2
w)V H

max,n + σ2
w Ip

(3.13)

where Su,S(zn), Su,N (zn) are the signal and noise components of Su(zn), and
λmax,n and Vmax,n are its maximum eigenvalue and corresponding eigenvec-

tor. Now, the Ŝu(zn) can be forced to the closest (in Frobenius norm) ma-
trix of the form in (3.13) by computing its spatial eigen decomposition. Let
λ̂1,n ≥ λ̂2,n ≥ · · · ≥ λ̂p,n be its eigenvalues, hence λ̂max,n = λ̂1,n, V̂max,n =

V̂1,n. Then we get Ŝu(zn) = Ŝu,S(zn)+Ŝu,N (zn) = V̂max,n (λ̂max,n−σ̂2
v) V̂

H
max,n+

σ̂2
w Ip with σ̂2

w = 1
N(p−1)

∑N−1
n=0

∑p
i=2 λ̂i,n due to the spatio-temporal white

noise assumption. Note that in fact at every frequency bin only λmax,n and

Vmax,n need to be computed since
∑M

i=2 λ̂i,n = tr{Ŝu(zn)} − λ̂max,n. Since

the noise spectrum Ŝu,N (zn) = σ̂2
w IM is fairly simple, there is no further

structure to be imposed. The signal spectrum Ŝu,S(zn) = V̂max,n (λ̂max,n −
σ̂2

w) V̂ H
max,n on the other hand, it is supposed to be spectrum of a FIR correla-

tion sequence. This FIR characteristic can be imposed by windowing in the
time domain. The resulting signal spectrum Ŝu,S(zn) then undergoes IFFT
to obtain the corresponding matrix correlation sequence. The frequency-
wise rank structure enforcement will have destroyed the FIR character of
the correlation sequence, which can then simply be enforced in the time
domain by proper windowing (without forgetting the symmetry structure of
the first block column of the block circulant matrix). The operations of eigen
structure enforcement in frequency domain and FIR structure enforcement
in the time domain can then be iterated untill convergence. Typically a few
iterations suffice. We are now ready to state the following iterative process:

1. Compute the matrix spectrum Ŝu(zn) at each frequency bin as illus-
trated in (3.12).
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2. Compute the eigen decomposition of the spectrum Ŝu(zn) at each
frequency bin n = 0, 1, . . . , N − 1. Determine the noise variance
σ̂2

w = 1
N(p−1)

∑N−1
n=0

∑p
i=2 λ̂i,n and the signal part of the spectrum

Ŝu,S(zn) = V̂max,n (λ̂max,n − σ̂2
w) V̂ H

max,n.

3. Compute the channel correlations:




r̂u(0)
r̂u(1)

...
r̂H
u (1)


 =

1

N
(F ∗

N⊗IM )




Ŝu(z0)

Ŝu(z1)
...

Ŝu(zN−1)


 (3.14)

Put the correlations outside the range n ∈ {0, 1, . . . , L−1} to zero to
obtain the Hermitian of the following block row
[r̂u(0) r̂H

u (1) · · · r̂H
u (L−1) 0 · · · 0 r̂u(L−1) · · · r̂u(1)].

4. Compute the spectrum of the thus windowed correlation sequence




Ŝu(z0)

Ŝu(z1)
...

Ŝu(zN−1)


 = (FN⊗Ip)




r̂u(0)
r̂u(1)

...
r̂H
u (1)


 (3.15)

Go back to step 2 untill convergence. Note that the IFFTs and FFTs in
(3.14) and (3.15) can be carried out efficiently in Matlab by reshaping
the N × 1 vectors of p× p blocks into N × p2 matrices.

After convergence, we make use of the refined spectrum we get at step (4) to
get an enhanced channel impulse response estimation within the framework
described in the previous section.

3.6 Experimental Results

We run our simulations within the framework of a SIMO-OFDM system
where each OFDM symbol is composed of 128 tones. The performance of
the different deterministic channel estimators (structured and non struc-
tured) are evaluated by means of the NMSE vs. SNR. The NMSE is defined

as ||h0−ĥ||2
||ho||2 and the SNR is defined as

∑N−1
k=0 ||hk||2σ2

xk

σ2
wpN

. The symbols are drawn

from QPSK constellation and the NMSE is averaged over 10000 Monte-Carlo
runs of the noise, symbols and the channel. We consider Rayleigh fading
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channel realizations where each one is composed of five i.i.d. channel coef-
ficients. It is worthy to note that for SNR less than 20 dB the algorithm
always converges typically after three or four iterations while at higher SNR
the convergence is guaranteed at no more than ten iterations. However, we
consider that convergence is achieved when the following condition is ful-

filled:
σ̂2

w,i−σ̂2
w,i−1

σ̂2
w,i

≤ 0.1 where i denotes the number of the current iteration

at which the convergence is checked. Figure 3.1 shows the performance of
both SRM and NSF with and without structuring where three antennas
have been utilized at the receiver and the sampled spectrum has been com-
puted from just one OFDM symbol. We remark that SRM yields better
performance than NSF. This is due to the fact that when we work with one
OFDM symbol then SRM is a weighted version of NSF with the weight be-
ing the largest eigenvalue of the sampled spectrum at each tone. However,
when structuring is used, both estimators show at least 3 dB gain even at
very high SNR. It is also obvious that after structuring the performance of
both estimators is congruent whatever the SNR is. To elaborate more the
advantage of our structuring algorithm we plot in Figure 3.2 the BER ver-
sus SNR where we have used the estimated channels by various algorithms
to equalize the received signal using MMSE equalizer and a hard decision
decoding to extract the received bits. This result shows that our algorithm
outperforms the non-structured ones by more than 2 dB at BER = 10−2.

3.7 Conclusions

To sum up, we have shown in this chapter the capability to exploit the classi-
cal blind deterministic channel estimators with a great computational power
saving within the cyclic prefix systems. This is accomplished by minimizing
the sum of the cost functions at different tones instead of minimizing the
ordinary cost function in the time domain. Moreover, we propose a spatio-
temporal based algorithm to enhance the sample covariance matrix upon
which a class of well-known estimators rely. The enhancement is achieved
by enforcing both the rank and the FIR structure properties. The numerical
simulations show that the proposed algorithm has the potential to provide
a 5 dB gain (in terms of NMSE) at low to moderate SNR while it still has
the capability to provide a noticeable gain at high SNR.
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Figure 3.1: The NMSE versus SNR for structured and non-structured esti-
mators.
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Figure 3.2: The BER versus SNR for structured and non-structured estima-
tors.



Chapter 4

Variational Bayesian Blind
and Semi-blind Channel
Estimation

Blind and semi-blind channel estimation is a topic that enjoyed explosive de-
velopments throughout the nineties, and then came to a standstill, probably
because of perceived unsatisfactory performance. Blind channel estimation
techniques were developed and usually evaluated for a given channel realiza-
tion, i.e. with a deterministic channel model. Such blind channel estimates,
especially those based on subspaces in the data, are often only partial and
ill-conditioned. On the other hand, in wireless communications the channel
is typically modeled as Rayleigh fading, i.e. with a Gaussian (prior) distri-
bution expressing variances of and correlations between channel coefficients.
In recent years, such prior information on the channel has started to get
exploited in pilot-based channel estimation, since often the pure pilot-based
(deterministic) channel estimate is of limited quality due to limited pilots.
In this chapter we explore a Bayesian approach to (semi-)blind channel es-
timation, exploiting a priori information on fading channels. In the case
of deterministic unknown input symbols, it suffices to augment the classi-
cal blind (quadratic) channel criterion with a quadratic criterion reflecting
the Rayleigh fading prior. In the case of a Gaussian symbol model the
blind criterion is more involved. The joint ML/MAP estimation of chan-

55
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nels, deterministic unknown symbols, and channel profile parameters can be
conveniently carried out using Variational Bayesian techniques. Variational
Bayesian techniques correspond to alternating maximization of a likelihood
w.r.t. subsets of parameters, but taking into account the estimation errors
on the other parameters. To simplify exposition, we elaborate the details
for the case of MIMO OFDM systems.

4.1 Introduction

Blind and semi-blind channel estimation techniques have been developed
and are usually evaluated for a given channel realization, i.e. with a deter-
ministic channel model, see [18] for an overview of such techniques. Such
blind channel estimates, especially those based on subspaces in the data, are
often only partial and ill-conditioned. Indeed, only part of the channel is
blindly identifiable, especially in the case of MIMO channels. The type of
blind channel estimation techniques we are mostly referring to here involve
an FIR multichannel and are typically based on the second-order statistics
of the received signal. Two types of techniques can be considered, treating
the unknown input symbols as either deterministic unknowns or Gaussian
white noise. In the first case, the techniques are often based on the subspace
structure induced in the data by the multichannel aspect. The part of the
channel that can be identified blindly is larger in the Gaussian input model
case than in the deterministic input model case, but is in any case incom-
plete. Many of the deterministic input approaches are also quite sensitive to
a number of hypotheses such as correct channel length (filter order) and no
channel zeros. In general this means that these blind channel estimates can
often become ill-conditioned, when the channel impulse response is tapered
(e.g. due to a pulse shape filter) or when the channel is close to having
zeros. In fact this means that the blind information on the channel can be
substantial, but is limited to only part of the channel.

An overview of blind channel estimation techniques can be found in [18]
for SIMO systems and in [5] for MIMO systems. Specific blind channel
estimation techniques for Cyclic Prefix systems, as will be considered here,
were introduced in [39], see also [29]. The concept of Bayesian blind channel
estimation was introduced in [56], with in particular some considerations on
identifiability issues where-as in this chapter we focus on algorithms.
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4.2 MIMO Cyclic Prefix Block TX Systems

Consider a MIMO system with q inputs xl, p > q outputs yi per (sym-
bol/sample) period. This is considered as an extension of the model used in
chapter 2, section 3.2 from SIMO to MIMO.

y[m]︸︷︷︸
p×1

=
∑q

l=1

∑L
j=0 hl[j]︸︷︷︸

p×1

al[m−j]︸ ︷︷ ︸
1×1

+v[m]︸︷︷︸
p×1

=
∑L

j=0 h[j]︸︷︷︸
p×q

a[m−j]︸ ︷︷ ︸
q×1

+v[m]︸︷︷︸
p×1

= H(q)︸ ︷︷ ︸
p×q

a[m]︸︷︷︸
q×1

+v[m]︸︷︷︸
p×1

(4.1)

where H(q) =
L∑

j=0

h[j] q−j is the MIMO system transfer function corre-

sponding to the z transform of the impulse response h[.]. Equation (4.1)
mixes time domain and z transform domain notations to obtain a compact
representation. In H(q), z is replaced by q (not to be confused with the
number of transmit antennas) to emphasize its function as an elementary
time advance operator over one sample period. Its inverse corresponds to a
delay over one sample period: q−1a[n] = a[n−1].

Consider a (OFDM or single-carrier) CP block transmission system with
N samples per block. The introduction of a cyclic prefix ofK samples means
that the last K samples of the current block (corresponding to N samples)
are repeated before the actual block. If we assume w.l.o.g. that the current
block starts at time 0, then samples a[N−K] · · ·a[N−1] are repeated at
time instants −K, . . . , −1. This means that the output at sample periods
0, . . . , N−1 can be written in matrix form as




y[0]
· · ·

y[N−1]


 = Y[0] = H A[0] + V[0] (4.2)

where the matrix H is not only (block) Toeplitz but even (block) circulant:
each row is obtained by a cyclic shift to the right of the previous row.
Consider now applying an N -point FFT to both sides of (4.2) at block m:

FN,pY[m] = FN,pH F−1
N,q FN,qA[m] + FN,pV[m] (4.3)

or with new notations:

U[m] = H X[m] + W[m] (4.4)
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where FN,p = FN ⊗ Ip (Kronecker product: A ⊗ B = [aijB]), FN is the
N -point N ×N DFT matrix, H = diag {h0, . . . ,hN−1} is a block diagonal

matrix with diagonal blocks hk =
∑L

l=0 h[l] e−j2π 1
N

kl, the p × q channel
transfer function at tone k (frequency = k/N times the sample frequency).
In OFDM, the transmitted symbols are in A[m] and hence are in the fre-
quency domain. The corresponding time domain samples are in X[m]. The
OFDM symbol period index is m. In Single-Carrier (SC) CP systems, the
transmitted symbols are in A[m] and hence are in the time domain. The
corresponding frequency domain data are in X[m]. The components of V are
considered white noise, hence the components of W are white also. At tone
(subcarrier) n ∈ {0, . . . , N−1} we get the following input-output relation

un[m]︸ ︷︷ ︸
p×1

= hn︸︷︷︸
p×q

xn[m]︸ ︷︷ ︸
q×1

+wn[m]︸ ︷︷ ︸
p×1

(4.5)

where the symbol xn[m] belongs to some finite alphabet (constellation) in
the case of OFDM.

4.3 Some Generalities for CP System Methods

The facts stated in chapter 2, section 3.2 are still applicable here. There is
only one necessary modification namely, the channel per tone in this chapter
is a matrix instead of being vector. Hence, it needs to be vectorized before
commencing in the development of the our algorithms. To be a bit more
explicit, let hk = vec (hk) and let h be the vectorized channel impulse re-
sponse, i.e. h = vec ([hH [0] · · ·hH [L]]H). Then there exists transformation
matrices Gk (containing DFT portions) such that

hk = Gk h . (4.6)

Now, if at tone k we have a cost function of the form

h
H
k Qk hk (4.7)

then this induces a cost function for the overall channel impulse response of
the form

hH

[
N−1∑

k=0

GH
k Qk Gk

]
h = hH Q h (4.8)

and similarly for Fisher information matrices. So in what follows, we shall
concentrate on the cost function for a given tone.
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4.4 Bayesian Blind with Deterministic Symbols

Assume the Rayleigh fading channel has a prior distribution h ∼ CN (0, Co
h),

then a Bayesian blind criterion can be obtained straightforwardly by aug-
menting a classical blind criterion as follows

hH 1

σ2
v ‖h‖2

Q h + hH (Co
h)−1 h (4.9)

which still remains (pseudo) quadratic in h (‖h‖2 refers to a separate es-
timate of ‖h‖2). (4.9) would correspond to joint ML for the symbols and
MAP for the channel if Q corresponds to one of the DML versions. Under
a unit norm constraint, the minimization of (4.9) leads to
h = ‖h‖Vmin( 1

σ2
v ‖h‖2 Q+ (Co

h)−1) (which may need to be solved iteratively

if Q depends on h).

4.5 Gaussian Symbols Approaches

In Gaussian ML (GML), since both symbols and noise are Gaussian, the re-
ceived signal is Gaussian with a channel-dependent covariance matrix. This
leads to the GML likelihood, in which the symbols are eliminated. Alterna-
tively, it is quite straightforward to add the Bayesian Rayleigh channel prior
to the likelihood for the joint estimation of channel and Gaussian symbols,
leading to joint MAP estimation of channel and symbols:

1

σ2
w

‖U −HX‖2 +
1

σ2
a

‖X‖2 + hH (Co
h)−1 h (4.10)

which is quadratic in h for fixed X, or in X for fixed h. Knowing that (4.2)
can be written in another form as follows:

Y = H A + V = Ah + V (4.11)

where A = A′ ⊗ Ip and A′ is a circulant matrix filled with the elements
(vectors) of A. Then after some manipulations we get the following solutions:

X̂ =

(
ĤHĤ +

σ2
w

σ2
a

I

)−1

ĤHU (4.12)

ĥ =
(
ÂHÂ + σ2

w(Co
h)−1

)−1
ÂHFH

N,pU (4.13)

Hence the Alternating GMAPGMAP (AGMAPGMAP) algorithm, by iter-
atively minimizing for h or X. Note that, although the (non-Gaussian) joint
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posterior density of h and X would be difficult to compute, the joint poste-
rior is not required to obtain their MAP estimate, which is fairly simple to
compute (at least when done iteratively as suggested here).

4.6 Variational Bayesian Techniques

A recent tutorial on Variational Bayesian (VB) estimation techniques can be
found in [57]. VB provides an approximate technique to determine the pos-
terior probability density function (pdf) of the quantities to be estimated.
Let θ denote the vector of all quantities to be estimated, including param-
eters and possibly signals (e.g. the ”hidden variables” in EM terminology).
And Y denotes the measurements. In many problems, the joint posterior
pdf f(θ|Y ) can be complicated to determine. Consider now a partition
of θ into K subgroups of quantities that will get estimated per subgroup
θ = {θk, k = 1, . . . ,K}. The idea of VB is to approximate f(θ|Y ) by
a product form g(θ|Y ) =

∏K
k=1 g(θk|Y ) where the g(θk|Y ) in general will

differ from the true marginal pdfs f(θk|Y ). The g(θk|Y ) are determined by
minimizing the Kullback-Leibler distance between

∏K
k=1 g(θk|Y ) and f(θ|Y ).

This leads to the following implicit relations

ln g(θk|Y ) = Eg(θk̄|Y ) ln f(Y, θk, θk̄) , k = 1, . . . ,K (4.14)

where θk̄ is θ minus θk, hence θ = {θk, θk̄}. In practice, (4.14) needs to
be solved iteratively by consecutively sweeping through k = 1, . . . ,K, at all
times using for g(θk̄|Y ) the latest version available. This iterative process
can be shown to converge montonically. Typically, when f(Y |θ) and the
prior f(θ) are exponential family pdfs (typically Gaussian), then one can
see from (4.14) that g(θk|Y ) will also be of the exponential family. VB tech-
niques have mainly been introduced to deal with hierarchical signal models:
signals that contain parameters with a prior that depends itself on param-
eters with a prior etc. However, VB techniques can be useful in simpler
problems also.

Note that Variational Bayesian techniques can also be applied in the
presence of deterministic unknowns θD. There are two ways to think about
deterministic unknowns:

(i) as truly deterministic, with prior f(θD) = δ(θD − θo
D) where θo

D is the
unknown true value of θD; in other words, θD ∼ N (θo

D, C
o
θD

) where
Co

θD
= 0 I.

(ii) as random with no prior information, hence θD ∼ N (θo
D, C

o
θD

) where
Co

θD
= ∞ I and θo

D is unimportant (e.g. θo
D = 0).
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In case (i), VB becomes EM [57], in which case during the iterations the
deterministic parameters are simply substituted by their current estimate.
Case (ii) is closer to the VB spirit. If θ = {θD, θS} where θS are the stochastic
parameters, then it suffices to replace f(Y, θ) in (4.14) by f(Y, θS |θD) =
f(Y |θ) f(θS). In this case also for the deterministic parameters not only
their current estimates (posterior means) are accounted for but also their
estimation error.

4.7 Variational Bayesian Blind Channel Estima-
tion

We shall focus on the MIMO OFDM case with Rayleigh fading FIR channel
and Gaussian symbol model. In this case Y = U and θ = {X,h}. When
applying the VB technique, g(X|U) factors as g(X|U) =

∏N
n=1 g(xn|U). We

have

ln f(un,xn,hn) = ct + 1
σ2

w
{−uH

n hnxn

−xH
n hH

n un + xH
n (hH

n hn + σ2
w

σ2
x
Iq)xn}

(4.15)

where ct denotes a constant. With (4.14) we hence get g(xn|U) ∼ CN (mxn , Cxn),
where

Cxn =
(

1
σ2

w
trb{RT

hn
} + 1

σ2
x
Iq

)−1

mxn = 1
σ2

w
Cxnm

H
hn

un

(4.16)

where trb of a block matrix denotes a matrix obtained by taking trace of its

blocks (e.g. hH
n hn = trb{(hnh

H
n )T }),

hn = vec (hn), m
hn

= Gnmh, C
hn

= GnChG
H
n and mhn

= unvec {m
hn

}.
In general, Rx = mxm

H
x +Cx. The estimation of the symbols can be seen to

correspond to the output of a MMSE linear equalizer in which the channel
is not just replaced by its estimate, but the channel estimation error is taken
into account also. On the other hand,

ln f(U,X,h) = ct −∑n{ 1
σ2

w
‖un − (xT

n ⊗ Ip)Gnh‖2

+hHGH
n (GnC

o
hG

H
n )−1Gnh}

(4.17)

using e.g. hnxn = (xT
n ⊗ Ip)Gnh.

Hence with (4.14), g(h|U) ∼ CN (mh, Ch) where

Ch =
(∑

nG
H
n { 1

σ2
w

(
R∗

xn
⊗ Ip

)
}Gn + (Co

h)−1
)−1

mh = Ch
1

σ2
w

∑
nG

H
n (m∗

xn
⊗ Ip)un

(4.18)
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The estimation of the channel can be seen to correspond to a Bayesian
MMSE estimate, using all symbols as pilots, but taking into account that
they have estimation error also. Upon convergence, the posterior means mxn

and mh are both MAP and MMSE estimates (due to Gaussianity) accord-
ing to g(θ|Y ) = g(h|U)

∏
n g(xn|U). However, they are neither MAP nor

MMSE estimates according to the true posterior f(θ|Y ). But it is intuitively
clear that they should be reasonable approximations of the true MMSE esti-
mates, which contrasts with the true MAP estimates of the AGMAPGMAP
algorithm.

Remarks
The case of deterministic symbols can be handled also by just setting σ2

x = ∞
in (4.15), (4.16).
The extension to semi-blind, with some symbols being pilots, hence being
known exactly, is immediate. Their error covariance matrix will remain zero
and their mean equals the pilot value.
Extensions of the methods presented can be considered to incorporate the
estimation of e.g. Co

h (or a set of parameters parameterizing Co
h), which

would be especially meaningful in the scenario in which multiple realizations
of h with the same Co

h need to be estimated (e.g. in a sequence of OFDM
symbols).

4.8 Identifiability Considerations

Consider the joint estimation of the transmitted symbols in time domain
A and the collective channel impulse response coefficients h, making up

together the parameter vector θ =
[
AH hH

]H
. Then the Fisher Information

matrix (FIM) on the basis of the data Y in (4.11) alone is

JY =
1

σ2
v

[H A]H [H A] . (4.19)

θ is unidentifiable since indeed for a q × q mixing filter ψ(z), we have
H(q)a[m] = (H(q)ψ(q)) (ψ−1(q)a[m]) = H̃(q) ã[m]. Hence it is impos-
sible to distinguish H(q) from H̃(q). If the delay spread of H(q) is known
and/or there are border conditions on the transmitted signal, then the
frequency-selective mixture ψ(z) becomes a frequency-flat ψ. In this case,

JY has a null space which is the column space of
[
AH −hH

]H
. Indeed

[H A]
[
AH −hH

]H
= 0. So the multiplicative ambiguity ψ translates into

an (additive) singularity in the FIM.
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In the case of Gaussian white symbols, the prior information on A trans-
lates into an additional FIM

JA =
1

σ2
a

[
I 0
0 0

]
(4.20)

so at this point the overall FIM is Jθ = JY + JA which will have become
non-singular. This would indicate identifiability. The ambiguity in this
case is indeed reduced from an unconstrained ψ to a unitary ψ. However,
there is still ambiguity and hence unidentifiability. Actually, the proper
treatment with Gaussian symbols does not allow presenting the FIM in the
compact complex form presented here. In fact, θ needs to be doubled in
size by considering separately its real and imaginary components and the
associated FIM needs to be considered, in order to see the FIM nullspace
corresponding to a unitary ambiguity matrix.

When now furthermore (or alternatively) a Gaussian prior for the chan-
nel h is considered, then the FIM for θ gets augmented with

Jh =

[
0 0
0 (Co

h)−1

]
(4.21)

which will again render the overall FIM Jθ = JY + Jh(+JA) nonsingular.
So it would seem that the addition of prior information with an identical
non-zero Power Delay Profile (PDP) for each of the antenna pair channels
(corresponding to a nonsingular diagonal Co

h) renders Jθ nonsingular and
hence leads to (channel) identifiability. However this is not necessarily the
case. In the case of Gaussian white symbols, and a unitary ambiguity matrix
ψ, if Co

h is such that (ψ ⊗ Ip(L+1))
HCo

h(ψ ⊗ Ip(L+1)) = Co
h (in which case

the channel prior is insensitive to a unitary mixture), then still the Bayesian
blind problem remains unidentifiable. The above condition occurs if Co

h is
of the form Co

h = Iq ⊗C for any square matrix C of size p(L+1). Hence the
regularization of the blind channel estimation problem via prior information
is a tricky issue due to the multiplicative nature of the ambiguity.

4.9 Simulations

We simulate in this section both Bayesian and Variational Bayesian Blind
(VBB) channel estimation techniques based on (4.12), (4.13) and (4.16),
(4.18) appearing above. Moreover we simulate also a version of the Vari-
ational Bayesian approach where the channel parameters are deterministic
unknowns, treated as random with no prior information, so Co

h = ∞I in
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(4.18). We shall refer to this approach as Uniformed VBB (UVBB). In each
MonteCarlo simulation we generate a Rayleigh fading channel with expo-
nentially decaying power delay profile (PDP) for the channel between each
transmitting and receiving antenna pair as follows: e−wn where n = 0 : L
and w = 2 normally. Hence, Co

h is the diagonal matrix Co
h = Iq⊗C⊗Ip where

C = diag {e−wn, n = 0 : L}. As for the symbols, we generate i.i.d. Gaus-
sian symbols (which are hence i.i.d. Gaussian both in time and frequency
domain). The performance of the different Bayesian channel estimators is
evaluated by means of the Normalized MSE (NMSE) vs. SNR. The per

receive antenna SNR is SNR =
σ2

atr{Co
h
}

p σ2
v

.

The NMSE is defined as avg ||h−̂̂
h||2

avg ||h||2 where
̂̂
h = ĥψ is the channel estimate

adjusted for blind channel estimation ambiguities. As we assume the channel
length known here, ψ represents an instantaneous mixing matrix of size (q×
q). The mixing matrix ψ can be obtained by minimizing the Frobenius norm
of the following matrix error: min

ψ
||h′−ĥ′||2F where h′ = (hH [0] · · ·hH [L])H

and ĥ′ = (ĥH [0] · · · ĥH [L])H . For an unconstrained mixture, we get ψ =
(ĥ′H ĥ′)−1ĥ′Hh′ = UΣV H where the last expression represents the SVD of
the resulting ψ. In the case that ψ gets constrained to be a unitary matrix,
the solution is ψ = UV H , see [5].

Both (B and VBB) algorithms are initialized by using (for m
hn

) noisy
perturbations of the true channels. In the first iteration of (4.16) we use
R

hn
= m

hn
mH

hn
, hence C

hn
= 0. In Figure 4.1 we can notice how close the

performance of both the Variational Bayesian and the Bayesian algorithms
is since both fully exploit the prior information that exists about the channel
and the symbols. However, we can notice that the UVBB method (with +
marker, also called ”Deterministic” in the legend) lags behind the normal
Variational Bayesian (with * marker) where the prior information is taken
into consideration. This is an expected result since the more information
we exploit the better performance we get. However, at higher SNR the
performance of the deterministic blind algorithm converges to that of the
Bayesian blind algorithms. Also this result is expected since at very high
SNR the contribution of prior information becomes negligible.

Whereas Fig. 4.1 uses a unitary ψ, Fig. 4.2 uses an unconstrained ψ,
which leads to reduced NMSE since more prior information is exploited.
At least, Fig. 4.1 shows that the exploitation of the white character of the
symbols as we do here leads to a reduced unidentifiability of ψ to just a
unitary mixing matrix.

In Fig. 4.3 the OFDM block length N gets increased from 20 (as in the
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Figure 4.1: NMSE vs. SNR for B, VBB, UVBB algorithms, for N = 20,
unitary ψ.
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Figure 4.2: NMSE vs. SNR for B, VBB, UVBB algorithms, for N = 20,
unconstrained ψ.
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Figure 4.3: NMSE vs. SNR for B, VBB, UVBB algorithms, for N = 100,
unconstrained ψ.
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Figure 4.4: NMSE vs. SNR for B, VBB, UVBB algorithms, for N = 20,
unconstrained ψ, w = 0.5 in PDP.
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previous two figures) to 100. The result is that the prior information intro-
duced by a Bayesian approach only helps at low SNR, as could be expected.
The other noticeable effect is that the Variational approach outperforms the
non-Variational version over a wide SNR range.

In Fig. 4.4 finally, an exponential PDP with much shorter time constant
(w = 0.5) is used, as compared to w = 2 in the previous three figures. The
result is that the prior information only helps at very high SNR.
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Chapter 5

Bayesian Blind FIR Channel
Estimation Algorithms

Blind channel estimation techniques were developed and usually evaluated
for a given channel realization, i.e. with a deterministic channel model. On
the other hand, in wireless communications the channel is typically mod-
eled as Rayleigh fading, i.e. with a Gaussian (prior) distribution expressing
variances of and correlations between channel coefficients. In this chapter,
we explore a Bayesian approach to blind channel estimation, exploiting a
priori information on fading channels. We mainly focus on joint ML/MAP
estimation of channels and symbols on one hand, and on ML/MAP esti-
mation of channels with elimination of symbols on the other hand. As a
consequence, a unified framework in addition to three new Bayesian estima-
tors are introduced where their performance is compared by simulations to
three existing non-Bayesian estimators. In the same context, we provide an
insightful discussion of the accurate way of deriving the Bayesian Cramer
Rao bound (BCRB) with an emphasis on its singularity.

5.1 Introduction

In the context of blind channel estimation, our main goal is to estimate the
channel at the receiver and feed it to a certain equalizer (Linear, Decision
Feedback ..) to detect the symbols. To accomplish this task blindly at the

71



72 Chapter 5 Bayesian Blind FIR Channel Estimation Algorithms

receiver we should exploit every piece of information related to any element
of the transmission system. Moreover, sometimes assumptions are made
and consequently the accuracy of the estimated parameters depends on how
close those assumptions are to the reality. We will focus in this chapter
on the second order statistics and specifically on the maximum likelihood
(ML) and/or maximum a posteriori methods (MAP). Two approaches exist
in the literature on how to tackle the problem. The first approach is based
on the fact that the symbols are considered as deterministic unknowns to be
jointly estimated with the channel. Such algorithm is called Deterministic
(or conditional) Maximum Likelihood (DML) method [58]. The second ap-
proach is based on treating the symbols as random quantities with known
prior information to be eliminated or jointly estimated. When the symbols
are eliminated, the method is called Gaussian (or unconditional) Maximum
Likelihood (GML) [59] see also [60] for its implementation in sensor array
processing. While when they are jointly estimated, the method is called
GMAP-ML [61]. This is because we use maximum a posteriori (MAP) for
symbols and ML for channels and noise variance. Furthermore, in all these
approaches the channel was considered as deterministic unknown however,
in wireless communications the channel is typically modeled as Rayleigh
fading, i.e. with a Gaussian (prior) distribution expressing variances of and
correlations between channel coefficients. The concept of Bayesian blind
channel estimation was introduced in [56], with in particular some consid-
erations on identifiability issues. However, in chapter 4 we discussed briefly
some classical Bayesian algorithms and introduced the concept of varia-
tional Bayesian in the context of MIMO OFDM. Apart from the variational
Bayesian techniques, we develop in this chapter classical Bayesian algorithms
that treat the channel as random with known prior information rather than
deterministic. Once the channel is treated as random, we are within the
framework of Bayesian blind channel estimation and there are three cases
to be handled. In the first case the symbols are considered as deterministic
unknowns to be jointly estimated with the channel. We call this method as
ML-GMAP, for a similar reasoning as discussed above. In the second case,
the symbols are again to be jointly estimated with the channel but this time
they are considered as random with known prior Gaussian distribution. We
call this method GMAP-GMAP. In the third case, the symbols are again
random with known prior Gaussian distribution but they are going to be
eliminated rather than estimated. We call this method GMAP-Elm-GMAP
where ”Elm” stands for elimination of symbols. Consequently, in section 3
we revisit three already existing deterministic estimators and develop three
new Bayesian ones. Therefore, with the introduction of the Bayesian blind
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channel estimation algorithms the picture is broadened considerably and to
sum up we depict the current picture in Table 1.

Algorithm Symbols Channel Elm Novel
of Sym

ML-ML (DML) Det Det No No

GMAP-ML Gaussian Det No No

GMAP-Elm-ML Gaussian Det Yes No

ML-GMAP Det Gaussian No Yes

GMAP-GMAP Gaussian Gaussian No Yes

GMAP-Elm-GMAP Gaussian Gaussian Yes Yes

Table 5.1: Summary of all algorithms

5.2 SIMO FIR Tx System Model

In blind channel identification, a multichannel framework can be obtained
from oversampling a received signal and leads to a Single Input Multiple
Output (SIMO) vector channel representation. The multiple FIR channels
we obtain in this representation can also be obtained from multiple received
signals from an array of antennas or from a combination of both. To further
develop the case of oversampling, consider a linear digital modulation over
a linear channel with additive noise so that the received signal y(t) has the
following form

y(t) =
∑

k

h(t− kT )a(k) + v(t). (5.1)

In (5.1) a(k) are the transmitted symbols, T is the symbol period and h(t)
is the channel impulse response. The channel is assumed to be FIR with
length LT . If the received signal is oversampled at the rate p

T (or if p
different samples of the received signal are captured by p sensors every T
seconds, or a combination of both), the discrete input-output relationship
can be written as:

y(k) =
L−1∑

i=0

h(i)a(k−i) + v(k) = HAL(k) + v(k) (5.2)

where y(k) = [yH
1 (k) · · · yH

p (k)]H ,h(i) =
[
hH

1 (i) · · ·hH
p (i)

]H
, with hp(i) de-

notes the ith tap of the pth receiving antenna, v(k) = [vH
1 (k) · · · vH

p (k)]H ,
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H = [h(L−1) · · ·h(0)], AL(k) =
[
a(k−L+1)H · · · a(k)H

]H
and superscript

H denotes Hermitian transpose. Let H(z) =
∑L−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

p (z)]H

be the SIMO channel transfer function, and h =
[
hH(L−1) · · ·hH(0)

]H
.

Consider additive independent white Gaussian circular noise v(k) with rvv(k−i) =
Ev(k)v(i)H = σ2

vIp δki. Assume we receive M samples:

YM (k) = TM (h)AM+L−1(k) + V M (k) (5.3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for V M (k), and
TM (h) is a block Toeplitz matrix with M block rows and [H 0p×(M−1)] as
first block row. We shall simplify the notation in (5.3) with k = M−1 to

Y = T (h)A+ V = Ah+ V . (5.4)

where A is a block Toeplitz matrix filled with the elements of A. We
assume that pM > M+L−1 in which case the channel convolution matrix
T (h) has more rows than columns. If the Hi(z), i = 1, . . . , p have no zeros
in common, then T (h) has full column rank.

5.3 A Unified Framework for different Algorithms

As we have shown in Table 1 there are six possible estimators that can
be classified into two categories. In the first category the subject of the
estimators is to estimate the channel and the symbols jointly by making
some assumptions on the channel and the symbols. If we denote by θ the
unknown parameters to be estimated then it is given by:

θ = [AH ,hH ]H (5.5)

The likelihood function is given by:

f(Y, θ) = f(Y/θ)f(θ) (5.6)

where f(θ) stands for the probability density function (pdf) of θ, f(Y, θ)
stands for the joint probability density function of Y and θ and f(Y/θ) stands
for the pdf of Y conditioned on θ is given or known. Once we substitute θ
in (5.6) by its elements we get:

f(Y,A,h) = f(Y/A,h)f(A)f(h) (5.7)

Since the symbols and the channel are a priori independent of each other
we can write f(θ) = f(A)f(h). Of course on the basis of how we treat the
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symbols and the channel both f(A) and f(h) differ from one estimator to
another as we shall see in the sequel. Knowing that the cost function for
the estimator is derived by maximizing the log-likelihood function, hence we
apply the log function on both sides of (5.7) to get:

ln[f(Y,A,h)] = ln[f(Y/A,h)] + ln[f(A)] + ln[f(h)] (5.8)

However, in the second category the subject of the estimators is to estimate
the channel and the noise variance only while the symbols are supposed to
be eliminated during the estimation process. Thus

θ = [hH , σ2
v ]

H (5.9)

Once we substitute θ in (5.6) by its elements we get:

f(Y,h, σ2
v) = f(Y/h, σ2

v)f(h)f(σ2
v) (5.10)

Again, since the cost function for the estimator is derived by maximizing
the log-likelihood function, hence we apply the log function on both sides of
(5.10) to get:

ln[f(Y,h, σ2
v)] = ln[f(Y/h, σ2

v)] + ln[f(h)] + ln[f(σ2
v)] (5.11)

We will develop in the following sections the cost functions of all the esti-
mators that belong to both categories and provide a closed form formula for
both the estimated channel and symbols where it is possible. It is worthy to
note here that since the channel is treated as random rather than determinis-
tic in some of the above mentioned estimators (ML-GMAP, GMAP-GMAP,
GMAP-Elm-GMAP) in both categories, these estimators are considered as
an example of the Bayesian blind channel estimation.

5.3.1 ML-ML (DML)

We start with ML-ML or what is called DML in the literature [58]. In
this case both the symbols and the channel are considered as determin-
istic unknowns to be estimated. Hence it belongs to the first category
and consequently the log-likelihood function is given by (5.8). Moreover,
since both are deterministic we have f(h) = hoδ(h − ho) and f(A) =
Aoδ(A − Ao) where ho and Ao represent respectively the true values of
the channel and the symbols. It is obvious that the pdfs of both sym-
bols and channel have no influence on the maximization of (5.8). Hence,



76 Chapter 5 Bayesian Blind FIR Channel Estimation Algorithms

we can derive the cost function by maximizing ln[f(Y/A,h)] directly where
f(Y/A,h) = 1

(πσ2
v)Mp exp[− 1

σ2
v
(Y − T (h)A)H(Y − T (h)A)]. Thus the cost

function is given by:

min
A,h

||Y − T (h)A||2 (5.12)

The joint optimization of this cost function in both the channel (h) and the
symbols (A) is difficult. Fortunately, the observation is linear in both the
channel and the symbols. In other words, we have a separable nonlinear
LS problem, which allows us to reduce the complexity considerably. The
nonlinear LS optimization can be done by iterating between minimization
with respect to A and h. The alternating minimization strategy is as follows:

1. Initialization ĥ
0
.

2. Iteration (i+1):

• Minimization w.r.t. A; h = ĥ
(i)

:
min

A
||Y − T (ĥ(i))A||2

⇒ Â(i+1) = (T H(ĥ
(i)

)T (ĥ
(i)

))−1T H(ĥ
(i)

)Y (5.13)

• Minimization w.r.t. h;A = Â(i+1):
min

h
||Y − T (h) Â(i+1)||2

⇒ ĥ
(i+1)

= (Â(i+1)H Â(i+1))−1Â(i+1)H

Y (5.14)

Â(i+1) is constructed from A(i+1).

3. Repeat step 1 until ( Â(i+1), ĥ
(i+1)

) ≈ ( Â(i), ĥ
(i)

).

We can prove that at each iteration of blind ML-ML, the cost function
decreases until a fixed point is reached; and again with good initialization,
ML-ML converges to the global minimum. It can be observed that both the
symbols and the channel estimates are the outputs of a Zero-Forcing (ZF)
linear equalizer. This estimator is sensitive to common zeros that may exist
between channels at the receiver. Once it happens, (T H(h)T (h)) becomes
rank deficient and consequently the symbols estimates in (5.13) blows up.
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5.3.2 GMAP-ML

In this estimator [59],[61] we treat the symbols as random with Gaussian
distribution while the channel is considered deterministic to be jointly es-
timated with the symbols. This estimator also belongs to the first cate-
gory, thus the log-likelihood function is given by (5.8). Moreover, f(A) =

1
(πσ2

a)M+L−1 exp[−AHA
σ2

a
] and f(h) = hoδ(h − ho). It is obvious here that

ln[f(h)] can be omitted without affecting the maximization of the log-
likelihood function in (5.8). Hence, the cost function is given by:

min
A,h

1

σ2
v

||Y − T (h)A||2 +
||A||2
σ2

a

(5.15)

Following the same methodology used in ML-ML estimator we get:

Â(i+1) = (T H(ĥ
(i)

)T (ĥ
(i)

) +
σ2

v

σ2
a

IpL)−1T H(ĥ
(i)

)Y. (5.16)

ĥ
(i+1)

= (Â(i+1)H Â(i+1))−1Â(i+1)H

Y (5.17)

It can be observed that the symbols estimates are the outputs of a linear
MMSE equalizer, while the channel estimates as in the case of ML-ML are
the outputs of a ZF linear equalizer. This feature makes this estimator
less sensitive to the common zeros problem that ML-ML suffers. But still
this estimator suffers from another problem namely, when AHA in (5.17)
becomes rank deficient. In spite of the fact that we consider here the symbols
to have a Gaussian distribution but in reality we know that the symbols
belong to a discrete linear digital modulation scheme for e.g. BPSK and
they are uniformly distributed. Hence, if we have a sequence of alternating
symbols +1 , -1 then AHA in (5.17) becomes rank deficient and consequently
(5.17) blows up.

5.3.3 GMAP-Elm-ML (GML)

This estimator belongs to the second category [59], hence we are interested in
estimating the channel and the variance of the noise only while the symbols
are supposed to be eliminated during the estimation process. Furthermore,
the log-likelihood function is given by (5.11) where we consider the channel
and the noise variance to be deterministic while the symbols have a Gaus-
sian distribution. Here again, ln[f(h)] and ln[f(σ2

v)] have no influence on
maximizing (5.11). Substituting f(Y/h, σ2

v) = 1
(π)Mp|RY Y |exp[−Y HR−1

Y Y Y )]
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where RY Y = E YYH = σ2
aT (h)T (h)H + σ2

vIMp in (5.11) after omitting
ln[f(h)] and ln[f(σ2

v)] we get:

min
h,σ2

v

ln |RY Y | + tr(R−1
Y Y R̂Y Y ) (5.18)

This cost function can be minimized by resorting to the method of scoring
[62]. This method consists in an approximation of the Newton-Raphson
algorithm which finds an estimate θ(i) at iteration i from θ(i − 1), the
estimate at iteration i− 1, as:

θ(i) = θ(i−1) − µ
[
F ′′ |θ(i−1)

]−1
F ′ |θ(i−1) (5.19)

where F(θ) is the cost function in (5.18), F ′′

is the Hessian, F ′

is the gradient
of the cost function and µ is the step length that should be appropriately
chosen to guarantee convergence to a local minimum. The method of scoring
approximates the Hessian by its expected value, which is here the Gaussian
Fisher Information Matrix (FIM). This approximation is justified by the
law of large numbers as the number of data is generally large. In our case,
the FIM is singular, and as a consequence formula (5.19) cannot be applied
directly so we take the Moore-Penrose pseudo inverse of the FIM.

It should be noted that in order to minimize the above cost function we
should resort to splitting θ into its real and imaginary parts, hence we get
θR then we compute F ′′

θRθR
from F ′′

θθ and F ′′

θθ∗ as we will see in chapter 7

section 7.4.2. As for F ′

(θR), it can be computed from F ′

(θ) where the latter
is given by:

F ′

(θj) =
∂F(θ)

∂θ∗j
= tr

(
R−1

Y Y

∂RY Y

∂θ∗j

(
I −R−1

Y Y R̂Y Y

))
(5.20)

where θj represents the jth element of θ. Hence, we can write:

F ′

(θR) = 2

[
Re
(
F ′

(θ)
)H

, Im
(
F ′

(θ)
)H
]H

(5.21)

On the other hand, it can be easily shown that this estimator is less
sensitive to the common zeros problem. In fact by applying the matrix
inversion lemma we can readily prove thatR−1

Y Y = 1
σ2

v
[I−T (h)(T H(h)T (h)+

σ2
v

σ2
a
IpL)−1T H(h)].Therefore, even if T H(h)T (h) is rank deficient, the cost

function may not blow up thanks to the regularization parameter σ2
v

σ2
a
IpL

introduced by the prior information on the symbols.
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5.3.4 ML-GMAP

This is our first novel estimator in this chapter, where we introduce the con-
cept of blind Bayesian channel estimation by treating the channel as random
with Gaussian distribution f(h) = 1

(π)pL|Co
h
|exp[−h

HCo−1
h h]. However, the

symbols are considered as deterministic unknowns to be jointly estimated
with the channel hence this estimator belongs to the first category where
the log-likelihood function is given by (5.8). Moreover, here again ln[f(A)]
has no effect on maximizing (5.8) so it can be omitted. Therefore, the cost
function is given by:

min
A,h

1

σ2
v

||Y − T (h)A||2 + hHCo−1
h h (5.22)

Once again here, following the same methodology used in ML-ML estimator
we get:

Â(i+1) = (T H(ĥ
(i)

)T (ĥ
(i)

))−1T H(ĥ
(i)

)Y (5.23)

ĥ
(i+1)

= (Â(i+1)H Â(i+1) + σ2
vC

o−1
h )−1Â(i+1)H

Y (5.24)

It can be observed that the symbols estimates as in the case of ML-ML
are the outputs of a ZF equalizer while the channel estimates are the outputs
of a MMSE linear equalizer. Consequently, this estimator is sensitive to the
common zeros problem while no matter whatever the sequence of symbols
is, the channel estimate in (5.24) always exists thanks to the regularization
parameter (σ2

vC
o−1

h ) introduced by the the prior information on the channel.

5.3.5 GMAP-GMAP

This is our second novel estimator in this chapter, where both the channels
and the symbols are assumed random with Gaussian distribution and are
supposed to be estimated jointly. Hence, this estimator in its turn belongs to
the first category and its log-likelihood is given by (5.8). By substituting the
terms in (5.8) by their corresponding functions, we deduce the cost function
as follows:

min
A,h

1

σ2
v

||Y − T (h)A||2 +
||A||2
σ2

a

+ hHCo−1
h h (5.25)

Also here, following the same methodology used in ML-ML estimator we
get:
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Â(i+1) = (T H(ĥ
(i)

)T (ĥ
(i)

) +
σ2

v

σ2
a

IpL)−1T H(ĥ
(i)

)Y (5.26)

ĥ
(i+1)

= (Â(i+1)H Â(i+1) + σ2
vC

o−1
h )−1Â(i+1)H

Y (5.27)

It can be observed that both the symbols estimates and the channel
estimates are the outputs of a MMSE linear equalizer. Therefore, no matter
if the channels have zeros in common or the sequence of the symbols take
any form, both (5.27) and (5.26) always exist.

5.3.6 GMAP-Elm-GMAP

This is our third novel estimator and it belongs to the second category since
the symbols are supposed to be eliminated. It can be considered as an
extension to GMAP-Elm-ML by exploiting the prior information that exists
about the channel. Its log-likelihood function is given by (5.11) but this
time ln[f(h)] can’t be omitted. Substituting the terms in (5.11) by their
corresponding functions we get the cost function as follows:

min
h,σ2

v

ln |RY Y | + tr(R−1
Y Y R̂Y Y ) + hHCo−1

h h (5.28)

This cost function can be minimized using the scoring method discussed in
case of GMAP-Elm-ML estimator. The same formulas stated in that section
are still valid with some modifications as shown below:

F ′′ GMAP−Elm−GMAP
θθ = F ′′ GMAP−Elm−ML

θθ + Co−1

h (5.29)

F ′ GMAP−Elm−GMAP

θ = F ′ GMAP−Elm−ML

θ + Co−1

h h (5.30)

However, F ′′ GMAP−Elm−GMAP

θθ∗ = F ′′ GMAP−Elm−ML

θθ∗ .

Moreover, following the same explanation developed over there, we can
notice that this estimator is insensitive neither to the common zeros problem
nor to the case of symbols having special sequences.

5.4 Bayesian Cramér-Rao Bound (BCRB)

It is well known that the channel can be estimated blindly up to a scalar
ambiguity ρejφ where ρ stands for the amplitude and φ stands for the phase.
In [63] the Bayesian CRB in the context of cooperative OFDM was derived
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where the authors claimed (section III-B) that the knowledge of the prior
information of the channel eliminates the ambiguity of the blind channel
estimation. We will show in this short discussion that the prior information
of the channel doesn’t provide any information about the phase while it
provides only a very limited information about the amplitude. Consequently,
the ambiguity is not totally removed and the singularity persists. From the
pdf of the channel shown before, we can easily notice that the prior Fisher
information Matrix (FIM) is given by Co−1

h . Usually the total FIM is the
sum of the prior FIM and the FIM of the data. The latter is singular while
the former has usually a full rank. Hence, the total FIM has a full rank.
At the first glance this will lead to the same conclusion that was drawn in
[63] namely, the prior information eliminates the blind channel ambiguity.
However, a closer look at the problem will prove that this result is inaccurate
at all.

Suppose we have a channel h
′

= ρejφh then the FIM of this channel is
given by 1

ρ2C
0−1
h where we note that φ has been completely absorbed. This

result shows that the prior FIM has no capability to provide any piece of in-
formation regarding the phase. If so, then the question is why the prior FIM
has a full rank and doesn’t admit any singularity? In order to answer this
question and show that the prior FIM is singular we should reparametrize
the problem between our hands. Moreover, we should also resort to split-
ting the complex channel parameters into their real and imaginary parts.
When we accomplish the two previous steps and derive the FIM for the new
reparametrized prior we will find it singular for sure. To commence with
this task, lets take the first tap of the channel as a common factor we get
h = ρejφh

′

where h
′

= [1 h̄
H

]H . Denote by θ = [h̄
rT
, h̄

sT
, ρ, φ] the set of

parameters to be estimated where h̄
rT

and h̄
sT

denotes respectively the real
and the imaginary parts of h̄. Due to the lack of space we will not go into
the detailed derivation nevertheless we will show below the resulting prior
FIM (2pL x 2pL)which is given by:

FIMprior = 2




Co
h(1, 1)C̄o

h
−1

0 0 0

0 Co
h(1, 1)C̄o

h
−1

0 0
0 0 Co

h
−1(1, 1) 0

0 0 0 0


 (5.31)

where Co
h(1, 1) denotes the element that lies in the first row and first column

of Co
h and C̄o

h
−1

can be obtained from Co
h
−1 by omitting the first row and the

first column. It is evident now that the prior FIM admits one singularity that
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corresponds to the phase and it provides only the variance of the ambiguous
amplitude Co

h(1, 1) and not the amplitude itself. Hence, this information
is considered limited and incomplete. Now to pursue the derivation of the
BCRB we should play the same game with the FIM of the data. Doing
so, we can show that the latter admits two singularities, one corresponds to
the amplitude and the other corresponds to the phase. However, the total
FIM which is the sum of the prior and the data FIMs will admit only one
singularity that corresponds to the phase. This is because the prior FIM
ameliorate only the singularity that corresponds to the amplitude which
results from the FIM of the data. Therefore, the prior FIM only contributes
to fix one singularity while it has no means to deal with the other. As a
consequence, the resulting BCRB which is defined as the inverse of the total
FIM is still singular and needs an additional constraint to fix the phase
ambiguity.

5.5 Simulations

In this section we try to shed light by means of MonteCarlo simulations on
the advantages of blind Bayesian compared to the blind non-Bayesian chan-
nel estimation. In each MonteCarlo simulation we generate a Rayleigh fad-
ing channel with exponentially decaying power delay profile (PDP)(assumed
known) for the channel between each transmitting and receiving antenna
pair as follows: e−wn where n = 0 : L− 1 and w is a constant that controls
how steep is the decaying of the PDP. Hence, Co

h is the diagonal matrix
Co

h = Ip ⊗ C where C = diag {e−wn, n = 0 : L − 1}. As for the symbols,
we generate random 8PSK symbols to reflect the real world case. The per-
formance of the different channel estimators is evaluated by means of the

Normalized MSE (NMSE) vs. SNR. The SNR is defined as: SNR = ||T (h)A||2
pM σ2

v

while The NMSE is defined as avg ||h−
ˆ̂
h||2

avg ||h||2 where
ˆ̂
h =

ˆh
H

h
|| ˆh||2

h is the channel

estimate adjusted by the least squares constraint to fix the scalar ambi-
guity that results from the blind channel estimation. All the simulations
are initialized by the Subchannel Response Matching (SRM) estimate [47].
In Figure 5.1, we take a look at the considerable gain (4dB) offered by
both GMAP-GMAP and GMAP-Elm-GMAP over GMAP-ML at high SNR.
Moreover, these two novel Bayesian estimators that we have introduced have
the potential to exceed even GMAP-Elm-ML by couple of dBs. This em-
phasizes the indispensable role of exploiting the prior information of the
channel in enhancing the estimation quality at the receiver. It is worthy
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to note that in simulating GMAP-Elm-GMAP and GMAP-Elm-ML in Fig-
ure 5.1, we consider σ2

v to be known hence, we only estimate the channel.
This permits us to make a fair comparison between joint estimation of the
channel and the symbols (GMAP-GMAP, GMAP-ML) and the estimation
of the channel with marginalization of the symbols (GMAP-Elm-GMAP,
GMAP-Elm-ML). Taking a close look at Figure 5.1 shows that, in such a
scenario, the estimation of the channel with marginalization of the nuisance
parameters (symbols) outperforms a little bit the joint estimation of the
channel and the symbols. This holds true whatever is the assumption made
for the channel namely, deterministic or Bayesian although it is more evident
in the deterministic case. In the same spirit, we notice that in Figure 5.2
ML-GMAP where the channel is treated as Bayesian outperforms ML-ML
where the channel is treated as deterministic by around 5 dB. However, in
Figure 5.3 we show the number of iterations required for each algorithm
to converge at SNR = 10 dB. We notice that the algorithms based on the
scoring method (GMAP-Elm-ML, GMAP-Elm-GMAP) is faster than those
based on alternating between minimization of channel and symbols (ML-
ML, ML-GMAP, GMAP-ML, GMAP-GMAP). The former needs tens of
iterations while the latter needs hundreds and even thousands of iterations
to converge.
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Figure 5.1: NMSE vs. SNR for different estimators.
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Figure 5.2: NMSE vs. SNR for ML-ML and ML-GMAP.
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5.6 Conclusion

After we have introduced previously [56] the concept of blind Bayesian chan-
nel estimation without providing any specific algorithm, the main message
of this chapter is to prove that there is yet a classical way to implement
the blind Bayesian channel estimation apart form the variational Bayesian
techniques introduced in chapter 4. This concept has been shown by aug-
menting the cost functions of some ML/MAP estimators that already exist
in the literature. Moreover, the novel Bayesian estimators that we have de-
rived in this chapter show a considerable performance gain compared to the
deterministic ones. Another aspect that has been addressed in this chapter
is the limited contribution of the prior information of the channel in fixing
the ambiguities that result from the blind channel estimation problem. We
have derived the reparametrized prior FIM of the channel showing that it
is singular and is not capable of providing any information related to the
ambiguous phase while it provides a limited information to fix the amplitude
ambiguity.
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Chapter 6

Bayesian Semi-Blind FIR
Channel Estimation
Algorithms

When the transmission scenario includes a training sequence or pilots, semi-
blind channel estimation techniques have shown a tendency to fully exploit
the information available from the received signal if they are correctly im-
plemented. This feature leads semi-blind channel estimation performance to
exceed that of the schemes based on the blind part or the training sequence
part only. Moreover, in some situations they can estimate the channel when
the other techniques fail. Semi-blind channel estimation techniques were
developed and usually evaluated for a given channel realization, i.e. with a
deterministic channel model. On the other hand, as we have indicated in
chapter 5, in wireless communications the channel is typically modeled as
Rayleigh fading, i.e. with a Gaussian (prior) distribution expressing vari-
ances of and correlations between channel coefficients. This valuable infor-
mation plays a dispensable role in enhancing the channel estimation quality
if exploited properly. In the spirit of what we have introduced in chapter 5
in the context of blind SIMO channel estimation, we explore in this chapter
a Bayesian approach to semi-blind channel estimation. This will be achieved
by exploiting the a priori information on fading channels. We mainly focus
on semi-blind joint ML/MAP estimation of channels and symbols on one

87
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hand, and on semi-blind ML/MAP estimation of channels with elimination
of symbols on the other hand. As a consequence, a unified framework along
with three novel semi-blind Bayesian estimators are introduced whose per-
formance is compared by simulations to three, one extended and another
two already existing semi-blind non-Bayesian estimators.

6.1 Introduction

Traditionally, the transmitter sends some known information to the receiver
to aid the latter in estimating the channel. However, in wireless communica-
tion the channel varies rapidly with time and as a consequence more training
sequence/pilots are required. This process wastes a lot of bandwidth as a
result of augmenting the transmission rate to maintain the throughput. In
the last two decades a new branch of channel estimation has emerged focus-
ing on accomplishing this task blindly i.e. without the need for a training
sequence. Nevertheless, most wireless standards that have evolved during
that period are still relying on the training sequence/pilots to estimate the
channel. This is due probably to the unsatisfactory results of the blind
channel estimation algorithms. On the other hand, there are some powerful
channel estimation algorithms that take the advantage of both aforemen-
tioned techniques have been also developed during the same era. These are
known as semi-blind where a superior performance is achieved although few
training sequence/pilots are transmitted [64], [65], [66]. We will focus in
this chapter on the semi-blind maximum likelihood (ML) and/or maximum
a posteriori methods (MAP) [67],[68]. Two approaches exist in the litera-
ture on how to tackle the problem. The first approach is based on the fact
that the unknown symbols are considered as deterministic to be jointly esti-
mated with the channel. Such algorithm is called Semi-Blind Deterministic
(or conditional) Maximum Likelihood (SB-DML) method [69]. The second
approach is based on treating the unknown symbols as random quantities
with known prior information to be eliminated or jointly estimated. When
the unknown symbols are eliminated, the method is called Semi-Blind Gaus-
sian Maximum Likelihood (SB-GML) [70], see also [71]. While when they
are jointly estimated, we call this method SB-GMAP-ML. This is because
we use semi-blind maximum a posteriori (MAP) for unknown symbols and
semi-blind ML for channels and noise variance. The corresponding blind
algorithm appeared first in [61]. Furthermore, in all these approaches the
channel was considered as deterministic unknown however, in chapter 4 we
discussed briefly some classical Bayesian algorithms and introduced the con-



6.2 SIMO FIR Tx System Model 89

cept of variational Bayesian in the context of MIMO OFDM. Apart from
the variational Bayesian techniques, we have also developed in chapter 5
some classical Bayesian blind channel estimation algorithms in the context
of SIMO transmission systems. In this chapter, we extend the work done in
chapter 5 to the case of semi-blind. Once the channel is treated as random
in the presence of training sequence/pilots, we are within the framework
of Bayesian semi-blind channel estimation and there are are three cases to
be handled. In the first case, the unknown symbols are considered as de-
terministic to be jointly estimated with channel. We call this method as
SB-ML-GMAP, for a similar reasoning discussed above. In the second case,
the unknown symbols are again to be jointly estimated with the channel
but this time they are considered as random with known prior Gaussian
distribution. We call this method SB-GMAP-GMAP. In the third case, the
unknown symbols are again random with known prior Gaussian distribu-
tion but they are going to be eliminated rather than estimated. We call
this method SB-GMAP-Elm-GMAP where Elm stands for elimination of
symbols to distinguish it from SB-GMAP-GMAP where both the unknown
symbols and the channel are jointly estimated. Consequently, in section III
we revisit two already existing deterministic estimators and develop novel
ones, one deterministic and three Bayesian. Therefore, with the introduc-
tion of the Bayesian semi-blind channel estimation algorithms, the picture
is broadened considerably and to sum up we depict the current picture in
Table 6.1.

Algorithm Unknown Channel Elm Novel
Sym of Sym

SB-ML-ML Det Det No No

SB-GMAP-ML Gauss Det No Yes

SB-GMAP-Elm-ML Gauss Det Yes No

SB-ML-GMAP Det Gauss No Yes

SB-GMAP-GMAP Gauss Gauss No Yes

SB-GMAP-Elm-GMAP Gauss Gauss Yes Yes

Table 6.1: Summary of all algorithms

6.2 SIMO FIR Tx System Model

We will use the same model stated in chapter 5, section 5.2. More specifically
we will start from equation (5.4) which is rewritten below with the addition
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of the notations of known and unknown symbols:

Y = T (h)A+ V = TK(h)AK + TU (h)AU + V
= AKh+ AUh+ V .

(6.1)

Where TK(h) and TU (h) represent respectively the portions of T (h) that
correspond to Ak (MK known symbols) and AU (MU unknown symbols),
see Figure 6.1. On the other hand, A is a block Toeplitz matrix filled with
the elements of A while AK and AU are block Toeplitz matrices filled with
the elements of AK and AU respectively. It is worthy to note that the way
we split the received data, as in Figure 6.1, doesn’t permit to fully exploit
the information available, nevertheless it is still capable of showing the su-
periority of semi-blind on one hand, and allows for pursuing an analytical
performance analysis. On the other hand, though the formulation here is
explained for the time domain, it is actual general enough to allow handling
also OFDM, SC-CP, SC-ZP etc. And in the case of OFDM, Y is composed
of YK and YU only.

Figure 6.1: Splitting the received signal into two parts containing only pure
known and unknown symbols.

6.3 A Unified Framework for different Algorithms

As we have shown in Table 6.1 there are six possible estimators that can
be classified into two categories. In the first category the subject of the
estimators is to estimate the channel and the unknown symbols jointly by
making some assumptions on the channel and the unknowns symbols. If we
denote by θ the unknown parameters to be estimated then it is given by:

θ = [AH
U ,h

H ]H (6.2)
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Following the same discussion shown in chapter 5, section 5.3 we get:

ln[f(Y,AU ,h)] = ln[f(Y/AU ,h)] + ln[f(AU )] + ln[f(h)] (6.3)

However, in the second category the subject of the estimators is to esti-
mate the channel and the noise variance only, while the unknown symbols
are supposed to be eliminated during the estimation process. Thus

θ = [hH , σ2
v ]

H (6.4)

Once again, following the steps stated in chapter 5, section 5.3 we get:

ln[f(Y,h, σ2
v)] = ln[f(Y/h, σ2

v)] + ln[f(h)] + ln[f(σ2
v)] (6.5)

We will develop in the following sections the cost functions of all the
estimators that belong to both categories and provide a closed form formula
for both the estimated channel and symbols where it is possible. It is wor-
thy to note here that since the channel is treated as random rather than
deterministic in some of the above mentioned estimators (SB-ML-GMAP,
SB-GMAP-GMAP, SB-GMAP-Elm-GMAP) in both categories, these esti-
mators are considered as an example of the Bayesian semi-blind channel
estimation.

6.3.1 SB-ML-ML (SB-DML)

We start with SB-ML-ML or what is called SB-DML in the literature [69]. In
this case both the unknown symbols and the channel are considered as deter-
ministic unknowns to be estimated. Hence it belongs to the first category
and consequently the joint probability density function is given by (6.3).
Moreover, since both are deterministic we have f(h) = hoδ(h − ho) and
f(AU ) = Ao

Uδ(AU−Ao
U ) where ho and Ao represent respectively the true val-

ues of the channel and the symbols. It is obvious that the the pdfs of both the
unknown symbols and the channel have no influence on the maximization of
(6.3). Hence, we can derive the cost function by maximizing ln[f(Y/AU ,h)]
directly where f(Y/AU ,h) = 1

(πσ2
v)Mp exp[− 1

σ2
v
(Y − T (h)A)H(Y − T (h)A)].

Thus, the cost function is given by:

min
AU ,h

||Y − T (h)A||2 = min
AU ,h

||Y − TK(h)AK − TU (h)AU ||2 (6.6)

However, our model allows for a simplification of this cost function be-
cause YK and YU are decoupled in terms of noise. On the other hand, the
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drawback of this model as we indicated before is that it leads to a subopti-
mal solution because we are neglecting the part that contains both known
and unknown symbols. Hence, (6.6) can be written as:

min
AU ,h

{
||YK − TK(h)AK ||2 + ||YU − TU (h)AU ||2

}
(6.7)

The joint optimization of this cost function in both the channel (h) and the
symbols (AU ) is difficult. Fortunately, the observation is linear in both the
channel and the symbols. In other words, we have a separable nonlinear
LS problem, which allows us to reduce the complexity considerably. The
nonlinear LS optimization can be done by iterating between minimization
with respect to AU and h. The alternating minimization strategy is as
follows:

1. Initialization ĥ
0
.

2. Iteration (i+1):

• Minimization w.r.t. AU ;h = ĥ
(i)

:

min
AU

{
||YK − TK(ĥ(i))AK ||2 + ||YU − TU (ĥ(i))AU ||2

}

⇒ ÂU
(i+1)

= (T H
U (ĥ

(i)
)TU (ĥ

(i)
))−1T H

U (ĥ
(i)

)YU (6.8)

• Minimization w.r.t. h;AU = Â
(i+1)
U :

min
h

{
||YK − TK(h)AK ||2 + ||YU − TU (h) Â

(i+1)
U ||2

}

⇒ ĥ
(i+1)

= (AH
KAK + Â(i+1)H

U Â(i+1)
U )−1(AH

KYK + Â(i+1)H

U YU )
(6.9)

Â(i+1)
U is constructed from Â

(i+1)
U .

3. Repeat step 1 until ( Â
(i+1)
U , ĥ

(i+1)
) ≈ ( Â

(i)
U , ĥ

(i)
).

It can be observed that both the unknown symbols and the channel
estimates are the outputs of a Decision Feedback (DF) Zero-Forcing (ZF)
linear equalizer.
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6.3.2 SB-GMAP-ML

This is the first novel estimator we introduce in this chapter. It is con-
sidered as an extension of the corresponding blind one proposed in [61],
[59] and stated in chapter 5. In this estimator we treat the unknown sym-
bols as random with Gaussian distribution while the channel is considered
deterministic to be jointly estimated with the unknown symbols. This esti-
mator also belongs to the first category, thus the joint probability density

function is given by (6.3). Moreover, f(AU ) = 1
(πσ2

a)MU
exp[−AH

U AU

σ2
a

] and

f(h) = hoδ(h−ho). It is obvious here that ln[f(h)] can be omitted without
affecting the maximization of the joint probability density function in (6.3).
Hence, the cost function is given by:

min
AU ,h

1

σ2
v

||YK − TK(h)AK ||2 +
1

σ2
v

||YU − TU (h)AU ||2 +
||AU ||2
σ2

a

(6.10)

Following the same methodology used in SB-ML-ML estimator, we get:

ÂU
(i+1)

= (T H
U (ĥ

(i)
)TU (ĥ

(i)
) +

σ2
v

σ2
a

IM+L−1−MK
)−1T H

U (ĥ
(i)

)YU (6.11)

ĥ
(i+1)

= (AH
KAK + Â(i+1)H

U Â(i+1)
U )−1(AH

KYK + Â(i+1)H

U YU ) (6.12)

It can be observed that the symbols estimates are the outputs of a Deci-
sion Feedback (DF) MMSE equalizer, while the channel estimates as in the
case of SB-ML-ML are the outputs of a DF-ZF linear equalizer.

6.3.3 SB-GMAP-Elm-ML (SB-GML)

This estimator belongs to the second category [70], hence we are interested
in estimating the channel and the variance of the noise only while the un-
known symbols are supposed to be eliminated during the estimation pro-
cess. Furthermore, the joint probability density function is given by (6.5)
where we consider the channel and the noise variance to be determinis-
tic while the unknown symbols have a Gaussian distribution. Here again,
ln[f(h)] and ln[f(σ2

v)] have no influence on maximizing (6.5). Substitut-
ing f(YU/h, σ

2
v) = 1

(π)(M−MK )p|RYU YU
|exp[−Y

H
U R−1

YUYU
YU )] Where RYUYU

=

E YUY
H
U = σ2

aTU (h)TU (h)H + σ2
vI(M−MK)p in (6.5) after omitting ln[f(h)]

and ln[f(σ2
v)] we get:
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min
h,σ2

v

1

σ2
v

||YK − TK(h)AK ||2 + ln |RYUYU
| + tr(R−1

YUYU
R̂YUYU

) (6.13)

This cost function can be minimized by resorting to the method of scoring
[62]. This method consists in an approximation of the Newton-Raphson
algorithm which finds an estimate θ(i) at iteration i from θ(i − 1), the
estimate at iteration i− 1, as:

θ(i) = θ(i−1) − µ
[
F ′′ |θ(i−1)

]−1
F ′ |θ(i−1) (6.14)

where F(θ) is the cost function in (6.13), F ′′

is the Hessian, F ′

is the
gradient of the cost function nad µ is the step length that should be appro-
priately chosen to guarantee convergence to a local minimum. The method
of scoring approximates the Hessian by its expected value, which is here the
Gaussian Fisher Information Matrix (FIM). This approximation is justified
by the law of large numbers as the number of data is generally large.

6.3.4 SB-ML-GMAP

This estimator is novel, where we introduce the concept of semi-blind Bayesian
channel estimation by treating the channel as random with Gaussian dis-
tribution f(h) = 1

(π)pL|Co
h
|exp[−h

HCo−1
h h]. However, the unknown symbols

are considered as deterministic to be jointly estimated with the channel
hence, this estimator belongs to the first category where the joint probabil-
ity density function is given by (6.3). Moreover, here again ln[f(AU )] has no
effect on maximizing (6.3) so it can be omitted. Therefore, the cost function
is given by:

min
AU ,h

1

σ2
v

||YK − TK(h)AK ||2 +
1

σ2
v

||YU − TU (h)AU ||2

+hHCo−1
h h

(6.15)

Once again here, following the same methodology used in SB-ML-ML
estimator we get:

ÂU
(i+1)

= (T H
U (ĥ

(i)
)TU (ĥ

(i)
))−1T H

U (ĥ
(i)

)YU (6.16)
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ĥ
(i+1)

= (AH
KAK +Â(i+1)H

U Â(i+1)
U +σ2

vC
o−1

h )−1(AH
KYK +Â(i+1)H

U YU ) (6.17)

It can be observed that the symbols estimates, as in the case of ML-ML,
are the outputs of a DF-ZF equalizer, while the channel estimates are the
outputs of a DF-MMSE linear equalizer.

6.3.5 SB-GMAP-GMAP

This estimator is also novel where both the channels and the unknown sym-
bols are assumed random with Gaussian distribution and are supposed to
be estimated jointly. Hence, this estimator in its turn belongs to the first
category and its joint probability density is given by (6.3). By substitut-
ing the terms in (6.3) by their corresponding functions we deduce the cost
function as follows:

min
AU ,h

1

σ2
v

||YK − TK(h)AK ||2 +
1

σ2
v

||YU − TU (h)AU ||2 +

||AU ||2
σ2

a

+ hHCo−1
h h

(6.18)

Also here, following the same methodology used in SB-ML-ML estimator
we get:

ÂU
(i+1)

= (T H
U (ĥ

(i)
)TU (ĥ

(i)
) +

σ2
v

σ2
a

IM+L−1−MK
)−1T H

U (ĥ
(i)

)YU (6.19)

ĥ
(i+1)

= (AH
KAK +Â(i+1)H

U Â(i+1)
U +σ2

vC
o−1

h )−1(AH
KYK +Â(i+1)H

U YU ) (6.20)

It can be observed that both the symbols estimates and the channel
estimates are the outputs of a DF-MMSE linear equalizer.

6.3.6 SB-GMAP-Elm-GMAP

This is the last novel estimator we are going to introduce in this chapter.
It belongs to the second category since the symbols are supposed to be
eliminated. It can be considered as an extension of SB-GMAP-Elm-ML by
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exploiting the prior information exists about the channel. Its joint probabil-
ity density function is given by (6.5) but this time ln[f(h)] can’t be omitted.
Substituting the terms in (6.5) by their corresponding functions we get the
cost function as follows:

min
h,σ2

v

1

σ2
v

||YK − TK(h)AK ||2 + ln |RYUYU
| +

tr(R−1
YUYU

R̂YUYU
) + hHCo−1

h h

(6.21)

This cost function can be minimized using the scoring method discussed
in case of SB-GMAP-Elm-ML estimator.

6.4 Simulations

In this section we try to shed light by means of MonteCarlo simulations
on the advantages of semi-blind Bayesian compared to the semi-blind non-
Bayesian channel estimation. In each MonteCarlo simulation we generate
a Rayleigh fading channel with exponentially decaying power delay profile
(PDP) for the channel between each transmitting and receiving antenna pair
as follows: e−wn where n = 0 : N − 1 and w = 1 except otherwise stated.
Hence, Co

h is the diagonal matrix Co
h = Ip ⊗ C where C = diag {e−wn, n =

0 : N−1}. As for the symbols, we generate random 8PSK symbols to reflect
the real world case. The performance of the different channel estimators is
evaluated by means of the Normalized MSE (NMSE) vs. SNR. The SNR is

defined as: SNR = ||T (h)A||2
pM σ2

v
. The NMSE is defined as avg ||h− ˆh||2

avg ||h||2 . All the

simulations are initialized by the Subchannel Response Matching (SRM)
estimate [47] where the scalar ambiguity of the latter has been fixed by
a least squares constraint. In Figure 6.2 we compare the performance of
SB-ML-ML estimator with SB-ML-GMAP, we can notice how the latter
exceeds the former by around 5 dB along the medium SNR range while their
performances are congruent at high SNR. In Figure 6.3 we take a look at the
considerable gain (7 dB) offered by SB-GMAP-GMAP over SB-GMAP-ML
along the medium SNR range. However, in Figure 6.4 both SB-GMAP-
Elm-ML and SB-GMAP-Elm-GMAP are plotted on the same figure. Also
in this case, where the symbols are eliminated, we can obviously observe
the indispensable role that the prior information about the channel plays in
enhancing the estimation quality at the receiver (≈ 5 dB gain), especially
at low and medium SNR.
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On the other hand, we have noticed in Figures 6.2, 6.3 and 6.4 that
at high SNR, the Bayesian estimators are no more able to outperform the
deterministic ones. In order to highlight the NMSE of different deterministic
and Bayesian estimators at high SNR, we plot in Figures 6.5, 6.6 and 6.7
the NMSE versus the number of iterations at SNR = 30 dB. However, the
algorithms are initialized by the true channel and not by the estimated
one as we did previously. Nevertheless, we can readily observe that even if
the estimators are initialized by the true channel, the gain offered by the
Bayesian estimators over the deterministic ones are almost negligible.
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Figure 6.2: NMSE vs. SNR for SB-ML-ML and SB-ML-GMAP.

6.5 Conclusion

We have shown in this chapter that there is still a considerable room to en-
hance the performance of semi-blind channel estimation. This is true when
we take into consideration the a priori information that exists about the
channel power delay profile. Hence, we have introduced in this chapter the
concept of Bayesian semi-blind channel estimation and proposed three new
Bayesian semi-blind estimators. On the other hand, we have also extended
one existing deterministic blind estimator to the semi-blind case. Further-
more, we have presented a unified framework from which we can derive both
deterministic and Bayesian estimators. As our simulations show, the pro-
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Figure 6.3: NMSE vs. SNR for SB-GMAP-ML and SB-GMAP-GMAP.
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Figure 6.4: NMSE vs. SNR for SB-GMAP-Elm-ML and SB-GMAP-Elm-
GMAP.
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Figure 6.5: NMSE vs. No. of iterations for SB-ML-ML and SB-ML-GMAP.
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Figure 6.6: NMSE vs. No. of iterations for SB-GMAP-ML and SB-GMAP-
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Figure 6.7: NMSE vs. No. of iterations for SB-GMAP-Elm-ML and SB-
GMAP-Elm-GMAP.

posed Bayesian estimators have a superior performance compared to the
deterministic ones. The main disadvantage of the algorithms introduced in
this chapter is that they require a large number of iterations to converge.
However, we believe that this topic could be further investigated to provide
more practical algorithms.



Chapter 7

Bayesian and Deterministic
CRBs for Semi-Blind
Channel Estimation

Traditionally, the performance of different semi-blind channel estimation
algorithms has been assessed and compared to a certain lower bound. One
of these famous lower bounds that has been extensively used in the literature
is the Cramér-Rao Bound (CRB). Depending on how we treat the symbols
and the channel, different versions of CRB have been derived. There are
two possible cases on how to treat the symbols and/or the channel namely,
deterministic unknowns or random. Moreover, the symbols are either jointly
estimated with the channel or eliminated. In other words, we have six
different cases to be handled. In this chapter we present the CRBs that
exist in the literature and fit to some of these cases and derive the others
in the context of SIMO FIR system. On the top of that we present a
unified framework that permits to derive all versions of CRBs in a concrete
manner. All the derived CRBs are validated numerically by conducting
limited Monte-Carlo simulations.

101
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7.1 Introduction

We have indicated in chapter 6 that most wireless standards that have been
evolved recently are still relying on the training sequence/pilots to estimate
the channel. Moreover, we have indicated that the reasonable justification
for this trend is due probably to the unsatisfactory results of the blind
channel estimation algorithms. On the other hand, we have also indicated
in chapter 6 that there are some powerful channel estimation algorithms
that take advantage of both training sequence-based and blind techniques
known as semi-blind. Furthermore, we have derived in that chapter many
algorithms that lie in this category. As usual the performance of these algo-
rithms are lower bounded. We will focus in this chapter on the most famous
lower bound used by the statisticians namely, the CRB. Different versions of
semi-blind CRBs are shown and derived in the sequel. Basically, there are
two approaches on how to tackle the problem of semi-blind channel estima-
tion depending on how we treat the transmitted symbols. The first approach
is based on jointly estimating the symbols with the channel while the second
approach is based on estimating the channel and marginalizing the symbols.
Moreover, in the first approach we have the choice to consider the channel
and/or the symbols as either deterministic unknowns or random with known
probability density function (pdf). Hence, there are four methodologies to
jointly estimate the channel and the symbols. However, in the second ap-
proach we can only marginalize the symbols if we consider them as random
with known pdf regardless of how we treat the channel. Therefore, there
are only two methodologies to estimate the channel while marginalizing the
symbols. Overall we have six cases to be handled. It should be noted that
treating the channel as random rather than deterministic in the context of
blind and semi-blind channel estimation has been introduced in [56] and
we have developed it in chapters 5 and 6. Once the channel is treated as
random, we are within the framework of Bayesian semi-blind channel es-
timation. In chapter 6, the Bayesian and the deterministic algorithms are
evaluated by running Monte-Carlo simulations. In this chapter, we will de-
rive the lower bounds that correspond to the different algorithms elaborated
in chapter 6. This chapter is organized as follows: In section 2 we develop
the SIMO FIR transmission system model, while in section 3 we show a
general framework that permits the derivation of the different CRBs that
belong to the two approaches stated above. In section 4 we make use of
the framework developed in section 3 to derive the different CRBs. In sec-
tion 5 we show a summary of the CRBs and in section 6 we conduct some
Monte-Carlo simulations to pictorially compare different CRBs with their
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corresponding algorithms. Finally, in section 7 we draw some conclusions.

7.2 SIMO FIR Tx System Model

We will use the same model introduced in chapter 5, section 5.2. More
specifically, we will start from equation (5.4) which is rewritten below with
the addition of the notations of known and unknown symbols. However, it is
worthy noting that the way by which we split the received signal into known
and unknown parts is different from that used in chapter 6. In chapter 6,
we neglected the part of the received signal that contains both known and
unknown symbols. The goal was to develop algorithms that can be analyzed
analytically. However, in this chapter we are interested in deriving the CRBs
that correspond to the optimal case. By optimality we mean exploiting every
piece of information that exists in both the received signal and in the prior
information that we do have.

Y = T (h)A+ V = TK(h)AK + TU (h)AU + V
= AKh+ AUh+ V .

(7.1)

Where TK(h) and TU (h) represent respectively the portions of T (h) that
correspond to Ak (MK known symbols) and AU (MU unknown symbols), see
(7.2). Here we assume for simplicity that the known symbols are gathered
at the beginning of the block. On the other hand, A is a block circulant
matrix filled with the elements of A while AK and AU are block circulant
matrices filled with the elements of AK and AU respectively.

T (h) =




|
TK(h) | TU (h)

|


 (7.2)

7.3 A Unified Framework for different CRBs

As we have stated before, there are six possible cases that can be classified
into two categories. In the first category the subject of the estimators is
to estimate the channel and the unknown symbols are estimated jointly by
making some assumptions on the channel and the unknowns symbols. It
is worthy to note that in this category the estimation of the channel and
symbols from one side and the noise variance estimation from the other side
are decoupled. In other words, the estimation of the noise variance has no
effect on the estimation of both the channel and the symbols. Hence, the



104Chapter 7 Bayesian and Deterministic CRBs for Semi-Blind Channel Estimation

estimation of the noise variance is excluded in this category. If we denote
by θ the unknown parameters to be estimated then it is given by:

θ = [AH
U ,h

H ]H (7.3)

The framework that we have introduced in chapter 5, section 5.3 is valid.
Hence, equation 6.3 is still applicable and we will restate it here below:

ln[f(Y,AU ,h)] = ln[f(Y/AU ,h)] + ln[f(AU )] + ln[f(h)] (7.4)

Now, let J represents the Fisher Information matrix (FIM), it is given
by [72]:

Jθθ = E

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)(
∂ ln[f(Y,AU ,h)]

∂θ∗

)H

= −E
∂

∂θ∗

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)H (7.5)

As we shall observe later, since we are treating complex parameters we also
need, besides Jθθ, Jθθ∗ which is defined by:

Jθθ∗ = E

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)(
∂ ln[f(Y,AU ,h)]

∂θ

)H

= −E
∂

∂θ

(
∂ ln[f(Y,AU ,h)]

∂θ∗

)H (7.6)

When Jθθ∗ 6= 0 we shall resort to θR defined below:

θR =

[
Re(θ)
Im(θ)

]
= M

[
θ
θ∗

]
,M =

1

2

[
I I

−jI jI

]
(7.7)

Knowing that Jθθ = J∗
θ∗θ∗ and Jθθ∗ = J∗

θ∗θ then (7.7) yields:

JθRθR
= M

[
Jθθ Jθθ∗

J∗
θθ∗ J∗

θθ

]
MH (7.8)

On the other side, when Jθθ∗ = 0, JθRθR
can be deduced totally from Jθθ.

This holds true for all the cases where we jointly estimate the channel and
the symbols as we shall notice later. Under some assumptions and regularity
conditions [73], the error covariance matrix of an unbiased channel estimator
ĥ(Y ), which is defined as:

C(ĥ) = E

{[
ĥ(Y ) − h

] [
ĥ(Y ) − h

]H}
(7.9)
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satisfies the following inequality:

C(ĥ) ≥ {JθRθR
}−1 △

= CRB (7.10)

We usually focus on comparing the Mean Square Error, MSE = tr
{
C(ĥ)

}

to the minimum error variance which is defined by tr {CRB} where tr stands
for the trace of a matrix.

However, in the second category the channel and the noise variance are
the only parameters to be estimated while the symbols are supposed to
be marginalized during the estimation process. Here we can’t exclude the
estimation of the noise variance because it is coupled to the estimation of
the channel. Thus,

θ = [hH , σ2
v ]

H (7.11)

Once again, if we follow the steps mentioned in chapter 5, section 5.3 we
will arrive at the formula 6.5 restated below:

ln[f(Y,h, σ2
v)] = ln[f(Y/h, σ2

v)] + ln[f(h)] + ln[f(σ2
v)] (7.12)

As for FIM, both (7.5) and (7.6) are still applicable where only θ is redefined
as in (7.11).

7.4 Derivations of Different CRBs

We shall develop in this section the CRBs of all the cases that belong to
both categories and provide a closed-form formula where it is possible. This
will be done by exploiting the framework introduced in the previous section.
To commence with this task, we shall explain the way by which we call the
different CRBs. First of all, to differentiate between the CRBs that corre-
spond to the deterministic and Bayesian channels we call them respectively
DCRB and BCRB. However, to differentiate between CRBs where we treat
the symbols as deterministic and random we use respectively CRBdet and
CRBsto. On the other hand, to differentiate between joint estimation and
marginalization we use respectively CRBjoint and CRBmarg.

7.4.1 DCRBdet,joint

In this lower bound [72] both the unknown symbols and the channel are
considered as deterministic unknowns to be estimated. Hence it belongs to
the first category and consequently the joint pdf is given by (7.4). Moreover,
since both are deterministic we have f(h) = hoδ(h − ho) and f(AU ) =
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Ao
Uδ(AU − Ao

U ) where ho and Ao represent respectively the true values of
the channel and the symbols. It can be easily noticed that the pdfs of both
the unknown symbols and the channel have no effect on the computation of
the FIM. Hence, ln[f(Y,AU ,h)] is replaced by ln[f(Y/AU ,h)] in (7.5) where
f(Y/AU ,h) = 1

(πσ2
v)Mp exp[− 1

σ2
v
(Y − T (h)A)H(Y − T (h)A)]. After a little

treatment (7.5) yields:

Jθθ =
1

σ2
v

[
T H

U (h)TU (h) T H
U (h)A

AHTU (h) AHA

]
(7.13)

With a little manipulation we can easily show that Jθθ∗ = 0. Hence, by
applying the Schur’s complement on (7.13) we get:

DCRBdet,joint = J−1

hh
= σ2

v

(
AHP⊥

TU (h)
A
)−1

(7.14)

Where P⊥
TU (h)

= I − PTU (h) and PTU (h) = TU (h)(T H
U (h)TU (h))−1T H

U (h) is

the projection matrix on TU (h).

7.4.2 DCRBsto,joint

The corresponding blind CRB appeared first in [61]. In this novel lower
bound (see [74] for a profound analysis of its blind counterpart) we consider
the unknown symbols as random with Gaussian distribution while the chan-
nel is considered deterministic to be jointly estimated with the unknown
symbols. This estimator also belongs to the first category, thus the joint

pdf is given by (7.4). Moreover, f(AU ) = 1
(πσ2

a)M+L−1−MK
exp[−AH

U AU

σ2
a

] and

f(h) = hoδ(h−ho). It is obvious here that ln[f(h)] can be omitted without
affecting the computation of FIM. Hence, (7.5) yields:

Jθθ = EY,AU/h
1

σ2
v

[
T H

U (h)TU (h) + σ2
v

σ2
a
IMU

T H
U (h)A

AHTU (h) AHA

]
(7.15)

Denoting EA {A} = A′

K and EA

{
AHA

}
= CK where Ck = A′H

K A′

K +
MUσ

2
aIpL and noting that Jθθ∗=0, then by applying the Schur’s complement

on (7.15) we get:

DCRBsto,joint = J−1

hh
= σ2

v
(
CK −A′H

K TU (h)[T H
U (h)TU (h) +

σ2
v

σ2
a

I]−1T H
U (h)A′

K

)−1

(7.16)
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7.4.3 DCRBsto,marg

This lower bound [72], [75] belongs to the second category, hence we are
interested in estimating the channel and the variance of the noise only while
the unknown symbols are supposed to be eliminated during the estimation
process. Furthermore, the joint pdf is given by (7.12) where we consider the
channel and the noise variance to be deterministic while the unknown sym-
bols have a Gaussian distribution. Here again, ln[f(h)] and ln[f(σ2

v)] have no
influence on computing the FIM. Substituting f(Y/h, σ2

v) = 1
(π)(Mp|CY Y |exp[−(Y−

mY )HC−1
Y Y (Y −mY ))] where mY = TK(h)AK and CY Y = E (Y−mY )(Y−

mY )H = σ2
aTU (h)TU (h)H + σ2

vIMUp in (7.12) after omitting ln[f(h)] and
ln[f(σ2

v)] then with a little manipulation (7.5) and (7.6) yield:

Jsto
θθ (i, j) =

tr

{
C−1

Y Y
∂CY Y

∂θ∗i
C−1

Y Y

(
∂CY Y

∂θ∗j

)H
}

+
[
AH

KC
−1
Y Y AK

]
i,j

Jsto
θθ∗(i, j) = tr

{
C−1

Y Y

∂CY Y

∂θ∗i
C−1

Y Y

(
∂CY Y

∂θ∗j

)}

(7.17)

Where [B]i,j denotes the element that lies in the ith row and jth column
of matrix B. We have used in the derivation of (7.17) the following facts:
∂CY Y

∂h
∗

i

= σ2
aTU (h)TU ( ∂h

∂h
∗

i

)H , ∂CY Y

∂σ2
v

= 1
2 , ∂ln|CY Y |

∂θ∗i
= tr

{
C−1

Y Y
∂CY Y

∂θ∗i

}
and

∂
∂θ∗i

tr
{
C−1

Y Y

}
= −tr

{
C−1

Y Y
∂CY Y

∂θ∗i
C−1

Y Y

}
. Once we compute both Jθθ and Jθθ∗

from (7.17), we substitute them in (7.8) to compute JθRθR
. Consequently,

by using Schur’s complement we can extract easily Jhh from JθRθR
then

DCRBsto,marg = J−1

hh
follows directly.

7.4.4 BCRBsto,joint

In this lower bound [76] (see also [63] for its application in cooperative-
OFDM system) both the channels and the unknown symbols are assumed
random with Gaussian distribution and are supposed to be estimated jointly.
Hence, this lower bound in its turn belongs to the first category and its
joint pdf is given by (7.4). By substituting the terms in (7.4) by their
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corresponding functions we deduce the corresponding FIM as follows:

Jθθ =
1

σ2
v

EY,h,A

[
T H

U (h)TU (h) + σ2
v

σ2
a
IMU

T H
U (h)A

AHTU (h) AHA + σ2
vC

0−1
h

]

(7.18)

Assuming that both the channel and the symbol distributions have a
zero mean as stated above we get:

Jθθ =
1

σ2
v[

EY,h,A

{
T H

U (h)TU (h) + σ2
v

σ2
a
IMU

}
0

0 CK + σ2
vC

0−1
h

]

(7.19)

The corresponding CRB for the channel can be readily extracted from
(7.19) as follows:

BCRBsto,joint = σ2
v

(
CK + σ2

vC
0−1
h

)−1
(7.20)

It is obvious that this CRB is independent of the number of training symbols
used. Moreover, BCRBsto,joint is a block diagonal matrix which means that
the estimation of the channel and the symbols are decoupled. Of course,
this is not true in case of semi-blind channel estimation except if all the
transmitted symbols are known but in that case we are no more estimating
the symbols. As a consequence, this CRB is considered to be too optimistic.

7.4.5 BCRBdet,joint

This lower bound called Bayesian CRB for deterministic symbols BCRBdet,joint

is novel. However, it is considered as a variation of BCRBsto,joint that has
been derived in the previous section. The main difference with BCRBsto,joint

is that we consider the symbols here to be deterministic unknowns while
there we consider them to be random with Gaussian distribution. Hence,
with this lower bound we introduce the concept of semi-blind Bayesian CRB
for channel estimation by treating the channel as random with Gaussian dis-
tribution f(h) = 1

(π)pL|Co
h
|exp[−h

HCo−1
h h]. However, the unknown symbols

are considered as deterministic to be jointly estimated with the channel
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hence, this estimator belongs to the first category where the joint pdf is
given by (7.4). Moreover, here again ln[f(AU )] has no effect on computing
FIM so it can be omitted. Therefore, (7.5) yields:

Jθθ = EY,h/A

1

σ2
v

[
T H

U (h)TU (h) T H
U (h)A

AHTU (h) AHA + σ2
vC

0−1
h

]
(7.21)

Assuming that the channel distribution has a zero mean as stated above
we get:

Jθθ =
1

σ2
v

[
EY,h/A

{
T H

U (h)TU (h)
}

0

0 AHA + σ2
vC

0−1
h

]
(7.22)

the corresponding CRB for the channel can be readily extracted from
(7.22) as follows:

BCRBdet,joint = σ2
v

(
AHA + σ2

vC
0−1
h

)−1
(7.23)

This CRB is also too optimistic for the same reasons discussed in the case
of BCRBsto,joint.

7.4.6 BCRBsto,marg

This lower bound called Bayesian CRB for stochastic symbols (BCRBsto,marg)
is by its turn novel. It belongs to the second category since the symbols
are supposed to be eliminated. It can be considered as an extension to
DCRBsto,marg by exploiting the prior information that exists about the
channel. The joint pdf is given by (7.12) but this time ln[f(h)] can’t be
omitted. Substituting the terms in (7.12) by their corresponding functions
and following the same steps mentioned in DCRBsto,marg section we get:





Jθθ = Eh

{
Jsto

θθ

}
+

[
C0−1

h 0
0 0

]

Jθθ∗ = Eh

{
Jsto

θθ∗
} (7.24)

Now we can resort to (7.8) to compute JθRθR
. Consequently, by using

Schur’s complement we can extract easily Jhh from JθRθR
thenBCRBsto,marg =

J−1

hh
follows directly.
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7.5 Summary

Therefore, with the extension of some existing semi-blind CRBs and de-
riving novel ones, the picture is broadened considerably and to sum up we
depict the current picture in Table 1. On the other hand, since some CRBs
correspond to one realization of the channel and/or the symbols while oth-
ers correspond to random channel and/or symbols then these CRBs, in their
current form, are not suitable to be compared together. This problem can be
overcome readily by computing the expectation of the CRBs that correspond
to one realization of the channel and/or the symbols. Hence, in the simula-
tion section we are going to compare the following: Eh EAU

{DCRBdet,joint} ,
Eh {DCRBsto,joint} , Eh {DCRBsto,marg} , EAU

{BCRBdet,joint} , BCRBsto,joint

BCRBsto,marg. However, due to the difficulties that we face when we try to
carry on the expectation operator in some situations, we are going to run
Monte-Carlo simulations to perform the averaging over the ensemble of the
symbols and/or the channel realizations.

CRB Type Unknown Channel Elm Novel
Sym of Sym

DCRBdet,joint Det Det No No

DCRBsto,joint Gauss Det No Yes

DCRBsto,marg Gauss Det Yes No

BCRBsto,joint Gauss Gauss No No

BCRBdet,joint Det Gauss No Yes

BCRBsto,marg Gauss Gauss Yes Yes

Table 7.1: Summary of CRBs

7.6 Simulations

In this section we plot the different CRBs to verify some of their aspects
that we mentioned in the chapter. In each Monte-Carlo simulation we gen-
erate different realizations of the channel, the symbols and the noise. As
for the channel, we generate a Rayleigh fading channel with exponentially
decaying power delay profile (PDP) as follows: e−wn where n = 0 : N − 1
and w = 2. Hence, Co

h is the diagonal matrix Co
h = Ip ⊗ C where C =

diag {e−wn, n = 0 : N − 1}. As for the symbols, we generate random
QPSK symbols to reflect the real world case. The performance of the dif-
ferent CRBs is evaluated by means of the Normalized MSE (NMSE) vs.
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SNR. The SNR is defined as: SNR = ||T (h)A||2
pM σ2

v
. The NMSE is defined as

avg tr(CRB)

avg ||h||2 where avg stands for average. In Figure 7.1 we plot the NMSE

of all the CRBs that have been derived in this chapter versus the number of
iterations at SNR = 10 dB. To validate our comments about the looseness
of the Bayesian CRBs elaborated in this chapter, we plot in the same figure
the results of the algorithms derived in chapter 6 which correspond to these
CRBs. To be more specific the algorithms SB-ML-ML, SB-ML-GMAP, SB-
GMAP-ML, SB-GMAP-GMAP, SB-GMAP-Elm-ML and SB-GMAP-Elm-
GMAP are lower bounded respectively by DCRBdet,joint, BCRBdet,joint,
DCRBsto,joint, BCRBsto,joint, DCRBsto,marg and BCRBsto,marg. Well, at
this moderate SNR it is clear that none of the algorithms attain its corre-
sponding CRB. This holds true also at high SNR except for DCRBdet,joint

and DCRBsto,marg which can be attained asymptotically in SNR by SB-ML-
ML and SB-GMAP-Elm-ML respectively. Apart from the fact that they are
loose, we can observe that all the Bayesian CRBs and DCRBsto,joint are
so close to each other. In Figure 7.2, we show how both DCRBdet,joint and
DCRBsto,marg are almost attained by their corresponding estimators at SNR
= 30 dB. Furthermore, we can readily observe that at high SNR, the cost
function of SB-ML-ML that has been minimized by the alternating mini-
mization technique (see chapter 6 converges faster than that of SB-GMAP-
Elm-ML where we use the scoring method to minimize its cost function.
Generally speaking, we have observed that the scoring method is faster than
the alternating minimization at low SNR, while at high SNR the latter is
faster.

7.7 Conclusion

We introduced in chapter 5 the concept of blind Bayesian channel estimation
and extended it in chapter 6 to the semi-blind case, by proposing a bunch
of useful algorithms. In this chapter, we have presented a framework that
permits to derive a complete set of CRBs that correspond to the various
Deterministic and Bayesian cases. Some of these algorithms already exist
in the literature and the others are novel. The main conclusion that can be
drawn is that the Bayesian Cramér-Rao Bound is loose and there is a need
for another lower bound which is tighter. This result is valid regardless of
how we treat the symbols namely, deterministic or random and it is even
valid when we marginalize the symbols. Furthermore, this result extends
also to DCRBsto,joint which corresponds to joint estimation of deterministic
channel and random symbols. Hence, not only Bayesian CRBs but also
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some deterministic CRBs requires tighter alternatives. This point is under
investigation and is subject for further research.



114Chapter 7 Bayesian and Deterministic CRBs for Semi-Blind Channel Estimation



Chapter 8

Quasi-Bayesian Semi-Blind
FIR Channel Approximation
Algorithms

In this chapter, we are going to develop new methodology on how to exploit
the channel prior information. Specifically, we shall exploit partially the
knowledge of the power delay profile to determine the number of taps at
the tail of the channel that can be neglected during the estimation process.
Although we shall implement this methodology to the same collection of
ML/MAP algorithms introduced in chapter 6, but this methodology has a
sufficient flexibility to be implemented to all deterministic algorithms in the
literature that don’t require iterations for eg. SRM, signal subspace, etc.
This methodology extends those deterministic algorithms into an interme-
diate point between deterministic and Bayesian. Hence, we call this novel
framework quasi-Bayesian. We shall prove by simulations the advantages
of these quasi-Bayesian algorithms in terms of improving the NMSE of the
channel and the probability of error of the received symbols. Moreover, The
CRBs have been derived for two quasi-Bayesian algorithms and compared
to their deterministic counterparts showing how the former is lower than the
latter.

115
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8.1 Introduction

In wireless communications the channel power delay profile (pdp) is usually
assumed to be exponentially decaying. This fact is based on many measure-
ment campaigns conducted so far and specially for some emerging wireless
standards [77]. Although when this pdp is known, this usually constitutes
only a partial knowledge of the channel prior information, nevertheless it
constitutes sometimes the full knowledge. This is true for instance, when
the different channel taps are considered as i.i.d. hence, the channel prior in-
formation is represented by a block diagonal matrix. The exploitation of this
channel prior information in the context of semi-blind channel estimation
transfers us from deterministic into Bayesian framework. We have derived
in chapter 6 some useful Bayesian algorithms and we have shown their capa-
bility to outperform their deterministic counterparts. The main drawback
of those algorithms are their need to a large number of iterations before
convergence is achieved. Furthermore, the Bayesian (semi-)blind channel
estimation algorithms that are introduced in [34] and [33] exploit perfectly
the knowledge of the channel a priori information to enhance the channel es-
timation quality. In this chapter, we are exploring an approach that exploits
partially the knowledge of the Power Delay Profile (PDP) to enhance the es-
timation of a part of the channel while neglecting totally the remaining part.
It is worth noting that this approach is not restricted to Bayesian algorithms
but can rather be implemented to any existing deterministic algorithm. By
doing so, we are extending those deterministic algorithms to a point in the
middle between deterministic and Bayesian, hence we can classify them as
quasi-Bayesian algorithms. The question that may be raised here, is there
still a room to enhance the estimation quality of the Bayesian algorithms?
Moreover, sometimes the estimation of the channel is required by itself, to
be used in the beamforming for instance, while in some other cases it consti-
tutes only one step toward another ultimate goal, the detection of symbols.
Hence, one may wonder what are the consequences of neglecting a part of
the channel on the detection of the symbols. In the following sections, we
will try to elaborate our approach and answer these questions.

8.2 SIMO FIR Tx System Model

We will use the same model introduced in chapter 5, section 5.2. More
specifically, we will start from equation (5.4) which is rewritten below with
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the addition of the notations of known and unknown symbols.

Y = T (h)A+ V = TK(h)AK + TU (h)AU + V
= AKh+ AUh+ V .

(8.1)

Where TK(h) and TU (h) represent respectively the portions of T (h) that
correspond to Ak (MK known symbols) and AU (MU unknown symbols).

T (h) =




|
TK(h) | TU (h)

|


 (8.2)

Here we assume for simplicity that the known symbols are gathered at the
beginning of the block. On the other hand, A is a block Toeplitz matrix
filled with the elements of A while AK and AU are block Toeplitz matrices
filled with the elements of AK and AU respectively.

8.3 Channel Approximation

In this section we introduce the concept of approximating the channel by
neglecting some taps at the tail during the estimation process. The neglect
is justified by the fact that the estimation of those taps will introduce an
estimation error that exceeds the approximation error. In fact, this is true
if the power of the channel approximation error times the input is below the
noise power at some finite SNR. In this case, the approximation error does
not count and we have an approximated channel whose length varies with
SNR. However, in order to make this channel approximation, we need to
have a certain finite (and small) covariance of the part of the channel that
we are going to neglect (approximation error). Hence, in a way or another
this looks like a Bayesian approach. In a deterministic model, we don’t
indeed have any prior information about the channel that would allow to
make such an approximation.

Assume that h can be split into two parts, the approximated part ha (pLa×
1) and the neglected part hn (pLn × 1) where L = La + Ln. Hence, we can
write h = [hH

a hH
n ]H . The number of the neglected taps Ln should be

upper bounded by min(L − 1,MK). When the length of the training se-
quence is greater than the number of the channel taps, the interpretation
of this bound is that the approximated channel should be composed of at
least one tap. Hence, the maximum number of taps that can be neglected
is L− 1. However, when the number of the channel taps is greater than the
training sequence, and apart from the identifiability issues that may raise
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here, the number of the neglected channel taps should not exceed MK . This
is due to the fact that every further neglected tap will lead to a one symbol
loss. Actually, the size of T (ĥ) is pM × (M + L− 1), however, when some
taps are neglected, the size of the estimated channel matrix is reduced to
pM×(M+La−1). This reduction in the number of columns leads in general
to a reduction in the number of the detected symbols. On the other hand,
we are treating a semi-blind scenario where we assume that the training se-
quence (which fortunately there is no need to be detected) is gathered at the
beginning of the block. This permits a margin of MK symbols, at the begin-
ning of the block, to be skipped in the detection process. On the contrary,
in the blind scenario there is no allowable margin and consequently, every
neglected tap will lead to a one symbol loss. This puts a severe limitation
for implementing this approach in the blind scenario. Fortunately, this is no
more true in the cyclic prefix case. Taking a close look at the structure of the
FIR cyclic prefix channel matrix, shows that there is obviously no symbol
loss due to the neglected taps. This is true because the estimated channel
matrix has a size pM ×M which is independent of the number of taps. In
fact this feature makes our approach more attractive in the context of cyclic
prefix systems. To illustrate the procedure by which the neglected channel
length is determined, we start with the description of the channel model used
throughout this chapter. In fact we consider a Rayleigh fading channel with
exponentially decaying PDP for the channel between each transmitting and
receiving antenna pair as follows: e−wn where n = 0 : L− 1 and w is a con-
stant that controls how fast the decaying is. Hence, if we denote by Co

h the
channel covariance matrix, which is diagonal in this case because the taps
are independent, then Co

h = Ip ⊗ C where C = diag {e−wn, n = 0 : L− 1}.
Assume that the PDP and the variance of the noise are known (in practice
they are estimated from the received signal), we start searching from the
tail, for the maximum number of taps whose power times the power of the
symbols is less than the variance of the noise. Mathematically, this can be
written as:

max
i

σ2
a

i∑

j=0

C(L− j, L− j) 0 ≤ i ≤ min(L− 2,MK − 1) (8.3)

The above maximization is done subject to the following constraint: σ2
a

∑i
j=0C

(L − j, L − j) ≤ σ2
v . If we cannot find i that fulfills the above constraint,

this means that we can’t neglect any part of the channel. Otherwise, the
last i+ 1 taps in the tail of the channel can be neglected and consequently
the length of the neglected part is (i+1)× p. Now, we may reformulate the
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model in (8.1) as follows:

Y = T (h)A+ V
= T (ha)︸ ︷︷ ︸

Mp×(M+La−1)

Aa + T (hn)︸ ︷︷ ︸
Mp×(M+Ln−1)

An + V

= T (ha)Aa + Z
= Aaha +Z.

(8.4)

where T (ha) and T (hn) are Toeplitz matrices containing the elements of ha

and hn respectively. On the other hand, Aa constitutes the last (M+La−1)
elements of A while An constitutes the first (M + Ln − 1) elements of A.
Finally, Z = T (hn)An + V is in general a spatially and temporally colored
Gaussian noise with covariance RZZ . It should be noted that RZZ varies
from one estimator to another, depending on how we treat An as we will see
later. However, hn is going to be treated always as random with Gaussian
distribution.

To treat the semi-blind case correctly, we have to split the approximated
channel in its turn into two parts. These two parts correspond respectively
to the known and the unknown symbols in analogy to what we have done
in (8.1). Hence we can write:

Y = TK(ha)AK,a + TU (ha)AU + Z
= AK,aha + AU,aha + Z

(8.5)

where TK(ha) and TU (ha) contain the first (MK − Ln) and the last (M +
L−1−MK) columns of T (ha) respectively. Similarly, AK,a and AU contain
the first (MK −Ln) and the last (M +L− 1−MK) elements of Aa. Finally,
AK,a and AU,a are Toeplitz matrices filled with the elements of AK,a and AU

respectively. It is worth noting that only AK,a undergoes a change compared
to AK in (8.1) while AU remains unchanged. This is true thanks to the upper
bound on the length of the neglected channel imposed in (8.3).

8.4 Enhanced Estimators

In [34] we have introduced a general framework that permitted the derivation
of three Bayesian semi-blind channel estimators and another three determin-
istic ones. Among those estimators, there were four that jointly estimate the
channel and the symbols while the remaining two were based on estimating
the channel and marginalizing the symbols. In the following sections, we
will show a slight variation of those estimators relying on the channel ap-
proximation approach that was introduced in the previous section. On the
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other hand, there is an important difference between the model we stated in
(8.1) and that used in [34] namely, in the latter we neglected a part of the
received signal that contains both known and unknown symbols, whereas in
this chapter we are using an optimal model that allows a proper exploitation
of the training sequence and the blind part of the received data.

8.4.1 SB-ML-ML (SB-DML)

We start with SB-ML-ML or what is called SB-DML in the literature [69].
In this case, both the unknown symbols and the approximated channel are
considered as deterministic unknowns to be estimated. Thus, the cost func-
tion is given by:

min
AU ,ha

||Y − T (ha)A||2R−1
ZZ

=

min
AU ,ha

||Y − TK(ha)AK,a − TU (ha)AU ||2R−1
ZZ

(8.6)

The nonlinear LS optimization can be done by iterating between minimiza-
tion with respect to AU and h. The alternating minimization strategy is as
follows:

1. Initialization ĥ
0

a.

2. Iteration (i+1):

• Minimization w.r.t. AU ;ha = ĥ
(i)

a :

min
AU

{
||YK − TK(ĥ(i)

a )AK ||2 + ||YU − TU (ĥ(i)
a )AU ||2

}

⇒ ÂU
(i+1)

= (T H
U (ĥ

(i)

a )R−1
ZZTU (ĥ

(i)

a ))−1T H
U (ĥ

(i)

a )R−1
ZZ(Y−TK(ĥ

(i)

a )AK,a)
(8.7)

• Minimization w.r.t. hA;AU = Â
(i+1)
U :

min
ha

{
||YK − TK(ha)AK ||2 + ||YU − TU (ha) Â

(i+1)
U ||2

}

⇒ ĥa
(i+1)

= (A(i+1)H

a R−1
ZZA(i+1)

a )−1A(i+1)H

a R−1
ZZY (8.8)

Â(i+1)
a is constructed from Ak,a and Â

(i+1)
U .
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3. Repeat step 1 until ( Â
(i+1)
U , ĥ

(i+1)

a ) ≈ ( Â
(i)
U , ĥ

(i)

a ).

where RZZ = Anhnh
H
n AH

n + σ2
v I. As we may notice here, we need to

know both hn and An in order to compute RZZ . However, this estimator as
well as the other estimators we are going to develop in the sequel, need to
be properly initialized to converge to the global minimum. In our case, we
choose to initialize all the estimators by the semi-blind Subchannel Response
Matching (SRM) estimate [78]. Hence, we use the SRM estimated values of
hn and An to compute RZZ . The same principle is going to be implemented
whenever it is necessary in the sequel.

On the other hand, we can derive the deterministic CRB that represents
a lower bound for this estimator as shown in [35]. Doing so we get:

DCRBapp
det,joint =

{
AH

a R
−1
ZZ

[
RZZ − TU (ha)

(
TU (ha)

H

R−1
ZZTU (ha)

)−1 Tu(ha)
H
]
R−1

ZZAa

}−1
(8.9)

At high SNR, there is no room to neglect any tap and we have Na = L
hence ha = h and consequently hn disappears completely. As a result
RZZ = σ2

vI. Substituting this result in (8.9), we get the same formula
derived in [35] for the DCRBdet,joint.

DCRBdet,joint = σ2
v

(
AHP⊥

TU (h)A
)−1

(8.10)

Where P⊥
TU (h)

= I − PTU (h) and PTU (h) = TU (h)(T H
U (h)TU (h))−1T H

U (h)

is the projection matrix on TU (h). However, at low SNR there are usually
many taps at the tail of the channel that are immersed in the noise. As a
consequence, they can be neglected without having any negative effect on
the detection of the symbols at the receiver. On the contrary, as we will
see in the simulation section, neglecting these taps enhances the detection
quality at the receiver. Hence, h is approximated by ha and there is a term
that depends on hn, and that appears in RZZ . At a sufficient low SNR, σ2

vI
dominates RZZ so we can neglect the term that depends on hn. Substitute
this result in (8.9) we get:

DCRBapp
det,joint

∼= σ2
v

(
AH

a P
⊥
TU (ha)

Aa

)−1
(8.11)

To prove that the approximation approach, we propose in this chap-
ter, enhances the channel estimation quality at the receiver, we compare
the CRB in (8.11) with a part of the CRB matrix stated in [35] namely,



122Chapter 8 Quasi-Bayesian Semi-Blind FIR Channel Approximation Algorithms

the part that corresponds to the approximated channel. Let’s call this

part D̃CRBdet,joint. It is composed of the first pLa rows and columns of
DCRBdet,joint.

Knowing that the CRB is the inverse of the Fisher Information Ma-

trix (FIM), let F̃ IMhaha
(h) denotes the FIM of the first La taps of the

channel when we estimate not only those taps but also the remaining Nn

taps and FIMhaha
denotes the FIM of the approximated channel when

we are interested only in estimating the first Na taps. Now, we can write

D̃CRBdet,joint = F̃ IM
−1

haha
(h) and DCRBapp

det,joint = FIM−1
haha

. On the
other hand, it is well known that the FIM of h can be decomposed into
four parts corresponding to different combinations of ha and hn. In order

to extract the F̃ IMhaha
(h) from these FIMs, we apply the Schur’s comple-

ment so we get: F̃ IMhaha
(h) = FIMhaha

− FIMhahn
FIM−1

hnhn
FIMhnha

Since FIMhahn
FIM−1

hnhn
FIMhnha

≥ 0 i.e. a positive semi-definite matrix,

we infer that F̃ IMhaha
(h) ≤ FIMhaha

and consequently D̃CRBdet,joint ≥
DCRBapp

det,joint. This result shows that our approximation approach leads
to an enhancement in the channel estimation quality. This result has been
confirmed also by numerical simulations as will be shown later.

8.4.2 SB-GMAP-ML

This estimator is considered as an extension of the corresponding blind one
proposed in [61], [59]. In this estimator we treat the unknown symbols
as random with Gaussian distribution, while the approximated channel is
considered deterministic to be jointly estimated with the unknown symbols.
Hence, the cost function is given by:

min
AU ,ha

||Y − TK(ha)AK,a − TU (ha)AU ||2R−1
ZZ

+
||AU ||2
σ2

a

Following the same methodology used in SB-ML-ML estimator we get:

ÂU
(i+1)

= (T H
U (ĥ

(i)

a )R−1
ZZTU (ĥ

(i)

a )+
1

σ2
a

I)−1T H
U (ĥ

(i)

a )R−1
ZZ(Y−TK(ĥ

(i)

a )AK,a)

(8.12)

ĥa
(i+1)

= (A(i+1)H

a R−1
ZZA(i+1)

a )−1A(i+1)H

a R−1
ZZY (8.13)

where RZZ = σ2
aT (hn)T (hn)H + σ2

v I. It is worth noting that we treat
An as random with Gaussian distribution although it contains some known
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symbols. This approximation is justified by the fact that usually the number
of the known symbols is small compared to the unknown symbols.

8.4.3 SB-GMAP-Elm-ML (SB-GML)

In this estimator we are only interested in estimating the approximated
channel and the variance of the noise, while the unknown symbols are sup-
posed to be eliminated during the estimation process. Hence, θ = [hH

a , σ
2
v ]

H .
Furthermore, we consider the channel and the noise variance to be deter-
ministic while the unknown symbols have a Gaussian distribution. Hence,
the cost function is given by:

min
ha,σ2

v

ln |CY Y | + (Y − TK(ha)Ak,a)
HC−1

Y Y (Y − TK(ha)Ak,a) (8.14)

where CY Y = E (Y−TK(ha)Aa)(Y−TK(ha)Aa)
H = σ2

aTU (ha)TU (ha)
H+

RZZ and RZZ =
(
σ2

atr(C
o
hn

) + σ2
v

)
I. This cost function can be minimized

by resorting to the method of scoring ([62] see also [34]).
As for deriving the CRB that corresponds to this estimator, we can follow

the same methodology used in [35]. Doing so we get these formulas:

Jsto
θθ (i, j) =

tr

{
C−1

Y Y
∂CY Y

∂θ∗i
C−1

Y Y

(
∂CY Y

∂θ∗j

)H
}

+
[
AH

K,aC
−1
Y Y AK,a

]
i,j

Jsto
θθ∗(i, j) = tr

{
C−1

Y Y

∂CY Y

∂θ∗i
C−1

Y Y

(
∂CY Y

∂θ∗j

)}

(8.15)

where ∂CY Y

∂h
∗

a,i

= σ2
aTU (ha)TU ( ∂ha

∂h
∗

a,i

)H and ∂CY Y

∂σ2
v

= 1
2 . Once we compute

both Jθθ and Jθθ∗ from (8.15), we substitute them in ([35], eq(13)) to com-
pute JθRθR

where θR = [Re(θ)T Im(θ)T ]T , Re and Im denotes Real and
Imaginary respectively. Consequently, by using Schur’s complement we can
extract easily Jhaha

from JθRθR
then DCRBsto,marg = J−1

hh
follows directly.

Following the same discussion elaborated in the SB-ML-ML section, we can

show that DCRBapp
sto,marg is lower than D̃CRBsto,marg that can be drawn

from DCRBsto,marg ([35],eq 23) by taking the first pLa rows and columns.

8.4.4 SB-ML-GMAP

This estimator is Bayesian since we treat the approximated channel as ran-
dom with Gaussian distribution. However, the unknown symbols are con-
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sidered as deterministic to be jointly estimated with the channel. Therefore,
the cost function is given by:

min
AU ,ha

||Y − TK(ha)AK,a − TU (ha)AU ||2R−1
ZZ

+ hH
a C

o−1

ha
ha (8.16)

ÂU
(i+1)

= (T H
U (ĥ

(i)

a )R−1
ZZTU (ĥ

(i)

a ))−1T H
U (ĥ

(i)

a )R−1
ZZ(Y − TK(ĥ

(i)

a )AK,a)
(8.17)

ĥa
(i+1)

= (A(i+1)H

a R−1
ZZA(i+1)

a + Co−1

ha
)−1A(i+1)H

a R−1
ZZY (8.18)

whereRZZ = AnC
o
hn
AH

n +σ2
v I and Co

hn
is the part of Co

h that corresponds
to hn.

8.4.5 SB-GMAP-GMAP

In this estimator both the approximated channel and the unknown sym-
bols are assumed random with Gaussian distribution. Moreover, they are
supposed to be estimated jointly. The cost function is given by:

min
AU ,ha

||Y − TK(ha)AK,a − TU (ha)AU ||2R−1
ZZ

+

hH
a C

o−1

ha
ha +

1

σ2
a

||AU ||2

Also here, following the same methodology used in SB-ML-ML estimator we
get:

ĥa
(i+1)

= (A(i+1)H

a R−1
ZZA(i+1)

a Co−1

ha
)−1A(i+1)H

a R−1
ZZY (8.19)

ÂU
(i+1)

= (T H
U (ĥ

(i)

a )R−1
ZZTU (ĥ

(i)

a ) +
1

σ2
a

I)−1T H
U

(ĥ
(i)

a )R−1
ZZ(Y − TK(ĥ

(i)

a )AK,a) (8.20)

where RZZ =
(
σ2

atr(C
o
hn

) + σ2
v

)
I.

8.4.6 SB-GMAP-Elm-GMAP

As in the case of SB-GMAP-Elm-ML, in this estimator the symbols are
supposed to be eliminated. Hence, it can be considered as an extension of
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SB-GMAP-Elm-ML by exploiting the prior information that exists about
the channel. The corresponding cost function is given by:

min
ha,σ2

v

ln |CY Y | + (Y − TK(ha)Ak,a)
HC−1

Y Y (Y − TK(ha)Ak,a)

+hH
a C

o−1

ha
ha

(8.21)

This cost function can also be minimized using the scoring method.

8.5 Simulations

In this section, we show, by means of MonteCarlo simulations, how our ap-
proach for approximating the channel leads to a superior performance com-
pared to classical techniques. In each MonteCarlo simulation we generate a
Rayleigh fading channel as discussed previously while for the symbols, we
generate random 8PSK symbols to reflect the real world case. The perfor-
mance of the different channel estimators is evaluated by means of the Nor-

malized MSE (NMSE) vs. SNR. The SNR is defined as: SNR = ||T (h)A||2
pM σ2

v
.

The NMSE is defined as avg ||ha− ˆha||2
avg ||ha||2

. All the simulations are initialized

by the semi-blind Subchannel Response Matching (SRM) estimate [78]. In
Figure 8.1 we compare the performance of the SB-SRM and the SB-ML-ML
estimators with their enhanced counterparts proposed in this chapter. We
can notice how the SB-SRM based on our approach, (SB-SRM-Approx),
exceeds its counterpart (SB-SRM) by more than 7 dB at low SNR and by
couple of dBs at moderate SNR. However, no more enhancement is possible
at very high SNR because, as explained before, no taps can be neglected at
this SNR. As for our SB-ML-ML-Approx, we can notice from the same figure
that only an enhancement of 2.5 dB is possible at low SNR compared to its
counterpart SB-ML-ML, while this advantage diminishes as SNR increases.

On the other hand, we plot on the same figure both the D̃CRBdet,joint and
DCRBapp

det,joint. We notice that the latter exceeds the former by around 5 dB
at low SNR which means that there is a considerable room to enhance the es-
timators that treat the channel and the symbols as deterministic. However,
we notice that SB-SRM-Approx, and not SB-ML-ML-Approx succeeds well
in taking advantage of our approach and fills the gap between both CRBs.
The result is somehow surprising because SB-SRM-Approx is considered as
a non-weighted version of SB-ML-ML-Approx. Finally, it is obvious that our

approach leads the SB-ML-ML-Approx to almost attain the D̃CRBdet,joint.
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It is well known that the latter is only attainable by SB-ML-ML asymp-
totically in SNR while it is not attainable asymptotically in the number
of data. In Figure 8.2 we compare SB-GMAP-Elm-ML with our proposed
counterpart. It is clear that the gain offered by our approach ( 6 dB) at
low to moderate SNR is tremendous. Also on the same figure, we plot both

D̃CRBsto,marg and DCRBapp
sto,marg. Once again, we can notice that our ap-

proach leads to a lower bound ( 2 dB). It is interesting to note here also

that our approach leads SB-GMAP-Elm-Ml-Approx to attain D̃CRBsto,marg

which is not attainable by SB-GMAP-Elm-ML. In Figure 8.3 we can observe
once again the great enhancement (5 dB) obtained by our approximation
approach at low SNR, specially in the SB-ML-GMAP case whereas in the
SB-GMAP-ML case the gain is around 2 dB. In Figure 8.4 we show nu-
merically that SB-GMAP-GMAP (which jointly estimate the channel and
the symbols) and SB-GMAP-Elm-GMAP (which estimates the channel and
marginalizes the symbols) are perfect in the sense that our approach for
approximating the channel is not capable of enhancing their performance.

In all the simulations we have conducted up till now the PDP is as-
sumed to be known perfectly. However, in Figure 8.5 we estimate the PDP
from the received data and we apply our approach using the SB-SRM algo-
rithm. We compare the enhancement obtained by our approach relying on
the estimated PDP against the perfect PDP. We observe that although the
improvement degrades when we use the estimated PDP but the reduction in
the NMSE compared to the traditional SB-SRM is still interesting. At last,
to prove that our approach leads also to an enhancement in the probability
of symbol error (Pe) (an MMSE equalizer is used), we plot in Figure 8.6
the Pe for SB-SRM and an enhanced version of it based on our channel
approximation approach. We can readily observe the considerable gain (2
dB) offered by our approach at medium and low SNR.

8.6 Conclusion

We have introduced in the context of semi-blind channel estimation a new
approach that relies on the partial exploitation of the PDP of the channel
(assumed known or estimated from the received data) to reduce the channel
estimation error. Based on this approach, we have shown that, by neglecting
some taps at the tail of the channel that are immersed in noise, the quality
of the channel estimation has been improved considerably. The proposed
approach has been implemented to a series of deterministic and Bayesian
estimators introduced previously. We have shown by numerical simulations
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that there is a great enhancement in the NMSE over a wide range of SNR.
Moreover, we have shown analytically that the CRBs of two of the proposed
estimators are lower than their corresponding ones that exist in the liter-
ature. Finally, we have shown also numerically that not only the NMSE
of the channel has been improved but also the probability of error of the
detected symbols. On the other hand, our simulations show that there is
no room left to enhance the estimators that take full advantage of the prior
information about the channel and the symbols. This fact has been reflected
in both SB-GMAP-GMAP and SB-GMAP-Elm-GMAP performance where
our approach has not succeeded to reduce their NMSE.
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Chapter 9

Receiver Diversity With
Blind And Semi-Blind
Channel Estimates

Traditionally, the performance of blind SIMO channel estimates has been
characterized in a deterministic fashion, by identifying those channel re-
alizations that are not blindly identifiable. In this chapter, we focus in-
stead on the performance of Zero-Forcing (ZF) Linear Equalizers (LEs) or
Decision-Feedback Equalizers (DFEs) for fading channels when they are
based on (semi-)blind channel estimates. Although it has been known that
various (semi-)blind channel estimation techniques have a receiver counter-
part that is matched in terms of symbol knowledge hypotheses, we show here
that these (semi-)blind techniques and corresponding receivers also match
in terms of diversity order: the channel becomes (semi-)blindly unidentifi-
able whenever its corresponding receiver structure goes in outage. In the
case of mismatched receiver and (semi-blind) channel estimation technique,
the lower diversity order dominates. Various cases of (semi-)blind channel
estimation and corresponding receivers are considered in detail. To be com-
plete however, the actual combination of receiver and (semi-)blind channel
estimation lowers somewhat the diversity order w.r.t. the ideal picture.

133
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9.1 Introduction

Consider a linear modulation scheme and single-carrier transmission over
a Single Input Multiple Output (SIMO) linear channel with additive white
noise. The multiple (subchannel) outputs will be mainly thought of as cor-
responding to multiple antennas. After a receive (Rx1) filter (possibly noise
whitening), we sample the Rx signal to obtain a discrete-time system at
the symbol rate2. When stacking the samples corresponding to multiple
Rx antennas in column vectors, the discrete-time communication system is
described by

ym︸︷︷︸
p×1

= h[q]︸︷︷︸
p×1

am︸︷︷︸
1×1

+ vm︸︷︷︸
p×1

(9.1)

where m is the symbol (sample) period index, p is the number of Rx an-
tennas. The noise power spectral density matrix is Svv(z) = σ2

v Ip, q
−1 is

the unit sample delay operator: q−1 am = am−1, and h[z] =
∑L−1

i=0 hi z
−i

is the SIMO channel transfer function in the z domain. The channel delay
spread is L symbol periods. In the Fourier domain we get the vector transfer
function h(f) = h[ej2πf ].

We introduce the vector containing the SIMO impulse response coeffi-
cients h†[z] = hH [1/z∗], it denotes the paraconjugate (matched filter). Note
that h†[ej2πf ] = hH(f). h = [hT

0 · · ·hT
L−1]

T . Assume the energy normaliza-
tion tr{Rhh} = p with Rhh = E{hhH}. By default we shall assume the i.i.d.
complex Gaussian channel model: h ∼ CN (0, 1

LIpL) so that spatio-temporal
diversity of order p (L) is available (which is the case from the moment Rhh

is nonsingular). The average SNR per Rx antenna is ρ = σ2
a/σ

2
v .

Whereas in non-fading channels, the probability of error Pe decreases
exponentially with SNR, for a given symbol constellation, in fading channels
the probability of error taking channel statistics into account behaves as
Pe ∼ ρ−d for large SNR ρ, where d is the diversity order. Also, at high
SNR, the Pe is dominated by the outage probability Po and has the same
diversity order for a well-designed system. If the data rate R is adapted

with SNR such that we get a normalized rate r = lim
ρ→∞

R

ρ
∈ [0, 1], then the

diversity becomes d(r) [79]. For all ZF Rx’s considered in this chapter, we
get the following Diversity-Multiplexing Trade off (DMT): d(r) = d(0)(1−r).

1In this chapter, ”Rx” stands for ”receive” or ”receiver” or ”reception” etc., and simi-

larly for ”Tx” and ”transmit”, ...
2In the case of additional oversampling with integer factor w.r.t. the symbol rate, the

Rx dimension would get multiplied by the oversampling factor.
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Hence it suffices to limit the diversity analysis to the fixed rate R case with
diversity d(0) = d.

In practice also the Linear Equalizer (LE) is often used because of low
detection complexity. Also in practice, for both LE and DFE, only a limited
degree of non-causality (delay) can be used and the filters are usually of finite
length (FIR). Analytical investigations into the diversity for SISO with LEs
are much more recent, see [80],[81] for linearly precoded OFDM and [82] for
Single-Carrier with Cyclic Prefix (SC-CP). The DMT for various forms of
LE and DFE with frequency-selective SIMO channels is investigated in [83].
In [80], it was shown that the introduction of redundant linear precoding in
OFDM allows a MMSE-ZF linear block receiver to regain full diversity in
the SISO (or SIMO) case. For instance Zero Padding (ZP) introduces re-
dundancy in the time (delay) dimension which allows a LE of inter-symbol
interference (ISI) to maintain full diversity: every input symbol can be re-
covered linearly unless the whole channel impulse response becomes zero. In
all the references mentioned above the channel was assumed to be perfectly
known at the Rx and in some cases at the Tx too. However, practical re-
ceivers must estimate the channel, thereby incurring estimation error that
needs to be accounted for in the performance analysis. In [37] we treated
the effect of blind channel estimation on the diversity of ZF-LE within the
context of SIMO Tx system. However, we focused there more on the effect
of the constraint usually used to handle the ambiguity that results from
blind channel estimation. In [84] the effect of channel estimation error on
the performance of the Viterbi equalizer is studied in a SIMO framework. In
[85] the bit-error rate (BER) performance of multilevel quadrature ampli-
tude modulation with pilot-symbol-assisted modulation channel estimation
in static and Rayleigh fading channels is derived, both for single branch re-
ception and maximal ratio combining diversity receiver systems. However,
in [86] it is shown that the(practical) ML channel estimator preserves the
diversity order of MRC (Maximum Ratio Combining), see also [87] for a
more thorough analysis.

In this chapter we assume the channel to be estimated at the Rx using
blind and semi-blind deterministic algorithms. We investigate the effect
of the resulting channel estimation error on the diversity achieved by the
corresponding equalizers (matched to the channel estimation hypotheses).
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9.2 Outage Analysis of Suboptimal Receiver SINRs

A perfect outage occurs when SINR = 0. For the Matched Filter Bound
(MFB) this can only occur if h = 0. For a suboptimal Rx however, the
SINR = SINR(h) can vanish for any h on the Outage Manifold M = {h :
SINR(h) = 0}. At fixed rate R, the diversity order is the codimension of
(the tangent subspace of) the outage manifold, assuming this codimension is
constant almost everywhere and assuming a channel distribution with finite
positive density everywhere (e.g. Gaussian with non-singular convariance
matrix). For example, for the MFB (which only depends on h) the outage
manifold is the origin, the codimension of which is the total size of h. The
codimension is the (minimum) number of complex constraints imposed on
the complex elements of h by putting SINR(h) = 0. Some care has to
be excercised with complex numbers. Valid complex constraints (which
imply two real constraints) are such that their number becomes equal to
the number of real constraints if the channel coefficients were to be real. A
constraint on a coefficient magnitude however, which is in principle only one
real constraint, counts as a valid complex constraint (at least if the channel
coefficient distributions are insensitive to phase changes). For ZF equalizers,
consideration of the outage manifold is suffucient. For MMSE equalizers
however, a more complete analysis is required. An actual outage occurs
whenever the rate exceeds the capacity, log(1 + SINR) < R, which occurs
when h lies in the Outage Shell, a (thin) shell containing the outage manifold.
The thickness of this shell shrinks as the rate increases and depends also on
the regularization appearing in MMSE equalizers.

9.3 Blind (B) and Semi-Blind (SB) Channel Esti-
mation and Matched ZF Equalization

Consider a block Tx system with Rx signal in the time domain [18]

Y = T (h) A+ V = TK(h) AK + TU (h) AU + V = Ah + V (9.2)

where A is the vector of Tx symbols, containing possibly known symbols
AK (training/pilots, semi-blind case) and unknown symbols AU (actual
data, i.i.d. with variance σ2

a). T (h) is the channel convolution matrix of
which the part TK(h) is affected by AK and the part TU (h) is affected by
AU . Due to the commutativity of convolution, T (h)A = Ah in which
A = A(AK ,AU ) and h contains the vectorized channel impulse response
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coefficients. V is the AWGN with variance σ2
v . Even though we shall in-

vestigate the diversity of receivers due to fading channels, for (semi-)blind
channel estimation purposes, the channel h is considered a deterministic
unknown. In the (semi-)blind techniques considered here, also AU is con-
sidered a deterministic unknown. TU (h) and A are assumed to have full
column rank w.p. 1 when h and A would be considered random.

Maximum likelihood (ML) estimation of h (with AU as nuisance param-
eters) leads to the least-squares cost function [88]

min
h,AU

‖Y − T (h)A‖2 . (9.3)

As this cost function is separable [88], we can first optimize w.r.t. AU , which
leads to

ÂU = (TU (h)HTU (h))−1TU (h)H(Y − TK(h)AK) . (9.4)

In the semi-blind case (AK 6= 0), this is a particular form of a MMSE-
ZF block DFE, with feedback only from the known symbols AK . Here, the
diversity of a DFE will only get analyzed with a matched semi-blind channel
estimate, in which the feedback symbols play the role of pilots. In the blind
case, AK = 0 , TU (h) = T (h) and (9.4) corresponds to a MMSE-ZF block
LE. The ML (semi-)blind channel estimate is obtained by minimizing (9.3)
after having plugged in (9.4), leading to

ĥ = arg min
h

‖P⊥
TU (h)

(Y − TK(h)AK‖2 (9.5)

where we introduced the projection matrices P⊥
T (h)

= I−PT (h) and PT (h) =

T (h)(T (h)HT (h))−1T (h)H . Note that the Rx diversity with (semi-)blind
channel estimate to be considered here is not restricted to only ML channel
estimates however; any other (semi-)blind method that exploits the same
information will lead to similar diversity results.

The Fisher Information Matrix (FIM) for the joint estimation of θ =
[AH

U hH ]H is

FIMSB
joint =

1

σ2
v

[TU (h) A]H [TU (h) A] . (9.6)

The marginal Cramer-Rao Bound (CRB) for AU (treating h as nuisance
parameters) is

CRBSB
AU

= σ2
v

(
TU (h)HP⊥

ATU (h)
)−1

(9.7)
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while for h (treating AU as nuisance parameters), it is

CRBSB
h = σ2

v

(
A

HP⊥
TU (h)

A

)−1
(9.8)

in which the inverses become pseudo-inverses in the blind case or in the semi-
blind case with insufficient pilots [89]. On the other hand, if the channel is
known (full Channel State Information at the Rx (CSIR)), the CRB for AU

becomes

CRBCSIR
AU

= σ2
v

(
TU (h)HTU (h)

)−1
. (9.9)

The CRB for symbol k in AU provides a lower bound on the symbol esti-
mation (reception) error variance, which leads to an SINR upper bound

SINRk =
σ2

a

(CRBAU
)k,k

(9.10)

In the case of full CSIR, this is not an upper bound but the correct SINR.
In the (semi-)blind case, the bound becomes tight at high SNR, which is
the regime of interest for diversity analysis. Now, we get SINRCSIR

k = 0
whenever TU (h) loses full column rank, in which case TU (h)HTU (h) becomes
singular. The number of constraints that this loss of column rank imposes
on h will be the diversity order. This diversity order will be considered in
detail for various cases in the further sections.

Now, considering SINRSB
k (see (9.8), (9.9) also), we get SINRSB

k = 0
whenever SINRCSIR

k = 0. Hence the diversity order of the Rx with (semi-
)blind channel estimate will be at most that of the Rx with full CSIR. The Rx
signal dimension reduction due to the projection P⊥

A
on the noise subspace

leads to some reduction in diversity order. Note that due to the randomness
of A, the orientation of the subspaces considered is random. Due to this
randomness, the effect of this reduction should become negligible whenever
the relative effect of this dimension reduction becomes negligible, namely
whenever the ratio of channel delay spread over block length becomes small.

In the paradigm of matched (semi-)blind channel estimate and Rx con-
sidered so far, the channel estimation and the data reception are based on
the same data block. However, simulations show that the diversity to be
analyzed does not change when the channel estimation and data reception
are performed on disjoint data blocks, where the Rx for one data block
is constructed with the channel estimate from a different data block (see
the next section also). This would indicate that the diversity effect of the
(semi-)blind channel estimate dominates.
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9.4 General Treatment of the Case of Non-Matched
Receivers

The channel impulse response h can be decomposed into its estimate ĥ and
its estimation error h̃: h = ĥ + h̃. In the (semi-)blind case, ĥ represents
the channel estimate in which possible ambiguities have been resolved. This
channel decomposition leads to the following signal model

Y = T (ĥ) A+ T (h̃) A+ V = TK(ĥ) AK + TU (ĥ) AU +Z (9.11)

where Z = T (h̃) A + V = A h̃ + V has covariance matrix RZZ =
EAU

AR
h̃h̃

AH + σ2
vI (if we assume that the channel estimate is obtained

from data independent of the Y considered here, to make h̃ and V inde-
pendent). If we treat Z as Gaussian noise that is independent of ĥ and
AU , then we get a capacity (or mutual information (MI)) lower bound (that
is fairly tight). The correlations in RZZ depend on the correlations R

h̃h̃
in the channel estimation error, but may get suppressed by the averaging
over AU , depending on the structure of A. As far as the independence
of Z and AU is concerned, this independence is correct if we estimate the
channel from one Rx block and use that channel to detect the symbols in a
different Rx block (with independent data). In any case, considering outage
probability, the MI lower bound leads to a diversity order upper bound.

Whereas the considerations so far pave the way to consider arbitrary Rx
structures, in what follows we shall again focus on matched Rx structures
(but applied to different data blocks). Thus, a MMSE-ZF (δ = 0) or MMSE
(δ = 1) LE/DFE output is obtained as

ÂU = (TU (ĥ)HR−1

ZZ
TU (ĥ) + δ σ−2

a I)−1TU (ĥ)HR−1

ZZ
(Y − TK(ĥ)AK)

(9.12)
with resulting error covariance matrix

R
ÃUÃU

= (TU (ĥ)HR−1

ZZ
TU (ĥ) + δ σ−2

a I)−1 . (9.13)

At least, this expression becomes correct at high SNR, where we can limit
the expression to first order terms in σ2

v and where T (h̃)A and AU become
decorrelated as h̃ becomes linear in the noise. The resulting SINR for symbol
k in AU is:

SINRMMRx
k =

σ2
a(

R
ÃUÃU

)
k,k

− δ . (9.14)
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where MMRx stands for either MMSE-ZF or MMSE depending on the value
of δ. Practically, RZZ is not known because it depends on the true channel
through R

h̃h̃
= R

h̃h̃
(h). However, at high SNR, one can equivalently use

R
h̃h̃

(ĥ). A different complication rises when the channel gets estimated

and the Rx symbols get detected from the same Rx signal block. In that
case the expression for RZZ needs to be modified in order to account for

the correlation between h̃ and V . Finally, one has to admit that accounting
for RZZ in the Rx as in (9.12) complicates the Rx quite a bit. To avoid all
these complications, one could consider the simplified Rx

Â
s

U = (TU (ĥ)HTU (ĥ) + δ
σ2

v

σ2
a

I)−1TU (ĥ)H(Y − TK(ĥ)AK) (9.15)

which corresponds to ignoring T (h̃) A and hence using RZZ = RV V =

σ2
vI. Now further neglecting T (h̃) A leads to a symbol estimation error

covariance matrix lower bound Rs
ÃUÃU

= σ2
v(TU (ĥ)HTU (ĥ) + δ σ2

v

σ2
a
I)−1 and

to a corresponding SINR upper bound

SINRMMRxs
k =

σ2
a(

Rs
ÃUÃU

)
k,k

− δ . (9.16)

A perhaps more accurate approximation would beRs
ÃUÃU

= (TU (ĥ)HTU (ĥ)+

δ σ2
v

σ2
a
I)−1(TU (ĥ)HRZZTU (ĥ)+δ σ4

v

σ2
a
I)(TU (ĥ)HTU (ĥ)+δ σ2

v

σ2
a
I)−1. Our simula-

tions show that these approximate equalizers (9.15) achieve the same diver-
sity order as those of (9.12), either in terms of outage using the SINR in
(9.16) (with either of the two approximate expressions for Rs

˜AU
˜AU

) or (9.14),

or in terms of probability of error of these Rxs with QAM transmission. In-
deed, according to the various expressions for SINRMMRx

k , an outage should

occur whenever ĤU loses full column rank and/or RZZ explodes (because
R
h̃h̃

explodes). In the simulations shown in [37], we worked with (9.12)

except for the case of FIR.

9.5 Fixing the Scalar Ambiguity in the Blind Case

The blind channel estimate ĥ can only be determined up to a scalar α and to
make it comparable to the true channel (or to use it in a Rx), this ambiguity

needs to be fixed to obtain the final estimate
̂̂
h = ĥα. As we shall see (see
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[37] also), the way by which we resolve the scalar ambiguity has a major
effect on the diversity achieved by the receiver. In this chapter we deal with
three different constraints namely, Linear (Lin) constraint, Least-Squares
(LSq) constraint and Fixing one-tap (FOT) constraint. Admittedly, these
fixings are rather theoretical. In practice, one needs to consider differential
modulation (see [37]) or a semi-blind approach.

9.5.1 Linear (Lin) Constraint

Generally, the cost function of any blind deterministic channel estimation

can be represented by ĥ
H
Q ĥ where possibly Q = Q(ĥ). To resolve the

scalar ambiguity we can minimize this cost function subject to a linear con-

straint as follows: min

h
H ̂̂
h=ĥ

H

h

||̂̂h
H

Q
̂̂
h||2. Applying the Lagrange multiplier

we get:

̂̂
h =

hHh

hHQ−1h
Q−1h . (9.17)

This constraint yields
˜̃
h ⊥ h and leads to the minimal CRB. Normally, the

CRB is defined as the inverse of the FIM while for a singular FIM with
the linear constraint considered here, the corresponding CRB is the pseudo-
inverse of the FIM [51].

9.5.2 Least-Squares (LSq) Constraint

In this case the minimization process is done in two steps. First: min
||ĥ||=1

ĥ
H
Q ĥ

to get ĥ = Vmin(Q), where Vmin represents the eigenvector that corresponds
to the minimum eigenvalue. Then the scalar ambiguity is resolved by least
squares as follows: min

α
||h − αĥ||2. After some manipulation we get the

following solution:

̂̂
h =

ĥ
H
h

||ĥ||2
ĥ = P

ĥ
h (9.18)

so that
˜̃
h ⊥ ̂̂

h which is a well known feature of LS estimation. Also with
this constraint, the corresponding CRB is the pseudo-inverse of the FIM.
As a result, both the Linear and Least-Squares constraints lead to the same
diversity order. Either of these constraints will be assumed in the further
discussion of diversity in the blind case.
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9.5.3 Fixing One Tap (FOT) Constraint

Now we minimize the cost function by considering wlog. that the first tap of
the channel on the first Rx antenna is known: eH

1 h = 1 with eH
1 = [1 0 · · · 0],

min

eH
1

̂̂
h=1

̂̂
h

H

Q
̂̂
h. Applying the Lagrange multiplier we get:

̂̂
h = Q−1e1

eH
1 h

eH
1 Q−1e1

. (9.19)

It is obvious from (9.19) that for
̂̂
h to vanish it is sufficient that eH

1 h gets
very small. Hence the diversity achieved is one regardless of the Rx used:
dFOT = 1. This may in part explain the bad performance of blind channel
estimation algorithms using this constraint.

9.6 ZF Equalization in Single Carrier Cyclic Pre-
fix (SC-CP) Systems

The diversity of LE for SC-CP systems has been studied in [82] for the
SISO case with i.i.d. Gaussian channel elements, fixed rate R and block size
N = L. The LE DMT for SIMO SC-CP systems appears in [83]. Consider
a block of N symbol periods preceded by a cyclic prefix (CP) of length L
(as a result of the CP insertion, actual rates are reduced by a factor N

N+L ,
which is ignored here in what follows). The channel input-output relation
over one block can be written as

Y = T (h) A+ V = Ah+ V ; (9.20)

where Y = Y k = [yT
k yT

k+1 · · ·yT
k+N−1]

T etc. T (h) is a banded block-
circulant matrix (see (13) in [83]) and A = A′ ⊗ Ip where A′ is a toeplitz
matrix filled with the elements of A. Now apply an N -point DFT (with
matrix FN ) to each subchannel received signal, then we get

FN,pY︸ ︷︷ ︸
U

= FN,pT (h)F−1
N︸ ︷︷ ︸

H

FN A︸ ︷︷ ︸
X

+FN,pV︸ ︷︷ ︸
W

(9.21)

where FN,n = FN ⊗ Ip (Kronecker product: A ⊗ B = [aijB]), H =
blockdiag {h0, . . . ,hN−1)} with hn = h(fn), the p×1 channel transfer func-
tion at tone n: fn = n

N , at which we have

un = hn xn + wn . (9.22)

The xn components are i.i.d. and independent of the i.i.d. wn components
with σ2

x = N σ2
a, σ

2
w = N σ2

v .
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9.6.1 Blind Channel Estimation

The Rx matched to blind channel estimation is the ZF LE. In the case of
full CSIR, the SINR is given by (9.9), (9.10). In this case TU (h) = T (h)
is block circulant and loses column rank when hn = 0, i.e. when there is
a complete fade on one of the tones, which represents p constraints on h.
So in this case simultaneously the ZF LE fades and the channel becomes
unidentifiable. Hence, the full CSIR diversity is p. In the case of the LE
with blind channel estimate, we need to consider (9.7), (9.10). As mentioned
earlier, the combination of the blind channel estimate in the LE Rx leads to
a reduction in the Rx dimension and hence some diversity loss due to P⊥

A
.

As a result we can state that

dB−ZF
SC−CP ≤ dCSIR−ZF

SC−CP = p (9.23)

where the inequality becomes an equality as
L

N
→ 0. In the case of full

CSIR, the SINR is identical for all symbols in the block. The SINR becomes
position dependent in the blind case. We have investigated via simulations
the dependence of the diversity order on the symbol position but did not
find any. Also replacing the per symbol MSE by an average over the block
led to the same diversity.

9.6.2 Semi-Blind Channel Estimation

We consider here MK consecutive pilot symbols in the time domain. For the
symbol following the M pilots, the block DFE Rx configuration is exactly
that of a classical DFE with feedback length MK . It has been shown in [83]
that the diversity for such a full CSIR DFE is d = p(1 + min{MK , L− 1}).
Hence we conclude

dB−ZF
SC−CP ≤ dSB−ZF

SC−CP ≤ dCSIR−ZF
SC−CP = p(1 + min{MK , L− 1}) . (9.24)

In this case the inequality is not only due to channel estimate-Rx coupling
for a finite block length as in the blind case, but possibly also depends on
the distribution of the MK pilots over the block, as simulations reveal (see
further).

9.7 ZF Equalization in OFDM Systems

Whereas for SC-CP the Tx symbols are A in time domain, in OFDM the
symbols are in X in frequency domain. The same block processing formulas



144Chapter 9 Receiver Diversity With Blind And Semi-Blind Channel Estimates

remain valid, if considered in frequency domain. In OFDM, the channel is
flat at every tone and transmission at different tones is decoupled. As a
result, we get for the blind case

dB−ZF
OFDM ≤ dCSIR−ZF

OFDM = p . (9.25)

In the semi-blind case, pilots are now placed in the frequency domain. If we
introduce HX = Xh then we get

CRBSB
XU

= σ2
w

(
HH

U P
⊥
X HU

)−1
(9.26)

where HU is obtained from H by eliminating the columns corresponding
to the pilot positions. The pilots have no incidence on reception, only on
channel estimation. As a result we get

dB−ZF
OFDM ≤ dSB−ZF

OFDM ≤ dCSIR−ZF
OFDM = p . (9.27)

9.8 ZF FIR/Non-CP Equalization

For time domain FIR equalization of length N , the block signal Tx model
can be derived from the SC-CP case in (9.20) by considering a SC-CP block
length of N+L and removing the L first Rx samples in the block. T (h)
is now replaced by a Np × (N+L−1) banded block Toeplitz matrix T (h)
which can be obtained from the block circulant T (h) by removing the L−1
top block rows, and A is replaced by A containing N+L-1 symbols. For a
ZF FIR LE with full CSIR and N > L − 1, it was shown in [83] that the
diversity is d = p − 1. There is a diversity order loss of 1 compared to the
SC-CP case because now the LE SINR fades or the channel becomes blindly
unidentifiable whenever h[z] has a zero anywhere in the z-plane, as opposed
to a zero at N discrete points on the unit circle as for the SC-CP case. So
the constraint on h is that the p−1 other subchannels have a zero equal to
a (any) zero of the first subchannel, which is p−1 constraints. As a result,
we get for the FIR ZF LE with matching blind channel estimate

dB−ZF
FIR ≤ dCSIR−ZF

FIR = p−1 . (9.28)

For the semi-blind case, we can expect similarly dSB−ZF
FIR ≤ dSB−ZF

SC−CP .

9.9 Simulations

The probability of error for Tx symbols drawn from an 8PSK constellation
is simulated, averaged over 106 Monte-Carlo runs of AWGN noise, symbols
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and i.i.d. Rayleigh fading channel realizations. We consider Tx block lenth
N = 20, p = 3 Rx antennas, and channel memory L − 1 = 1. For the case
of comparable outage probability Pr(O) considerations, we assume a rate
R = N

N+L−1 log(K), where K = 8 is the constellation size. In Fig. 9.1 we
have simulated Pr(O) (via (9.7), (9.10)) for the SC-CP and FIR scenarios
with blind channel estimation. It is obvious that in both scenarios d ≈ 2.
This result confirms our interpretation that blind channel estimation leads
to a loss in the diversity order of a ZF-LE. In Fig. 9.2 we simulate all
the Tx scenarios considered in this chapter but this time with semi-blind
channel estimation. We assume that MK = 4 training symbols (pilots) are
inserted at the beginning of each block. We observe that SC-CP attains a full
diversity order of d = 6 while OFDM achieves d = 3 (full spatial diversity)
and the Non-CP case achieves just 2.5 (less than full spatial diversity).
However, in Fig. 9.3 we reduce MK to 2 (SC-CP and OFDM), but MK = 3
for Non-CP (1 at the beginning of each block and 2 at the end). For SC-CP
we get d = 4 while for OFDM d = 3 only. This result reveals the effect of the
length of the training sequence (pilots) used on the diversity order achieved.
On the other hand, for the Non-CP case with the distributed 3 training
symbols, we get d = 4 which is higher than in the previous simulation where
4 training symbols were inserted at the beginning of the block. This shows
the necessity to distribute the training sequence over both edges of the Tx
block to achieve higher diversity orders for the Non-CP case.

9.10 Conclusions

In this chapter we have analyzed the diversity order of MMSE-ZF Linear
and Decision-Feedback Equalization for frequency-selective SIMO channels,
with the receivers being constructed from matching (semi-)blind channel es-
timates. The matching is furthermore interpreted here in a strict sense in
which both the symbols and the channel get estimated on the basis of the
same block of data. We have seen that matching leads essentially to the
same diversity order for the receivers considered, built from (semi-)blindly
estimated channels or from the true channel. For finite block lengths, the
combination of receivers and channel estimates leads to some diversity re-
duction that requires further investigation. The effect of the positioning
of pilot symbols also requires further investigation, as also the analysis of
non-matching scenarios.
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Figure 9.1: Probability of outage vs. SNR for SC-CP and FIR (Non-CP)
Tx scenarios with blind channel estimation and ZF-LE.
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Figure 9.2: Probability of outage vs. SNR for SC-CP, OFDM and FIR
(Non-CP) Tx scenarios with semi-blind channel estimation and ZF block
DFE with 4 pilots at the start of the Tx block.
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Figure 9.3: Probability of outage vs. SNR for SC-CP, OFDM and FIR (Non-
CP) Tx scenarios with semi-blind channel estimation and ZF-DFE where 3
pilots are used for the case of Non-CP and 2 pilots for SC-CP or OFDM.



148Chapter 9 Receiver Diversity With Blind And Semi-Blind Channel Estimates



Chapter 10

Conclusions and Future
Work

10.1 Conclusions

Although the (semi-)blind channel estimation topic has been investigated
intensively during the past two decades, there are still numerous research
papers that appear from time to time trying to adapt the existing techniques
to some emerging wireless standards. Furthermore, some of these papers try
to fill the gap and to handle the subjects that are considered untouched. In
this thesis we have tried at one hand to introduce some novel algorithms
that improve the channel estimation quality, and on the other hand we have
tried to derive an analytical performance analysis for some other algorithms
that already exist in the literature. Moreover, we have tried to address some
aspects of the (semi-)blind channel estimation that have never been treated
before like diversity. The motivations that encourage us to choose this topic
are many folds:

• The superiority of the performance of the semi-blind channel estima-
tion algorithms over the training based ones.

• The burden of sending a training sequence in the training-based chan-
nel estimation is high compared to the blind case, where training se-
quence is not required at all.

149
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• The evolution in the signal processing hardware (DSPs, FPGAs, etc..)
in the recent years permits the implementation of some sophisticated
algorithms that were difficult or impossible to be implemented before.

• The (semi-)blind channel estimation topic is no more a theoretical
topic. There are many applications in the market nowadays, from op-
tical communications to microwave links, where (semi-)blind channel
estimation constitutes a major block in the receiver.

• There is a new interest in some topics like cognitive radio and ad-
hoc networks where the exchange of information or the cooperation
between the different users is either prohibited (primary user and sec-
ondary user) or should be minimized to the minimum. In such systems,
the transmission of pilots/training sequence is not possible.

We shall try to summarize in the sequel our main contributions through-
out this thesis:

• The advantage of CP system is its ability to transform the frequency
selective channel into flat fading at each tone. We have reintroduced
in chapter 2 a framework that exploits this fact to easily derive an
analytical performance analysis of a weighted and unweighted Signal
Subspace Fitting (SSF), DIQML, PQML and SRM.

• We have also proposed in chapter 2 an enhanced version of DIQML
where the denoising process is performed on a tone basis and derive
its performance analytically.

• In chapter 3, by minimizing the sum of the cost functions at differ-
ent tones (frequency domain) instead of minimizing the ordinary cost
function in the time domain, we have shown that there is a great
computational power saving.

• In chapter 3, we have proposed a spatio-temporal based algorithm
to enhance the sample covariance matrix upon which a class of well-
known estimators rely.

• In chapter 4, we have introduced the concept of variational Bayesian in
the context of MIMO OFDM systems. To the best of our knowledge,
this was the first trial to exploit this technique in the context of (semi-
)blind channel estimation. This technique has shown a great tendency
to fully exploit the available channel prior information to yield better
channel estimates.
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• In chapters 5 and 6, we have introduced the concept of classical Bayesian
blind and semi-blind channel estimation in terms of some useful algo-
rithms. A framework that allows the derivation of six deterministic
and Bayesian algorithms has been presented. Some of these algorithms
jointly estimate the channel and the symbols whereas the others esti-
mate the channel and marginalize the symbols.

• In chapter 7, the CRBs that correspond to the different deterministic
and Bayesian algorithms presented in chapter 6 have been derived.
Three out of six of these CRBs are novel.

• In chapter 8, we have tried to extend the traditional deterministic algo-
rithms into an intermediate point between deterministic and Bayesian.
Hence, a new framework called quasi-Bayesian has been established.
This framework permits to enhance the deterministic channel esti-
mates noticeably. This enhancement has been achieved by neglecting
some taps at the tail of the channel during the estimation process.
The knowledge/estimation of the pdp is a must in this framework.

• In chapter 9, in the context of blind and semi-blind channel estima-
tion, we have shown that for finite block lengths, the combination of
receivers and channel estimates leads to some diversity reduction.

10.2 Future Work

It is true that we have tried to deal with as many aspects of the topics
treated in this thesis as we can, but it is true also that there are still many
questions unanswered. We shall present in the following what we do believe
are the most important ideas. Nevertheless, we believe that not all these
ideas are of the same difficulty level. Perhaps some are doable and the others
seem more challenging.

In chapter 3 we proposed a spatio-temporal based algorithm to enhance
the sample covariance matrix upon which a class of well-known estimators
rely. This algorithm seems promising; however, the enhancement has been
proven just by simulations. Hence, an analytical performance analysis will
lead to a better understanding of the algorithm and the factors that affect
much the enhancement.

In chapter 4 we introduced the concept of VB in the context of blind
MIMO OFDM systems. We have seen that this technique allows for the
exploitation of the prior information that exists about the channel effectively.
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Once again here, the improvement in the channel estimation has been shown
by conducting numerical simulations. Hence, an analytical performance
analysis is a must if one needs to take a close look at this kind of algorithms.

The channel in wireless communications has almost been modeled as
Rayleigh fading, i.e. with a Gaussian (prior) distribution expressing vari-
ances of and correlations between channel coefficients. Nevertheless, most of
the people who worked in the (semi-) blind channel estimation field ignored
this prior information that exists about the channel. Once this information
gets exploited, the channel estimation problem is transferred from the deter-
ministic to the Bayesian framework. Moreover, we have shown in chapters 5
and 6 that working within a Bayesian blind and Bayesian semi-blind frame-
work leads to a noticeable improvement in the quality of channel estimation.
However, this was only done by conducting numerical experiments. What is
more interesting in this area is to perform an analytical performance analysis
for the Bayesian algorithms presented in this dissertation. This would shed
more light on the pros and cons of Bayesian algorithms and will allow us to
know under which circumstances the latter outperforms the deterministic
ones. The main obstacle that may hinder the accomplishment of this task is
the biasedness that stems from exploiting the channel and/or the symbols
prior information. Traditionally, this task is done by expanding the cost
function of the algorithm under investigation using Taylor’s series expan-
sion. However, trying to perform this job classically does not permit taking
the effect of the bias into consideration in the ultimate expression of the error
covariance matrix. This point needs further research and investigation.

On the other hand, we have derived in chapter 7 the different determin-
istic and Bayesian CRBs that correspond to the different algorithms elabo-
rated in chapters 6. However, we have noticed that most of these CRBs are
not tight enough and consequently, there is a need to derive tighter lower
bounds. The key point in this derivation is to consider the lower bound for
one channel realization then averaging over the different realizations that
we do have. However to do so, we need a formula for a biased CRB. For-
tunately, this formula has been derived in the literature since a long time
ago but the difficulty rises here while we try to compute the bias. There
are many ideas on how to play around this problem that should be checked.
Hence, this topic is also subject to further research.

In chapter 9 we have analyzed the diversity order of MMSE-ZF Linear
and Decision-Feedback Equalization for frequency-selective SIMO channels,
with the receivers being constructed from matching (semi-)blind channel es-
timates. For finite block lengths, the combination of receivers and channel
estimates leads to some diversity reduction that requires further investiga-
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tion. The effect of the positioning of pilot symbols also requires further
investigation, as also the analysis of non-matching scenarios.



154 Chapter 10 Conclusions and Future Work



Bibliography

[1] J. Proakis, Digital Communications 4th edition. Englewood Cliffs, NJ:
McGraw-Hill, 2000.

[2] O. Shalvi and E. Weinstein, Universal methods for blind deconvolution.
in Blind Deconvolution, S. Haykin, Ed. Englewood Cliffs: Prentice-Hall,
NJ, 1994.

[3] L. Tong and S. Perreau, “Multichannel Blind Identification: From Sub-
space to Maximum Likelihood Methods,” Proceedings of the IEEE,
vol. 86, no. 10, pp. 1951–1968, Oct. 1998.

[4] D. Slock, “From Sinusoids in Noise to Blind Deconvolution in Commu-
nications,” in Communications, Computation, Control and Signal Pro-
cessing: a Tribute to Thomas Kailath, G. Giannakis, Y. Hua, P. Stoica,
and L. Tong, Eds. Kluwer Academic Publishers, 1997.

[5] D. Slock and A. Medles, “Blind and Semiblind MIMO Channel Es-
timation,” in Space-Time Wireless Systems, From Array Processing
to MIMO Communications, H. Bölcskei, C. P. D.G̃esbert, and A.-J.
van der Veen, Eds. Cambridge University Press, 2006.

[6] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-
Hall, 1996.

[7] Y. Sato, “A Method of Self–Recovering Equalization for Multilevel Am-
plitude Modulation Systems,” IEEE Transactions on Communications,
vol. 23, pp. 679–682, June 1975.

[8] D. Godard, “Self recovering equalization and carrier tracking in two-
dimensional data communication systems,” IEEE Transactions on
Communications, vol. 28, pp. 1867–1875, Nov. 1980.

155



156 Bibliography

[9] J. Treichler, I. Fijalkow, and C. Johnson, “Fractionally spaced equal-
izers: How long should they really be?” IEEE Transactions on signal
processing, vol. 13, pp. 65–81, May 1996.

[10] C. Xu, G. Feng, and K. Kwak, “A modified constrained constant modu-
lus approach to blind adaptive multiuser detection,” IEEE Transactions
on communications, vol. 49, pp. 1642–1648, Sept. 2001.

[11] J. Cadzow, “Blind deconvolution via cumulant extrema,” IEEE Signal
Processing Mag., vol. 13, pp. 24–42, May 1996.

[12] J. Gomes and V. Barroso, “A super-exponential algorithm for blind
fractionally spaced equalization,” IEEE Signal Processing Lett., vol. 3,
no. 5, pp. 283–285, Oct. 1996.

[13] A. Bessios and C. Nikias, “POTEA: The power cepstrum and trico-
herence equalization algorithm,” IEEE Trans Commun., vol. 43, pp.
2667–2671, Nov. 1995.

[14] C.-H. Chen, “Blind multi-channel equalization and two-dimensional
system identification using higher-order statistics,” Ph.D. dissertation,
Dept. Elect. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, 2001.

[15] J. Gorman and A. Hero, “Blind spatio-temporal equalization and im-
pulse response estimation for MIMO channels using a Godard cost func-
tion,” IEEE Transactions on Signal Processing, vol. 45, pp. 268–271,
Jan. 1997.

[16] C. Chi, C. Chen, C. Chen, and C. Feng, “Batch Processing Algorithms
for Blind Equalization Using Higher-Order Statistics,” IEEE Signal
Processing Magazine, Jan 2003.

[17] J. Mendel, “Tutorial on Higher-Order Statistics (Spectra) in Signal Pro-
cessing and System Theory: Theoretical Results and Some Applica-
tions,” Proceedings of the IEEE, vol. 70, no. 3, March 1991.

[18] E. de Carvalho and D. Slock, “Semi–Blind Methods for FIR Multichan-
nel Estimation,” in Signal Processing Advances in Wireless & Mobile
Communications, G. Giannakis, Y. Hua, P. Stoica, and L. Tong, Eds.
Prentice Hall, 2001.

[19] P. Laurent, “Exact and Approximate Construction of Digital
Phase Modulations by Superposition of Amplitude Modulated Pulses
(AMP),” IEEE Trans. Communications, vol. 34, February 1986.



Bibliography 157

[20] Y. Yoon, R. Kohno, and H. Imai, “A Spread-Spectrum Multiaccess
System with Cochannel Interference Cancellation for Multipath Fad-
ing Channels,” IEEE Journal on Selected Areas in Communications,
vol. 11, no. 7, pp. 1067–1073, Sept. 1993.

[21] L. Tong, G. Xu, and T. Kailath, “A New Approach to Blind Identifi-
cation and Equalization of Multipath Channels,” in Proc. of the 25th
Asilomar Conference on Signals, Systems & Computers, Pacific Grove,
CA, Nov. 1991, pp. 856–860.

[22] D. Slock, “Blind Fractionally-Spaced Equalization, Perfect-
Reconstruction Filter Banks and Multichannel Linear Prediction,” in
Proc. ICASSP 94 Conf., Adelaide, Australia, April 1994.

[23] D. Slock and C. Papadias, “Blind Fractionally-Spaced Equalization
Based on Cyclostationarity,” in Proc. Vehicular Technology Conf.,
Stockholm, Sweden, June 1994.

[24] M. Kristensson, B. Ottersten, and D. Slock, “Blind Subspace Iden-
tification of a BPSK Communication Channel,” in Proc. of the 30th
Asilomar Conference on Signals, Systems & Computers, Pacific Grove,
CA, Nov. 1996.

[25] A. van der Veen, “Analytical Method for Blind Binary Signal Sepa-
ration,” IEEE Transactions on Signal Processing, vol. 45, no. 4, pp.
1078–1082, April 1997.

[26] D. N. Godard, “Self-recovering equalization and carrier tracking in
two-dimensional data communication systems,” IEEE Transactions on
Communications, pp. 1867–1875, Nov 1980.

[27] S.-M. Omar, O. Bazzi, and D. Slock, “Performance Analysis Of Blind
FIR Channel Estimation Algorithms In SIMO Cyclic Prefix Systems,”
To be submitted to IEEE trans. on signal processing, 2011.

[28] E. de Carvalho, S.-M. Omar, and D. Slock, “Performance and Com-
plexity Analysis of Blind FIR Channel Identification Algorithms Based
on Deterministic Maximum Likelihood in SIMO Systems,” Submitted
to circuits, systems and signal processing journal, 2011.

[29] S.-M. Omar and D. Slock, “Structured Spatio-Temporal Sample Co-
variance Matrix Enhancement with Application to Blind Channel Es-
timation in Cyclic Prefix Systems,” in Proc. IEEE Int’l Workshop on



158 Bibliography

Signal Processing Advances in Wireless Comm’s (SPAWC), Perugia,
Italy, June 2009.

[30] ——, “Singular Block Toeplitz Matrix Approximation and Applica-
tion to Multi-Microphone Speech Dereverberation,” in Proc. 10th IEEE
International Workshop on MultiMedia Signal Processing (MMSP),
Queensland, Australia, Oct. 2008.

[31] J. Cadzow, “Signal Enhancement – A Composite Property Mapping Al-
gorithm,” IEEE Trans. Acoust., Speech and Signal Processing, vol. 36,
no. 1, pp. 49–62, jan 1988.

[32] S.-M. Omar and D. Slock, “Variational Bayesian Blind and Semiblind
Channel Estimation,” in Proc. IEEE Int’l Symposium on Communi-
cations, Control and Signal Processing (ISCCSP), Limassol, Cyprus,
March 2010.

[33] S.-M. Omar, D. Slock, and O. Bazzi, “Bayesian Blind FIR Channel Es-
timation Algorithms in SIMO Systems,” in Proc. IEEE Int’l Workshop
on Statistical Signal Processing (SSP), Nice, France, June 2011.

[34] ——, “Bayesian Semi-Blind FIR Channel Estimation Algorithms in
SIMO Systems,” in Proc. IEEE Int’l Workshop on Signal Processing
Advances in Wireless Comm’s (SPAWC), San Francisco, USA, June
2011.

[35] ——, “Bayesian and Deterministic CRBs for Semi-Blind Channel Esti-
mation in SIMO Single Carrier Cyclic Prefix Systems,” in Proc. IEEE
PIMRC, Toronto, Canada, Sep. 2011.

[36] ——, “A performance of bayesian semi-blind FIR channel estimation
algorithms in SIMO systems,” in EUSIPCO 2011, 19th European Signal
Processing Conference, Barcelona, Spain, Sep. 2011.

[37] S.-M. Omar, O. Bazzi, and D. Slock, “Receiver diversity with blind FIR
SIMO channel estimates,” in Proc. IEEE ICASSP, Dallas, US, March
2010.

[38] S.-M. Omar, D. Slock, and O. Bazzi, “Receiver Diversity With Blind
And Semi-Blind FIR SIMO Channel Estimates,” in Proc. IEEE Int’l
Symposium on Communications, Control and Signal Processing (IS-
CCSP), Limassol, Cyprus, March 2010.



Bibliography 159

[39] D. Slock, “Blind FIR Channel Estimation in Multichannel Cyclic Prefix
Systems,” in Proc. IEEE Sensor Array and Multichannel Signal Pro-
cessing Workshop (SAM), Barcelona, Spain, July 2004.

[40] M. Viberg and B. Ottersten, “Sensor Array Processing Based on Sub-
space Fitting,” IEEE Transactions on Signal Processing, vol. 39, no. 5,
pp. 1110–1121, May 1991.

[41] D. Slock, “Blind Joint Equalization of Multiple Synchronous Mobile
Users Using Oversampling and/or Multiple Antennas,” in Proc. 28th
Asilomar Conference on Signal, Systems & Computers, Pacific Grove,
CA, Nov. 1994.

[42] Y. Hua, “Fast Maximum Likelihood for Blind Identification of Multiple
FIR Channels,” IEEE Transactions on Signal Processing, vol. 44, no. 3,
pp. 661–672, March 1996.

[43] J. Ayadi and D. Slock, “Cramér-Rao Bounds and Methods for Knowl-
edge Based Estimation of Multiple FIR Channels,” in Proc. SPAWC
97 Conf., Paris, France, April 1997.

[44] ——, “On Linear Channel-based Noise Subspace Parameterizations for
Blind Multichannel Identification,” in Signal Processing Advances in
Wireless Communications (SPAWC), March 2001.
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