
On Collaborative Filtering Techniques for Live
TV and Radio Discovery and Recommendation

Alessandro Basso2, Marco Milanesio3?, André Panisson1, and Giancarlo Ruffo1

1 Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
{panisson,ruffo}@di.unito.it

2 Emporos Systems Corporation, Charlotte, NC, USA
alessandro.basso@gmail.com

3 Eurecom, Sophia Antipolis, France
marco.milanesio@eurecom.fr

Abstract. In order to integrate properly recording services with other
streaming functionalities in a DMR (e.g., AppleTV, PS3) we need a way
to put live TV and radio events into friendly catalogs. But recordings
are based on parameters to be set by the users, such as timings and
channels, and event discovery can be not trivial. Moreover, personalized
recommendations strongly depend on the information quality of discov-
ered events.
In this paper, we propose a general collaborative strategy for discovering
and recommending live events from recordings with different timings and
settings. Then, we present an analysis of collaborative filtering algorithms
using data generated by a real digital video and radio recorder.

Key words: TV and Radio Broadcasts, Recommender Systems, Col-
laborative Filtering

1 DMR Context, Motivations and Related Work

Digital Media Receivers (DMRs), such as the AppleTV, or other devices
that integrate also DMR functionalities, such as the PS3 and the XBox 360, are
rapidly spreading worldwide revolutionizing the way we use our TVs and how
we access to streaming content. The major attractiveness of a DMR is in the
integration of several functionalities that usually come with different devices: a
user can (1) watch (or listen), pause and record live television (or radio); (2) play
and store music albums and view related art; (3) view, store, and edit digital
pictures; (4) rent or buy new music and movies from catalogs; and so on.

DMR functionalities can be accessed through in-house as well as external
services (or channels); for instance, the AppleTV allows the user to rent a movie
from Apple store and also from Netflix. Moreover, the user can stream a media
file stored in another computer connected to the home network, or from other

? Please note that co-authors A. Basso and M. Milanesio contributed to an earlier
stage of the work presented in this paper when they were affiliated at the University
of Turin as research assistants.

2 A. Basso, M. Milanesio, A. Panisson, G. Ruffo

on-line services like YouTube. However, no matter where the content streams
from, the DMR provides an integrated user interface that allows users to browse,
search and playback media resources as they were contained in a larger digital
library.

This kind of interaction shifts the user’s attention from timing (e.g., “my
favorite TV shows starts at 8:00 p.m.”) to availability (e.g., “the last movie of
my favorite actor is already in my library”). This has implications over recording,
because broadcasters schedule timings for their transmissions, and it is up to the
user to set parameters accordingly such as the channel, starting and ending times,
and so on. It is not surprising that popular applications that offer personalized
podcasts, news, TV and radio shows (e.g., Stitcher), usually present lists of
available shows to the user, before aggregating media resources together into
custom channels. Hence, we need a way to automatically discover live TV and
radio events and to present them to the user. Probably, this capability is still
missing because of the aforementioned timing problem, but also due to the lack of
a standard format for structuring the description of events and the unreliability
of many Electronic Program Guides (EPGs) (when they are available) [1]. Even
if recommendation in the IPTV domain has been studied previously (e.g., [2, 3]),
there is still room for the discovery of live events to be recorded through custom
settings.

After discovery, recommendation is a second factor for successful recording
services into the DMR context. A recommender system must suggest the user
to program the recording of a live event before it occurs. This suggestion must
be based on user preferences, and ratings can be used to improve the accuracy
of the system.

We are conscious that it is risky to look for general conclusions from a spe-
cific case study; for this reason, we decided to remove as many biases as possible.
We did not use EPGs and descriptions on timings and content distributed by
broadcasters. Moreover, we did not use explicit user ratings. This comes with
the observation that feedbacks are not always available, due to user data man-
agement strategies (e.g., privacy can be a concern) and unreliability of ratings;
in fact, users do not always use explicity feedbacks correctly, due to lazyness or
carelessness [12].

Furthermore, given such lack of descriptive information, we cannot use
Content-Based (CB) systems at this stage of the analysis, whereas Collabo-
rative Filtering (CF) techniques can be easily executed here. We know that CF
performances can be improved in practice with the benefits that come with a CB
engine, and so we propose a comparative analysis to identify which CF system
(and under which assumptions) over performs the others in a real world scenario.

Section 2 gives a brief introduction of the experimental environment. The
event discovery procedure is presented in (Section 3). Then, we describe the
analyzed recommendation algorithms (Section 4). Finally, the evaluation of the
chosen algorithms is presented in Section 5, before drawing conclusions.

On Collaborative Filtering Techniques for Live TV and Radio... 3

2 Discussion on Data Collection

Our analysis is based on real data generated by the Faucet PVR system, inte-
grated in a web-based podcasting service named VCast (http://www.vcast.
it/). Faucet allows users to record their favorite (Italian) TV and Radio pro-
grams, and to further download them into their devices (e.g., iPod, PC, note-
book). User can set up her own programming and see or download their record-
ings through a simple web interface.

Faucet’s users can record their preferred live events in a very traditional
way: they can set a list of parameters like the channel, the periodicity, as well as
starting and ending times. They are also asked to assign a name to each of their
recordings. After the customized event has been recorded, the user can download
and reproduce it.

As we said in the introduction, data coming from a general purpose recording
system are not immediately usable to identify events such as the transmissions,
but assume the form of unstructured information, which have to be properly
processed. Intuitively, let T be the set of transmissions during a day and ti be a
specific transmission broadcasted on channel cti , starting at time bti and ending
at time fti . Then, in principle, ti can be directly used in the recommendation
engine, as well as ∀t ∈ T . However this is not the case in the real world: if we look
at data collected by monitoring the activity of many users, such transmissions
are not trivially identifiable, mainly because users set different timings for the
same event. This is due to two reasons: (1) users set timings according to clocks
that are not in synch each other: this can produce differences in timings in the
order of minutes; (2) Users are interested on different parts of the same TV or
radio show: in this case, we can have critical differences in timings.

As a final observation, broadcasting is characterized by the expiration of some
events: we can suggest the user to record only future broadcasts, and even if some
shows are serialized, the recording of the single episode should be programmed in
advance. This phenomenon is (partially) due to copyright management, since the
content provider are not willing to authorize service providers to store previously
recorded event for further distribution. Nevertheless, recording of a broadcast is
still allowed, because it is seen as a single user activity. As a consequence, we
have to deal (also) with volatile content, and this differs very much with the VoD
domain, that has been exhaustively explored in the context of recommendation.

The anonymized dataset that we used for our experiments is publicly avail-
able at: http://secnet.di.unito.it/vcast.

3 Data Processing and Discovery of Events

Even if the DMR environment is perfect for dealing with catalogs of discrete
events, we cannot prevent the users from setting timing parameters when they
want to record live shows. However, we can provide a discovery method that
identifies recordings programmed by other users, and that inserts found events in
a dynamic catalog: some events can be added when new recordings are observed;

4 A. Basso, M. Milanesio, A. Panisson, G. Ruffo

other events are removed when their timings expire. Once we have detected
our set of discrete events, we can run our recommender algorithms to create
personalized catalogs.

The first step is the identification of the broadcasted transmissions from the
amount of unstructured data resulting from the recording process. This is a
multi-step procedure that extracts a set of discrete elements as the representa-
tives of the broadcasted events. Basically, a discrete element is obtained as the
result of the aggregation of several different recordings. A preliminary investiga-
tion on the extraction of events from recordings is given in [1].

Let U = {u1, u2, ..., uk} be the set of distinct users in the Faucet platform.
Each user recorded some programs in the past and scheduled some for the future.
To schedule a program, a user must choose a channel c among a list of predefined
channels C, a periodicity p among the possible periodicities allowed in the digital
recorder (for example, daily, weekly, no-repeat), the start and the end of the
recording. Besides, the user is required to annotate his/her recording with a
(possibly) meaningful title.

Let R = {r1, r2, ..., rm} be the set of the recorded programs. Each recording
in R is a tuple r =< u, c, p, tl, b, f > set by a user u ∈ U who recorded on the
channel c with periodicity p a program titled tl starting at time b and finishing
at time f . Thus, we can assume that there exists a function mapping every user
to her recordings.

The set R is first processed by means of clustering; then, aggregation and
merging are carried out in sequence on the output of the clustering. The three
phases are described in the following.

Clustering : Due to the lack of information about the content of each record-
ing, they are clustered wrt the channel, the periodicity and the difference between
timings. Specifically, ∀ri, rj ∈ R|cri = crj ∧ pri = prj we have that

ri] rj iff |bri − brj | < δb ∧ |fri − frj | < δf ,

where] is the clustering operator and δb, δf determine the maximum clustering
distance for the start and end times, respectively. The identified clusters con-
tain recordings equal in the channel and periodicity, and similar in the timing.
The recording that minimizes the intra-cluster timing distances is chosen as the
centroid of the cluster. Each cluster identifies a new event.

Aggregation: As the system produces new recordings continuously, we per-
form the clustering once an hour obtaining the set of newly generated events. A
further step is then required to aggregate the new events with those previously
created. Such an operation is performed by comparing each new event with the
existing events wrt channel, periodicity and timings; if the timings are similar,
we correct the properties of existing events with the values of the newly created
ones. The list of users associated to the event is updated accordingly.

Merging : Similar events, i.e. with the same channel and periodicity but tim-
ings within a fixed range, are merged into a single event. All features of the new
events are computed by means of the values of the merged ones. This operation
is required because events can be created in subsequent moments, by aggregating

On Collaborative Filtering Techniques for Live TV and Radio... 5

recordings referring to the same broadcasted transmissions. Due to the high vari-
ability of the timings, especially when a new transmission appears, such events
slowly and independently converge to more stable timeframes, determining the
need of merging them into single events.

As a result of the whole process, we obtain a number of events, each being
a tuple defined as e =< Ue, c, tl, b, f, p > where Ue is the list of users who set a
recording referring to event e, c is the channel, tl is a title chosen among those
given by users using a majority rule, b and f are the the starting and ending
times and p is the periodicity. More detail on event detection and title selection
can be found in [1].

We observed the behavior of the system in a one year timeframe, i.e., from
June 2008 to June 2009, wrt the number of users, events and recordings. As
the number of active recordings and events tends to increase over time, the
number of users follows a different, less constant, trend. Specifically, we can
notice a considerable increase in the number of registered users in the system
between November 2008 (< 35.000 users) and March 2009 (> 45.000). In July
2009 we observed an interesting average number of 20.000 users with at least one
scheduled recording. The relative success of the service reflected in the number
of recordings: we had about until 200K recordings in June 2008 (the service
was launched few months ago), and approximately 900K recordings one year
after. Analogously, the number of events generated by the aggregations of the
recordings grows up: we could detect almost 32K different events in June 2008.
The overall number of detected events was about 130k after one year.

4 Recommendation

Two well-known recommendation techniques are considered in this work: (1)
the memory based collaborative filtering approach named k -Nearest Neighbors
(kNN) [9]; (2) the model based approach based on the SVD transform [10].
Exploiting the basic idea of the nearest neighbors approach, we apply both vari-
ants of the kNN algorithm: the user-based one [5], by identifying users interested
in similar contents; and the item-based approach [4], by focusing on items shared
by two or more users. The MostPopular items can be considered as a special case
of the user-based kNN approach, where all users are considered as neighbors. In
addition, we also analyze the performance of a variant of the SVD technique
based on implicit ratings, presented in [6].

User-based kNN In the user-based kNN algorithm, the weight of an element e
for a user u can be defined as:

w(u, e) =
∑

v∈N(u)

r(v, e) · c(u, v), (1)

where r(v, e) =

{
1 if e ∈ Ev

0 if e /∈ Ev

6 A. Basso, M. Milanesio, A. Panisson, G. Ruffo

Ev is the set of elements recorded by user v, whilst N(u) is the neighborhood
of user u, limited by considering only the top-N neighbors ordered by user sim-
ilarity. c(u, v) is calculated using a similarity metric, S(u, v), and we considered
several well known measures, such as: the Jaccard ’s coefficient, the Dice’s co-
efficient, the Cosine similarity and the Matching similarity [8]. All similarity
metrics are calculated using the implicit binary ratings r(v, e). Then, ∀u, we can
compute the subset Nu ⊆ U of neighbors of user u by sorting all users v by
similarity with u. Only the k users most similar to u and with S(u, v) > 0 will
be present on Nu.

If the number of neighbors is limited by the chosen similarity to a number
lower than k, we can also consider the 2nd-level neighbors, i.e., for each user v
belonging to N(u) we compute N(v). The overall set of 1st-level and 2nd-level
users is then used to define the users similar to u, as previously described. It
is worth noting that, in case of considering 2nd-level neighbors, the coefficient
c(u, v) in eq. (1) has to be computed taking into account the similarity between
the considered neighbor and further ones. For example, considering user u, her
neighbor v and her 2nd-level neighbor x, we have:

c(u, x) = S(u, v) ∗ S(v, x),

that is a combination of the similarities computed between the neighbors pairs
for the considered user.

MostPopular The MostPopular algorithm can be also defined by means of
eq. (1), assuming the number of neighbors unbounded, which implies N(u) =
U, ∀u ∈ U ; and c(u, v) = 1, ∀u, v ∈ U .
The weight of an element e to a user u is therefore defined as:

w(u, e) =
∑
v∈U

r(v, e) (2)

All elements are sorted in descendant order by weight. The set of neighbors is
independent of the user in the MostPopular algorithm. As consequence, all users
receive the same recommended elements, i.e., the most popular elements.

Item-based kNN In the item-based kNN algorithm, the weight of an element e
for a user u is defined as:

w(u, e) =
∑

f∈N(e)

r(u, f) · c(e, f), (3)

N(e) is the set of n items most similar to e and recorder by u, and c(e, f) is the
neighbor’s weight wrt item e.

Differently from the user-based case, using k = ∞ in the item-based approach
does not lead to the Most Popular set of elements. In fact, the algorithm simply
takes all items f ∈ Eu as neighbors of e, making N(e) user-dependent.

The similarity among items, S(e, f), is based on the same measures already
mentioned before, yet redefined considering two items e, f and their sets of users

On Collaborative Filtering Techniques for Live TV and Radio... 7

Ue, Uf who recorded them. ∀e ∈ E we can compute the subset Ne ⊆ E of
neighbors of item e. An item f such that Ue∩Uf 6= ∅ is thus defined as a neighbor
of e. Starting from the neighborhood of e, similarity with e is computed for each
pair < e, f > such that f ∈ Ne using the implicit binary ratings r(u, e) as defined
in (1), and the weights are calculated according to (3).

SVD The Singular Value Decomposition technique analyzed in this work makes
use of implicit feedbacks and implements the method proposed in [6]. Specifically,
given the observations of the behavior of user u wrt item i, rui, we can define
the user’s preference pui as equal to the implicit binary rating rui. Note that rui
is set to 1 when u records item i, 0 otherwise.

After associating each user u with a user-factors vector xu ∈ Rf and each
item i with an item-factors vector yi ∈ Rf , we can predict the unobserved value
by user u for item i through the inner product: xT

u yi. Factors are computed by
minimizing the following function [6]:

min
x*y*

∑
u,i

(pui − xT
u yi)

2 + λ

(∑
u

‖xu‖2 +
∑
i

‖yi‖2
)

5 Experimental Results

Our evaluation is based on measuring the accuracy of each recommendation
algorithm in predicting the elements that users would program. This is achieved
by computing precision and recall on the predicted items. The more accurate is
this prediction, the more valuable elements are recommended. It is important
to underline that we do not consider any feedback related to the user’s interest
in the recommended items, but we only focus on the prediction ability of the
algorithms analyzed.

To evaluate a recommendation algorithm, we fix an arbitrary time t in the
data collection interval, and use the information about the user recordings before
time t to predict the elements recorded by each user after time t. The collected
data start at January 2008 and end November 2009, thus we choose uniformly
distributed values of t varying from June 2008 to June 2009 in order to not have
biased results by scarcity of training data or by lack of test data.

Given the set E of events in our framework, we define the following subsets:

– A(t) ⊂ E, define the active events at time t (be > t);

– R(u, t) ⊂ E, define the events recorded by user u before time t;

– V (u, t) ⊂ A(t), define the events recorded by user u after time t;

– Rec(u, t) ⊂ A(t), define the events recommended to user u at time t.

It is important to notice that A(t) is also the set of all elements suitable
for recommendation at time t. The aim of our recommendation algorithms
is to predict which events are in V (u, t). For that, for each user, the algo-
rithms associate a weight for each element in A(t) that are not present in

8 A. Basso, M. Milanesio, A. Panisson, G. Ruffo

R(u, t). To recommend items to users, we use the top n recommended ele-
ments Rec(n, u, t) ⊂ Rec(u, t), ordered by weight. The precision values for
the top n recommended elements at time t are computed as the average of
(Rec(n, u, t)∩V (u, t))/Rec(n, u, t) for all users. The same for recall values, com-
puted as the average of (Rec(n, u, t)∩ V (u, t))/V (u, t) for all users [10]. Finally,
we compute the precision and recall for the top n recommended elements as the
average of the precision and recall at different ts.

Our evaluation does not use user’s feedbacks regarding his interest in uncon-
sidered items (i.e., not programmed, nor downloaded). Thus in this context, as
in [6], recall measures are more suitable than precision measures. In fact, we can
assume that ei is of any interest for user u only if ei ∈ V (u, t), otherwise no
assumption on user’s interests can be made. Anyway, for sake of completeness,
we also report the analysis of precision values.

5.1 Evaluation

We start our evaluation showing how different similarity functions affect the
results of user-based kNN recommendation algorithms. We can observe from
Figure 1(a) that, in case of the user-based algorithm, all chosen similarities
show nearly the same performances. In all cases, we used a neighborhood of
k = 300, however the results are similar for other values of k. When it comes to
the item-based algorithm, the Matching similarity considerably outperforms the
other measures, as displayed in Figure 1(b). Again, both Dice and Jaccard show
a very similar behavior, being clearly superior to the Cosine metric when more
than 5 elements are recommended. In both Figures 1(a) and 1(b), the Jaccard
similarity is not shown being almost identical to the Dice.

0 5 10 15 20 25 30

top selection

0%

5%

10%

15%

20%

25%

30%

35%

R
e
c
a
ll

Dice sim ilarity

Cosine sim ilarity

Matching sim ilarity

(a) User-based kNN

0 5 10 15 20 25 30

topselection

0%

5%

10%

15%

20%

25%

30%

35%

R
e
ca
ll

Dice sim ilarity

Cosine sim ilarity

Matching sim ilarity

(b) Item-based kNN

Fig. 1. Comparison between similarity functions in user-based and item-based kNN

In Figure 2(a) we evaluate the consequences of adding second-level neighbors
in the neighborhood of user-based kNN recommendation algorithms. We can
observe that increasing the number of first level neighbors (when it is lower

On Collaborative Filtering Techniques for Live TV and Radio... 9

than k) by adding the second level ones implies a better performance of the
algorithms. In this example, we used Dice similarity and k = 300, however the
results are similar when applying second-level neighbors to other similarities.

0 5 10 15 20 25 30

topselection

0%

5%

10%

15%

20%

25%

30%

35%

40%

R
e
ca
ll

Neighborhood level = 1

Neighborhood level = 2

(a) Recall values for one-level and two-
level neighborhoods for user-based kNN

0 5 10 15 20 25 30

topselection

0%

5%

10%

15%

20%

25%

30%

35%

40%

R
e
ca
ll

Most Popular

k= 2000

k= 300

k= 100

(b) Recall values for different neighbor-
hood sizes in user-based kNN

0% 5% 10% 15% 20% 25% 30% 35%

Recall

4%

6%

8%

10%

12%

14%

16%

18%

P
re
ci
si
o
n

Most Popular

k= 2000

k= 300

k= 100

(c) Precision vs Recall for different neigh-
borhood sizes in user-based kNN

Fig. 2. Neighborhoods comparison, precision and recall for user-based kNN.

In the next tests, we try to find an optimal value for k in the user-based kNN
algorithm. Fig. 2(b) shows the results of kNN user-based for different values of k
and the MostPopular recommender. We used Dice similarity, but the results are
similar with other similarity functions, as previously explained. We can observe
that a value k = 100 is not sufficient to outperform the MostPopular algorithm,
due to the lower value of the recall. On the other side, a very high number of
neighbors allows to perform better than the MostPopular. However, we could no-
tice that for high values of k the algorithm starts to converge to theMostPopular,
characterized by an unbounded number of neighbors. We found that k = 300 is
a good compromise between the ability of providing valuable recommendations
and the resource consumption in calculating the neighborhood.

10 A. Basso, M. Milanesio, A. Panisson, G. Ruffo

To better observe the trend of both recall and precision, Figure 2(c) shows
the two values combined. Again, k = 300 performs better if we take the top
10 recommended elements, as it also yields to good results in terms of preci-
sion. Considering more than 10 recommendations, it would seem appropriate
to increase the number of neighbors, as the results for precision and recall are
slightly better. Nevertheless, considering the algorithm performance also in terms
of computational requirements, k = 300 is still a good choice when we take into
account the precision metric.

An interesting comparison among the three kNN algorithms analyzed, i.e.,
user-based, item-based and MostPopular, is depicted in Figure 3(a). We can
observe that the latter is clearly outperformed by the other two algorithms in
terms of recall, especially when more recommended items are considered. The
user-based kNN performs slightly better than the item-based version, although
the gap is mostly noticeable when more items are recommended. In general,
item-based algorithms tend to perform better because usually the number of
items is considerably lower than the users [9]. Such a property does not hold in
our domain, hence making the user-based version superior in terms of recall, as
we initially expected.

A final experiment was made in order to compare the performance of the SVD
approach to the kNN. The implementation of the SVD algorithms described in
Section 4 is tested with different parameters, with the purpose of identifying
the more suitable ones in our context. In particular, we try different sizes for
user-factors and item-factors vectors, values for the λ parameter and number
of training steps. Results are depicted in Figure 3(b). The best prediction is
obtained with 100 features, λ = 500 and 15 training steps. However, the per-
formance of the SVD approach in the analyzed context is worse if compared to
a neighborhood model such as kNN. Similarly, results related to the precision
(Figure 3(c)) show an analogous performance of the kNN algorithms wrt SVD,
with the Most Popular being considerably less precise than others.

It could appear surprising that the prediction performance of the SVD rec-
ommender is worse than other techniques, as this algorithm normally performs
better in several other contexts [10, 7, 6]. We believe that the motivations for
such an unusual behavior reside in the dataset characteristics. In particular, a
reason might be identified in the so called cold start problem, whose effects in-
volve users, items and communities [11]. In our context, the cold start problem
is particularly noticeable with items and is due to the lack of relevant feedbacks
when a new event first appears in the system. Such an issue is made worse by the
fact that items to recommend are generally new ones, i.e. those events having a
starting time in the future. This property holds for no-repeat events as well as for
repetitive ones (the starting time is updated according to their periodicity). So,
events whose starting time has passed are no longer eligible for recommendation.

The fact that recommendations are affected by the cold start problem is
one key factor that may influence SVD performance, as this algorithm needs
support of user’s preferences to perform well. On the contrary, a neighborhood-

On Collaborative Filtering Techniques for Live TV and Radio... 11

0 5 10 15 20 25 30

topselection

0%

5%

10%

15%

20%

25%

30%

35%

40%

R
e
ca
ll

User-based KNN

Item-based KNN

Most Popular

(a) Recall for user-based kNN (k = 300),
item-based kNN and MostPopular

0 5 10 15 20 25 30

topselection

0%

5%

10%

15%

20%

25%

30%

35%

40%

R
e
ca
ll

Most Popular

User-based KNN

SVD

(b) Recall values for SVD wrt user-based
kNN (k = 300) and MostPopular

0% 5% 10% 15% 20% 25% 30% 35% 40%

Recall

0%

5%

10%

15%

20%

P
re
ci
si
o
n

User-based KNN

Item-based KNN

Most Popular

SVD

(c) Precision vs Recall for user-based
kNN (k = 300), SVD and MostPopular

Fig. 3. Precision and recall for the analyzed algorithms.

based approach such as kNN appears to better deal with newly introduced items,
as also reported in [2].

6 Conclusion and Future Work

We proposed a methodology to detect live TV and radio events from a set of inde-
pendently programmed recordings. Assuming that such events can be browsed,
searched and played back as other digital resources as they are included in a
large digital library, it emerges the importance of suggesting recordings to user.
Thus, we experimented with data of a real digital recording service to compare
collaborative filtering techniques. Our findings showed that neighborhood based
strategies, such as kNN, can return in good prediction accuracy and, if correctly
tuned, they can outperform SVD-based techniques as well asmost popular strate-
gies, which dangerously leverage the phenomenon of many users concentrated
on very few relevant events.
The evaluation of a content-based recommender system in this domain is

12 A. Basso, M. Milanesio, A. Panisson, G. Ruffo

planned. This was not possibile at this stage of the work because of the dif-
ficulty of getting descriptions about recorded events with earlier versions of the
analysed DMR system.

Acknowledgements
This work has been partially produced within the “SALC” (Service à la carte)
project, supported by Finpiemonte, (“Progetto Polo ICT”). Of course, we are
grateful to InRete and Giorgio Bernardi that provided us the access to the VCast
digital recording system data.

References

1. A. Basso, M. Milanesio, and G. Ruffo. Events discovery for personal video
recorders. In EuroITV ’09: Proceedings of the 7th European Interactive TV Con-
ference, pages 171–174, New York, NY, USA, 2009. ACM.

2. P. Cremonesi and R. Turrin. Analysis of cold-start recommendations in IPTV
systems. In RecSys ’09: Proc. of the 3rd ACM conf. on Recommender systems,
pages 233–236, New York, NY, USA, 2009. ACM.

3. P. Cremonesi, R. Turrin, and R. Bambini. A Recommender System for an IPTV
Service Provider: a Real Large-Scale Production Environment. In P. Kantor,
F. Ricci, L. Rokach, and B. S. (eds.), editors, Recommender Systems Handbook,
chapter 30, pages 200–220. Springer, 2009.

4. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms.
ACM Trans. Inf. Syst., 22(1):143–177, 2004.

5. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic frame-
work for performing collaborative filtering. In SIGIR ’99: Proc. of the 22nd annual
intern. ACM SIGIR conf. on Research and development in information retrieval,
pages 230–237, New York, NY, USA, 1999. ACM.

6. Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In ICDM ’08: Proc. of the 2008 Eighth IEEE Intl. Conf. on Data Mining,
pages 263–272, Washington, DC, USA, 2008. IEEE Computer Society.

7. Y. Koren. Collaborative filtering with temporal dynamics. Commun. CACM,
53(4):89–97, 2010.

8. B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stumme. Evalu-
ating similarity measures for emergent semantics of social tagging. In WWW ’09:
Proc. of the 18th Int. Conf. on World Wide Web, pages 641–650, New York, NY,
USA, 2009. ACM.

9. B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering
recommendation algorithms. In WWW ’01: Proc. of the 10th int. conf. on World
Wide Web, pages 285–295, New York, NY, USA, 2001. ACM.

10. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of di-
mensionality reduction in recommender system - a case study. In ACM WebKDD
Workshop, 2000.

11. J. B. Schafer, J. Konstan, and J. Riedi. Recommender systems in e-commerce.
In EC ’99: Proceedings of the 1st ACM conference on Electronic commerce, pages
158–166, New York, NY, USA, 1999. ACM Press.

12. B. Smyth and D. Wilson. Explicit vs. implicit profiling a case-study in electronic
programme guides. In In Proc. of the 18 th In. Joint Conf. on Artificial Intelligence
(IJCAI 03), pages 9–15, 2003.

