
Two Parallel Approaches to Network Data Analysis

Arian Bär
FTW

Vienna, Austria
baer@ftw.at

Antonio Barbuzzi Pietro Michiardi
EURECOM

Sophia-Antipolis, France

{barbuzzi, michiard}@eurecom.fr

Fabio Ricciato
FTW

Vienna, Austria
ricciato@ftw.at

ABSTRACT
In this work we compare two alternative approaches to large-
scale analytic applications. We focus on network data anal-
ysis and define four sample Jobs that operate over a publicly
available dataset of a trans-Pacific Internet link.

First, we present an approach based on a shared-nothing
parallel database and discuss the key ingredients of its de-
sign. Then we present an approach based on MapReduce,
with focus on the design of data analysis Jobs and their
optimization.

Besides a mere performance comparison, the lessons we
learned from several experiments with such systems high-
light the challenges in performing the same computations
over the same datasets, with two orthogonal approaches.

1. INTRODUCTION
The endeavor of this work is to compare alternative ap-

proaches to data-intensive analytics applications, which in-
volve batch processing of large amounts of data with a par-
allel system. Although it would be tempting to proceed with
a general comparison, as done in the much discussed articles
[7, 9], in this work we start from a concrete problem and fo-
cus on a specific application context, namely network data
analysis. In such applications, the goal is to analyze a vast
amount of data collected from one or more vantage points in
the network and stored in a centralized location. Network
data is historical in nature, which imply a simple write once,
read many workload: traces are timestamped and, once a
dataset is produced, no updates are required. Applications
of network data analysis include anomaly detection, traffic
classification, botnet detection, quality of service monitor-
ing and many more. In a typical setting, network data are
periodically accumulated in a storage system for future pro-
cessing and analysis.

Therefore, data import operations are required to com-
plete in a time that is strictly less than the accumulation
period. The subsequent processing phase, especially when
the volume of data to analyze is large, may not be feasi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
LargeScale Distributed Systems and Middleware Workshop, LADIS 2011.
Copyright 2011.

ble with traditional network analysis tools [6]: in this work
we advocate for two alternative parallel approaches to data
analysis.

The first method, which we call TicketDB, is based on
a shared-nothing parallel database system design. Despite
the vast amount of literature on the subject (see e.g. [5]),
shared-nothing architectures have been recently popularized
by Teradata, as discussed in [9], and are used today by many
Internet services, like e.g. eBay. Our design features specific
data management and partitioning mechanisms for network
data analysis. The second method which we consider uses
the MapReduce framework [4], and specifically its open-
source implementation that is part of the Hadoop project
[1]. Both approaches are detailed in Section 2.

In this work, we proceed with the comparison of these two
parallel systems by first defining a set of data analysis Jobs,
which are detailed in Section 3. Our Jobs are representa-
tives of typical (e.g., from a Network Operator perspective)
network analysis tasks related to users’ and protocol behav-
ior. They are run on a large, publicly available network
trace from a trans-Pacific Internet link. One of the main
contributions of this article is to specify how such Jobs can
be described and implemented in each of the two considered
systems. More to the point, the aim of our experiments goes
beyond a mere head-to-head performance comparison of two
parallel systems.

First, we show that with TicketDB, most of the effort is
devoted to the system design, as there is no publicly avail-
able community-supported open-source project to a shared-
nothing parallel database system. We designed such system
from scratch, including the auxiliary software components
to load network data into different instances of the underly-
ing DB engine, and for data partitioning tailored to network
data analysis. With this approach, Jobs are expressed with
SQL, which greatly simplifies the task of defining the oper-
ations on network data.

Then, we focus on MapReduce and describe the large
number of “knobs” that can be tuned in order to reach rea-
sonable system performance. As opposed to TicketDB, with
MapReduce the system design requires practically no effort
— besides deployment issues. Instead, we show that the de-
sign and implementation of analysis Jobs is more involved
and requires great zeal. In this work, we present a novel
technique for time-stamped data whose aim is to produce
a compact execution plan for jobs that otherwise would re-
quire a complex and lengthy sequence of intermediate jobs.

For sake of completeness, in Section 4 we report on the
performance of the two parallel alternatives and conclude in

Section 5 with a series of lessons learned from our work.

2. SYSTEM ALTERNATIVES
In the following, we proceed with a description of the de-

sign and implementation of the two systems. The technical
details of each approach are tailored to the nature of the
data at hand and related operations.

First, we focus on TicketDB and sketch the salient fea-
tures of the architecture and main components. Then, we
outline the Hadoop system: we gloss over several details of
MapReduce and focus on job optimization and important
tuning parameters.

TicketDB: The requirements that motivate the design of a
parallel database from scratch stem from the particular ap-
plication we study in this work. Due to the ever-increasing
speed of computer networks, the import operation consist-
ing in copying data to the centralized database must be very
efficient. Moreover, network analysis may involve querying
and processing a vast amount of data, hence query perfor-
mance is also critical.

We note that network data is historical in nature: traces
are timestamped and, once a dataset is imported in the
database, no updates are required. Thus, we consider net-
work data analysis to belong to Online Analytical Process-
ing (OLAP) applications, and adopt traditional OLAP tech-
niques to organize the data. We use the star schema[2]: we
split “dimensions” from “fact” data, and use a two-way ta-
ble partitioning, which allows to run queries in parallel on
many partitions, with a final aggregation. Dimension and
fact data are stored into separate tables which are referenced
via a unique identifier. For every entry in the dimension ta-
ble there are one or more entries in the fact table.

The architecture of TicketDB is sketched in Fig. 1. In our
current implementation, TicketDB embraces the “scale-up”
paradigm, as it is deployed on a single, high-end machine,
provisioned with a large number of computing cores, mem-
ory and storage arrays.

Input data

Star
schema

generator

Time
partitioning

Hash
partitioning

...

Time
partitioning

Hash
partitioning

Dimension data Fact data

Partition information

DB
master
node

DB
node 1

DB
node 2

DB
node N

Figure 1: TicketDB architecture design.

At the heart of TicketDB import process (shown as boxes
in Fig. 1) lay two components that perform time and hash
data partitioning. First, data is range partitioned based on
the time information included in the data — on a per-hour

basis in our case. Each time-partition is then further hash
partitioned based on the unique identifier from the dimen-
sion table — in the currently deployed system we use two
hash partitions. Every hash partition is stored in a sepa-
rate database instance, with its own RAID array for data
storage. Data partitioning information, which tracks the
table to database instance mapping, is stored in a specific
table on the master node. We note that partitioning has the
following benefits: (i) indices can be created on individual
partitions and are therefore small; (ii) after the full import
of a partition, indices can be created in parallel to the im-
port of the next partition; (iii) queries can run in parallel
on multiple partitions at the same time; and finally (iv) full
partitions can be dropped when data has to be deleted.

In the current design of TicketDB, each database instance
is a PostgreSQL engine residing on the same physical ma-
chine. Although data redundancy is achieved through the
RAID-6 disk array attached to the machine, which can over-
come two disk failures, our current implementation does not
support replication nor failure detection. If the physical ma-
chine fails, the whole system becomes unavailable. Future
extensions of the TicketDB design will address replication
and failure detection features.

Hadoop: MapReduce, popularized by Google with their
work in [4], consists in both a programming model and an
execution framework that is deployed on a cluster of ma-
chines connected by a local area network. In MapReduce, a
Job consists of three phases and accepts as input a dataset,
appropriately partitioned and stored in a distributed file sys-
tem. In the first phase, called Map, a user-defined function
is applied, in parallel, to input partitions to produce in-
termediate data, which are stored on the local file system of
each machine of the cluster. Intermediate data is sorted and
partitioned when written to disk. Next, during the Shuffle
phase, intermediate data is “routed” to the machines respon-
sible for executing the last phase, called Reduce. In this
phase, intermediate data from multiple mappers is sorted
and aggregated to produce output data which is written
back to the distributed file system. Complex Jobs may re-
quire several iterations or combinations of Map, Shuffle,
Reduce phases.

Now, we focus on the key ingredients that define the per-
formance of a Job in terms of execution time. Simply stated,
disk and network I/O are the main culprits of poor Job per-
formance. The task of a Job designer is thus to optimize
the amount of memory allocated to mappers and reducers,
so as to minimize disk access. Moreover, a Job may include
an optional Combiner phase in which intermediate data is
pre-aggregated before it is sent to reducers, to minimize net-
work utilization. Job optimization is a manual process that
requires knowledge of the size of intermediate data sent to
each reducer, and the characteristics of the cluster, includ-
ing number of nodes, number of processors and cores and
available memory.

3. NETWORK DATA PROCESSING JOBS
Here we briefly describe the analyzed datasets, and pro-

vide a high-level description of the four sample Jobs. In
Sec. 3.1 and Sec. 3.2 we describe how Jobs are defined in our
implementation of TicketDB and MapReduce respectively.

Network Data: The input to our Jobs is a textual CSV file
of network traces from the publicly available MAWI (Mea-

surement and Analysis on the WIDE Internet) archive, cap-
tured from a trans-Pacific link between the United Stated
and Japan [3]. In particular, we use traces from sample-
point F collected from 2009/03/30 to 2009/04/02. Packet
payload is omitted and IP adresses are anonymized in the
original trace. From it we extracted a CSV file consisting
of one record per packet. Each record has a size of approxi-
mately 64 B and includes information like timestamp, source
and destination IP addresses and ports, flags, used protocol
and packet length. The original trace consists of 432 GB
raw data, resulting in a CSV file of roughly 100 GB.

Sample Jobs: Hereafter we describe four sample Jobs rep-
resentative of typical analysis tasks run by network opera-
tors. Each Job compute statistics hourly, daily and for the
whole trace duration.

• User Ranking (J1). For every IP address, com-
pute the number of uploaded, downloaded and total
exchanged (upload + download) bytes.

• Frequent IP/Port by Heavy Users (J2). Heavy
users are defined as the top-10 IP addresses from Job
J1 in terms of total exchanged bytes. This Jobs com-
putes the top IP/Port pairs for all heavy users.

• Service Ranking (J3). For experimental purpose,
the set of IP addresses is split arbitrarily into two
subsets, A (servers) and B (clients). For every IP ad-
dress in A, this Jobs computes the total number of
connections established by IP addresses in B.

• Unanswered TCP Flows (J4). For every IP ad-
dress, this Job computes the number of unanswered
TCP flows. A TCP flow is considered answered if the
initial SYN packet is acknowledged by a SYN-ACK
within 3 seconds.

3.1 Job Implementation in TicketDB
In the following we describe how data is imported and

queried in TicketDB. At the end of the section we give a
detailed description of how Job J1 can be expressed using
the stored procedures of TicketDB (due to space limitation
we do not provide details for the remaining Jobs).
Import: The data is imported into TicketDB using a

loader program written in C. The loader first splits the data
into dimension data (i.e. the IPs, ports, protocol) and fact
data (i.e. timestamp, flags, packet/byte counters). Dimen-
sion and fact data are imported into separate tables which
are referenced via a unique identifier. Hash partitioning con-
tributes to substantial improvement during the data import
phase because multiple partitions can be written in parallel.
In addition, queries can run on all hash partitions in parallel,
mapping the data to a subset, which then can be merged or
stored in new tables for further processing. Note that data is
not loaded into the database using inserts, but first written
into a temporary file residing in the shared memory, which
is then imported into the database every 100k lines by the
copy command. In this way, import speed is increased sub-
stantially.

The physical storage size of the range partitions has a big
impact on the query performance. If the size of a range
partition exceeds the memory available for a database con-
nection, sort operations, normally performed in memory, re-
quire to save intermediate data on disk and are therefore

less efficient. The amount of data for a given time inter-
val changes over time due to the time-of-day variations of
network data. Therefore, the time interval for a range parti-
tion has to be choosen that small, that the physical storage
size does not exceed the available memory even in the peak
hours.

Queries: The queries to TicketDB can be run in parallel
on multiple range and hash partitions at the same time.
How this is achieved can be explained with an illustrative
example. Assume we want to compute the total number of
bytes exchanged on this link on a day, as described in Job
J1. In our database setup, for every hour we have two hash
partitions stored in two separate nodes. This leads to a total
of 48 partitions to be queried for one day.

First, for each hourly partition we create a new outer con-
nection to the database. Then, inside each of those connec-
tions we create a new inner connection for each hash par-
tition. Inside the inner connection, we compute the sum of
all packet length fields and return the result to the outer
connections. Each outer connection returns the sum of the
results from both inner connections. To obtain the final re-
sult, the results from all outer connections are summed up.
Obviously, the creation of inner and outer connections is
fully automatic: we implemented two stored procedures to
handle the connection creation that greatly simplifies query
writing. One procedure, called qf dist sql outer, handles
the creation of the outer connections — the number of con-
current connections is configurable. The other procedure,
called qf dist sql inner, handles the creation of the inner
connections. Thus, we only have to define the query to exe-
cute inside the inner connections and how the results of the
inner and outer connections should be merged. All the merg-
ing is done only by the master node. For the performance
evaluation presented later we used the stored procedures for
all queries running 24 parallel outer connections.

The query in Figure 2 shows how the hourly results for
J1 are calculated in TicketDB using the two stored pro-
cedures introduced above. The most inner query collects
the uploaded and downloaded bytes per IP address. There-
fore, the table containing the packet length (fact ip) has
first to be joined with the dimension table (dim ip) con-
taining the IP addresses. The next step is to transform
the triple <source ip, dest ip, bytes> into uploaded and
downloaded bytes for each distinct IP address: this is done
by the inner union. Then the results are grouped over times-
tamp (ts) and IP address, and the sum of the bytes is cal-
culated. This query is evaluated per hash partition on each
database node in parallel. After it has finished, the function
qf dist sql inner returns the results from each inner con-
nection by using the union all operator. This means that
we have to group the results again by timestamp and IP ad-
dress, and sum the bytes once more to create the hourly ta-
bles. The function qf dist sql outer takes care of running
the multiple outer connections. If more partitions than the
amount of available parallel connections have to be queried,
the query is executed in multiple rounds. In each round all
available connections are used and the function waits until
all connections complete their query1. With respect to Job
J1, tables are created for every hourly partition, and no re-

1This process can be optimized by reusing the connection as
soon as the query is finished. The current implementation
does not include this feature, that is left to future develop-
ment.

00 select * from qf_dist_sql_outer($outer$

01 insert into heavy_users_TIMESTAMP (

02 select ts, ip, sum(up) up, sum(down) down,

03 sum(total) total

04 from qf_dist_sql_inner($inner$

05 with t as

06 (select ts, source_ip, dest_ip, up bytes from

07 (select timestamp - (timestamp % 3600) ts,

08 id, sum(bytes) up

09 from fact_ip group by ts, id) as f

10 join dim_ip d on (f.id=d.id))

11 select ts, ip, sum(up) up, sum(down) down,

12 sum(tot) tot

13 from (

14 select ts, source_ip ip, bytes up, 0 down,

15 bytes tot from t

16 union all

17 select ts, dest_ip ip, 0 up, bytes down,

18 bytes tot from t

19) foo

20 group by ts, ip order by ts, tot desc

21 $inner$, TIMESTAMP)

22 group by ts, ip)

23)

24 $outer$, start_timestamp, end_timestamp);

Figure 2: Query for Job J1. This example illustrates
how queries are expressed in TicketDB (due to space limi-
tations we give full details only for Job J1).

sults are returned from the qf dist sql outer function. If
instead results are returned from the outer connections, a
final concatenation and grouping is required. The hourly
tables produced in this way are then used in the next step
to compute the daily and whole-trace result.

3.2 Job Implementation in MapReduce
MapReduce Jobs require to define a Map and a Reduce

function, the “routing” of data from mappers to reducers
(called Partitioning and Grouping), the order of data
received by the reducers and possibly, to further optimize
the job, a Combiner. We remark that there are several
ways to implement our sample Jobs. Although we have tried
many alternatives, in the following we only present best-
performing implementations.

Before proceeding any further, we discuss the key ideas
underlying the conceptual design of our jobs. As an illus-
trative example, let’s consider the fact that our jobs com-
pute statistics at different time granularities, namely hours,
days and weeks. A naive approach is to launch a Job for
each time period and, if possible, use the output of Jobs
executed on fine grained periods as input for Jobs running
on coarse grained periods. However, this approach requires
various cycles of data materialization and subsequent de-
materialization (not to mention framework overhead), that
can be avoided by a careful design of the Reduce, Group-
ing, Sorting and Partitioning phases.

In this work we use a “design pattern”2 that we labeled
in-reducer grouping, whose aim is to produce a compact ex-

2The “design pattern” we discuss is applied to timestamped
datasets. We are currently working on a generalization of
this technique for other kind of data.

ecution plan instead of using a sequence of jobs. To under-
stand our technique, it is convenient to recall the purpose
of the standard Grouping phase in Hadoop. Grouping
is used to prepare the input data to the Reduce phase by
grouping all intermediate key/value pairs in output from the
Map phase that refer to the same key. As such, the Reduce
phase receives a series of (key, list < values >) for further
processing. By default, the Grouping phase in Hadoop is
implicit and exectued at the framework level.

The gist of our approach is to make the Grouping phase
explicit, by moving its definition and execution at the user-
code level. Fig. 3 gives an high-level overview of the in-
reducer grouping technique. In the Figure, we show the be-
havior of a single machine executing the Reduce phase. The
input is in the usual form of sorted key/value pairs which
are processed in sequence (from left to right) by subsequent
calls to the reducer function. Our design pattern is used to
organize the input to the Reduce phase such that it can
be dispatched to different reduce functions: in the Figure,
we show two different grouping strategies that, based on the
same input, “feed” two different reduce functions (R1, R2).
It is fundamental to note that grouping keys must follow a
hierarchical organization: following up with the motivating
example outlined above, one grouping key would be based on
hourly data (and sent to R1) and another on days (and sent
to R2). Note that in some specific cases, the output of one
reduce function in the same Reduce phase can be routed to
another reduce function, which may lead to computational
cost savings: this is illustrated in the Figure by the dotted
lines between R1 and R2. There is a further subtle aspect
in our technique, that we omit from Fig. 3 for the sake of
clarity. For elements to be grouped by key, a preliminary
sorting phase is required. With reference to our example, we
define a custom Sorting phase such that keys are sorted ac-
cording to the hourly data, which is the most fine-grained
period we have in our Job. Finally, we also specify a custom
Partitioning phase, that sends all data that belongs to the
the coarse grained group to the same reducer.

We acknowledge that fact that there are various high-level
data query languages for Hadoop (such as Pig, Hive, and
JAQL) that are more concise if compared to the plain im-
plementation of a MapReduce job. However, we remark that
there is a trade-off between performance and verbosity: in
practice, designing jobs in native Java code is considered to
produce more efficient executions, as noted in [8]. Moreover,
we note that our best-performing jobs cannot be expressed
in the declarative style of higher level languages, since such
languages cannot be used to modify the inner functioning of
the framework itself.

Now, we can move forward and describe the design of each
Job defined in Sec. 3.

Job J1: For this Job, we need to compute the total bytes
sent and received for each IP address per hour/day/whole
trace. Therefore, we aggregate data by time-range and IP.
In the Map phase, for each record, we emit two records with
a composed key <timestamp, IP>. The value accounts for
the packet size and the direction (sender or receiver). The
Reduce phase receives all the data for each IP ordered by
timestamp, uses a counter for each time-range, and imme-
diately emits the output per time-range.

This Job requires a Partitioning function based on the
IP that assigns all the records with the same IP to the same
reducer, and a Sorting function that sorts the data based

Individual Worker Node in the Cluster

(k,v) (k,v) (k,v) (k,v)

R R R R

R1 R1

R2

Grouping 1

Grouping 2

Sequence of Reduce Methods
Calls Based on Sorted Keys

Figure 3: An illustration of the in-reducer grouping
technique.

on the IP as the primary key, and the timestamp as the
secondary key.3. As opposed to a naive approach, this Job
reduces scheduling overhead of the framework, disk and net-
work I/O, but is more complex to write.

Job J2: This Job requires two phases: (J2.1) find heavy
users, and (J2.2) find top ports of heavy users.

The input data of Job J2.1 is the output of Job J1. We
use an hash table of fixed-size priority queues in the Map
phase, that stores only the top 10 users for each input data
block. In the Reduce phase, we compute the heavy users
over all intermediate data from mappers.

In Job J2.2 we need to read the input CSV file, and emit
a record only for heavy users. Hence, we use a distributed
cache to save the list of heavy users, so that it is locally
available to each Map function. During the setup phase of
each mapper, we read the contents of the distributed cache
and load them in a hash map. It is important to note that
the top-10 ports per day cannot be calculated from the top
ports per hour: the “top” operation is not distributive. Job
J2.2 is a single Job, where for each record containing an IP
from a heavy user, the Map emits three records, using the
composite key <time-range, IP> and the port and the size
as value. The Reduce receives all the records belonging to
the same composite key: a fixed size priority queue is used
to emit top ports per distinct key. We tested four alternative
approaches to implement Job J2.2. In general, we noticed
problems related to memory requirements in the Reduce
phase and volume of intermediate data transmitted in the
Shuffle phase. The approach described above is the one
that, in our experiments, performed better.

Job J3: Given two subsets A,B, we find the total number
of unique IPs in A contacted by IPs in B, as follows. For
each record in the input file whose source IP is in B and
whose destination IP is in A, we emit a record containing
the IP address in A, the IP address in B and the time-range

3An additional detail: we use a hour-based Grouping com-
parator that simplifies the Reduce function.

which the record falls into.
In the Map phase, we emit one record with a composite

key <IP ∈ A , IP ∈ B, timestamp> for each input record
from the CSV file. This choice of composite key simplifies
the Reduce function: instead of (naively) using a simple key
<IP ∈ A>, we exploit the sorting capabilities of the frame-
work to achieve our goal. The Reduce function receives all
packets belonging to the same composite key and counts the
number of unique IP in B. This approach requires a custom
Partitioning function that operates on IP address in ∈ A
and a custom Sorting function on the whole composite key.

Among all alternative implementations of this Job we ex-
perimented with, this approach is the hardest to code, but
uses only a single scan of the input data, and produces a
small quantity of intermediate data for the Shuffle phase,
which also lowers sorting effort. However, it requires more
computational resources in the Reduce phase.

Job J4: To find the unanswered SYNs for each IP address
we need to examine the whole dataset, filtering the records
with SYN and SYN-ACK flags. This can be easily done in
the Map phase. In order to find if a SYN is unanswered,
the Reduce function receives all the SYNs and all the SYN-
ACKs having respectively the same source and destination
IP address in the same time-range.

The Map phase behaves as follows. For each SYN packet
it emits a record with a composite key <SrcIP, DstIP,

SrcPort, DstPort, Timestamp>, and SYN as value. For
each SYN-ACK packet, it emits an “inverted” record
with a composite key <DstIP, SrcIP, DstPort, SrcPort,

Timestamp>, and SYN-ACK as value. The Reduce func-
tion receives the SYN and all the possible subsequent SYN-
ACK in order, so that it can easily check if the SYN-ACK
is present.

Using a custom Partitioning based on the IPs and ports
only, all the packets belonging to the same, bidirectional,
flow are sent to the same reducer. Using a custom Sort-
ing function based on the whole key, the Reduce function
receives all the packets belonging to the same bidirectional
flow ordered by timestamp, so that it is easy to check if a
SYN is followed by a SYN-ACK.

4. EVALUATION
We now present a preliminary evaluation of the two ap-

proaches of this work. Our experiments and results should
not be interpreted as an head-to-head comparison of parallel
databases against MapReduce. Rather, our intent is to un-
derstand if, why and to what extent Job completion times
differ using the two systems.

As a general remark, one obvious source of discrepancy in
the results is due to the asymmetry of the hardware config-
uration for the two systems. TicketDB runs on a high-end
server with two hexa-core Intel XEON 2.93 GHz CPUs and
48 GB of RAM. The operating system is stored on two 500
GB RAID-1 disks. For the database two storage arrays are
attached to the server via Fiber Channel links. Each stor-
age array has twelve 750 GB RAID-6 disks. The MapReduce
system is based on Hadoop 0.21 running on a cluster of 11
machines deployed on Amazon EC2. Each instance has 7.5
GB of RAM, 2 virtual cores, one 850 GB disk and a 10 Giga-
bit Ethernet. We note that, considering solely the bare-bone
hardware purchase costs estimation — i.e., ignoring energy,
cooling and maintenance costs — the two deployments we
use in our experiments have roughly comparable costs, of

Job MapReduce TicketDB

Loading data 26 min 34 s 102 min 33 s
J1 26 min 32 s 14 min 40 s
J2 35 min 45 s 6 min 54 s
J3 26 min 57 s 7 min 33 s
J4 18 min 18 s 9 min 39 s

Table 1: Summary of Job duration.

about 15 Ke. Of course, costs scales differently for the two
systems, but a detailed analysis of cost scaling is beyond the
scope of this article.

Table 1 summarizes our results, indicating the duration
of each Job and the time required to initially load the data.
As a baseline benchmark, we evaluate the aggregate I/O to
read input data in both systems, which includes hardware
limitations and software overheads. TicketDB peaks at 650
MB/s while the figure for Hadoop is roughly 200 MB/s: this
partially explains the difference in Job duration between the
two systems. Note also that we don’t have control over the
placement of virtual machines in the Amazon cluster: it
is possible for multiple virtual machines to be launched on
the same physical machine, which would create additional
concurrency issues for the Hadoop system.

One clear advantage of TicketDB with respect to Job du-
ration is due to the fact that a full scan of input data is
performed solely during the import phase. Since data is
organized into multiple tables, some Jobs can benefit from
accessing only a fraction of the tables. This is the case e.g.
for J2, which in fact yields the largest difference in comple-
tion time between the two systems. Note however that other
Jobs (e.g., J1 and J4) may still require access to all tables.

5. LESSONS LEARNED
In this work we considered two alternative approaches

to large-scale network data analysis. Our goal was to de-
sign and compare two parallel systems for processing large
amounts of network data, based on a shared-nothing de-
sign principle. To this end, we presented TicketDB, a par-
allel database system, and an alternative system based on
MapReduce. Our experience can be summarized as follows.

With TicketDB, we designed the system from scratch:
thus, a major development effort has been put in building
key components such as data management and partitioning.
The SQL statements that implement the sample analysis
Jobs considered in this work, albeit not trivial, are more
concise than their MapReduce counterparts.

With Hadoop, we put a major effort in the design of
MapReduce Jobs, which also involved “bending” the under-
lying framework for computations to be more efficient and
less resource hungry. For complex operations, the same Job
could be expressed in different ways: our experience showed
that the naive approach of concatenating simple Jobs was
far from being efficient. Instead, a common “design pat-
tern”, that we called in-reducer grouping, of best perform-
ing implementations involved using MapReduce as system to
partition and “route” data to complex Reduce functions.
Moreover, a substantial amount of work has been devoted to
the optimization of Hadoop, by appropriately tuning its sev-
eral “knobs” to minimize I/O operations, which are largely
responsible for slow Jobs.

In conclusion, we believe this work has shed lights on why
large-scale analytic applications require a deep knowledge
of both system and algorithmic aspects of data process-
ing. Besides the absolute performance of the two alterna-
tive (and in some sense orthogonal) approaches, it is im-
portant to consider the ramifications of early design choices
for batch-oriented processing systems. We showed that al-
though MapReduce has the potential of decoupling system
design from the actual data analysis, the reality is that the
boundary between these tasks is often blurred, especially
when optimizations are required. We also showed that, de-
spite the lack of open-source implementations of parallel
databases, the design of the key component of a shared-
nothing architecture is not a daunting task: however, the
expressiveness of standard query languages such as SQL is
not immediate to exploit, because schema design and query
optimization is tightly coupled with data partitioning.

Currently, we are working on an extension of this work:
the evaluation presented in this article is limited in that we
don’t study the performance/cost scalability of the two sys-
tems (both scale out, and scale up), this is the main aspect
we are set to evaluate in the progress of our work. Further-
more, we will study in more details the robustness and the
impact of failures on the performance of both systems.

Acknowledgements
The Authors would like to thank the anonymous reviewers
for their helpful comments, that contributed to an improved
version of our original submission. P. Michiardi and A. Bar-
buzzi were partially funded by the French ANR-VERSO
project VIPEER. F. Riccato and A. Bär were supported by
the Austrian Government and by the City of Vienna within
the competence center program COMET.

6. REFERENCES
[1] http://hadoop.apache.org.

[2] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Rec.,
26(1):65–74, Mar. 1997. ACM ID: 248616.

[3] K. Cho et al. Traffic data repository at the wide
project. In Proc. of USENIX ATC, 2000.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proc. of USENIX OSDI,
2004.

[5] D. DeWitt and J. Gray. Parallel database systems: the
future of high performance database systems. Comm. of
ACM, 35:85–98, 1992.

[6] M. Mellia, R. L. Cigno, and F. Neri. Measuring IP and
TCP behavior on edge nodes with Tstat. Computer
Networks, 47(1):1–21, 2005.

[7] A. Pavlo et al. A comparison of approaches to
large-scale data analysis. In Proc. of ACM SIGMOD,
2009.

[8] R. Stewart. Performance & Programming Comparison
of JAQL, Hive, Pig and Java. Technical report,
Heriot-Watt University, March 2010. Abstract of
Results from MEng Dissertation.

[9] M. Stonebraker et al. MapReduce and parallel DBMSs:
friends or foes? Comm. of ACM, 53:64–71, 2010.

