Multimedia Indexing

Prof. Bernard Mérialdo
EURECOM
Journées du LABRI - 17 Juin 2011

Outline

- Introduction
- TRECVID Video Indexing Benchmarks
- Video and MM Summarization
- Evaluation (BLEU, ROUGE, VERT)
- Conclusions
EURECOM

- Higher education and Research GIE
 - Subsidiary of Institut Télécom
 - Academic members (5 european universities)
 - Industrial members (10 international companies)

- International:
 - 80 Master students (15+ nationalities)
 - 70 PhD students (20+ nationalities)
 - 23 professors (11 nationalities)

- Research activity:
 - 3 departments: mobile, multimedia, security
 - 96 research contracts, 4,6M€
 - 200 publications / year
Multimedia Indexing

- **Information Overload:**
 - Google 40 G web pages
 - **flickr** >5G pictures
 - **YouTube** >15M videos

- **Audio-visual data:**
 - Sound and speech recognition
 - Natural Language Processing
 - Video Analysis

TRECVID Evaluation

- **International Evaluation Benchmark**
 - Organized by NIST since 2001
 - Schedule:
 - Data is distributed to participants
 - Participants run their algorithms, send results to NIST
 - NIST evaluates
 - Results are compared during workshop
 - Several tasks:
 - Semantic Indexing
 - Topic Search
 - Copy Detection
 - Event Detection
 - Summarization (2006-2008)
TRECVID in numbers

Participants:

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>12</td>
<td>17</td>
<td>24</td>
<td>33</td>
<td>41</td>
<td>54</td>
<td>54</td>
<td>77</td>
<td>63</td>
<td>73</td>
<td>110</td>
</tr>
</tbody>
</table>

Video data:

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours of video (training/test)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>11 NIST videos</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>73 Internet Open Archive</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>66/67 TV News (ABC, CNN, CSPAN)</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>130/70 TV News (ABC, CNN, CSPAN)</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>85/85 TV News (+arabic, chinese)</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>170/158 TV News (+arabic, chinese)</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>50 BBC Rushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50/50 Sound and Vision (dutch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18/17 BBC Rushes</td>
<td></td>
</tr>
</tbody>
</table>

TRECVID Video Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours of video (training/test)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>100/100 Sound and Vision (dutch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35/18 BBC Rushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 Surveillance (Gatwick airport)</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>100/280 Sound and Vision (dutch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53/20 BBC Rushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 Surveillance (Gatwick airport)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>200/200 Internet Archive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 Sound and Vision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 Surveillance (Gatwick airport)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 BBC Rushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 HAVIC</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>400/200 Internet Archive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 Surveillance (Gatwick airport)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 BBC Rushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 HAVIC</td>
<td></td>
</tr>
</tbody>
</table>
TRECVID 2011 Tasks

- Known-item search task (automatic, manual, interactive)
 - Search for a known video from text description
 - 0001 KEY VISUAL CUES: man, clutter, headphone
 - QUERY: Find the video of bald, shirtless man showing pictures of his home full of clutter and wearing headphone
 - 0002 KEY VISUAL CUES: Sega advertisement, tanks, walking weapons, Hounds
 - QUERY: Find the video of a Sega video game advertisement that shows tanks and futuristic walking weapons called Hounds.
 - 0003 KEY VISUAL CUES: Two girls, pink T shirt, blue T shirt, swirling lights background
 - QUERY: Find the video of two girls in a pink T shirt and blue T shirt, swirling lights in the background.
 - 0004 KEY VISUAL CUES: George W. Bush, man, kitchen table, glasses, Canada
 - QUERY: Find the video about the cost of drugs, featuring a man in glasses at a kitchen table, a video of Bush, and a sign saying Canada.
 - 0005 KEY VISUAL CUES: village, thatch huts, girls in white shirts, woman in red shorts, man with black hair
 - QUERY: Find the video of an Asian family visiting a village of thatch roof huts showing two girls with white shirts and a woman in red shorts entering several huts with a man with black hair doing the commentary.
TRECVID 2011 Tasks

- Content-based multimedia copy detection
 - Find transformed copies of a video segment

TRECVID 2011 Tasks

- Event detection in airport surveillance video
 - PersonRuns, Pointing, CellToEar, ObjectPut, Embrace, PeopleMeet, PeopleSplitUp
TRECVID 2011 Tasks

- **Instance search** (interactive, automatic)
 Searching a visual occurrence of a target given a few examples (for example logo detection, product and landmark recognition)

Person	Object	Location

TRECVID 2011 Tasks

- **Semantic indexing (SIN)**
 - Find **shots** containing a given semantic concept
 - (previously called « High Level Feature Detection »)

- **Objective: build generic concept detectors**

- **Method:**
 - Assume concept presence is binary (contained or not)
 - System ranks shots by confidence score of presence
 - Best 2000 shots are returned for each feature
 - Manual assessment by NIST (yes/no for each shot)
 - Compute Mean Average Precision (MAP)
TRECVID Semantic Concepts

<table>
<thead>
<tr>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>outdoors</td>
<td>indoors</td>
<td>face</td>
<td>people</td>
<td>cityscape</td>
<td>landscape</td>
<td>text overlay</td>
<td>speech</td>
</tr>
<tr>
<td>news subject</td>
<td>news subject</td>
<td>face</td>
<td>people</td>
<td>road</td>
<td>vegetation</td>
<td>animal</td>
<td>female speech</td>
</tr>
<tr>
<td>car/truck/bus</td>
<td>aircraft</td>
<td>news subject</td>
<td>monologue</td>
<td>non-studio setting</td>
<td>sporting event</td>
<td>weather news</td>
<td>zoomin</td>
</tr>
<tr>
<td>Madeleine Albright</td>
<td>Bill Clinton</td>
<td>trains or railroad</td>
<td>cars</td>
<td>beach</td>
<td>basket score</td>
<td>airplane taking off</td>
<td>people walking</td>
</tr>
</tbody>
</table>

- Development Data: 130 concepts (+ ontology relations)
 - 200 hours: 200 hours
 - 130 Kshots: 130 Kshots

- Development data is manually annotated

- Test Data: 200 hours
 - 130 Kshots: 130 Kshots

- 2010: 130 concepts (+ ontology relations)

- 2011: 500 concepts (+ ontology relations)
 - 400 hours: 200 hours
 - 260 Kshots: 130 Kshots
TRECVID Concept Annotation

- Collaborative Annotation
- Active Learning

TRECVID 2011 Collaborative Annotation

Generic Concept Detector

Training Data

Airplane

Not Airplane

Feature Extraction

Supervised Classification

P(X=Airplane)

Feature Extraction

Classifier
Image/Video Features

- **Global:**
 - Color Histogram
 - Wavelets, Gabor filters, Edges
 - spatial arrangements

- **Local:**
 - SIFT, SURF

- **Motion:**
 - Optical flow, activity

- **Audio/Text:**
 - MFCC, speech/music/noise
 - Keywords from metadata or ASR

- **Specific:**
 - Face detection
 - Video-OCR

Local features: Bag Of Words

Bag-Of-Words histogram

Keypoint extraction → Clustering → Keypoint feature space → Visual word vocabulary

(Columbia U)
Supervised Classifiers

- **Classifiers:**
 - SVM Support Vector Machines
 - K-NN Nearest Neighbours
 - NN Neural Networks
 - Boosting
 - Ensemble
 - ...

- **Fusion:**
 - Different features / classifiers for a concept
 - Classifiers for different concepts

GDR-ISIS IRIM Action

- **Coordinated action LIG/MRIM, ETIS, LIF, LISTIC, LABRI, LIF, GIPSA, EURECOM**
 - LIG/hNdN : normalized RGB Histogram
 - LIG/gabN : normalized Gabor transform
 - LIG/opp_sift_har : bag of word, opponent sift
 - ETIS/global_X: histogram, quaternionic wavelets
 - LISTIC_Stip_X : nb of Spatio-Temporal Interest Points
 - LaBRI/faces : OpenCV+median temporal filtering
 - LaBRI/residualMotion_nPX : residual motion vectors
 - LIF/percepts : mid-level concepts on several grid blocks
 - GIPSA/AudioSpectro : spectral profile
 - GIPSA/AudioHamonicity
 - EUR/EUR-sm462 : Salency color moments
TRECVID Generic Architecture

For each concept

Cross-concept correlation

Video Data

Feature 1

Classifier 1

Feature 2

Classifier 2

Feature 3

Classifier 3

Feature N

Classifier N

Fusion

TRECVID 2010 SIN Performance

Top 10 InfAP scores by feature (Full runs)

10 life common features

InfAP

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Adrenal

Adam_People

Bicycling

Cat_Racing

Casting

Dancing

Disinfection_People

Doorway

Extraction_File

Face_Recognition

Fusion

Greeting_Vehicles

Hitting

Jumping

Kick

Knocking

Landing

Passing

Running

Shaking

Sitting

Standing

Throwing

Vehicles

Walking

17 June 2011

LABRI Invited Presentation
TRECVID SIN Task

- Conclusions on SIN task:
 - System performance improve
 - More data or better model?
 - Cross-domain models are to be improved
 - How to quickly adapt to a new domain?
 - Computation requirements are increasing

Multimedia Summarization

- Overload of Multimedia information, specially videos
 - Lots of TV channels
 - Lots of recording devices

- Summarization is a useful tool:
 - Quickly grasp the main content
 - Decide to watch entire video or not
 - Allows to quickly compare several videos
 - Sometimes find relevant information

- Specific problems:
 - Multi-Media
 - Multi-Video
 - Evaluation
Video Summarization

Extract and assemble
Static keyframes
Dynamic VideoSkim

Video Summarization is difficult

Efficient selection requires:
- Analysis
- Modeling
- “Understanding”
- Evaluation of importance
Video Summarization is easy

- Lots of possible approaches for selection
 - From random choice
 - To numerical optimization
- How to prove that a summary is good (or bad)?
- A major problem is Evaluation

Video Summary Evaluation

- Many proposals, two basic approaches:
 - Objective metrics (quantitative)
 - SVD over feature frame matrix [Gong 2000]
 - Shot Reconstruction Degree [Liu 2004]
 - Shot importance [Uchihashi 1999]
 - User studies (qualitative)
 - Keyframe Counting [Dufaux 2000]
 - User satisfaction [Ngo 2003]
 - Content identification [Smith 1998, Lu 2004]
- Dilema: automatic vs realistic
TRECVID BBC Rushes summarization task

- Rushes from BBC archive
 - Unedited material from dramatic series

Rushes Video Structure

- A rushes video contains:
 - Junk frames
 - Test bar patterns
 - Junk recordings, irrelevant shots
 - Scenes
 - Recordings of a prepared action
 - A scene contains several takes
 - Each take is a tentative recording for the action
 - A take generally starts with a clapboard

<table>
<thead>
<tr>
<th>Scene 1</th>
<th>Scene 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junk</td>
<td>Junk</td>
</tr>
<tr>
<td>Take 1</td>
<td>Take 1</td>
</tr>
<tr>
<td>Take 2</td>
<td>Take 2</td>
</tr>
<tr>
<td>Take 3</td>
<td></td>
</tr>
</tbody>
</table>
Rushes Video Structure

- Several takes of the same scene

TRECVID BBC Rushes summarization task

- 2006: organize, no evaluation
- 2007: summarize, evaluate
 - List of topics and events built for ground truth
 - 4% summary is built for each video
 - Evaluator watches summary and counts topics present
- 2008: summarize, evaluate
 - 2% summary is built for each video
 - Evaluator watches summary and counts topics present
- 2009: discontinued 😞
Summarization Evaluation

- **Ground truth**: human annotation of visible topics
- **Sample for MRS044500**:
 - 2 men in dark suits walk past Ford truck to building entrance
 - 2 men in dark suits enter building
 - person in brown coat opens rear end car and removes wheelchair (seen from front of car)
 - woman walks around car to passenger window (seen from rear end of car)
 - close up of man in passenger seat (seen from front of car)
 - woman in brown coat removes wheelchair and brings it round to the passenger door (seen from front of car)
 - man in beige suit appears (seen from front of car)
 - man in beige suit opens car door (seen from front of car)
 - woman in brown jacket undoes man in car’s seatbelt (seen from front of car)
 - woman in brown jacket helps passenger into wheelchair (seen from front of car)
 - …

Video

Summary

Randomly Selected Topics

Ground Truth

Y/N

Y/N

Y/N

Assessors
EURECOM 2008 Summarization system

COST 292 Summarization System

- Based on Spectral Clustering

- LABRI contribution: mid-level features:
 - Face
 - Camera movement
TRECVID Summarization Evaluation

Internet Multi-Video Summarization

- Collaboration with wikio.fr
 - News aggregator
 - Collect news information from various sites
 - Categorize/gather
 - Contains text, video

- Objective:
 - Multimedia summaries of multi-documents articles
Summarization Evaluation

- **Problem:**
 - No ground truth
 - No perfect summary
 - Different people will create different summaries
 - Different people will generally agree on summary ranking

- **Solution:**
 - Same problem appeared in:
 - Machine translation → BLEU evaluation
 - Text summarization → ROUGE evaluation
 - Idea: compare candidate with a set of references

Machine Translation Evaluation

- **Machine Translation BLEU [Papineni 2002]**
 - “BiLingual Evaluation Understudy”
 - N-gram precision based metric:

 \[
 BLEU_n = \frac{\sum_{n \in \text{C}} \sum_{n \in \text{clip}} \text{count}(n)}{\sum_{n \in \text{C}} \text{count}(n)}
 \]

 - Used in NIST evaluations

 Cand 1: It is a guide to action which ensures that the military always obeys the commands of the party

 Cand 2: It is to insure the troops forever hearing the activity guidebook that party direct

 Ref 1: It is a guide to action that ensures that the military will forever heed Party commands

 Ref 2: It is the guiding principle which guarantees the military forces always being under the command of the Party

 Ref 3: It is the practical guide for the army always to heed the directions of the party
Text Summarization Evaluation

- **ROUGE [Lin 2004]**
 - “Recall- Oriented Understudy for Gisting Evaluation”
 - N-gram recall based metric

 \[
 ROUGE_n = \frac{\sum_{\text{References}} \sum_{n\text{-gram} \in S} \text{count}_{match}(n\text{-gram})}{\sum_{\text{References}} \sum_{n\text{-gram} \in S} \text{count}(n\text{-gram})}
 \]

 - **Cand:** pulse series may ease schizophrenic voices
 - **Ref1:** magnetic pulse series sent through brain may ease imaginary schizophrenic sounds
 - **Ref2:** yale finds magnetic stimulation pulses may provide some relief to schizophrenic voices

Summarization Evaluation

- **VERT [Eurecom 2010]**
 - “Video Excerpt Relevance Threshold”
 - Recall based measure
 - Compares candidate keyframes with reference summaries

 \[
 VERT_n = \frac{\sum_{\text{ReferenceSummaries}} \sum_{\text{gram} \in S} w_c(\text{gram}_n)}{\sum_{\text{ReferenceSummaries}} \sum_{\text{gram} \in S} w_s(\text{gram}_n)}
 \]

 - **wC and wS:** weight of gramn
 - Weight = keyframe rank in selection
 - Several variants explored
Summarization Evaluation

- **First Experiments:**
 - Keyframe automatic selection
 - User keyframe selection and ranking
 - Reference summaries
 - Statistical comparison

VERT Evaluation

- **On going experiment:**
 - Large scale experimentation on Wikio laboratory site
 - 30 groups of 6 videos each, for each group, selection of (max) 60 keyframes
 - For each user:
 - Ask for keyframe selection and ranking
 - Reference summaries $R(u,v)$
 - Used to compute VERT
 - Ask for summary evaluation
 - By pair
 - Used to evaluate VERT
Conclusions

- MM Indexing is a hard problem
- Evaluation is required to measure progress
- Machine Learning is effective

But

- Comparative benchmarks tend to limit innovation
- Is more data better than smarter models?
- Which are the right criteria for evaluation?

Thank you

Merci