
Data Transfer Scheduling for P2P Storage
Laszlo Toka, Matteo Dell’Amico, Pietro Michiardi

{laszlo.toka, matteo.dell-amico, pietro.michiardi}@eurecom.fr
Eurecom, Sophia-Antipolis, France

Abstract—In Peer-to-Peer storage and backup applications,
large amounts of data have to be transferred between nodes.
In general, recipient of data transfers are not chosen randomly
from the whole set of nodes in the Peer-to-Peer networks, but
they are chosen according to peer selection rules imposing several
criteria, such as resource contributions, position in DHTs, or
trust between nodes. Imposing too stringent restrictions on the
choice of nodes that are eligible to receive data can have a
negative impact on the amount of time needed to complete
data transfer, and scheduling choices influence this result as
well. We formalize the problem of data transfer scheduling, and
devise means for calculating (knowing a posteriori the availability
patterns of nodes) optimal scheduling choices; we then propose
and evaluate realistic scheduling policies, and evaluate their
overheads in transfer times with respect to the optimal. We show
that allowing even a small flexibility in choosing nodes after
the peer selection step results in large improvements on time
to complete transfers, and that even simple informed scheduling
policies can significantly reduce transfer time overhead.

I. INTRODUCTION

One of the most appealing characteristics of Peer-to-Peer
storage and backup applications is that very large amounts
of data can be stored at low costs, adopting excess free
space in internal hard drives and/or removable devices; these
applications therefore require moving large amounts of data
between nodes. The current state of technology implies that
amounts of data that can comfortably fit on today’s disk drives
require a long time to be transferred: for example, on an
ADSL line having a standard 1Mbps upload speed, 10 GB of
data need almost a day of continuous upload. In addition, the
unreliability of peers as storage nodes require data to be sent
with redundancy and the fact that many nodes only spend a few
hours online can further extend the amount of time needed to
complete data transfers. Moreover, time to transfer has a strong
impact over data durability: as long as data is not uploaded
with redundancy to nodes, it risks being lost in the case of a
local disk crash: in realistic scenarios, the most likely cause
for data loss can be the simple fact that nodes experience a
disk crash before completing the data upload [1].

The length of data transfers and their impact on data
durability motivates the usage strategies that shorten them. In
this work, we focus on how to deal with situations where the
amount of data to transfer is large, and the amount of resources
invested in these transfers requires keeping track of the data
stored on nodes that are transiently offline: when they will
reconnect, data stored at them will be available again.

Storage applications generally impose restrictions on data
placement, often making only a given set of peers eligible for
storing some particular chunks of data. We call peer selection

the process that enforces these restrictions and outputs a list of
peers that are eligible for storing data, which we will term peer
set. Each node in a peer set is eligible to store a limited amount
of data, depending both on storage capabilities and application
requirements (e.g., when using erasure coding, storing too
much data on the same node can put characteristics such as
data availability or durability at stake).

These restrictions govern the design of Peer-to-Peer appli-
cations: for example, data can be placed on particular nodes
of a distributed hash table in order to facilitate locating it [2],
[3]; restrictions can be imposed in order to store data with
particular storage or uptime characteristics [4], also to create
incentives to cooperation [5]; in systems such as FriendStore
[6] or Safebook [7] data is only placed on machines owned
by friends of the data owner, in order to leverage on trust
relationships between users. In addition to these reasons,
smaller peer sets reduce the “book-keeping” costs due to
monitoring nodes holding data. Unfortunately, these restric-
tions can determine performance issues when coupled with
the phenomenon of churn, i.e. the frequent and unpredictable
pattern of connections and disconnections of peers [8]. If the
restrictions imposed by peer selection are too rigid – resulting
in small peer sets – there can be high overheads in terms of
time needed to complete transfers: for example, if none of the
eligible nodes are online when transfers occur, the data owner
will have to wait until one of them returns online. If the peer
set is bigger, such a situation is less likely to arise.

In this work, we propose a model for data transfers, account-
ing for uploads from a single source node towards multiple
destinations, as well as downloads from multiple sources,
adopting erasure coding. We consider the time to transfer
(TTT) as our main metric, and we investigate how it is related
to the size of peer set, maximum data uploaded to each remote
node, and the scheduling policy adopted for uploads in the
presence of churn. Indeed, scheduling choices (i.e., deciding
how to allocate upload bandwidth towards remote nodes)
impact on TTT; for example, if the currently online nodes
in the peer set have already received their maximum amount
of data, no transfer is possible; other scheduling choices could
have resulted in data transfers not stalling.

When nodes are homogeneous, in terms of bandwidth and
connectivity behavior, scheduling choices are not significant.
Conversely, we show that the peer heterogeneity observed
in real applications makes scheduling matter, since informed
data transfer policies can proactively avoid a situation where
uploads stall. In related work, peer connectivity patterns are
usually taken into account using simple mathematical model-



ing, often using memory-less processes where the probability
that a node disconnects is the same for each node and at each
time. In this case, the scheduling problem becomes trivial:
since all nodes have the same behavior, choosing one or the
other is indifferent. However, since it is guided by human
behavior, churn is not a completely random process: node
availability exhibits regularities such as diurnal and weekly
patterns, and different behavior between users [9]. Trying to
create more complex churn models that attempt to describe all
the particularities and regularities of user behavior would be
prohibitive, given the inherent complexities of human behav-
ior. We instead take a different approach, using availability
traces as inputs of the scheduling problem: this approach
guarantees that the evaluation of scheduling policies will not
be affected by artifacts or simplifications due to the model.
In Section II, we formally define the scheduling problem, and
define scheduling choices as a function of past traces.

We define optimal scheduling based on a posteriori knowl-
edge of the whole node traces: this will provide us a useful
baseline against which we compare feasible online scheduling
choices, based only on knowledge of node uptime up to
when a scheduling choice is made. While the problem may
appear difficult to solve in polynomial time, in Section III we
show that the optimal scheduling can indeed be calculated
efficiently. First, we model the case when no congestion
happens: only a single node is uploading its data. We show that
a maximal flow formulation can be used to solve our problem
in polynomial time. In Section IV, we show – after relaxing
some constraints – that the problem of completing several
concurrent transfers can be seen as a linear programming
problem which is solvable in polynomial time.

Knowing future node uptime in advance is obviously impos-
sible. In Section V, we therefore propose and discuss several
policies where scheduling decisions depend on past traces. In
Section VI, we evaluate experimentally the performance of
these policies, using real traces as simulation inputs. Based
on these results, we conclude that the most important factor
influencing the time needed to complete uploads is the number
of nodes present in peer sets: as this value grows, the time
to complete transfers decreases rapidly. This is an important
message to application designers: allowing a small degree of
flexibility for the choice of nodes to adopt in the overlay pays
off significantly. In addition, we discovered that congestion
has only a moderate impact on the amount of time needed to
complete data transfers, imposing small penalties with respect
to cases where a single node is sending data, mainly due
to asymmetric up- and downlinks. Finally, we show that our
proposed scheduling policies help significantly reduce time to
transfer, with a decrease in the overhead due to non-optimal
scheduling by a factor of around 40% in our experiments.

II. THE SCHEDULING PROBLEM

The way scheduling is chosen can obviously impact the
amount of time needed to complete a data transfer. Consider
the availability traces in Figure 1, where the data owner has
a unitary upload speed per timeslot, and has to upload one

Data 
owner

p1

p2

p3

t1 t2 t3 t4 t5 t6 t7 t8

Figure 1: Example availability traces.

data unit per remote peer – one each to p1, p2 and p3. With
an optimal schedule the owner would send a unit to p2 in the
first timeslot, then one to p1 in timeslot t2, then one to p3
concluding the transfer in timeslot t3. Conversely, if data is
sent to p3 during the first timeslot, in the second timeslot p1
is the only possible choice. The transfer will have to stall until
p2 comes back online in timeslot t7.

In the rest of this Section, we formally define the scheduling
problem as an optimization problem for transfers from a single
data source towards nodes within a predefined peer set, having
bandwidth and availability of nodes as inputs. We then show
how the same formalization can also apply to downloads. In
Section IV we extend the model to cater for a congested case,
with several nodes performing uploads concurrently.

A. Problem Formulation

In our scenario, a data owner has a peer set of n nodes
to which it needs to upload a data object of size o. We take
traces as an input of our problem, encompassing T timeslots
(starting from the beginning of the upload process) in which
peer availability and bandwidth can change; within a single
timeslot the network conditions remain stable. In our model,
the timeslot duration is not constrained to be constant. We
do not consider cases (such as network coding or simple
replication) where data destined to a node can be obtained
from data sent to other peers, and we therefore only consider
data to be uploaded from the data owner. In most cases data
will be divided in fragments and incomplete fragment transfers
will be discarded; we consider the fragment size to be small
enough to consider the amount of data lost in this way (e.g.,
nodes disconnecting while receiving data) negligible.

We model the network congestion as limited by the up-
load/download bandwidth of peer access links, and we assume
that bandwidth can vary between timeslots: we thus model ut

as the amount of data that the owner can upload within timeslot
t, and di,t as the amount of data that peer i can download in
the same timeslot t. We express the fact that nodes are offline
in a timeslot by setting the corresponding bandwidth to 0.

We impose an additional constraint mi on the maximum
data that can be uploaded to each peer i. This restriction can
be due to both storage capabilities of nodes and to system
design choices (for example, if the data owner is uploading
the result of an erasure coding process, having too much data



Symbol Meaning in the upload scenario Meaning in the erasure-coded download scenario
n peer set size number of remote data holders
T number of timeslots number of timeslots
o data object size data object size
di,t data peer i can download in timeslot t (0 if i is offline) data peer i can upload in timeslot t (0 if offline)
ut data owner can upload in timeslot t (0 if owner is offline) data owner can download in timeslot t (0 if offline)
mi maximum amount of data uploaded to peer i data stored on peer i

Table I: Inputs of the scheduling problem.

on the same node could degrade data availability or durability).
With this problem formulation, we aim to optimize the

time to transfer of a single node. Network congestion and
storage limitations caused by the simultaneous activity of other
nodes can be expressed by altering the values of di,t and mi,
subtracting the resources allocated to other peers. In Section
IV, we propose a model where the goal is to optimize the time
to complete several concurrent transfers on the same network.

The notation is summarized in the left part of Table I.

Definition 1. The ideal time to transfer (idealTTT) is the
minimum number of timeslots needed to upload the data object
considering only the bandwidth of the data owner:

idealTTT = min

{
t ∈ 1 . . . T :

t∑
i=1

ui ≥ o

}
.

IdealTTT represents the time to transfer data when upload-
ing to an ideal server, which is supposed to be always online
and to have enough bandwidth to saturate the owner’s uplink.
The differences between idealTTT and time to transfer values
observed for P2P systems are entirely due to the limits of
remote nodes and to the inefficiency of scheduling policies.

Definition 2. A schedule S represents the amount of data
sent to each node during each timeslot. For each peer i and
timeslot t, we will denote S(i, t) as the amount of data sent to
peer i during timeslot t. During a timeslot t, a node can send
data concurrently to several peers at once, reflecting the case
where a node uploads data in parallel to several destinations.
A schedule has to satisfy the following conditions.

1) Upload constraints are respected:

∀t ∈ [1, T ] :

n∑
i=1

S(i, t) ≤ ut. (1)

2) Download constraints are respected:

∀i ∈ [1, n] , t ∈ [1, T ] : S(i, t) ≤ di,t. (2)

3) Storage constraints are respected:

∀i ∈ [1, n] :

T∑
t=1

S(i, t) ≤ mi. (3)

We denote the set of all schedules as S.

Definition 3. A schedule S is complete if at least a total
amount o of data has been transmitted:

n∑
i=1

T∑
t=1

S(i, t) ≥ o. (4)

We denote the set of all complete schedules as CS .

Definition 4. The time to transfer (TTT) of a schedule S is its
completion time, i.e. the last timeslot in which the data owner
uploads data:

TTT (S) = max

{
t ∈ [1, T ] :

n∑
i=1

S(i, t) > 0

}
.

The goal of a scheduling policy is to obtain the shortest
possible TTT. In Section III we show how to evaluate a
posteriori an optimal scheduling policy given the traces, and
in Section V we discuss how to choose a scheduling policy.

B. Extension to Downloads

Let us consider the case of a single node downloading a
piece of content composed of data fragments stored on remote
peers. When these fragments are encoded with erasure coding
techniques, there is a value k such that any k fragments are
sufficient to recover the original data.1

Scheduling can be covered with the very same formalization
discussed above, inverting the direction of the data flows:
Table I shows how notations map to their meaning in this
situation. Also in this case there is a data amount o to transport
in total; the n nodes in the peer set are the remote data holders;
the constraints of the problem take different meanings, but
they have the exact same role with respect to our model. The
values mi take the role of the data amount that is remotely
stored on each node – any amount of data between 0 and
mi can be transferred from i; the meaning of the di,t and ut

values are now inverted, mapping now to respectively peer i’s
upload bandwidth and the owner’s downlink. The equations of
Definitions 2 and 3 still have to hold, requiring that constraints
are respected for download (Equation 1), upload (Equation 2)
and storage (Equation 3), and at least o bytes are transferred
(Equation 4). The definitions of idealTTT and TTT still hold
with the same meaning.

Given that both cases map to the same problem in the
following we will refer, without loss of generality, only to
the case of upload described before.

III. OPTIMAL SCHEDULING

Once the whole traces are known, it is possible to compute
the minimal possible time to transfer. Obviously, this knowl-
edge is not available in real time, so this information cannot be

1Non-optimal coding techniques (e.g., LT codes [10]) give probabilistic
guarantees on the ability to decode data with k′ = k + ε fragments. They
can be taken into account by choosing an ε big enough to give sufficient
guarantees and using k′ instead of k.



used to devise scheduling policies. Nevertheless, it is possible
to compare a posteriori the optimal TTT with the results
obtained using online scheduling policies in order to evaluate
their degree of efficiency. Despite the fact that finding optimal
scheduling may appear computationally very expensive at first
sight, we devise an efficient polynomial solution based on a
max-flow formulation.

The rationale and performance for scheduling policies are
deeply intertwined with the characteristics of node churn. In
Section V we discuss the choice of scheduling policy, and
in Section VI we experimentally evaluate scheduling policies,
and their overhead with respect to optimal scheduling, on real
availability traces.

Definition 5. The optimal time to transfer (optTTT) is the
minimal TTT within the set of all complete schedules CS:

optTTT = min {TTT (S) : S ∈ CS} . (5)

We use optimal TTT as a baseline to compute the overhead
in time-to-transfer for a given scheduling policy.

Definition 6. The scheduling overhead for a schedule S is the
relative increase in TTT due to a non-optimal scheduling:

TTT − optTTT

optTTT
.

We compute optimal scheduling by solving several instances
of the related problem: “how much data can be transferred
within the first t timeslots”? We will use the following
Proposition to relate the two problems.

Proposition 7. Let S be the set of all schedules, and F (t) be
the maximum amount of data that can be uploaded not later
than t, that is:

F (t) = max


n∑

i=1

t∑
t=1

S(i, t) : S ∈ S ∧ TTT (S) ≤ t

 ;

(6)
Optimal TTT will be

optTTT = min
{
t ∈ 1 . . . T : F (t) ≥ o

}
. (7)

Proof: Let t1 = optTTT and t2 =
min

{
t ∈ 1 . . . T : F (t) ≥ o

}
. We show that both t1 ≥ t2 and

t1 ≤ t2 hold.

1) t1 ≥ t2. By Equation 5, an S1 ∈ CS exists such that
TTT (S1) = t1 and, since S1 ∈ CS , by Equation 4∑n

i=1

∑T
t=1 S(i, t) ≥ k. The existence of S1 implies

that F (t1) ≥ o (Equation 6) and therefore t2 ≤ t1.
2) t1 ≤ t2. By Equations 6 and 7, an S2 exists such

that TTT (S2) = t2 and
∑n

i=1

∑T
t=1 S(i, t) ≥ o. This

directly implies that t1 = optTTT ≤ t2.

The former Proposition allows us to find optTTT by com-
puting different values of F (t) and outputting the smallest
value t such that F

(
t
)
≥ o.

t1

t2

t3

t4

t5

t6

t7

t8

p1

p2

p3

s t
...
...

u1

...
...
...

m1

m2

m3

d2,1

d3,3

u8

d1,2

Figure 2: Flow network equivalent to the traces of Figure 1
on page 2.

A. Max-flow Formulation

Let us now focus on how to compute F (t). This problem
can now be encoded as a max-flow problem on a network
built as follows. First, we create a complete bipartite directed
graph G′ = (V ′, E′) where V ′ = T ∪ P and E′ = T × P;
the elements of T = {ti : i ∈ 1 . . . T} represent time-slots,
the elements of P = {pi : i ∈ 1 . . . n} represent remote peers.
Source s and sink t nodes are then added to the graph G′ to
create a flow network G = (V,E). The source is connected
to all the time-slots during which the data owner is online; all
peers are connected to the sink.

The capacities on the edges are defined as follows: each
edge from the source s to time-slot i has capacity ui; each
edge between time-slot t and peer i has capacity di,t; finally,
each edge between peer i and the sink has capacity mi.

Since we are interested in maximal flow, we can safely
ignore (and remove from the graph) those edges with capacity
0 (corresponding to nodes that are offline). In Figure 2, we
show the result of encoding the example of Figure 1.

We will show that each s → t network flow represent a
schedule, and a maximal flow represents a schedule transfer-
ring the maximal data F (t). In the example of Figure 2, the
bold edges represent a solution to the maximal flow problem
on the first 3 timeslot nodes where an amount of data o = 3
is uploaded, with a flow of 1 per edge.

A nonzero flow from a timeslot node to a peer node
represents the data uploaded towards that node in the specific
timeslot; parallel transfers happen when multiple outgoing
edges from a single timeslot node have nonzero flow. The
constraints that guarantee that the schedule is valid according
to Definition 2 on the previous page are guaranteed by the
edge labels: upload constraints (Equation 1) are guaranteed by
edges from source to timeslot; download constraints by edges
from timeslots to peers (Equation 2); storage constraints by
edges from peers to the sink (Equation 3).



Algorithm 1 Algorithm for finding optTTT.
l← 1; r ← 1
% We look for a r value with D(r) ≥ o.
% In this cycle, maximum log2 t invocations to D.
while D(r) < o:

l← r; r ← 2r
% Now l ≤ t ≤ r; we look for t via binary search.
% Again, maximum log2 t invocations to D.
while l 6= r:

t←
⌊
l+r
2

⌋
if D(t) < o:

l← t
else:

r ← t
return l

B. Computational Complexity

As guaranteed by Proposition 7 on the preceding page,
optTTT can be obtained by finding the minimum value t
such that F (t) ≥ o. The t value can be found by binary
search, requiring O

(
log t

)
calls to the routine computing F

as in Algorithm 1; for a flow network with V nodes and E
edges, the max-flow can be computed with time complexity
O
(
V E log

(
V 2

E

))
[11]. In our case, when we have n nodes

and an optimal solution of t time-slots, V is O(n+ t) and E
is O(nt). The complexity of an instance of the max-flow al-
gorithm is thus O

(
nt
(
n log n

t
+ t log t

n

))
. Multiplying this

by the O
(
log t

)
times that the max-flow algorithm will need

to be called, we obtain a computational complexity for the
whole process of O

(
nt log n

(
n log n

t
+ t log t

n

))
.

IV. MODEL WITH CONGESTION

With the formalization of Section II, we defined the schedul-
ing problem as an optimization problem concerning only the
scheduling choices of a single data owner, and aimed to
optimize its TTT. The network congestion due to other nodes
competing for bandwidth at the same nodes could be expressed
by varying the values of ut and di,t, but the scheduling choices
adopted by those nodes could not be changed in order to
accommodate for a more efficient global behavior.

We now consider the case of a Peer-to-Peer application
where nodes behave altruistically, performing their choices in
order to optimize towards the common good of the commu-
nity.2 In this case, we consider the case where the n nodes in
the network have data objects to back up, and we formalize the
problem of minimizing a global time to transfer: completing
as soon as possible all data transfers.

In Table II we enumerate the new inputs of the problem,
generalizing the inputs of the single-node scenario of Table I
on page 3. For the download scenario, the same different

2This case applies for example to “managed Peer-to-Peer” settings in which
peers are machines run and administered by the same entity, such as set-top-
boxes used for Internet access.

Symbol Meaning in the upload scenario
n network size
T number of timeslots
oi data object size for peer i
di,t data peer i can download in timeslot t (0 if i is offline)
ui,t data peer i can upload in timeslot t (0 if i is offline)
mi,j maximum data uploaded by peer i on j (0 if i = j)
mi storage capacity on node i

Table II: Inputs of the scheduling problem with congestion.

meanings would apply here. Each node i has a data object
of size oi to upload (oi = 0 if node only i stores data
without uploading anything); the upload speed can now vary
per node, where ui,t is the amount of data that i can upload
in timeslot t; the data that j can store for i is now expressed
as mi,j (mi,j = 0 if i = j or j is not part of i’s peer set
and cannot therefore store i’s data). In addition, the overall
storage capacity of node i is now expressed as mi. We can
now formulate the definition of a schedule and a complete
schedule in this case.

Definition 8. A global schedule G represents the amount of
data sent between each pair of nodes during each timeslot. For
each pair of nodes (i, j) and timeslot t, we denote the amount
of data sent from i to j during timeslot t as G(i, j, t). Also in
this case, parallel transfers are supported by the model: a node
can send data to several recipients at once, and a recipient can
receive transfers from several origins concurrently. A global
schedule has to satisfy the following conditions.

1) Upload constraints are respected:

∀i ∈ [1, n] , t ∈ [1, T ] :

n∑
j=1

G(i, j, t) ≤ ui,t. (8)

2) Download constraints are respected:

∀j ∈ [1, n] , t ∈ [1, T ] :

n∑
i=1

G(i, j, t) ≤ di,t. (9)

3) Storage constraints are respected:

∀i, j ∈ [1, n]
2
:

T∑
t=1

G(i, j, t) ≤ mi,j ; (10)

∀j ∈ [1, n] :

n∑
i=1

T∑
t=1

G(i, j, t) ≤ mj . (11)

Definition 9. A global schedule G is complete if each node i
has trasmitted oi data:

∀i ∈ [1, n] :

n∑
j=1

T∑
t=1

G(i, j, t) ≥ oi. (12)

Definition 10. The global time to transfer (GTTT) of a global
schedule G is

GTTT (G) = max

t ∈ [1, T ] :

n∑
i=1

n∑
j=1

G(i, j, t) > 0

 .



A. Optimal Scheduling

We now delve in the way to compute optimal scheduling
in this case. Analogously to what we did in Section III, we
first formulate the problem of computing the amount of data
MAXD(t) that can be transmitted within the first t timeslots,
and we use iteratively the solution of this problem to find
the smallest t value that satisfies the condition of completing
all transfers. We formalize the aforementioned problem in the
following definition.

Definition 11. MAXD(t) is the maximum amount of data
that all nodes can transfer within timeslot t. It is determined
by the linear programming optimization problem

MAXD(t) = max

n∑
i=1

n∑
j=1

t∑
t=1

G(i, j, t) (13)

subject to the constraints of Equations 8, 9, 10, 11, and

∀i ∈ [1, n] :

n∑
j=1

T∑
t=1

G(i, j, t) ≤ oi (14)

enforcing that no peer uploads more than its oi-bytes.

It is worthwhile to discuss the characteristics of this for-
malization. The MAXD problem determines a global schedule
with n2T variables (i.e., all the G(i, j, t) values). Constraints
8, 9, 10, 11 and 14 express valid linear programming equa-
tions, as each one of them forces a linear combination of the
values in G to be less than or equal to one of the scalar values
of the inputs: respectively, the nT values of ui,t and di,t, the
n2 values of mi,j , the n values of mi and the n values of oi.
Overall, this results in a constraint matrix with n (2T + n+ 2)
equations and n2T variables. Since it is a linear programming
problem, MAXD can be solved in polynomial time [12], [13].

Definition 12. The optimal global time to transfer (optGTTT)
is the first value t for which each node i can transfer its oi
bytes:

optGTTT = min

{
t ∈ [1, T ] : MAXD(t) ≥

n∑
i=1

oi

}
.

Analogously to optTTT with Algorithm 1 on the preceding
page, optGTTT can be found by binary search with O(log t)
invocations to the routine computing MAXD.

V. SCHEDULING POLICIES

As opposed to the optimal scheduling considered until now,
we now move on to discuss strategies that can can actually
be implemented, meaning that a scheduling decision applied
at time t is only dependent on information that is available
at time t. For convenience, we will use ai,t as a binary value
assuming value 1 if peer i is online at timeslot t:

ai,t = 1 if di,t 6= 0, 0 otherwise.

Each of the scheduling policies we introduce in this Section
gives a priority value vi(t) to each node i at time t. The

scheduling policy chooses to upload data to the available
node in the peer set with the highest priority value. In case
of ties, we break them by selecting nodes randomly. If the
highest-priority node is unavailable or the upload speed of
the data owner is not saturated, further nodes are selected by
descending order of priority.

It is worthy to note that adopting different scheduling
policies may result in different system properties (e.g., if
uploads are prioritized towards low-availability nodes, data
that is uploaded could have a lower availability). This issue
is outside of the topic of this paper, since we consider that
the required system properties should be ensured by proper
policies within the peer set selection step; once peer selection
is completed, we consider that any node in the peer set is
equivalently suitable to store data.

a) Random Scheduling: The simplest scheduling choice,
which is most commonly used in existing systems, amounts
to just choosing a node at random within the peer set:

vi(t) = 0.

Since all nodes will be tied in term of priority, scheduling will
be chosen randomly. Random scheduling is extremely cheap
and easy to implement because it is stateless: no information
has to be kept about past node behavior.

b) Least Available First: A data transfer can stall if nodes
that should receive the next pieces of data are not available.
This strategy is based on assuming that nodes that have been
online often in the past will continue to do so in the future; it
thus makes sense to prioritize uploads towards nodes that have
been less available in the past: when only high-availability
nodes are online, data stored on them will be less likely to
have already reached the maximum value mi.

This scheduling policy observes past availability within a
“window of past behavior” lasting for w timeslots:

vi(t) = −
t∑

x=t−w
ai,x.

c) Slowest First: This is a variant of the least-available-
first policy, also taking into account the download speed of
nodes, based on the idea that a node with slower download
speed will complete receiving its maximal amount of data mi

in longer time:

vi(t) = −
t∑

x=t−w
di,x.

d) Last Connected First: If the amount of time that nodes
spend online is exponentially distributed, each node has the
same probability of going offline independently of the amount
of time spent online until the present. On the contrary, different
distributions are observed in practice. In particular, if nodes
that have been online for longer are more likely than others
to remain online, it makes sense to prioritize uploads towards
nodes that connected most recently, in order to capitalize on
the capability of uploading to them before they disconnect:

vi(t) = max {x ∈ [1, t] : ai,t = 0} .



May 19 2009

May 20 2009

May 21 2009

May 22 2009

May 23 2009

May 24 2009

May 25 2009
50

100

150

200

O
nl

in
e

no
de

s

Figure 3: Online peers during a week in the trace.

e) Longest Connected First: If, as opposed to what has
been discussed before, the amount of time a node spends
online tends to be more concentrated towards the mean than in
an exponential distribution, it makes sense to prioritize uploads
towards node that got connected least recently:

vi(t) = −max {x ∈ [1, t] : ai,t = 0} .

VI. EXPERIMENTAL RESULTS

After showing how to compute optimal time to transfer and
introducing scheduling strategies, we now focus on evaluating
them, using simulations based on real network traces.

A. Simulation Settings

We perform our evaluation on real application traces, ob-
taining availability traces (i.e., logon/logoff events) from an
instant messaging (IM) server for a duration of 3 months,
and dividing it in four 3-week periods. We argue that the
behavior of regular IM users constitutes a representative case
study for Peer-to-Peer storage applications. Indeed, in both IM
and online storage, users are generally signed in for as long
as their machine is connected to the Internet.

Adopting the same criteria used by the Wuala3 online
storage application, we only consider users that are online on
average for at least four hours per day; this results in the trace
of 376 users. Since we are especially focusing on situations
where the peer set size is small, we consider the size of our
traces to be sufficient for our goals. Availabilities are strongly
correlated, in the sense that many users connect and disconnect
around the same time. As shown in Fig. 3, there are strong
differences between the number of users connected during day
and night and between workdays and weekends.4

Uplink capacities of peers are obtained by sampling a real
bandwidth distribution measured at more than 300,000 unique
Internet hosts for a 48 hour period from roughly 3,500 distinct

3http://www.wuala.com
4Our trace exhibits strong correlation in uptime because most users live

in the same time zone; this impacts negatively both idealTTT and real TTT
values in our experiments. Daily availability patterns are however present
even in globally distributed applications, since neither human population nor
the popularity of Internet applications are uniformly distributed across all
timezones.

0 1 2 3 4 5 6 7 8 9 10
idealTTT (days)

0

50

100

150

200

F
re

qu
en

cy

Figure 4: Histogram of idealTTT in our simulation settings.

ASes across 160 countries [14]. To avoid cases where extreme
bandwidth heterogeneity has a strong impact on data transfer
completion time, we filtered out nodes with less than 1Mbps
upload speed. To represent typical asymmetric residential
Internet lines, we assign to each peer a downlink speed equal
to four times its uplink,5 capping it at 100Mbps.

Traces for a round of experiments with a peer set of n nodes
is performed in this way:

1) A sample of n nodes is chosen from the period; avail-
abilities are discretized in timeslots of 1 hour.

2) For each node i, upload and download speed is chosen
from the bandwidth distribution as described above. In
the simulation input, ui,t and di,t are set to this value if
the node is online, and to 0 otherwise.

In each experiment, we fix the values of oi and mi to be the
same for each node i; we will therefore denote them simply
as o and m. The object size o is set to 10GB. We do not
consider the case where remote storage is a limitation, so we
set m high enough to satisfy the constraint in any case.

Given that o and m are constant in each experiment run,
there is a minimum number of peers p = o/m needed to
upload all the requested data per node. We will refer to this
value in the following, in particular to evaluate the flexibility
in data allocation which is expressed by the ratio n/p.

These simulation settings imply that optimal TTT will have
the same distribution over all the simulation. A histogram of
this distribution is plotted in Figure 4: our inputs determine
long transfers often needing days to complete, with a skewed
distribution due to differences in bandwidth and availability
between nodes.

All our results are obtained by repeating the simulation over
each of the 4 3-week periods for 10000 times in the scenario
with no congestion and 100 times in the congested scenario.
To account for a pessimistic case with maximal congestion,
in the latter case all nodes start their transfer as soon as they
connect for the first time.

B. Scheduling Strategies

We now take into account the scheduling overhead from
Definition 6; Table III on the next page shows the overhead
caused by the scheduling policies defined in Section V.

5At the time of this writing, Ookla’s Net Index (http://www.netindex.com)
reports an average download/upload bandwidth ratio of around 4.



Scheduling w Overhead
Random – 12.66%

Least Available First 1 week 7.81%
Least Available First 1 month 7.76%

Slowest First 1 week 9.64%
Slowest First 1 month 9.69%

Last Connected First – 9.53%
Longest Connected First – 13.21%

Table III: Average scheduling overhead. No congestion, m =
50MB, p = 200, n = 220.

Random scheduling has a quite marked 12.66% overhead
in TTT compared to optimal scheduling. We see the gap
between optimal scheduling, least available first and random as
a function of the information that can be inferred about future
node uptime. Optimal scheduling can only be used in practice
if future uptime can be forecast perfectly, while random uses
no information at all. Other scheduling policies implement
solutions justified by heuristic estimations about future node
connectivity (e.g., “nodes that remained online often in the past
will continue to do so in the future” for Least Available First),
and their performance reflects the accuracy and usefulness
of these estimations. We consider estimating the degree of
predictability of future node uptime in real traces, and the
impact of this predictability, as an interesting open problem
which is in our agenda for future work.

Between our simple scheduling strategies, Least Available
First ranks best, reducing the overhead of random scheduling
by an amount of around 5% of the total TTT, validating the fact
that availability in the past is correlated to availability in the
future, and that uploading to least-available nodes is a sensible
strategy. Slowest First performs worse – even if better than
random – reflecting the fact that bandwidth is less significant
than availability, since during an online session it is generally
possible to upload m bytes even to nodes with low bandwidth.
Last Connected First also has better performance than random
scheduling, reflecting the fact that nodes connected for longer
will probably remain connected in the future; this is also
validated by the fact that Longest Connected First performs
worse than random scheduling.

We also observe that the length of the w window only has
a very small impact on the quality of scheduling, as long as
that window at least covers one week. In fact, shorter periods
would suffer from weekly patterns such as users disconnecting
for the week-end.

In Figure 5, we show that the scheduling overhead is
distributed very unevenly across nodes: between 60% and 70%
experience no overhead in TTT, while a minority of nodes
experience the biggest difference. This is mainly due to the
fact that nodes in our traces sometimes remain disconnected
for whole days, strongly impacting their TTT.

C. Impact of Peer Set Size and Congestion

In Figure 6, we execute several instances of our experiments
varying n and congestion settings, using a Least Available First
scheduling strategy.

0 50 100 150 200
Overhead (%)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
m

pi
ri

ca
lC

D
F

Least Available First (w = 1 month)
Slowest First (w = 1 month)
Random

Figure 5: Cumulative distribution function of scheduling over-
head. No congestion, m = 50MB, p = 200, n = 220.

100 120 140 160 180 200 220 240 260
n

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

A
ve

ra
ge

T
T

T
/i

de
al

T
T

T

Congested
No congestion
Optimal

Figure 6: Evolution of TTT as peer set size n grows. m =
100MB, p = 100. Scheduling: Least Available First, w = 1
month.

A first key conclusion we draw is that the number n of
nodes in the peer set is crucial to the performance: as n grows,
TTT approaches the ideal TTT rather quickly. This raises an
important message for P2P application designers: allowing
flexibility in choosing where to upload data when scheduling
uploads pays off handsomely in terms of performance.

A second conclusion is that congestion has an impact on
time to transfer which is almost negligible, and definitely
smaller than the scheduling overhead. This is due to the fact
that in our simulation the upload bandwidth of data owners is
almost always the bottleneck; as such, in the case of several
simultaneous uploads, we think it is very unlikely that they
would slow down noticeably the transfers.

20 40 60 80 100 120 140 160 180
n

1.84

1.86

1.88

1.90

1.92

1.94

1.96

1.98

2.00

A
ve

ra
ge

T
T

T
/i

de
al

T
T

T

Random
Least Available First (w = 1 month)

Figure 7: Evolution of TTT with constant n/p = 1.2. Con-
gested case.



Scheduling Nodes completed within optGTTT
Random 71.33%

Least Available First (w =1 week) 73.11%
Slowest First(w =1 week) 72.34%

Last Connected First 72.26%

Table IV: Congested case. n = 24, p = 20, m = 500MB.

Scheduling w Overhead
Random – 1.43%

Least Available First 1 week 1.13%
Least Available First 1 month 1.06%

Slowest First 1 week 1.38%
Slowest First 1 month 1.37%

Last Connected First – 1.20%
Longest Connected First – 1.70%

Table V: Scheduling overhead for downloads. No congestion,
m = 50MB, p = 200, n = 220.

What we pointed out raises a further question: if the number
of nodes in a peer set cannot be increased above a certain
threshold, would it be possible to still obtain good performance
by lowering the number of required peers p? In Figure 7 on the
preceding page, we show the ratio between TTT and idealTTT
keeping the n/p ratio constant. In this case, the performance
is only slightly sensitive to the number n of nodes: as n
decreases, TTT grows moderately. In fact, this reiterates our
point above: the flexibility in choosing the nodes to upload
data to is key in our case. On the other hand, if the network
size grows while keeping the “flexibility factor” n/p constant,
there is only a small impact on the overhead due to scheduling.

D. Optimal Congested Case

We now consider how our experimental results compare
to the optimal time to complete all transfers in the case of
congestion, optGTTT. We recall that we considered an extreme
situation where each node uploads data at the beginning of the
simulation. Unfortunately, due to the sheer size of the linear
programming problem we defined,6 we could only manage to
solve a system with n up to 24.

With optimal scheduling in the congested case, all nodes
would be able to complete their transfers within optGTTT. In
Table IV, we report on how many actually manage to complete
their data transfer in this time. A relevant percentage of nodes
(around 27-29%) complete their transfer after optGTTT. We
stress that this loss is only due to scheduling inefficiency,
since an optimal schedule would complete all the data transfers
within optGTTT. We attribute the relatively high number of
nodes completing their transfer later to the skewness in the
distribution of scheduling overhead already observed in Figure
5: a minority of nodes are heavily affected by the scheduling
overhead, and this makes them “miss” the optGTTT deadline.

E. Downloads

As a last experiment, we repeated our experiments for the
case of downloads as defined in Section II-B. We maintained

6Recall from Definition 11 that we obtain a constraint matrix of size
n (2T + n+ 2)× n2T .

all the inputs that we had for other experiments, switching
the download and upload bandwidth of nodes, since now data
is transferred in the opposite direction. We do not take in
consideration congestion in this case: the case where multiple
nodes require downloading the same piece of content from
the same node is well known and generally solved with
content delivery solutions such as BitTorrent [15]. The case
of downloads is interesting also in the case of application use
cases where the peer set size is very large, making the impact
of scheduling in uploads basically irrelevant: in this case, the
n/p ratio refers to the redundancy rate applied to uploaded
data; a redundancy value high enough to make scheduling
irrelevant could be unpractical to obtain in many situations.

Due to asymmetric bandwidth, scheduling choices are much
less relevant in the case of downloads: in fact, a node will typi-
cally be able to saturate the upload bandwidth of various peers
at once: a real scheduling decision will only happen when
many uploaders are available to send data simultaneously to
the recipient; in this case, the transfer will likely be completed
soon anyway. In Table V, we repeat the measurement of
Table III in this new setting; we obtain scheduling overheads
of around one order of magnitude less than in the upload
case. It is interesting to note that the relative performance of
scheduling policies remains unchanged: Least Available First
stills fares better than all other alternatives.

VII. RELATED WORK

Data transfer scheduling is a topic that has not been explored
much in the literature on P2P storage. In the only other piece
of research on the topic we are aware of, Birk and Kol [16]
analyzed random scheduling by analytically modeling peer up-
time as a Markovian process. In that respect, we confirm their
finding: the completion time of random scheduling converges
to to the optimal value as the system size grows.

Simple mathematical models such as Markov chains can
be treated analytically, but they cannot capture the inherent
complexity of connectivity patterns that are ultimately due to
the behavior of the human users that run the P2P applica-
tions. As such, when churn is abstracted through a model,
any analysis of the scheduling policy risks dealing with the
artifacts of models rather than with real-world properties of
traces. In contrast to them, our approach allows estimating
the performance of scheduling policies in realistic cases, and
the comparison with optimal scheduling computed a posteriori
allows us to estimate the further efficiency gain that could be
achieved with more sophisticated scheduling policies.

Several regularities in uptime behavior are known to exist
[9], [17], including uptime correlation and diurnal and weekly
patterns. In this work, we acknowledge these regularities,
using real-world traces as inputs, and we have shown how
simple scheduling techniques can exploit them in order to
obtain better performance.

As we have shown, scheduling matters especially when the
peer sets are rather small. In literature, several reasons exist
to restrict the size of peer sets. A few examples are:



• When distributed hash tables (DHTs) are used, data
should be stored on nodes which are easily retrievable
using the DHT lookup functionality. The smaller the peer
set is, the easier the data is to find. Examples of such
systems are Pastry [2] and Pastiche [3].

• To avoid storing data on untrusted nodes, data gets only
sent to machines owned by friends of the data owner,
in order to leverage on trust relationships between users.
FriendStore [6] and Safebook [7] are examples of systems
adopting this solution. The bigger the peer set is, the
weaker trust links need be.

• Nodes in a peer set can be chosen in order to guarantee
different system properties, for example to ensure high
availability with lower redundancy [4], or to create in-
centives for cooperation by grouping nodes with similar
characteristics [5], [18]. In these cases, larger peer sets
can undermine the benefits of these peer selection rules.

A further reason why peer sets are restricted stems from
the fact that nodes have to manage a large number of data
blocks. If each of them is stored on different neighbors, “book-
keeping” (i.e., keeping track of connectivity patterns and data
loss episodes) becomes very expensive; this motivates putting
several data blocks on the same peers. The most widely
deployed online storage application adopting a peer-to-peer
solution, Wua.la, stores data on a fixed set of 130 peers per
node [19].

We have shown that even a moderate increase of peer set
size can result in definitely better data transfer performances.
Investigating the trade-off with the fact that systems can
behave better when smaller peer sets are chosen is in our plans
for future research.

VIII. CONCLUSIONS

In this work, we introduced the problem of scheduling
large data transfers for Peer-to-Peer storage applications. We
described the tight coupling between scheduling strategies and
characteristics of traces, and we underlined the importance of
using real availability traces rather than relying on a mathe-
matical abstraction of node churn. We formalized the notions
of optimal scheduling strategy and of scheduling overhead,
i.e. the gap between the adopted scheduling strategy and the
optimal scheduling evaluated a posteriori. We showed how
to compute this optimal scheduling value using polynomial
algorithms, using a max-flow formulation for the case with no
congestion and linear programming in the congested case.

Via simulation, we obtained various insights. First, as the
number of nodes in peer sets grows, the time to complete
transfers decreases rapidly. This is an important message to
application designers: allowing a small degree of flexibility
with respect to the choice of nodes to adopt in the overlay for
storing data pays off significantly. Second, a simple scheduling
policy such as Least Available First manages to cut around
40% of the scheduling overhead, based on the assumption that
nodes that have been online often in the past will continue to
do so in the future. Third, the overhead with respect to optimal
scheduling is very unevenly distributed: many nodes will

barely experience a difference between the optimal schedule
and the one they took in practice, but for a relevant percentage
of them there is the possibility that bad schedule choices will
result in much longer data transfer times. Fourth, when many
nodes are uploading data at the same moment, congestion only
has a small impact on transfer completion times. Fifth, the
impact of scheduling in the case of downloads is much less
significant, due to the asymmetry of bandwidth on nodes.

The performance of scheduling algorithms is a consequence
of the predictability of the connectivity patterns of users. If
their connections and disconnections could be forecast with
certainty, there would be a way to devise optimal scheduling;
our simple scheduling policies exemplify heuristic “guesses”
on future node connectivity, and they manage to reduce the
time needed to complete transfers. We are currently investigat-
ing more sophisticated techniques to predict user availability,
and we plan to apply them also to the scheduling problem.

REFERENCES

[1] L. Toka, M. Dell’Amico, and P. Michiardi, “On scheduling and redun-
dancy for p2p backup,” Arxiv preprint arXiv:1009.1344, 2010.

[2] A. Rowstron and P. Druschel, “Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility,” SIGOPS
Oper. Syst. Rev., vol. 35, no. 5, pp. 188–201, 2001.

[3] L. Cox and B. Noble, “Pastiche: Making backup cheap and easy,” in
USENIX OSDI, 2002.

[4] L. Pamies-Juarez, P. García-López, and M. Sánchez-Artigas,
“Heterogeneity-aware erasure codes for peer-to-peer storage systems,”
in IEEE ICPP, 2009.

[5] L. Pamies-Juarez, P. García-López, and M. Sánchez-Artigas, “Rewarding
stability in peer-to-peer backup systems,” in IEEE ICON, 2008.

[6] D. Tran, F. Chiang, and J. Li, “Friendstore: cooperative online backup
using trusted nodes,” in ACM SocialNets, 2008.

[7] L. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” Communications
Magazine, IEEE, vol. 47, no. 12, pp. 94–101, 2009.

[8] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, pp. 189–202, ACM, 2006.

[9] S. Le Blond, F. Le Fessant, and E. Le Merrer, “Finding good partners
in availability-aware p2p networks,” Stabilization, Safety, and Security
of Distributed Systems, pp. 472–484, 2009.

[10] M. Luby, “LT codes,” in Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on, pp. 271–280, IEEE,
2002.

[11] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” in ACM STOC, 1986.

[12] L. Khachiian, “Polynomial algorithms in linear programming,” Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 20, pp. 51–68,
1980.

[13] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pp. 302–311, ACM, 1984.

[14] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bittorrent,” in USENIX NSDI,
2007.

[15] B. Cohen, “Incentives build robustness in BitTorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, pp. 68–72, Citeseer, 2003.

[16] Y. Birk and T. Kol, “Coding and scheduling considerations for peer-to-
peer storage backup systems,” in SNAPI, IEEE, 2007.

[17] M. Steiner, T. En-Najjary, and E. Biersack, “Long term study of peer
behavior in the KAD DHT,” Networking, IEEE/ACM Transactions on,
vol. 17, no. 5, pp. 1371–1384, 2009.

[18] P. Michiardi and L. Toka, “Selfish neighbor selection in peer-to-peer
backup and storage applications,” in Euro-Par, 2009.

[19] T. Mager, “Measurement study of wuala, a distributed social storage
service,” Master’s thesis, Eurecom and TU Darmstadt, 2009.


